FINITE ELEMENT APPROXIMATION OF A
STRAIN-LIMITING ELASTIC MODEL

ANDREA BONITO, VIVETTE GIRAULT, AND ENDRE SULI

ABSTRACT. We construct a finite element approximation of a strain-limiting elastic model on a bounded
open domain in R, d € {2,3}. The sequence of finite element approximations is shown to exhibit
strong convergence to the unique weak solution of the model. Assuming that the material parameters
featuring in the model are Lipschitz-continuous, and assuming that the weak solution has additional
regularity, the sequence of finite element approximations is shown to converge with a rate. An iterative
algorithm is constructed for the solution of the system of nonlinear algebraic equations that arises from
the finite element approximation. An appealing feature of the iterative algorithm is that it decouples
the monotone and linear elastic parts of the nonlinearity in the model. In particular, our choice of
piecewise constant approximation for the stress tensor (and continuous piecewise linear approximation
for the displacement) allows us to compute the monotone part of the nonlinearity by solving an algebraic
system with d(d+1)/2 unknowns independently on each element in the subdivision of the computational
domain. The theoretical results are illustrated by numerical experiments.
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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

Until recently, the term elasticity referred to Cauchy elasticity, and within such a theory, strain-
limiting models are not possible. Motivated by the work of Rajagopal in [13], see also [14], the objective
of this paper is to design, analyze and implement numerical approximations of models that fall outside
the realm of classical Cauchy elasticity. These models are implicit and nonlinear, and are referred to as
strain-limiting, because they permit the linearized strain to remain bounded even when the stress is very
large: a property that cannot be guaranteed within the framework of standard elastic or nonlinear elastic
models.

On a bounded domain Q C R, d € {2,3}, and for a given external force f : Q@ — R?, we consider the
nonlinear elastic model

(1.1) ~div(T)=f i,

where the symmetric stress tensor T is related to the strain tensor e(u) := 2(Vu + (Vu)T), for a given
displacement vector u, via a nonlinear constitutive relation of the form

(1.2) e(u) = \(Tr(T)Te(T)I + p(JT)TT  in Q.

Here A\ € C°(R) and p € C°([0, +00)) are given functions and T9 denotes the deviatoric part of the tensor
T, defined by

1
Td =T - 8Tr(T)I.
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Additional assumptions on A and p are required (see (A1)—(A4) below), which guarantee that, in par-
ticular, the right-hand side of (1.2) is a monotone operator applied to T. This strain-limiting model is
used to describe, for example, the behavior of brittle materials in the vicinity of fracture tips, or in the
neighborhood of concentrated loads, where there is concentration of stress even though the magnitude
of the strain tensor is limited. The model itself is derived and analyzed in the work of Bulicek et al. [4];
some of the ideas introduced in [4] will also be used in the numerical analysis developed in the sequel.
Of course, there are several strain-limiting models: the reader will find other models in [4] and the refer-
ences quoted therein. This being the first effort though to construct and rigorously analyze a numerical
algorithm for a strain-limiting elastic model, we shall confine ourselves to the model (1.1), (1.2).

The analysis of the model (1.1), (1.2) is far from trivial because the operator involved, although
monotone, lacks coercivity. The authors of [4] show the existence of a weak solution to the problem by
first regularizing (1.2) with the addition of an appropriate coercive term,

Tr(T)I Td
10

n|Te(T)[' =% T3

see (3.2), eventually providing a control of T in Ly 1 (2)4*¢. It is then shown in [4] that, as n — oo, the
limit of the sequence of solutions to the regularized gystem satisfies the original problem. This nonlinear
regularization is necessary in order to be able to cope with possibly rough data f. However, for smoother
data, the simpler linear regularization =T has been used in [4] to recover additional regularity of the
solution; see (6.3).

The same framework is used here in the discrete case. More precisely, the regularized problems
(3.2) and (6.3) are discretized by means of a simple finite element scheme: for instance, on simplices,
by discontinuous piecewise Py elements for the each component of the stress tensor T, and globally
continuous, piecewise P; elements for each component of the displacement vector u; see (5.3) and (6.10).
It is worth noting here that for quadrilateral subdivisions of the domain 2, the corresponding (Qg, Q1)
stress/displacement pair of finite element spaces is (inf-sup) unstable, and discontinuous polynomials of
degree 1 in each direction should be selected for the stress approximations instead of Qg elements so as
to restore (inf-sup) stability; see Sections 5.3 and 5.4. Convergence to the exact solution is established by
first passing to the limit as the mesh-size tends to zero, for a fixed value of the regularization parameter
n, and then we let n tend to infinity. For rough data, the delicate part in the approximation of (3.2) is the
derivation of a suitable rate of convergence for the approximation error. The difficulty stems from the lack
of a meaningful error bound in a standard Lebesgue norm. Our analysis therefore relies on modular forms
and associated Orlicz norms (see Theorem 5.5 and the subsequent discussion). For smoother data, the
LT regularization mentioned above can be used, and the numerical analysis of (6.10) is then somewhat
simpler because estimates for the stress, for the regularized problem at least, are naturally obtained in
Ly(9)?*4 (see Theorem 6.2) instead of L;(Q)4*¢ (or L1+%(Q)d><d).

The proposed finite element discretizations (5.3) and (6.10) yield nonlinear systems with constraints.
Since the nonlinear operator is the sum of a monotone and a coercive operator, we take advantage of
the algorithm developed by Lions and Mercier in [11] to decouple these two parts: the unconstrained
monotone system is solved first, followed by solving a constrained coercive system. As the stress tensor
is potentially discontinuous, its simplest possible discretization is, as was suggested above, by means
of a piecewise constant approximation on simplices; thus the associated nonlinearity can be resolved
element-by-element. We establish convergence of this splitting algorithm when applied to (6.10) (see
Theorem 7.1). When applied to (5.3), the rigorous proof of convergence of the splitting algorithm is an
open problem, although our numerical experiments at least appear to indicate that the splitting algorithm
may well be convergent in this case as well.

1.1. Setting of the problem. We consider the system (1.1), (1.2) and describe the assumptions required
on A and p. In addition to A € C°(R) and p € C°([0,+00)), we assume that s € R — A(s)s € C1(R).
Complementing these regularity hypotheses, we assume that A and p satisfy, for some positive constants
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C1,C5, k and «, the following inequalities:

(A1) Gs® A(s)s? < Cyls| Vs eR;

K+ |s|] = =2 '
C 82

(A2) - iL S<u()s” < Chs Vs Rap

(A3) 0< %()\(s)s) Vs eR;
C d

A4 S S Reo.

(Ad) T 9™ S ds (1(s)s) Vs eRsg

We note that, using the continuity of A, the first inequality in assumption (A1) implies that A(s) > 0
when s # 0 and \(s) > 0 for s € R. In addition, using now the second inequality in (A1) we have that

(1.3) IA(s)s| = A(s)|s] < Cq VseR.
The same argument applied to the function p gives p(s) > 0 when s > 0, and
(1.4) pu(s) >0, u(s)s <Cy Vs € Rx>p.

In particular, these assumptions guarantee that the system will only exhibit finite strain (see Theo-
rem 2.1 below). At this point, we also recall a result from [12] (see also Lemma 4.1 in [4]), which will
play a crucial role in the subsequent analysis.

Under the assumptions (Al)-(A4) stated above, there exists a positive constant C' such that the

following inequalities hold for all R;, R4 € ngx,;f (the set of all d x d symmetric matrices with real-valued
entries):
[R1 — Ry|?
1. — : — > ;
(1.5) (1(R1)R1 — p(|R2[)R2) : (R1 — R2) > C(H R+ Ra]) e
. a2
(L6) (n(R1))Ry — p(IR2|)R2) : (Ry = Ra) > C| (6 + [Ra) 2 = (5 + [Ra) [
(1.7) (AMTr(R1))Tr(Rq) — AM(Tr(Re))Tr(R2)) (Tr(R1) — Tr(Rg)) > 0.
If, in addition,
d

(A3) 0< E()\(s)s) Vs eR,
then, for all Ry, Ry € R such that Tr(Ry) # Tr(Ry), we have

(1.8) (MTr(R1))Tr(Rq) — A(Tr(R2))Tr(R2)) (Tr(R4) — Tr(R2)) > 0.

The system (1.1), (1.2) is supplemented with the boundary conditions
u=g on Jdpf and Tv =£ on IyN9,

where the boundary of Q is decomposed into two parts, dpQ and dn§, with dpQ N INQ = 0 and
OpQLU OnQ = 09, v is the outward-pointing unit normal to 92, g : 9Q — R? is a given displacement on
OpQ, and £ : 9Q — R? is a given traction force on On§).

1.2. Notation. We shall suppose for the rest of this section that 2 is a bounded simply connected
John domain; see, for instance, [1] or [9]. Henceforth, L,(Q2) and W*P?(Q) will denote the standard
Lebesgue and Sobolev spaces, and the corresponding spaces of d-component vector-valued functions and
symmetric d x d-component tensor-valued functions will be denoted, respectively, by L,()<, LP(Q)gan‘f
and Wk»(Q)4, Whr(Q)d<d. In order to characterize displacements that vanish on the boundary, 9,
of Q, we consider for p € [1,00) the Sobolev space VVO1 P(Q), defined as the closure of the linear space
C&°(€2), consisting of infinitely many times continuously differentiable functions with compact support in

€, in the norm of the space W1P(Q):

W@ =@
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We recall the Poincaré and Korn inequalities, which, for each p € (1, 00), assert the existence of positive
constants S, and KCp,, such that, respectively (cf. Theorem 1.5 in [9)]),

(1.9) ol <Sp Vol YoeWy™(Q),
(1.10) IV, @ < KpleW)lp, @  ¥veWyP@)r
By combining inequalities (1.10) and (1.9) we obtain the inequality

(1.11) IVllz, @ < CrpleW)llr,@  VveWyP)?

with Ckp, =S, K, > 0.
For any two symmetric d x d tensors S = (S;;) and T = (T};), we shall use a colon to denote their
contraction product,

so that the Frobenius norm of S reads
|S|2 =S:S= Tr(SQ).
It is then easy to show that

(1.12) S[> = [S4* + %ITI"(S)I2 <SP +ITx(S)? VS eRg,
which implies that

(1.13) S| <89 +|Tx(S)] VS eRLL
Conversely,

(1.14) ITr(S)| + S| < v2d[S| VS e R,

since, by elementary inequalities and by noting the equality stated in (1.12),

1 1
AT+ 15%) < vaa (S 4182 ) = Vadls)

Moreover, for any nonnegative real numbers a and b, and for any p > 1 and 6 € (0, 1], we have
a? + 0P > 21 P(a 4+ b)P > 2 7P (a® + b?) 2 > 217P(ha? + %) 5.

Thus, by taking a = |Tr(S)|, b = [S9| and § = 1, we have by (1.12) that, for any p > 1,

(1.15) 217P|S|P < | Tx(S)|P + [S9|P.

The remainder of this article is organized as follows. The problem is set into variational form in
Section 2 and the associated existence and uniqueness results are recalled. Sections 3 and 4 are devoted
to the analysis of the sequence of regularized problems (3.2) that will be discretized by finite elements
in Section 5; this includes a priori estimates, convergence, and identification of the limit. The simpler
analysis of (6.3) is sketched in Section 6. In Section 7, we present an iterative algorithm that dissociates
the computation of the nonlinearity from the elastic constraint, and we prove its convergence when
applied to (6.10). In Section 8, we report numerical experiments aimed at assessing the performance of
the iterative algorithm and the discretization scheme.

=

s + 15 < v (

2. WEAK FORMULATION

We begin by recalling Theorem 4.3 from [4], which guarantees the existence and uniqueness of a
solution to the problem (1.1), (1.2) in the case when 9p2 = 9 and g = 0.

When the Neumann part of the boundary dn {2 is nonempty, the structure of the solution is potentially
much more complicated. It was shown in [3] that, in general, the solution in that case belongs to the
space of Radon measures, but if the problem is equipped with a so-called asymptotic radial structure,
then the solution can in fact be understood as a standard weak solution, with one proviso: the attainment
of the boundary value is penalized by a measure supported on dny€2. For simplicity, in this initial effort
to construct a provably convergent numerical algorithm for the problem under consideration, we shall
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therefore suppose henceforth that dpQ = 9Q (i.e., InQ = () and that the Dirichlet boundary datum is
g = 0 on 09.

Theorem 2.1 (Theorem 4.3 in [4]). Assume that ONQ = 0 and that N, p satisfy (A1)—(A4d) with 0 <
a < 1/d; then, the following statements hold:
(a) Assume that £ = —div(F) for F € WP Q)24 with 8 € (ad,1). Then, there exists a pair (T, u),
such that

T e Ll(Q)dXd

sym
ue WyP()?4  Vpell, o),
e(u) € Lo (Q)4xd

sym

18 a weak solution in the sense that it satisfies
(2.1) /T e(w dx_/F e(w)dx  VYwe D),

where D(Q)4 := C5°(Q)¢, and the nonlinear relationship between the strain e(u) and the stress T
stated in (1.2) holds almost everywhere in €;

(b) Moreover, if Q has a continuous boundary, then the equality (2.1) holds for all w € W' ()4
such that e(w) € Loo(Q)47d;

(¢) In addition, u is unique and if \ satisfies the assumption (A3), then T is also unique;

(d) Furthermore, if F belongs to W22(Q)9%2, then T € WL(Q)EXd with

sym’ loc sym
— 2(d—2)(1+a)
i 2~ T Ata)rdi=a) ford =3,
€[1,2), arbitrary for d = 2.
Remark 2.2. We note in connection with part (d) of the above theorem that when d = 3, then
1+a
= 2 _—
? 2-—«

is a monotonic decreasing function of . Thus, as 0 < a < %, we have g <q< %

3. ANALYSIS OF A REGULARIZED PROBLEM

The proof of existence of weak solutions to the problem is based on constructing a sequence of solutions
to a regularized problem, where the original stress-strain relationship (1.2) is modified to become
Tr(T)I Td
AT (D)% I
here n € N (where N denotes the set of all positive integers) is a regularization parameter, which we shall
ultimately send to the limit n — oo.

Following this idea, we study in this work the finite element approximation of this regularized problem,
stated in the following variational form: find (T,,u,) € M,, x X,, satisfying

an(Ty,S) + ¢(Ty; Ty, S) — b(S,u,) =0 VS e M,

(3.1) (1) = A(TE(T)) Tr(T)L + o | T4 T +

(32) b(T,,v) = / F:e(v)dx Vv eX,,
Q

where

d
a,(T, S) ;:1/( ™y, T ) S dx,
nJo \|Te(T)['~=  |Td[*~=

¢(T;R,8) ::/Q()\(Tr(T))Tr(R)I+u(|Td|)Rd) : Sdx,

b(S,v):= | S:e(v)dx,
Q
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and
M, := Ly, 1 (Q)%%¢ X, =W, "t ()4,  neNl.

sym’
Motivated by the form of the expression appearing on the right-hand side of the relationship (3.1), we
define the mapping A, : Ly, 1 (&8 — L, 11 (Q2)2%4 by

sym sym

(3.3) An(S) := M(Tx(S))Tr(S)I + u(|S9))Se + Tr(S)I Sd .

n|Te(S)['=%  n|Sd|1-%
It follows from the inequalities (1.3) and (1.4) that A,, does indeed take its values in Ly41(Q)%:2, since

the first two terms belong to Lo ()44 for all S € Ly, 1 (02)4%¢, while the third and fourth term belong

sym sym’

t0 Lyp+1 (L0 for all S € Ly, 1 (Q)2%4, n € N. Moreover, the mapping A, : Ly, 1 (Q)3X4 — L, (Q)4xd

sym sym > sym sym
is bounded, continuous and coercive for all n € N, as is asserted in the following lemma.

Lemma 3.1 (Boundedness, continuity and coercivity of A,,). Let A € C°(R) and u € C°([0,+c0)), and
suppose that hypotheses (A1) and (A2) are valid. Then, the following assertions hold:

(i) For anyn € N, the mapping A, : Ly, 1 ()45 — L1 ()L is bounded; i.e., every bounded set

sym sym

in LH%(Q)gyxrg is mapped by Ay into a bounded set in Ly 1(Q)%%;
(i) For any n € N, the mapping A, = Ly 1 (LS — Ly (DL is continuous, i.e., for any

dxd
sym’

sequence (Sk)k>0 C Ly, 1(Q)
S S Ll_;'_L(Q)dXd

which strongly converges in the norm of LHL(Q)dXd to some
we have that

An(Sk) = A, (S) strongly in LnH(Q)gan‘f;
(iil) For any n € N, the mapping A, is coercive, i.e.,
Jo An(S) : Sdx
ISllz, , s @

sym’

— 00 as ||SHL1+ (@) — 0.

1
n

Proof. (i) It suffices to prove that any bounded ball in L, 1 (Q)3xd centred at the origin, is mapped by

sym?

A,, into a bounded set in L, 1(Q)%X¢. Consider, to this end, the bounded ball

sym *

BR — {S c L1+%(Q)d><d . ||SHL1+;(Q) < R} with R > 0.

sym

For every S € Bp, we have that

11 1 1 1 1 1 1
ISz, 0) < Codd 19177 + Cal6 7T 4+ A TSI, )+ IS,

1,1 a1 1qa E 1 s
< Cyd2 |Q| =S Cz‘Q| =S gd2(1+n)HS”£1+%(Q) + EHS||£1+%(Q)7
where in the transition to the second inequality we have made use of the facts that, by the identity (1.12)
we have |Tr(S)| < d2|S| and |S9|2 = |S|2 — L(Tr(S))?, whereby |S9| < [S|. Hence,

1 1
[ A (Sl a() < Cod? QI + Col Q77 + ~d3FDRT + ~RY =: R,,

which implies that A,,(Bg) is contained in a bounded ball in L, 1(2)%%%, centred at the origin, of radius

sym
R.. Thus, A, : L1 ()24 — L, 11 (2)4%¢ is a bounded mapping.

sym sym
(ii) Suppose that Sy — S strongly in LHA(Q)gan‘j. We begin by showing that
ATr(Sk))Tr(Sk)I — A(Tr(S))Tr(S)I  strongly in Ln+1(Q)g;rg.
By defining ¢y, := A(Tr(Sk))Tr(Sk) and using (1.3), we get
lok| < Co a.e. in Q.
Now, the strong convergence of {Sg}r>o in Ly, 1 ()45 implies that there exists a subsequence (not

indicated) such that S — S a.e. on Q. Thanks to the assumed continuity of A, it then follows that
vr — ¢ = MTr(S))Tr(S)
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a.e. in Q and || < Cy a.e. in Q. By Lebesgue’s dominated convergence theorem we therefore have that
v — ¢ strongly in L1 (). When combined with the boundedness of ¢y, the strong convergence ¢ — ¢
in L1 (), implies that ¢, — ¢ strongly in L,(€2) for all p € [1,00). Therefore, taking p = n + 1, the first
term of A, (Sy) strongly converges in Ly1(2)%4:4 to the first term in A, (S). The same is true of the
second term. ‘

To handle the third term, we note that since, for any a € (0, 1],
T Y

el = =yl

<27z —y|®  Va,y e R\ {0},
|] lyl

it follows with a = %, n € N, that

(3.4) Tr(Sg) _ Tr(S) 1
[Te(Sp)[' = |Te(S)['~

< 217w |Te(Sy) — Te(S)[+ < 21~ #d2 Sy, — S|,

dxd
sym

Tr(Skl) 15 Tr(Sl) 1
Te(Sp)l' = [T(S)[F 7=

whereby the assumed strong convergence S, — S in L, 1 (Q) implies that

dxd
sym ?

in Ln+1(Q)g’},XIg, n € N. By an identical argument the fourth term strongly converges in L, 1(2)
n € N.
(iii) Note that, by assumptions (Al) and (A2),

/An(S):dezl/ (m(S)|1+%+\sd\1+%)dx.
Q nJa

By taking p =1+ % with n € N in (1.15) and using (1.15), we then have that

27w n 27w 1
An(S) : Sdx > —/ S5 ax = 2 s
Q nJo n 1+
As the exponent 1+ % appearing on the right-hand side of the last equality is strictly greater than 1 for
all n € N, the coercivity of the mapping Ay, : Ly, 1 (Q)3X3 — Ly, 11 ()45 directly follows. O

Remark 3.2. One can simplify the proof of the continuity of A, asserted in Lemma 3.1 (ii) by assuming
that s — A(s)s and s — pu(s)s are globally Hélder-continuous functions over their respective domains
of definition. The latter assumption will be required in Theorem 5.5 to deduce rates of convergence for
the finite element approximation of the regularized problem; prior to that, we do not assume the global
Holder-continuity of s — A(s)s and s — pu(s)s.

Lemma 3.3 (Monotonicity of A,). Assume that A € C°(R) and p € C°([0,+00)), and that hypothe-
ses (A1)-(A4) are satisfied. Then, for any n € N, the mapping A, : Ly 1 (XS — L1 (Q)3% is

sym sym
monotone, i.e.,
(35) /(An(sl) - An(SQ)) : (Sl - SQ) dx Z 0
Q
dxd

for any pair of functions S1,S2 € Ly 1 ()
equality holds if, and only if, S = Ss a.e. on €.

Furthermore, monotonicity is strict, in the sense that

dxd

sym one has

Proof. To prove the monotonicity of A,,, note first that for any pair of matrices S,R € R

1 1 1 1 1
(3.6) (SIS|*~! ~R[R[*!): (S—R) > —|S - R\Q/ IR +60(S—R)[%~1d0 >0,
0

and since n > 1, the expression on the right-hand side is equal to 0 if, and only if, S = R. Similarly, for
any s,r € R,

1 1
(3.7) (s|s|%7lfr|r\%71)(sfr):ﬁ\sfﬂz/ Ir+6(s—r)|="1do >0,
0
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and the expression on the right-hand side is equal to 0 if, and only if, s = r. Hence, and by noting the
inequalities (1.5) and (1.7), we have that

/Q(An(sl) — An(S2)) 1 (S1 — S2)dx

1
w1

1 1
(3.8) > ﬁm«(sl - 52)\2/ | Tr(S2 + 6(S1 — S2)) de
0

1 ! 1_
+ﬁ|s;i—sg|2/O 59+ 0(s9 — s3)[+ 1 ap.

The expression on the right-hand side of this inequality is nonnegative and it is equal to 0 if, and only if,
Tr(S;) = Tr(S2) a.e. on Q and S¢ = S a.e. on (, that is, when S; = S, a.e. on €. O

4. A-PRIORI ESTIMATES FOR THE REGULARIZED PROBLEM

Our aim in this section is to derive a-priori estimates for the regularized problem (3.2). Clearly,
problem (3.2) can be interpreted as a constrained system with a (strictly) monotone nonlinearity. The
constraint is the second equation in problem (3.2); it is linear and nonhomogeneous, and can be, as is
usual in mixed variational problems, transformed into a homogenous constraint via an inf-sup property,
which we state in the next lemma.

Lemma 4.1 (Inf-sup property). The following inequality holds for all n € N:
b(S,v)
STz, @]

4.1 inf sup
( ) veX, SeM,,

Ln+1 (Q) B

Proof. Given v € X,, = Wy (Q)%, it suffices to note that R = e(v)|e(v)[*! € Ly, 1 (Q)%%¢ and that

Sym
we have

bR, v) = eM7F @) = Iz, @lleMIE, L@ =l @RIz, @

Whence,

sup OV e

SeM,, ”SHLH%(Q)
and the stated inf-sup property follows. O

We shall assume henceforth that, as in Theorem 2.1, f = —div(F), with F € W#1(Q)2X? and g €
(ad, 1) (recall that, by hypothesis, 0 < a < é); hence, by Sobolev embedding F & LH%(Q)S}ﬁg whereby
also F € LH%(Q)gyXIg =M,, for all n > % — 1 (consequently, f € W=b1+5(Q)4 = (W, " TH(Q)4) = (X,,)
for all n > % — 1), and we define
T .= F.

Clearly, the Subs;:ript ,» in the expression on the left-hand side of this equality is redundant, as T£ is equal

to F for all n > 5 1. We shall however continue to carry this redundant subscript in order to emphasize
the fact that the problem, as a whole, is dependent on n. Should it be desired that F € Ly, 1 (Q)2X2 for

sym
all n € N, one can, instead, adopt the slightly stronger assumption that F & Wﬁ’l(Q)gyXIg N LQ(Q)‘Sinnﬁl.

The use of the function Tf will allow us to lift the constraint imposed by the second equation in
problem (3.2) by converting it into a homogeneous equation; we can then replace the first equation in
(3.2) by one that is considered on a linear subspace V,, of M,,, defined below, which we choose to be the
kernel of the mapping div : M, — (X,,)".

Trivially,
(4.2) / Tf  e(v)dx = / F:e(v)dx Vv eX,.
Q Q
We define

(4.3) V. ={SeM, : bS,v)=0 VveX,}={SeM, : div(S) =0 € (X,,)'} = Ker(div).
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As X, is a reflexive Banach space, transposition yields that the transpose (—div)’ : (X,)"” =X, — (M,)’
of the linear operator —div : M, — (X,,)" is (—div)’ = &(+). The annihilator V- of V,, is, by definition,
Vi={teM,) :4S)=0 VScV,}L

By the Riesz representation theorem the dual space (M,,)" of L, 1 (Q)4%d

sym 1s isometrically isomorphic

to LnH(Q)gyXIg. Furthermore, since —div : M, — (X,,)’ is a bounded linear operator, it is also a closed

linear operator. Hence, by Banach’s closed range theorem,
Vi = {R € L (L5 - / R:Sdx=0 VS¢ Vn}
Q

= [Ker(div)]* = [Ker(—div)]* = Range((—div)’) = Range((-)).
Furthermore, once again by the closed range theorem,
Range(div) = Range(—div) = [Ker((—div)")]* = [Ker(¢(-))]* = [{0}]* = (X,.),

where the penultimate equality follows from the inequality (1.11).
Thanks to the definition of Tf

(44) ITE Nz, 0 = 1Pz, o0
Using T, we can eliminate the constraint (3.2)2 by setting
™ :=T,-Tf cvV,
and consider the problem: find TY € V,, such that
(4.5) an(T? + T 8) + ¢, (T + T, T +Tf S)=0 VvVSevV,.
From here, by using Lemma 3.1 and Lemma 3.3, we easily deduce that the mapping
ScV,= A (S+TE) € L, 1 ()X = (M,) C (V,)

Sym
is bounded, continuous (and therefore hemi-continuous), coercive and monotone; in addition, V,, is a
separable reflexive Banach space, as it is a closed linear subspace of the separable and reflexive Banach
space M, = Ly, 1 ()44 Therefore, by the Browder-Minty theorem (cf., for instance, [17, 10]) problem

sym*
(4.5), and hence also problem (3.2), has a solution T,, = T% + Tf € M,,, and since by Lemma 3.3 the
operator A,, is strictly monotone, the solution is unique.
With T,, € M,, thus uniquely fixed, we seek u,, € X,, such that
b(svun) :an(TnaS)+c(Tn;TnaS) VS € M,.
Consider the linear functional £,, € (M,,)" defined by
£,(8S) := an(Ty,S) + ¢(Ty; Ty, S), S € M,,.
Hence, thanks to equation (4.5), we have that ¢,,(S) = 0 for all S € V,,; consequently, ¢, € V-. Thus,
we are seeking u,, € X,, such that
(4.6) b(S,u,) = £,(S) VS eM,,.

As 4, € V& = [Ker(div)]* = Range(e(-)), there exists a u,, € X,, such that e(u,) = £,; that is u, € X,
solves problem (4.6). The inf-sup property (4.1), together with the inequality (1.11), then implies that
such a u,, € X,, is unique. Thus we have shown the existence of a unique solution pair (T, u,) € M, xX,,
to the regularized problem (3.2).

Next we shall prove the following a-priori bounds on ¢(u,,) and T,,.

Lemma 4.2 (A-priori estimates). Suppose that F € Ly, 1 (Q)4%2, and that A and p satisfy the properties

sym ?
(Al) and (A2). We then have that
T

1 1+1 1
le(ua)llz,  \ (@) < -~ dv2 16d2||F||LT:; (@) t2(n+1)C2V2d[Q| 7 ||F||L1+l(9) +4(n+1)C1x|Q

+ CyV2d Q|75



10 ANDREA BONITO, VIVETTE GIRAULT, AND ENDRE SULI

Moreover,
1 1+, _1
T ITall, ) + Ol Tl < R " @+ 20VRIQITF L, @ + 4CHRIS),

Proof. We start by testing problem (3.2) with v =u, and S =T, to get

an(Tm Tn) + C(TTL; T,, Tn) - b(Tna un) =0,
4.7
(47) b(Ty,u,) = / F : e(u,) dx,
Q

whence, by substituting equation (4.7)s into equation (4.7);, we have

%/ (ITrT;r ( >|f " |T|Td> d”/g (Am(Tn))wr(TmF + u<|T2|>|T22) x

= /QF e(uy,) dx,

where we have used that

Td:. T=T9: (Td + CllTr(T)I> = |T9? + %Tr(T) Tr(Td) = |92
=0

Hence, Holder’s inequality yields

1 1
L (et ) s [ (@R - (i) o
<Fllz,, , @lle(n)lz, @

For the A and p terms on the left-hand side of this inequality we note that for s > 0 one has

82 KR

-8 - —
K+s 1+
This, together with the properties (A1) and (A2), leads to

]. 1 1
7/ <|Tr(Tn)|1+n+|Tg|l+n> dx+C’1/ (|Te(T,)| + |TY)) dx
Q Q

n

1 1
< 1P, @)l + Con [ ( S )dx
o . e\ meryr 1

< Fllz,, , @lle(n)liz, @) +2C1k[Q],
since sup, 7x = 1.
Moreover, it follows from the inequality (1.15) with p =1+ % that
[Te(T) | [T o > 273 Ty |,
and therefore (1.13) yields
2-

1+
(4.8) 7\\T L, " @+ CllTallLi@) S IFlL,, . @lle(n)lL, @ +2Cik[Q].
+’7l
We now derive a bound on ||5(un)| Lns1 (), Using the inf-sup property (4.1). We begin by noting that
S,u an(Ty,S) 4+ c(Ty; Ty, S
Hg(un”LnJrl(Q) < sup 8(7") — sup n( n S) ( ny Ln )
SeL,,1(Q) yaxd ” ||L 1 () S€L1+l(ﬂ)gy><“? ” ||L1+%(Q)

We invoke Holder’s inequality, the equality [I| = v/d, the elementary inequality a + b < 217 % (a™ + b")%
where a,b > 0 and n € N with a = v/d|Tr(T,,)|=, b = |T9|%, and note that d|Tr(Tn)|+\T?L <V2|T,
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to deduce that

an(Tp,S) < i <2> |

Further, by noting the properties (A1) and (A2) again together with the inequality (1.14), we have
(4.9) o(Tn; Ty, 8) < CoV2d (2|7 |81, (),

i1 (Q)”S”L 1 ()

where we have bounded v/d 4+ 1 by v/2d for the sake of simplifying the constants appearing in the subse-
quent calculations. Hence,

(4.10) le(an)llz, (0 < 2;((

_1
2) ||T7?HL (Q) +CQV2d|Q|"+1.

By substituting the inequality (4.10) into the inequality (4.8) we obtain
o

2_% 1+i 1 1
2T, iy + Ol Tl < 1P,y o0 (220 () "Il + CovAIRIH ) +2Cumil

thus, by applying Young’s inequality,

G 1,1
ab<e— 4 P 1T — for a,b>0,e>0,p>1and + + = =1,

to the first term on the right-hand side withp=n+1, ¢ = %2_%,

1
1 2Vd [d\ T
=Tl wd =2 () I, @

1
in order to absorb the factor ||T,||} L(©) into the left-hand side, we deduce that
1+1

1

27w 1+i
ﬁHTnHLI:l @ T ClTnllLy (0
< 21+27’+2n (\/&)(1+%)2

- n+1

1Pz, <Q>+C2f|9\"+ll\FllL L (@) +2C1|9).

Hence, after multiplying by 2% and noting that 1 < 2% <2and 1+ % + # < (1 + %) , we obtain

T
n+1

< (2\/8)(1 B

1y2 1 )
@+ Ol < 52— IR, (o) + 20V 2 QT F L,y @ +4CIAIR

Bounding 1 + ; by 2 in the exponent of 2v/d in the first term on the right-hand side then yields the
second inequality in the statement of the lemma.

Omitting the second term from the left-hand side of that inequality and multiplying by n + 1 then
yields

1+
Tl ) < W6 IFIL, o) + 20+ DOV F s,y o) + 4l + D]

Therefore, by the inequality (4.10), we have that
T

1
2Vd (d\ 2 141
||e(un)|\Ln+1<Q>§T(§) {16d2||F||L1:L(Q)+2(n+1)Cz\/ 4|97+ ¥z, Q)+4(n+1)cm|ﬂ|
+ CoV2d Q7

Bounding the exponent % by % in the prefactor on the right-hand side yields the first bound in the
lemma. |
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Lemma 4.2 implies in particular that

lim sup ||€(un)||Ln+1(Q) < 02 vV 2d
n— oo
and
. 2C,
timsup [Tl @) < V24 [Fll o) + 4519,
n— o0

These bounds are consistent with the properties of the strain-limiting model under consideration, ex-
pressed by Theorem 2.1 (a), which asserts that the strain tensor is contained in Lo (2)%%%, even though
the stress tensor is, in general, an element of Ll(Q)‘Sinnﬁl only.

In connection with this, we recall from Section 4 of [4] that the sequence of (unique) weak solution pairs
((Tp,up))nen to the regularized problem (3.2) converges to a weak solution pair (T, u) of the problem
(1.1), (1.2), supplemented by a homogeneous Dirichlet boundary condition on 9 (which is also unique

if the condition (A3’) holds), in the sense that, as n — oo,

(4.11) T, — T strongly in L,(Q0)ZXd for any ¢ € |1,1+ %51023d), B€(adl),0<a< é, Qo CC

sym d
furthermore,
u, —u weakly in W, 24(Q)4,
u, —u strongly in C(Q)?,
d
1o L . dxd
(4.12) T — 50 strongly in L1 ()55,
Tr(T,, i
(T») 0 strongly in L1 ().

n|Tr(T,) [}~ %

In particular,

(4.13) e(u,) — e(u) weakly in Log(Q)%%5.

We note though that the weak convergence result (4.13) can be strengthened to
(4.14) e(u,) — e(u) strongly in Lp(Qo)fanrf VQoCcCcQ, Vpell, o)
and consequently to
(4.15) e(u,) — e(u) strongly in Lgd(Q)gyXIg.

To show this, we fix any Q¢ CC  and note that by subtracting the constitutive relation (1.2) from
its regularized counterpart (3.1) we have

Tr(T,,)I Td
n|Tr(Ty,)[' =% n|Td|' =%

where A : L1(Q0)3%¢ — Lo ()443 is given by

sym sym
(4.16) A(S) == A(Tr(S))Tr(S)I + p(|S9))S9.
A similar argument to the one in the proof of Lemma 3.1 yields that the mapping A : Ly(Q0)45d —

Lp(Qo)gerg is well-defined and continuous for all p € [1,00). Whence, because T,, converges strongly to

T in L (Q0)%%4, it follows that so does A(T,) to A(T) in Lp(Qo)g;Hﬁl for all p € [1,00). For the first

sym?
regularization term, Holder’s inequality implies that

1 1 1 1 l1—2)
ST Mz, 00) < CIT(TR)IE, (0 [0 7777 =0 as = oo,

and similarly for the second regularization term, containing T9. The convergence result (4.14) then
follows by collecting the above results. To show (4.15), we consider a nested sequence of 2y that exhausts
. By (4.14) there exists a subsequence (still indexed by n) such that £(u,,) — €(u) almost everywhere
on . Hence, in view of (4.13), (4.15) follows by Vitali’s theorem.
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Motivated by these convergence results our objective is to construct a sequence of finite element
approximations ((Th n, Un,n))ne(o,1) to the solution pair (T, u,) of the regularized problem, for a fixed
value of n, and then pass to the limit A — 04 with the discretization parameter h € (0, 1], followed by
passage to the limit n — oo with the regularization parameter n € N, — instead of approximating the
solution pair (T, u) directly by a finite element method. Our reasons for proceeding in this way will be
made clear at the start of Section 5.2.

5. FINITE ELEMENT APPROXIMATION

For the sake of simplicity we shall suppose from now on that €2 is a polygon when d = 2 or a Lipschitz
polyhedron when d = 3.

We consider a sequence of shape-regular simplicial subdivisions (75)xe(0,1] of €; by this we mean that
there exists a positive real number 7, independent of the mesh-size h, such that all closed simplices K in
the subdivision 7}, satisfy the inequality

h
(5.1) = <,

OK

where hg is the diameter of K and g is the diameter of the largest ball inscribed in K see for instance [5].
The extension to quadrilateral and hexahedral meshes is discussed in Sections 5.3 and 5.4.

Let P; be the space of piecewise (subordinate to 7;) polynomials of degree at most r. We consider
the conforming finite element spaces
(5.2) My = (PR o € My, Xppo= (PN Xy € Xy,
for the approximation of T,, and u,, respectively. We note in passing that in the set-theoretical sense
M, » and X, , are independent of n; we shall however continue to label them with the double subscript
n,h instead of just 5, in order to emphasize that they are being thought of as finite-dimensional normed
linear subspaces of M,, and X,,, respectively, throughout the paper.

As the exact solution is not expected to be very smooth, we have restricted ourselves to considering
a first-order finite element approximation. There are, of course, other choices of first-order spaces than
the one we shall be focusing on, but for the sake of brevity we shall not dwell on those here in detail; for
extensions and alternative choices of spaces, we refer the reader again to Sections 5.3 and 5.4.

5.1. Discrete Scheme. The discrete counterpart of problem (3.2), based on X,, , and M, 5, is then
defined as follows: find (T, 5, un,n) € M, 5, x X,, 5, such that

an(ThnySn) + c(Trn; Thhs Sh) —b(Sk,upp) =0 VSn € My, 1,
5.3
( ) b(Tn,h,Vh) = / F: E(Vh) dx Vv € Xn,h~
Q

We start by proving the discrete version of the inf-sup property (4.1).

Lemma 5.1 (Discrete inf-sup property). For each n € N, we have

b(Sh, Vh)

> 1.
Sullz,, s @le(vi)llL i@

(5.4) inf sup
vh€Xn,h S, eM, p

Proof. The argument is based on mimicking the proof of Fortin’s Lemma. Indeed, the assertion directly
follows from the continuous inf-sup property (4.1), upon noting that for all v, € X, C X, e(vy)
belongs to M, ;. Thus, for all vj, € X,, 5, all S € Ml,,, and all K € 7T},, one has

/Ks(vh) I, Sdx = / e(vy) : Sdx,

K
where I}, S € M, j, is defined componentwise by

(5.5) I, f| i :_|Il(|/deX VK €T, VfeL(K),
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and the projector II : Ml,, — M, 5, is stable in (the norm of) M, because
Tfle,, a0 < Wflle,, ) VK € Ths VS € Lypa (K),
whereby
IS, @ < ISle,, @ VS €Ly s (L.
That completes the proof. O

The above proof suggests eliminating the constraint by defining
(5.6) T, = T, T, =TI, F;
we recall that Tf € M, satisfies the equality (4.2). Then, by setting
(5.7) Von ={Spn €M, : b(Sn,vi)=0 Vv eX, 1}
and

Vi = {SheMn,h :/Sh:thx:O VRheth},
Q

we deduce from the equalities (4.2), (5.6), and by noting that e(v;) € M, for all v, € X, 5, that
sz,h € M,, 5, satisfies

(5.8) / e(vp) : Tfl)h dx = / F:e(vy)dx Vvy € Xpp;
Q Q

furthermore, the equality (5.6) implies that
(5.9) HTi,hHLH%(Q) < Fllz, ,+ -
We observe further that, as h — 04,
(5.10) Tf , — Tf  strongly in M.
Given wa,h € M, ;, defined by the equality (5.6), we shall seek T?z,h =Ty p— sz,h € V,, 5 that solves

(511) an(T%JL+T£l,hash)+C(T9L7h+Tf7h;T9;)h+T1f:7,)hash) =0 \V/Sh EVn,h-

n

The existence of a unique such T9 , € V,, 5, and therefore of a unique T, j, = Tg’h + sz,h € M, , and
a unique u, ) € X, j, satisfying equation (5.3); for all S;, € M, j, can be shown by proceeding as in the
case of the continuous problem discussed in Section 4, but with the continuous inf-sup property stated
in Lemma 4.1, that was used there, now replaced by the discrete inf-sup property stated in Lemma 5.1.
Indeed, let A, p, : M, , = (M, 1)’ be defined by the projection of A,, onto M, 5,

/ Anyh(Sh) Ry, dx = an(Sh, Rh) -+ C(Sh; Sh, Rh) VR, € Mn,h~
Q

In the present case where the tensors of M, j, are piecewise constant functions, A, »(Sp) coincides with
An(Sp), but this equality is not necessary. It is easy to check that A, ; has the same boundedness,
continuity, coercivity, and monotonicity properties (all uniform in h) as A,,, as stated in Lemmas 3.1 and
3.3. The same is true of the mapping

Sk € Vo — Ay n(Sh+ sz,h)'

Therefore, another application of the Browder—Minty theorem gives existence and uniqueness of T?l,h
solving (5.11) and we set T, ), = T?uh + Tfl’h. The discrete inf-sup property (5.4) then guarantees
the existence of a corresponding u, , € X, such that (T, »,u, ) solves the system (5.3). This is
summarized in the following lemma.

Lemma 5.2 (Existence and uniqueness of the discrete solution). Assume that A and u satisfy the hy-
potheses (Al)—(A4). Then, the system (5.3) has exactly one solution (Tp p,Unp) € My p X X p.
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5.2. Convergence of the sequence of discrete solutions. Without regularization (i.e., with % for-
mally set equal to zero in problem (5.3), resulting in the absence of the form a,(:,-) from the left-hand
side of (5.3)1), the proof of convergence of the sequence of solutions generated by the resulting numerical
method to (T, u) is an open problem. The source of the technical difficulties is that, as n — oo, the
only uniform (w.r.t. n € N) bound on T, ,, with h € (0, 1] fixed, that is directly available to us is in the
L1(2)4%4 norm; a uniform bound in the L;(£2)%*? norm only guarantees biting weak convergence, via
Chacon’s biting lemma, for example, and this is insufficient to deduce even convergence of a subsequence
in the weak topology of L;(Q)?*?. The proof of existence of a solution to the continuous problem in ref-
erence [4] succeeds because the L;(Q2)?*¢ norm bound on T, in the sequence of solution pairs (T,,, u,,) to
the regularized problem is supplemented by fractional derivative estimates. Unfortunately, the extension
of those fractional derivative estimates to the finite element discretization considered here is problematic.
For this reason, we freeze the parameter n € N and we now discuss convergence, without rates, of the
sequence of solution pairs (T, n, un,p) of the discrete scheme to the solution (T, u,) of the regularized
problem as h — 0;. Having done so, we will invoke the converge results stated at the end of Section 4
to pass to the limit n — oo to deduce that lim,, o limy_o, (Ty n, upn,n) = (T, u) in the strong topology
of Ly(€0)2%d x C(Q)?, for any Qy CC Q.

We begin by establishing the weak convergence of the sequence (T 1)ne(0,1] C My, with n € N fixed.

Lemma 5.3 (Weak convergence of Ty, ). Assume that F € Ly 1 (Q)2X4 and that the functions X and

w satisfy the hypotheses (A1)—(A4). Let (T,,u,) € M, x X,, be the unique solution of the regularized
problem (3.2). Then, as h — 04,

T,n— T,  weakly in M, = Ly, 1 (Q)%%L.

sym

Proof. In this proof C' denotes a generic positive constant that is independent of n and h. We use again
the lift T, , = T, T%, of the data satisfying the equality (5.8) and set T , = Ty — TF , € V,, 5, which
satisfies the equation (5.11). The a-priori estimates provided by Lemma 4.2 guarantee that

d\f

H

||8(un7h)| Lni1(Q) < — 16d2||FH (Q) + 2(7?, + 1)02\/ |Q "+1 ||FHL Q) + 4(7?, + 1)01K,|Q|
(5.12) + CoV2d |Q 7
and
1 1+1 16d? 141

||T’ﬂvh||Ll+%(Q) + Cl||Tn,h||L1(Q) < n+1 || ||L1+%(Q)

+205V2d Q)7 (|F |1, |, (@) +4C15]9.

(5.13) n+1

Hence, in particular,
1
n+1

1T, hH @) T Tnallei@ +lelnn)le, uo S e VneN, Vhe (1),

where ¢, is a positive constant, depending on HFHL1+L(Q), Cy, Cy, d, k and |Q| only. Thanks to the
stability inequality (5.9) satisfied by the lift Ti , we then deduce that

1 0o qlts 0
T oy + Tl Sen YnEN, Vhe (1)

Therefore, for each fixed n € N there exists a subsequence with respect to h (and still indexed by h) and
Tﬂ € Ly 1 (L% such that, as h — 0,

sym?

(5.14) T, =T weakly in L, 1 (%0

n,h n sym

— . . .
We note that T,, € V,,, in fact. Indeed, for any v, € X,, there exists a sequence (v, n)ne(0,1], With
Von € Xpp, such that e(v, ;) — €(vy,) strongly in Ly, 1 (Q)4%2. As

sym

b(T%,ha Vn,h,) = b(Tn,hy Vn,h) - b(TfL7ha Vn,h) = (fa Vn,h) - (f7 Vn,h) =0,
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passage to the limit h — 04, using the weak convergence (5.14) and the strong convergence (v, ;) —
e(vp) in Ly1(2)2%2 implies that b(TSL, vy,) = 0 for all v, € X,,. Hence, T?L € V,, thanks to the definition

sym
of the linear space V,,.

We now show, using Minty’s method, that TSL satisfies the equation (4.5). To this end, we recall the
notation (3.3) for A,, and first prove that, for S, ;, € V, p,

(5.15) [ AuSun+ T 5 (X0, - Sy dx <0,
Q

We begin the proof of the inequality (5.15) by invoking the monotonicity result (3.5) to deduce that,
for Sn,h c Vn,ha

/ (An(ng,h + Tg,h) - An(snyh + Tg,h)) : (Tg,h - Sn,h) dx
Q

= / (An(Tg,h + TfL,h) = An(Sn.n + TfL,h)) : (Tg,h + TfL,h - Tf«b,h —Spp)dx > 0.
Q
Moreover, as T?z,h and S, 5, both belong to V,, j,, we use the relation (5.11) satisfied by T?uh to deduce
that
AT T ) (20— S dx =0,
Q
and thus we obtain the inequality (5.15).

We can now use the inequality (5.15) to show that T?, solves the problem (4.5). To see this, we consider
I1,S,, for a given S,, € V,,. As h — 04, the weak convergence (5.14), the strong convergence I1;S,, — S,
(by density) and sz,h =11, Tf — T (see (5.10)) in M,, guarantee that

T?zﬁh —1I,S,, — T?L - S, weakly in M,,

and
11,S,, + Tfl,h — S, + TfL strongly in M.
Hence, the inequality (5.15) and the continuity of A, (cf. Lemma 3.1 (ii)) lead to

/An(sn+T2) (T) —8,)dx <0 VS, €V,.
Q

Choosing S, = T?L — tW,, for t > 0 and some W,, € V,,, we get
/ An(To + T —tW,) : W, dx <0 YW, €V,.
Q

Thanks to the continuity (and therefore hemicontinuity) of A, (cf., again, Lemma 3.1 (ii)), we can pass
to the limit £ — 04 to deduce that

/AH(T2+T§):Wndxgo VW, €V,
Q

and consequently, since V,, is a linear space, after replacing W,, by —W,, in the inequality above and
then combining the two inequalities,

/An(TZ+Tg):wndx=o YW, € V,,
Q

which shows that T(,)L =T? = T, —Tf satisfies equation (4.5), and thus T, , = T, in M,, ash — 0. O

dxd
Sym7

Lemma 5.4 (Strong convergence). Assume that F € L, 1 ()

the assumptions (A1)—(A4), and let (T, u,) denote the unique solution to the regularized problem (3.2),
with n € N. Then, for each firted n € N, as h — 04,

that the functions A and p satisfy

(5.16) T,n— Ty, strongly in Lp(Q)gerff Jorallpe [1,1+ 1),
(5.17) e(up,p) = e(uy) weakly in L,,(Q)gyxn‘f for allp € [1,n+1].
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When n =1, the strong convergence result (5.16) holds for all p € [1,2]. In addition, for each n € N,
. d(n+1)
(5.18) W s, strongly mLO( ) for allp € [1, 7= @ +1)> when1<n<d-1,
’ strongly in C%*(Q)? for all a € (0, 1——) when d < n+1,
and for eachn € N, n > 2,
(5.19) e(up,n) — e(uy,) strongly in Ln(Q)gyXHCf.

Furthermore, if A satisfies (A3), we have that, for any Qy CC Q,

nhﬁn;o hlg{)l Tnn — TllL, 00 =0 and nhﬁn;o hli)rg [unn —ulcg) =0,

and
lim lim |[[e(u,n) —e(u)|z, (@) =0 VQo CCQ, Vpell, o).

n—00 h—04

where (T,u) denotes the unique solution of the original (nonregularized) continuous problem (1.1), (1.2)
subject to a homogeneous Dirichlet boundary condition on OS).

Proof. In this proof, again, C' denotes a generic positive constant, independent of h and n. Also, we use
again the notation T,, = T% + Tf and T, = T?L’h + Tfl)h, where Tf = F satisfies the equality (4.2)
and wa,h = I, T satisfies the equality (5.8).

To establish control on T}, , — TY,, we write
(5.20) T, — TO = (T , — I, T9) + (I, T — TY).

Since I, TY — T? strongly in LH;(Q)gyXH‘f for all n € N, it suffices to focus on the discrepancy

T, T
dxd

Thanks to the inequality (3.6), for any pair of matrices S, R € R{J[Y, one has

1 1 1
(SIS* ' —RIR|*)): (S—R) > H|S—R|2/0 R+6(S—R)|*"do
. 1 S — RJ?
T n(R|+[S-R|)w

Analogously, for any pair of real numbers s,r € R,
1 |s —r|?
n(lrl+[s—r))t==

Hence, and by invoking the inequalities (1.5) and (1.7) (guaranteed by the assumptions (A1)—(A4)), we
have that

(sls|= =t = rlr[= ) (s —7) >

/ (An (T}, + Tt ) — An(I1, T + Tfhh)) (T ), — 11, T9) dx
Q

> i / |TI'( n,h + TrL h) Tr(HhTO + Tn h)|2 dX
(5.21) = 0% Jo (ITe(IL,TY + T )| + | Te(TO , + TF ) — Tr(IL, T + TF )=+
1 |(T0 A +Tf W4 — (I, TY +Tf W32 1
X.

n* Jo (T + T, ;)4 + (T, + TF ;) (HhTO+Tn}L) Lo

—0 .
Moreover, because T =T, € V,, (cf. the last sentence in the proof of Lemma 5.3), we have

/ e(vp) : I, T dx = / e(vp) : TV dx =0 Vvy € Xpn,
Q Q

and so HhT?L € V,, 1. As a consequence, T?L’h — Hth €V, and there holds

/ AL (T, + T )« (TO,, — T1,T2) dx = 0.
Q
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Using this in the inequality (5.21) and noting that I1;,T9 + Tn p = u(TY + Tf) =0, T,, we obtain

- / A (I, TS + TF )« (T9 ), — I, TY) dx
Q

1 /‘ |TI'(T9L h HhT(r)L)|2 d
paiy G : x
(5.22) n? Jo (|Te(IL,T,,)| + | Te(TS,, — I, TY))) =
1 (T, — IR TH)

> 0.

n? Jo (L Ty)d| + (T ), — I, TY)d|) ==

On the one hand, T? , —II,TY weakly converges to T — T =0 in M,, as h — 04 (cf. Lemma 5.3).
On the other hand, HhT0 + T}, , strongly converges to Tj, + T}, in M, = Ly, 1 (Q)&5 as b — 0.

sym

Therefore the continuity of the mapping A4, L1+7(Q)g§<rg — LnH(Q)gan‘f (ctf. Lemma 3.1 (ii)), which
implies that A, (II, T + T ) strongly converges to A, (TS + TF) in Ly, 11(Q2)%% as b — 04, yields

—/ A (I, T+ TF ) o (0, —I, T dx -0 as h— 0.
Q

Whence, returning to the inequality (5.22),
1 Te(T5, ), — I, T5)[?
S 3 (0 1-1 dx
o (|Tr(I, Ty )| + [ Te(Ty, , — TR

nh_Hh O)d|2
—/ dx —0 as h — 04.
(|(ITxTy) |+|(T9Lh_HhTO) )i

Consequently, for each n € N,

iy [ [18(T),, ~ I TH)

=04 Jo (ITe(IL,Th)| + [ Te(Ty j, — TLTY)) =
(T3, — T5)4 )

lim /
=0+ Jo (|(T,T)| + [(TY ), — T, TY)d[) 1=~

In the special case when n = 1, we directly deduce from these, the equality (1.12) and the strong
convergence of 11, T to TY in Lg(Q)dXd that TO , — T}, strongly in Ly(Q)%45d, as h — 0. Since

sym sym
Tfhh =11, Tf — Tf strongly in LQ(Q)gan';l as h — 04, it follows that, for n =1, T,, , = T,, strongly in
Lo (Q)gyxrg, and therefore also strongly in LP(Q)gan‘f for all p € [1,2], as h — 04. That completes the proof

of the assertion of the lemma concerning (T, 5)ne(o,1) for n = 1.

Let us now consider the case when n > 1. Let M(f) denote the Hardy—-Littlewood maximal function of
f € L1(2), with f extended by zero outside © to the whole of R?, and let B,.(x) denote the d-dimensional
ball of radius r centred at x € R%. Clearly,

|BhK(X)| 1
o) < i [Ty < Pt (BhK<x>| th(x)m(yndy)3c<n>M<|Tn|><x>

for all x € K and all K € T, where hg = diam(K) and ¢(n) is a positive constant that only depends on

the shape-regularity parameter 1 of the family (74)ne(0,1) of simplicial subdivisions of the domain Q (see
(5.1)). Thus,

(5.23) I Tn(x)] < e M(ITu)(x)  Vx e

Since the Hardy-Littlewood maximal function is of weak-type (L1, L1,00) (With L; o signifying a Lorentz
space) with norm at most 3% (cf. Theorem 2.1.6 and inequality (2.1.3) in [7]), we have that

3d
fx €@ MITA )6 > )] < 5 [ Tullry@ V>0,

For k € N we define
Qp:={xeQ: M(|T,|)(x) < k}.
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Hence,

(5.24) QL CQC---CcQ and |Q\Qk|§§\\Tn||L1(Q) VEkeN;
in particular,
(5.25) kli_}rgo |2\ Qx| =0.
By recalling (1.12), (5.23) and the definition of the set 2, we have that
I Te(I1, T ) (x)] < d2 I, T (%)] < d2 e(n) M(ITo)(x) < d2 ek ¥xeQ, VkeN,
(I, T4 (3)] < [T (x)] < o) M(T,)(x) < ek Yx €, YheN.
Thus we deduce that, for each k € N,
|Te(Ty, ,, — I T5)[?

lim dx =0,
h=0+ Jo, (Vde(n) k + |Te(TY , — I, T0)[) =

. (TS, = T, T)) 4 ?

lim / - 1 =0,
h=0+ Jay, (c(n)k+[(TY , — M TH)d|) =

as h — 0,; hence, for each k there exists a null-sequence (h(*)) C (0, 1], with (R*+D) c (h(F) for all
k € N, such that

[ Tr(T), ) — M T 0 and (T) o — Moo T4 2 o
(Vde(n) k+ [Te(TO , ) — 0 T9) )5 (c(n) b+ (TS, 0y — Ty TO)A) I
a.e. on Q, as h(®) — 0. Since
2 2
(526) (k—’_aﬁ 22%_1 min (kla,_l,al—‘r}‘) VCLZO, VkEN,
a) "w n

it follows that
ITe(T 0 — Mo TR)| = 0 and (T 0 — M TH)Y =0 ae onQ, VkeN
as h*) — 0,. We then deduce from inequality (1.13) that
T%h(k) — T, T2 — 0 a.e. on Q for all k € Nas h®) — 0.

Hence,
Tg,hw — T? a.e. on Q for all k € N as h(®) — 0.

By Cantor’s diagonal argument we can then extract a ‘diagonal’ null-sequence (h(oo)) such that
T?L,h(oc) - TY a.e. on Q for all k € N as h(®) — 0.
Since the sets €y are nested (cf. (5.24)) and they exhaust the whole of Q (cf. (5.25)), it follows that
Tg,h(m — T a.e. on Qas h(>®) —0,.
For the sake of simplicity of our notation we shall henceforth suppress the superscript (°) and will simply

write
T, - T° a.e. on {las h — 0.

As Tf | =TI, T — Tf strongly in Ly, 1 ()25, and therefore (for a subsequence, not indicated) a.e.
in Q, it follows that /

T, =T9L’h+T2h—>T%+TfL=Tn a.e. on Qash — 04.

As, by Lemma 5.3, T,,;, = T, weakly in Ly, 1 ()4, it follows that the sequence (Tpn)ne(o,1) is
dxd
sym?

(5.27) T,n— T, strongly in Ly (Q)4%d as h — 04,

sym

equiintegrable in Lq (1) and therefore by Vitali’s theorem
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whereby, because of the weak convergence T, , = T, in Ly, 1 (Q)gyxn‘f, it follows that

T,n— T, strongly in L,(Q)4%4 for all p € [1,1 + %), as h — 04,

sym
where the limiting function T, is the first component of the unique solution (T, u,,) of the regularized
problem. That completes the proof of the strong convergence result (5.16) for n > 1. For n = 1, (5.16)
was already shown in the first part of this proof for all p € [1,2]; hence (5.16) holds for all n € N.

To prove the strong convergence of the sequence (un,h)he(o,l] C Xp,n to u, € X,,, we note that the
inequality (5.12) implies that the sequence (£(Un,n))ne(0,1) is bounded in Ly, 41 (2)@%d. Hence there exists

sym *
‘Siyxn‘f such that, as h — 04,

a subsequence, not indicated, and e(uy ) € Lp4+1(Q2)

(5.28) e(up,p) = e(up,p) weakly in Ly, 1(0)%xd

sym *
Here, and henceforth, for any weakly (respectively, strongly) convergent sequence of the form (an,n)ne (0,1
in a function space, with n > 1 held fixed, @, will denote the weak (respectively, strong) limit of the
sequence as h — 04, in instances where the limit of the sequence is yet to be identified.
This will imply the assertion (5.17) once we have shown that ¢(u, ) = €(u,), which we shall do
now. For 1 < n < d— 1, Korn’s inequality (1.10) and Poincaré’s inequality (1.9) together imply that
(Wn,n)he(o,1] is bounded in VVO1 ’"‘H(Q)”l7 and by Kondrashov’s compact embedding theorem the sequence

therefore possesses a strongly convergent subsequence (not indicated), with limit @, , € L,(€)¢, such
that

(n+1)d )
» d—(n+1)/"

This will imply the first line of the assertion (5.18) once we have shown that @, , = u,, which we shall

Upp — Uph strongly in LP(Q)d as h — 04 for all p € [1

do below. In any case, by the uniqueness of the weak limit it then follows that e(u, ) = e(W,.p,), and
therefore

e(Un,p) = e(Wnp) weakly in Ly 1(Q)%%8 as h — 04

For n > d — 1, by an analogous argument,

W, — W, strongly in C%*(Q)% as h — 04 for all a € (0,1 — -45).

This will imply the second line of the assertion (5.18) provided we show that W, = u,, the second
component of the unique solution (T, u,,) of the regularized problem. We shall do so by passing to the
limit in equation (5.3);.

To this end, take any S € LH_%(Q)dXd and let Sy, := II;S in equation (5.3)1, resulting in

sym

(529) Qg (Tn,ha HhS) + C(Tn’h; Tn,h7 HhS) - b(HhS, un,h) =0.
As

(5.30) II,S —S strongly in Ly 1 (Q)dxd

it follows from the weak convergence (5.28) that, for each n € N,

(5.31) hli)r& b(I1nS,up ) = b(S, Wepr) VS € Ly 1 (DL

We shall now pass to the limit A — 04 in the first two terms on the left-hand side of the equation (5.29).
Thanks to the strong convergence result T, 5, — T, in Ll(Q)g;n‘f, which follows from the assertion

(5.16) for all n € N, as h — 04, an identical argument to the one in the proof of Lemma 3.1 (ii) implies
that, as h — 0,

MTr(Tp ) Tr(Thn)I = A(Te(T,,))Te(T,)I  strongly in Ly, (Q)4%4

sym
and
u(IT5 T, = u(ITa)Ts  strongly in Ly g1 ()55

Together with the strong convergence (5.30) these then imply that, for each n € N,
(5.32) Jim (Tpp; Ton, IS) = c(T,; Ty, S) VS €Ly, 1 (Q)%%d
—04 "

sym*
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Finally, we consider the first term on the left-hand side of the equation (5.29). By the inequality (3.4),
Tr(Ty ) Tr(T,)

(Te(Top)|' % [Te(T,) 5

Thus, because of the strong convergence (5.16), we have that, as h — 0,
D(T.) | THT)

| Te(T ) [~ | Tr(T,)| '~

Furthermore, by the uniform bound (5.13), for each fixed n € N,

( M) I>
1—L
|Te(Tpp) ' he(0,1]

which therefore has a weakly convergent subsequence (not indi-

1

n,

< 2l-w e

Tn,h - Tn

I strongly in L,(Q)4%¢ for all p € [1,n + 1).

sym

dxd

is a bounded sequence in Ly 11(Q)5

cated), whose (weak) limit in Ly41(Q2)%%%, by the uniqueness of the weak limit, coincides with
Tr(T,)
Te(T,)[
Hence, as h — 04,

Tr(Ty 1) I Tr(T,)
Te(Ton) % [T(T)[

By an identical argument,

I weakly in L, 1(Q)4%d

sym *

Td, Td
: - a weakly in L, 1(€2)4%4.
_1 _1 n+1 sym
A N I T Y

By combining these two weak convergence results with the strong convergence result (5.30) we deduce
that, for each n € N,

(5.33) lim a, (T 0;8) = a,(Tn,S) VS € Ly, 1(Q)Lxd

h—04 sym
Using the convergence results (5.31), (5.32) and (5.33) we can now pass to the limit h — 0, in equation
(5.29) to deduce that

(5.34) an(Tn,S) + c(Tp; Ty, S) = b(S, W) =0 VS € Ly, 1 (Q)L%E

sym*
By subtracting equation (5.34) from equation (3.2) we deduce that
b(S, Wpp —u,) =0 VS €Ly, 1()id

sym*
Hence,
e(@ppn—u,) =0 in Ln+1(Q)gyXIfll.

Thus, by noting the inequality (1.11) we deduce that
Wop—u, =0 in Wy"tH(Q)L

In other words, W, = u, € Wol’"'H(Q)d7 as has been asserted above.
The strong convergence (5.19) in L, (Q)¢ for n > 2 follows by an argument which we have already
used, so we only sketch the proof. For any S;, € M, j,, the constitutive relations in (3.2) and (5.3) imply

/(E(Un,h)_g(un)) : Sh dx = / (An(Tn,h)_An(Tn)) . Sh dx < ||An(Tn,h)_An(Tn))||Ln(ﬂ)”ShHL%(Q)
Q Q e
Now, using an argument similar to the one leading to (3.4), we find that

1 / Tr(T ) Te(T,) |" dx 4+ 1 / Tg,h Td |

-~ - X+ — _
(635 0ol (@it T nm | T n ol o T
<CO|Twn — Tallz, @ =0  ash—04,
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for a constant C' only depending on d and n. For the monotone part, A, in A,, (cf. (4.16)), we invoke a
similar argument to the one used in Lemma 3.1 to deduce that

[A(Tn,n) — A(Tn)HLn(Q) — 0 as h — 0.

Hence, in conjunction with (5.35), we arrive at

1
— / (e(un,p) —e(uy)) : Spdx — 0 as h — 04.
ISullL_o_ (@ Jo

Using the decomposition e(u,, ;) —e(u,) = e(un,p) — Hp(e(uy)) + M (e(uy,)) — e(uy,), we write

1
T )~ Tt 1
! 1
RS ISR et [ 0t~ ) 10

Choosing Sy, = (e(upn,n) — Hp(e(un)))le(un,n) — Mp(e(uy))[" 2 € M, ;, yields
le(n,n) = Hp(e(un))llz, @) =0 ash— 0.

It remains to employ a density argument to deduce the Strong convergence result (5.19).
The final claim in the statement of the lemma follows from the strong convergence results (4.11),
(4.12)9, (4.14), (5.16), and (5.18)2, which together imply that, for any Q¢ CC €,

lim lim [Ty — Tz, =0,

n—00 h—04

lim hm [unn —ullg@ =0,

n—o00 h—0
and
lim. hl;m le(ann =)z, ) =0  Vp€[l,00).
The assertions concerning the uniqueness of u and T follow from Theorem 2.1 (c). ]

The hypotheses (A3’) and (A4) adopted in the statement of Lemma 5.4 guarantee that the derivatives
of the functions s € R — A(s)s and s € R>( — u(s)s are bounded below by 0 on R and R, respectively.
These two functions are, in fact, Lipschitz-continuous on any compact subinterval of R and Rxg, respec-
tively. If they are assumed to be globally Holder-continuous on R and R>g, respectively, with Holder
exponent [ € (0,1], then an error inequality holds, for all n € N in the limit of A — 04, as we shall now
show.

Theorem 5.5. In addition to the assumptions of Lemma 5.4, let us also suppose that the functions
seR—=As)seRand S € ngxn‘f — u(|S])S € ngxn‘f are Holder-continuous with exponent 8 € (0,1],
i.e., there exists a positive constant A such that

(5.36)  |[A(r)r —A(s)s| <Alr—s® VrseR, |u(R)R-pu(|S)S|<AR-S|° VR,SeRYL
Then, assuming that Ty, € Lo (9 )fyxn‘f forn > 2, the following error bound holds:
(5.37)

/ (I)n(|Tn,h - HthD dx
Q

C’(d,A,B,n,Kn,K)< inf /‘I):L(|€(Vh —un)|)dx—|—/ ) (IT, —Hth|min(ﬁ,i))dx>.
Q Q

Vv €Xn,h

Here,
2

s
d,(s) i = ——m, s€(0,00), meN,
)= 0.0
@}, defined by ®;,(s) := sup;s(st — @, (t)) for s € [0,00), is the convex conjugate of the function @,
K, = max(1, | Ty| 1 (), and K =K(n) is a positive constant that will be specified in the proof. When

n =1 the inequality (5.37) holds without the additional assumption that T,, € L. (2)3%d

sym *
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Proof. We proceed similarly as in the proof of Lemma 5.4. From the relations (3.2) and (5.3) we have,
for all S;, € M, , that

/Q(An(Tn,h) — A, (I, T,)) : Spdx = /Qs(un,h —u,): Spdx

+ / (.An(Tn) - An(Hth)) : Sh dx.
Q
The choice Sy, = T, , — I, T,, € V,, , guarantees that
/ g(vp): Spdx =0 Vv € Xppe
Q

Thus by defining, for any vj, in X, p,
Un,h = E(Vh - un) + (An<Tn) - An(Hth));
and proceeding similarly as in the proof of the inequality (5.21), we have that

1 |TI‘(Tn,h) — TI‘(Hth>|2 d
- _ dx
n? Ja (|Te(, T )| + [Tr(Tpp) — Tr(T1,Ty) )~
1 Td, — 11, T4
(5.38) + 7/ T - | — dx
n* Ja (TR +|T5 , — T TH[) =

< /QU"JL (Tpn — I,T,,) dx.
Thanks to the equality (1.12),
LTG0 + ST 0 = [T < LTSy < [Tal g for ae. x € €
Thus, by denoting K,, := max(1, | T,| 1 (q)), it follows that
M T SKn and [ Te(,T) |1 o) < dKn.

Hence we have from the inequality (5.38) that

1 I Tx(T,, 1) — Tr(IL,T,) 2 . +i/ T4, — 11, T3
Q

2 5 1-1 2 d dpyi-2 dx
n” Jo (d2 Ky + [Te(Tp,p) — Te(ITy)[) = n (Ko + |Tn,h — I, T =

S / Un,h : (Tn,h — Hth) dx.
Q

Because K,, > 1 and by noting the decomposition T = éTr(T)I + T4, the above inequality implies that
1o 1 |Tr(Ty,n) — Tr(11,T,)|?
ﬁ(d2Kn)" 1/ —T
n @ (14 [Tr(Tp,n) — Te(ILTy)[) 5
+ : (K )iﬂ/ |Tg,h — I, T
n2 " o (14 |Td, — 1, Td[)! =

dx

(5.39)

IN

1
E/ Tr(Upp) Te(Ton —Hth)dx—i—/ Ul (T — 1, T,) dx
Q Q

IN

1
5 IO ) TCE, ) = Te( T, )+ [ U272, = 10,7

Let us consider the function ®,, : R — R>( defined by

2

S
5.40 d,(s)i=——— neN.
(5.40) (s) (1+ s+

The values of s of interest to us below will always be in the range [0, c0), and therefore the absolute value
sign appearing in the denominator of ®,(s) can be ignored for such s.
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Clearly, ®,,(0) =0, ®,, is even, continuous, strictly monotonic increasing for s > 0, and convex, with
5.41 D,(s)<s? ass—0 and D, (s) = s'tn  as s — +oo.
+

Here A < B means that there exist constants ¢ and ¢ independent of A and B such that ¢cB < A < ¢éB.
Following Rao & Ren [15], a function ® : R — R is called an N-function (nice Young function),
if: (i) ® is even and convex; (ii) ®(s) = 0 if, and only if, s = 0; and (iii) lims_o P(s)/s = 0 and
limg o0 P(s)/5 = +00.

Hence, ®,, is an N-function. Simple calculations show that

1
(5.42) D,(25) <4P,(s) Vse[0,00) and %fbn(cs) >®,(s) Vse[0,00), Ve>27

therefore ®,, satisfies the Ag and Va conditions on [0, 00) (cf. Definition 1 on p.2 of [15]). Now, let @}
denote the convex conjugate of the function ®,. Then, (®,, P ) is a pair of complementary N-functions
and, by Theorem 2 on p.3 in [15], ®* also satisfies the Ay and V2 conditions on [0, 00); i.e., there exists
a constant K = K(n) > 2 such that

(5.43) Oy (25) < KD (s) Vs € [0,00),

and there exists a constant ¢ = ¢(n) > 1 such that

%CCDZ(CS) > dr (s) Vs €0,00).
More precisely, by the inequality (5.26),
27! min (52,51+%) < ®,(s) < min (s* s(1+ 5)%) Vs € [0,00).
By recalling that ®7,(s) := sup;>q(st — ®,(t)), we get from (5.41) that
* L o * "t n \"

(5.44) o7 (s) = 75 s 0+ and D (s) = a1 <n+1) as s — +oo.
Therefore, there exist positive constants ¢, and ¢z, with ¢, < ¢2,,, such that

0 < @ (s) < cpps? for all s € [0,1]
and

c1n < OL(s) < cpps™ ! for all s € [1,00).

Reverting to (5.39), by the Fenchel-Young inequality, for any real number ¢ > 0,

1 1 1
ﬁ(den)n 1/

1
@ (|T(T ) = Te(TT) ) dx + - () # ! / B, (TS, — I, T9)) dx
Q

Q

1
= 3/ I Te(Urn )| [Te(Tn,p) = Tr(ILTon) | dx +/ Ul IT5 ), — T, T dx
& Q
1 1
= %/ |’I‘I‘(Un,h)| 1 ‘TI'(Tn7h> — TI‘(Hth)‘ dx + g/ |Ug,h| 5 |Tg,h - Hthl dx
o Q

1
@, (0| Tr (T n) — Tr(IL,Ty) ) dx + — [ @7 (|Tr(Uy,p)|) dx

< —
=45 s Jg

1 1
45 [ @aleTd - T axs 5 [ e(U,)ax
Q Q

Clearly, for any a € R>¢ and ¢ € (0, 1], we have that
5%a?

2% <D, (a).
(1+da)t== — (a)

®,,(da) =
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Hence,

1 )
— (de )’_1/Q<I)n(|Tr(Tn7h)—Tr(Hth)|)dx—|—E(Kn)ﬁ_l/ﬂfbnﬂTﬂ)h—Hth|)dx

1
<0
- d

1 1
+6?/én(ITS,h—HhTﬂl>dx+g/<I>*(|U nl) dx
Q

Let 61,05 > 0 be such that

1 *
/Q@n(|Tr(Tn,h)—Tr(Hth)|)dx+%/ ®% (|Tr(Uy p)|) dx

d 1 1_ 1 1 1
W(dQKn)" 1 :6171 and W(Kn)" 1 :5271

Thus, with § := min(1, §1, d2), we have that
/ (I)n(|Tr(Tn,h) —TI‘(H}L n dx—|—/ HthD
Q
< C(d,n,Ky) (/ o (|Tr (U, )|)dx+/ @ (|ud h|)dx> .

Now, the assumption (5.36) and (3.4) yield
|Un7h| < |E(Vh - un)‘ + |.An(Tn) - An(Hth)|
< |e(vn = wa)| + C (T =TT ¥ + T, = T, T, )

(5.45)

As @} is an N-function, it is strictly monotonic increasing (cf. the top of p.2 in [15]) and convex, and
therefore by (5.43),

05 ([Unnl) < @5 (le(Va — un)| + [An(Tn) = An(I1,Ty)[)

(5.46) < % (@Z(2Ie(vh —u,)|) + ®5(2|A,(T,,) — An(Hth)D)
< 5 (50— w)) + 23.4,(T,) - A, (T ).

In order to proceed we need to bound the right-hand side of the last inequality and that involves comparing
Tr(T,)I T
n|Te(T)'=%  n|Td|'=%

A (Ty) == A(Tr(T,,)) Tr(T,)I + N(‘TdD +

with
Tr (I, T,)I 11, Td

A, (I, T,,) := AN(Tr(I1, T,,)) Te(I1, T,)I + (]I, TN, T +
(I Ty) := AM(Tr(I1, Ty ) Tr (I, T )T 4 (11, T3 )IT, | Te(I To) [ I T

We have from inequalities (5.36) and (3.4) that
An(T0) = An (T3 T)| < d2 A[Te(T,) — T T(T,)| + A|T5 — 10, T3
5t ) - ()
+ C(d, n)|Td — 10, Td|=
< C(d, A, B) T, — I, T, | + C(dn) | Ty, — I, Ty =
< O(d, A, .1, K,)| Ty, — I, T, |05 ),
By the inequality (5.43), ®* (2¢s) < K‘® (s) for all s € [0,00) and all £ > 1. Hence, with
£:=[log, C(d, A, B,n,K,)] +1
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we have that C(d, A, 8,n,K,,) < 2¢, whereby
@ (| An(Ty) = An (T, T,)[) < @3 (C(d, A, 8,7, Kp)| Ty, — T T, 000 0))
< @5 (2°|T,, — I0, T, [™in(73))
<K'DL(| T, — I, T, [R50,
By substituting this into the inequality (5.46) we deduce that
©; ([Unnl) < @5 (le(vi — wn)| + [An(Tn) — Ay (I, T)|)
< SR (Je(vi — w)]) + SK (T, — TT, D),

We then substitute this into the inequality (5.45) and note, once again, the monotonicity of ®¥, which
gives

/ @, (|Tr(Tpp) — Tr(Hth)\)der/ P, (TS, — I, TY]) dx
Q Q

< C(d,A, B, Ky, K) ( / &5 (Je(vh —un)]) dx + / &3 (T, —Hth|min(5’i))dx) |
Q Q

For any pair of numbers a,b € R>o, by (5.42) and convexity, we have &, (a +b) < 2®,(a) + 29, (b);
hence, by the inequality (1.13),

/ (I)ann,h - HthD dx
Q

< O A5 ([ @3evn = w et [ @(T, - 1T, 0 ax).
Q Q
As this inequality holds for all vj, € X,, 5, the bound (5.37) directly follows. O

The error bound (5.37) can be restated in the following equivalent form. Given an N-function ¥, let

Lg(Q):= {S - Q= R4 measurable, such that  pg(S) ::/

sym
Q

P(|S(x)]) dx < oo};

the function py(-) is called a modular. In terms of the modulars pg, and pg: the error bound (5.37)
takes the form:

pa, (| Tnn — I, Ty|)

§ C(daAaﬁvnaKn;K) ( lIlf péz(

vr€Xp n

(5.47)

= )+ o (T = T 000 ).

Here, as before,

52

D, (s) := m

, s€[0,00), neN,

and @} is the convex conjugate of ®,,.

Under the above assumptions, convergence rates can be derived by strengthening the regularity hy-
pothesis T,, € Loo(2)4%¢ from Theorem 5.5. Thus, for example, suppose that

sym

T, e WH(Q&d  with1>r>94 and  w, e WHP@QI Wy (@) with1>1> 4

sym

and ¢, p € (1, 00], which ensure, by Morrey’s embedding theorem, that

T, € Wri(Q)dxd <y cOv(Q)dxd <y 1o (Q)xd  with 4 :=r — 4

sym sym sym q;
and
c(u,) € WHP(Q)L o COS@BI o WES(@)LE with =t — £,

With these stronger regularity hypotheses we then have that
Ty (x) = I Tn(x)| < Chicl|Tallwroe () < CRY||Tollwre@)  VXEK, YK ET,.
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Thus, thanks to the fact that ®} is monotonic increasing, and by the first asymptotic property in (5.44),

min( min( L min min 1 2 min(f, %
T, — T T, ™)) < pa (CHT™ MO T, [0 )y = Cp2rminG |, o)

P@:(
as h — 04+. Analogously,
(i) — 2(w)]) < pag (CHE () e ) = CH¥ el iy s b= 0,

inf  pes
vh€Xn,n (

By substituting these bounds into the error inequality (5.47) we deduce that
min(8. L 2 min(3
po ([T~ T ]) < C (h2<u () + 127 T Y

as h — 04. In particular, if 5 = E and ( =21

5 2
(5.48) o, (o =T Tal) < CHF (o)l 5 g + Tl

as h — 04, where v € (0,1] and n € N. The error bound (5.48) on pg, (|Tnn — II,Ty|) can be used to
derive bounds on norms of the error |T,, 5 — II}T,|. For example, in the special case when n = 1, we
have that @,,(s) = s2, and therefore

1T = Ta T y2) < CAY (le(un)[lwooe @) + I Tallwsoe @)

as h — 04, where v € (0, 1]. In this special case, the regularity requirements on u and T can, in fact, be
relaxed to u, € W' 2(Q)dxdn Wy Q(Q)f;(n‘f and T, € WT2(Q)dxd ~ € (0,1].

More generally, for n € N, we divide the inequality (5.48) by |Q|, recall the definition of the modular
pa, (+), and apply Jensen’s inequality on the left-hand side to deduce that

21X 2 2
B (f 1T~ T ax) < €1 (I, gy + 1Tl

as h — 04, where v € (0, 1]. Because ®,!, the inverse function of ®,, (which is uniquely defined on [0, o)
thanks to the fact that ®,, is strictly monotonic increasing on [0, 00)), is monotonic increasing, we have
that

-1 22 2 2
]é [T = IaTal d € @3 (CH2F (ll2(@) 5 ) + I Tl ) )

as h — 0, where v € (0,1] and n € N. Since ®,(s) < s% as s — 04, it follows that & '(s) = sz as
s — 04, and therefore

N 1
(5.49) Ton =Ty < O ()l oy + I Tl o) -
as h — 04, where vy € (0,1], n € N, and C = C(d, A, n,K,,, K, ~,|Q]).

5.3. Other elements that fit into the theory. We shall comment here on some alternative choices of
finite element spaces to which our analysis applies. Let Q} denote the finite element space on quadrilateral
or hexahedral meshes for d = 2 or d = 3, respectively, consisting of (possibly discontinuous) mapped
piecewise d-variate functions that are polynomials of degree r in each variable over each element in the
subdivision. We consider the conforming finite element spaces

(5.50) M= (O c M,  Xpn:=(Q))7NX, C X,

sym
for the approximation of T,, and u,, respectively. Clearly, £(X,, 5) C M, , and the L2(Q)4*? orthogonal
projector I, : M, = M, j is stable in the L,(Q)9*? norm for all p € [1,00].! Then, Lemma 5.3 can be

shown to hold by an identical argument; if in addition it is assumed that T,, € LOO(Q)‘SinHﬁi, then Lemma

5.4 and Theorem 5.5 also hold. We note that our proof of Lemma 5.4 in the special case of
(5.51) Mon= (P CM,  and X, = (P})'NX, CX,

IThis stability result is a consequence of the stability in the Ly(—1,1) norm of the La(—1,1) orthogonal projection
onto the space of univariate polynomials of degree r on the interval (—1,1), for all p € [1,00], with a stability constant
_2
Crp=0C- r2| P‘; for p = oo, see Gronwall [8] eq. (29) on p.230; for p =2, Cr 2 =1 for all r > 1; for p € (2, 00), the form
of Cr,p follows by function space interpolation; and for p € [1,2) it follows from the result for p = (2, co] by duality.
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did not require the additional assumption T, € L (Q)‘Si;nﬁl, thanks to the connection between the explicit
formula for the projection onto piecewise constant functions and the Hardy—Littlewood maximal function.

5.4. A simple quadrilateral/hexahedral element to which the theory does not apply. The
simplest extension to quadrilaterals or hexahedra of the spaces defined in (5.2) is of course
dxd

sym

(5.52) M, = (@) c M, Xon = (21 NX, C X,

for the approximation of T,, and u,, respectively. Everything done previously applies to this pair of
elements, except the uniform discrete inf-sup condition. Indeed the proof of Lemma 5.1 does not carry
over to this case because £(X,, ;) is not contained in M, 5.

Let us look more closely at the greatest lower bound in (5.4), say f;. First, for any given vy, the
choice in each element K (which generalizes (5.5))

(5.53) T, = |K1|n< /K s(vh)dx> ‘ /K c(vp) dx

shows that 85, > 0. The next lemma shows that on a structured mesh (i.e., a mesh with a Cartesian
numbering), By # 0. To avoid excessive technicalities, it is stated for quadrilaterals, but it extends to
structured hexahedral meshes.

n—1

Y

Proposition 5.6. Let T, be a structured quadrilateral mesh. Then, the greatest lower bound By in (5.4)
is strictly positive.

Proof. We argue by contradiction. Suppose that 5, = 0. Then there is a displacement vy, in X,, , such
that

sup b(Sh,Vh) =0.
ShEMy n

In particular b(Tp,vy,) = 0 for T}, defined by (5.53). This implies that

(5.54) ‘/ e(vp)dx| =0 VK €Ty
K

Let us examine the consequences of (5.54) on specific elements K of the mesh. Let K = [0,1]% be the
reference square with vertices a; = (0,0), ay = (1,0), a3 = (1,1), a4 = (0,1). Let a;,1 < i < 4 denote
the vertices of K and Fx the bilinear mapping from K onto K that maps a; to a;, 1 < i < 4. Since the
mesh is assumed to be nondegenerate, Fy is invertible and the functions of Q}L are the images by F ;(1
of the functions of Ql defined on K. Their derivatives are transformed as follows:

ov 1 /00 R o] R
pr. o Fx :7K<6531 (a;l —a% —|—x1(a§ —a% —a% +a§)) - 673?2(@% —a% —|—x2(a§ —a% —a;l +a%))>,
ov 1 /00 R ) R
87332 o Fx ZTK(ai‘Q (a% —a% +z2(ai’ —a% 7a411 +a%)) - 8—@1((141l —a% +x1(ai’ —a% 7@11 +ai))),

the subscript indicating the coordinate, and Jk the Jacobian of F.

Now, let us start with a corner element; since the mesh is structured, all corner elements have at least
two sides and three vertices on the boundary, say a;, as, and as. As vy vanishes on 02, this means that
vi(ar) = vp(az) = vip(ay) = 0 and thus

1
([ ctvmax) s ([ etwndx) = 1[682(ad - ) + 092 (at - a?]
K K 4
+ 1[l(ﬁ?’m4 —a3) + 03 (af — a2))2} =0
7 |7 \V2\02 2 (a1 1 =0
As |ay — ag| > 0, we easily derive from this expression that vj(a3z) = 0, and hence vj, vanishes on K.
This implies that v also vanishes at its neighbors adjacent to the boundary, and by progressing element
by element along the boundary, we have that v, = 0 on all boundary elements. From here, the same
argument gives v, = 0 on all elements of 7p,. ]
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The positivity of 8 implies that (5.4) holds with a positive constant for each h, but does not guarantee
that the positive constant is uniformly bounded away from zero as h tends to zero. Let us give an example
when S, tends to zero, inspired by the checkerboard modes of the Stokes problem; see [6]. The idea is
to construct a displacement vj such that the integral average of £(vy) vanishes on a large number of
elements, while £(v},) is nonzero there. Consider a square domain 2 = (0, 1)? divided into (N +1)? equal
squares K5, 0 < 4,7 < N, with mesh-size h = ﬁ Take v, = 0 on 0f2 and define each component vy
by

on (i) = { 1, ifi+jisodd
* —1, ifi+jiseven.

It is easy to check that, in all interior elements K,

/Kg(Vh) dx =0,

0<ch< ‘/ e(vn) dx| < Cyh,
K

for 1 <i,5 <N.

and in each boundary element K,

where here and below all constants are independent of K and h. Let ’T}f’ denote the union of the boundary
elements. Since the choice of T} in all interior elements does not affect the value of b(Tp,vy), let us
choose T, = 0 in these elements; this will minimize its norm there. On the boundary elements K, we
choose T}, by (5.53); this gives

1 n+1
b(Th,vi) = Z Tag /Ks(vh)dx ,

KeTp
and .
1 ntlN 7
IThllz,, , @ :( Z KR / e(vp) dx ) ,
" KeTp K
so that

(T vh) ot
”ThHLH%(Q)

On the other hand, e(vy) does not vanish in the interior elements, and we have
le(vi)llL,sn () = C3h™t.

Hence with this choice of T},

b(T
(5.55) inf (Th, Vi) < Oyhws.

vin€Xnn [IThllL,, 5 @lle(Va)llz, @

Of course, we have not proved that this choice of T}, realizes the supremum in (5.55). But since the
number of interior elements, that do not contribute to the numerator of (5.55) but do contribute to the
norm of vy, is much larger than that of the boundary elements, more precisely, this ratio is of the order
of h~!, no value of T}, can balance this ratio.

6. THE CASE OF SMOOTHER DATA
The regularization (3.1) is a particular case of
Tr(T)I Td
n|Te(T)[' =% n|Td|i=%

n €N, t € Ryg, with £ = n in (3.1). When the data are smoother, as in part (d) of Theorem 2.1, the
following simpler regularization is used in reference [4]

(6.1) £(u) = A(TE(T)) Tr(T)L + o(| T4 T +

(6.2) £(1) = A(Te(T)) Te(T)T + | T9)) T + %T,
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which corresponds to t = 1 (up to the factor é multiplying T9). The analysis developed in the previous
sections applies to (1.1)—(6.2) but is in fact much simpler. Indeed, let (T, 1,u,,1) denote a solution to
(1.1)-(6.2), i.e., (Tp1,up,1) € M, 1 x X,, 1 satisfies

an,l(Tn,h S) + C(Tn,1§ Tn,1> S) - b<S7 un,l) =0 VS e Mn,la
(6.3)
b(Tn,1,v):/f-vdx vveX,,
Q
where
an1(T,S) /T S dx,
and

M, 1 = Lo(Q)2x4 X1 = Hy ()%

sym?
The function F is used in deriving more regularity of the solution, but as far as the numerical scheme
is concerned, we can simply proceed with the original data f. Let us briefly sketch the analysis of (6.3).
We define the mapping Ay 1 : La(Q)L% — Ly (Q)2%d by

(6.4) A (8) = A(TH(8) TH(S)T+ u(S%)S* + 1.

and we easily prove as in Lemma 3.1 that A, ; is bounded, continuous and coercive for all n € N. The
inf-sup condition is satisfied, as in Lemma 4.1,

b(S
(6.5) inf  sup (8. v) >
veXna sem, [1Sllza@le(V)lla@)

The lifting Tf, | is defined by the analogue of (4.2)

(6.6) /T e dx—/f-vdx VveXyi,
Q

and is bounded by

(6.7) 1T 1l a@) < Crellf]l Lo,

where Ck is the constant of (1.11) with p = 2. The a priori estimates of Lemma 4.2 simplify, we have

(6.8) le(ua, )7, 0) < CKHfHLg(Q + C1H|Q| +8C3d|Q,

(6.9)
1 4 o 9 8 9 2
— T, )+ Cill Tl < 20161920 + Ox [l 2 0) | 5 CkllEllz, () + - C1al€ +8C5d|Q

Thus, up to a subsequence, u,, ; converges weakly in VVO1 ’Q(Q)d, and thanks to the results in [4] (see also
part (d) of Theorem 2.1 and Remark 2.2), the additional regularity F € W22(Q)%%¢ enables one to prove
in particular that Ty, 1 is bounded in Wh4(Qg)%%¢ for any Qp CcC Q, with ¢ € [1,2) when d = 2 and
q € [1, 2] when d = 3, and therefore, up to a subsequence, weakly converges to T in Wl’q(Qo)gan‘f for
any €y CC Q for ¢ € [1,2) when d = 2 and ¢ € [1, 3] when d = 3. Hence, by the Rellich-Kondrashov
theorem, up to a subsequence, T,, ; tends to T strongly in L (Qo)dXd on any Qy CC Q for all p € [1,00)

Sym
when d =2 and all p € [1,3) when d = 3.

6.1. Finite element discretization. With the spaces M, ;, and X, , defined in (5.2) or (5.50), the
system (6.3) is discretized by : Find (Ty 1,h, Un,1,%) in My, p X X, , such that

an,l(Tn,l,lu Sh) + C(Tn,l,h; Tn,l,ha Sh) - b(Shv un,l,h) =0 VSh € Mn,m

b(Tn,l,hth) = / f-v,dx Vv € Xn,h~
Q

(6.10)
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As previously, the constraint in the second part of (6.10) is lifted by means of the projection operator
1T}, defined in (5.5), Tn 1, 1s defined by (5.6),

_ f
Tn,l,h - Hth,la

and
T9171,h =Thn1n— sz,Lh'
Existence and uniqueness of the discrete solution (T, 1.4, Up,1,5) is derived as in Lemma 5.2. Again,
the a priori bounds (6.8) and (6.9) hold for u, 1, and T, 1 5. In fact, even without regularization, i.e.,
without the form a,, 1 (-, -), existence by a Brouwer’s Fixed Point and if moreover (A3’) holds, uniqueness
follow by a finite-dimensional argument. But we shall not pursue the no regularization option, because,
as stated at the beginning of Section 5.2, we are then unable to show convergence.
The arguments of Lemma 5.3, under analogous assumptions, show that, as h — 04, for each n,

Toin— Toa weakly in Lo (€)4%.

sym

Let us sketch the proof of the strong convergence, which is much simpler than that of Lemma 5.4.

Lemma 6.1 (Strong convergence). Assume that f € Ly(Q)?, that the functions A\ and u satisfy the
assumptions (Al)-(A4), and let (T 1,uy,1) denote the unique solution to the reqularized problem (6.3),
with n € N. Then, for each fited n € N, as h — 04,

Ty1n— Tha strongly in M, 1 = Lg(Q)dXd and Wp1p — Wy Strongly in X, 1 = WOI’Q(Q)d.

sym

Proof. We retain the notation and the setting of the proof of Lemma 5.4. The discrepancy T ; ,, =TI, T}
satisfies

1 |T’9L 1,h Hth 1|2
LT =T+ C [ ot

n' " A0 (K +|T) 1 p + IR T 4 [) 1

< / (-An,l(Tn,l,h) - An,l(Hth,l + Tfl,l,h)) : (Tn 1,h — Hth 1) dx,
Q

dx
(6.11)

where C'is the constant in (1.5). As T} |, — I, T} ; € V,, 5, (6.11) reduces to

IIT — I, T° |2 c/ (T = T
- n, n, +
1,h h 1Ly () +\Tn1h‘+|HhT0 |)1+a

(6.12) /Anl Hth1+Tn1h) (To,1 — 1T 1) dx.

dx

Then the weak convergence of T%’l’h — HhTm1 to zero, the strong convergence of HhT%1 + Ti,Lh both
in My, 1 as h — 04, and the continuity of the mapping A, 1 : M, 1 — M, ;1 yield

—/ An,l(Hth,l + sz,l,h) : (Tn 1h HhT )dX —0 as h — O+.
Q
Whence, returning to (6.12),

||Tn,1,h HhT(r)L’1||%2(Q) —0 as h — 0+7

and the asserted strong convergence of Ty, 1, to Ty 1 in M, 1 = Lo (Q)‘Siyxn‘f, as h — 0, follows for any
n>1.
For the strong convergence of u, 15, we use again the discrete inf-sup property (5.4) to define Ry, €

VTJ;, p, satisfying

/ e(up1n —IPu, 1) te(vy)dx = | Ry te(vy)dx Vv € X h,
Q Q

where II$? is the Scott-Zhang projector onto X,, 5; see [16]. In particular, we have

(6.13) IRl 2oy < lle(un,1n — 1700 1) 2o (o)
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For v, = u,,1,5 — II}?u,,1 we then get
2 . .
le(an,i,n — M3 un 1) |7, ) = / Ry, :e(up1n —up1) dX+/ Ry, :e(u,1 — j7u, 1) dx
Q Q

= / (-An,l(Tn,l,h) — -An,l(Tn,l)) : Rh dX+/ Rh : E(un,l — H}Sfunvl) dX,
Q Q

where we have also used the relations (6.3) and (6.10) to obtain the second equality. We now argue that
both terms on the right-hand side of the above equality vanish as h — 0. To see this, it suffices to
recall the uniform bound (6.13) on Ry; hence, the strong convergence results II7*u, 1 — u,,1 in X, 1
and Ty, 1, = Ty 1 in M, 1, as h — 04, together with the continuity of A, ; guaranteed by Lemma 3.1,
imply the stated claim. Thanks to Korn’s inequality (1.10),

IV(an 10 = un 1) [y ) < Klle(anan =), =0 as h— 0y,
and therefore u,, 1, — u,1 in X, 1. O
Thus when \ satisfies (A3’), we have again, for any Q¢ CC €,

Jim B [T n =Ty 0q) = 0, lim |l {funy p—ulley =0, lim | Lim - le(un,1,n)—e(W)llzo@q) =0

As in the preceding section, an error inequality can be established when the functions A(s)s and p(s)s
are Lipschitz continuous, but again the situation is much simpler.

Theorem 6.2. In addition to the assumptions of Lemma 6.1, suppose that the real-valued functions

s €R— A(s)s and s € R>o — u(s)s are Lipschitz continuous, i.e., that there exists a positive constant
A such that

(6.14) IA(8)s — A(r)r| < Alr — s| Vr, s €R, lpe(s)s — p(r)r| < Alr — s| Vr,s € Rso.

Then, the following error inequality holds:

1 . 1
(615) 21T~ Tullewi < ot letvn = o) les +2( 5 +4) 1T = (Tl 100
Proof. As in the proof of Theorem 5.5, from the relations (6.3) and (6.10), we infer that on one hand,

/ e(vp) : Spdx =0,
Q

and on the other hand, for any vy in X, p,,

(6.16)

1
NThan — T2 C
nH Lk hTnallz, @) + /Q (

2
|Tn,1,h - Hth,l

K+ |Tn,1,h| + ‘Hth,1|)1+a

dx

1
< (||€(Vh —Un,1)| o) + EHTn,l - HhTmlHLz(Q)) [Tr1n — Up Tz,

[ (Ana(Ta) = Aua () (T~ T T0) dx
Q
where C' is the constant in (1.5). The Lipschitz property (6.14) implies that

1
|-An,1(Tn,l> - An,l(Hth,l>| S E|Tn,1 - Hth,1| + 2A|1_[h’:[‘n,1 - Tn,1‘7

so that

1 1
(617 21T = TToaliae < (I = wllny +2(5 +A)1T0s =TT

LQ(Q)) ’

which yields (6.15). O
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Under the above assumptions, convergence rates can be derived provided that T, ; € Wl’q(Q)gan‘f

with ¢ > 2% (ensuring that Wh(Q)4*? — Ly(Q)™*9) and u,, € W), ¢ > 0 (ensuring that
W Q) — W2(Q)4). Rates of convergence for ||[V(un1 — upn1.5)|1,(0) are obtained using the

inf-sup properties and interpolation theory again.

7. DECOUPLED ITERATIVE ALGORITHM

The convergent iterative algorithm proposed in this section for the solution of the discrete problem
(6.10), is designed to dissociate the computation of the nonlinearity from that of the elastic constraint.
We have also applied it numerically to (5.3) in Section 8 but proving its convergence is still an open
problem.

The algorithm, which belongs to the class of alternating direction methods, proceeds in two steps. In
both steps, an artificial divided difference, analogous to a discrete time derivative, is added to enhance
the stability of the algorithm. The first half-step involves the monotone nonlinearity while, in the case of
(6.10), the second half-step solves for the elastic part from a system of linear algebraic equations whose
matrix is the mass-matrix (Gram matrix) generated by the basis functions of the finite element space
Xp,h- In the case (5.3), this second system is nonlinear. But in both cases, our choice of the finite element
space M, , consisting of piecewise constant approximations for the stress tensor T, ; or T, allows us
to deal with the monotone nonlinearity involved in the first half-step in an efficient way, by solving an
algebraic system with d(d + 1)/2 unknowns independently on each element K in the subdivision 7}, of
the computational domain Q. Let us describe the algorithm applied to (6.1).

The initialization consists of finding (T}zo)7 (O)) € M, 5 x X,, , satisfying
/ e(vp) : T(O dx = / f-vy,dx, Vv € Xpp,
/TO) Shdx—/ cu”):8,dx  VS) € M,

Let 7 > 0. Given (TEL ), ugf)) in M, p, x X, 5, for a nonnegative integer k, the algorithm proceeds in
the following two steps.

1
Step 1. Find TEZH_"’) in M, ;, such that, for all S;, € M, 5,

1 1
- / (T2 1) 1, dx
Q

T

+ / (AT} )Ty ) Ta(S,) + (T4 ) (TS 2) 08, dx
Q

T T(k) I T(k) d
:/g(uﬁf)):shdxf/ ( al i )1_; + ((kh) C)H_l) : Sy, dx.
e o | Te(Ty ) 7r (T, )4

1
As was already mentioned, because TELIHZ) is piecewise constant, the above system reduces to decoupled

algebraic systems of d(d + 1)/2 unknowns each, in every element in the subdivision of the computational
domain.
Step 2. Find T;lkﬂ) € M, , and ugkﬂ) € X, such that

(k+1) (k+1)\d

1 k)-‘rl) (k+l) TI'(T )I (T )

;/(ng - T, 2 Spdx + ( (Z+1) 1_1+ (kﬁ-&-l)dl_l):shdx
o n|Te(T), " )77 nf(T, )4

:/E(uglwrl)) : Shdx—/ (/\(Tr(TElk%)))Tr(T;lk%))TY(S )+M(I(T(k+ )) |)(T§zk+%))d : sh) dx,
Q Q

and such that, for all v;, € X, 3,

/ e(vp) : T;Ikﬂ) dx = / f-v,dx.
Q Q

When ¢ = 1, the initialization is unchanged and the two steps simplify as follows:
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Step 1. Find Tgﬁ%) in M, 5, such that, for all S, € M, j,,

1 1
f/@gw ~TM): 8, dx
Q

T

+ /Q (AT )T (T ) Te(S) 4+ (TR )T ) sy ) ax
1
= / s(ugk)) :Spdx — f/ Ték) : Sy, dx.
Q nJo

Step 2. Find T;Lkﬂ) € M, , and ugbkﬂ) € X, » such that

1 1 1
7/(T§f+1) —ita)y Shdx+—/ T 08, dx
T Jao nJo

= [ =) e [ (IO Ins) + () s, ) ax,
Q Q
and such that, for all vj, € X, 3,

/ e(vp) : TEL’H_U dx = / f-v,dx.
Q

Q
Following the general theory of Lions and Mercier [11], we now prove that the iterative algorithm for
t = 1 converges to the solution of the decoupled system.

Theorem 7.1 (Convergence of the Iterative Decoupled Algorithm). Assume that A and p satisfy (Al)-

(A4) and that n > 1. Let Tp1, € M, 5, be the first component of the solution of (6.10) and let T;lk) €
M, n, K =1,2,..., be successive iterates computed by the iterative algorithm, with T > 0. We then have
that "
. k
klingo ||Th — Tn,l,h”Lg(Q) = 0

Proof. The nonlinear part of the system is represented by the following operator, 24, : M, , — M,
defined by A,Sy, = Ay, where for all Ry, € M, 5,

/QAh tRpdx = /Q (A(Tr(Sp))Tr(Sh) Tr(Ry) + p(|(S51)S, : Ra) dx,
and the linear part, excluding the artificial time derivative, is represented by the function
B = Lo i)
With these notations, the first step of the iterative algorithm reads
(I +72,) T2 — 1) _ Bk,
or, equivalently,

T = (14 22,) (TP — 7BMY),

It is convenient to introduce the following two auxiliary tensors:
1
(7.1) A =T 4 (nTEP - e(uﬁl’”)) =1 + 7B}

and
O .= 2TH _ AW,

whereby
T k 1 k A k

We shall see that the convergence of Tgk) will result from that of Aglk) and @gc). With these tensors, the
second step of the iterative algorithm reads

ASD (1 =72, TE D) = (1= r,) (1 + 720,) " (TP — 7B).
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Notice that, from (7.1), Bglk) = %(Agc) — @Ef)), and we define Cgk) = i(@gk) —

we note for later that
1
(I+72,) "0 = 5(Aﬁf“) + o),

which implies that

AV 1ol 1
A, (h 5 | =50 — AT =i

We also define the analogous quantities
1
By = ETn,l,h —e(up,1,n), Ay =Ty 14+ 7Bp, Chn =Ty 1 p,
With these notations, the first relation in (5.3) reads

1
Cn+Bp,=20,T,1,+ ETn,l,h —e(up,1,n) =0,

and so
Ap+0©p, =2T, 1 +7(Bp + Cp) = 2T 1p,
which in turn implies that
1 1
C,=-(©0,-T, = —(0, —Ap).
h 7_( h 1,h) 27_( h h)
Similarly, for B, we have the decomposition

_ L

B
h 2T

(Ap —Op).

Elk) as follows:

We can now express the discrepancy between T, ; , and T
1

. / (Tglk) - Tn,l,h) : (Tgk) — Tn,l,h) dx
nJjq

1k
5HT§L "= Tl )

Q

Because, for all vj, € X, p,

Tgk) ce(vp)dx = / f-vip,= | Tpap:e(vny)dx,

Q Q Q

we deduce that Tglk) — Ty 1,0 €V, p, and therefore

1k k k
gHTfl )~ T 10l7,0) = /Q(BEL ' By) (T = Ty ) dx

The relations

(k+1)
h

/(B;’“) —By): (T - Tn717h)dx+/ cu® —u,q ) (T -
Q

1

B\ — By = o- (A} — A, — (6] —©4))
and

1

T = Toan = 5 (A = A+ (O] — ©)))

further lead to
1 k 1 k k

(7.2 TR = Tl = 5= (1487 = AnlEy 0 — 1057 = Ol )

This, of course, implies that

k k
(7.3) H@g ) — Onllry) < ||A§L ) Anllz,)-

35

). In addition,

O, = Tn,l,h + 7Cy,.
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In addition, we have that

A(k""l) @(k)
/(C;lk) — Ch) : (h 2+ h Tn,l,h dx
Q

(7.4) A kD) + @(k) A K+ + @(k)
= / A %ﬁ — A, Tpin | % —Tpan | dx
Q

>0,

thanks to the monotonicity property of 25, due to (1.5) and (1.7). On the other hand, we compute

AV el 1 .
k k k+1
(7.5) /Q <cz>—ch>:<h T =T | dx= = (104" = ©ulld,0) — 1AL = Anlid o))

Hence, we find that
1 k k+1
(7.6) = (184 = @l ) — ALY = AuliF0) = 0,
and therefore, in view of (7.3),
k+1 k k
(7.7) ALY — Anllzai@) < 10 — ©nlla@) < A — Al

. k . . . .
This guarantees that the sequence ||A§L ) AL,y of nonnegative real numbers is monotonic nonin-
creasing, and so converging. In particular, we have

k k+1
(||A§L )= Al — AT — AhIILQ(Q)) = 0.

lim
k—o0
Consequently, (7.7) yields that
I (k) _ = 0.
Jm [|©,7 = O4r, (@) =0
From (7.6), this also means that
: (k) —
Hm (AT = Az, @) = 0.
With these two limits, (7.2) implies that
R S5
lim —|T® — T, —0.
Jim [T, aallLa@
That completes the proof. O
1
s

within the iterative algorithm does not satisfy the con-
(k)
h

Remark 7.2 (Post-processing). Since

straint, it seems difficult to prove its convergence to T, ; , and as a consequence the convergence of u
to up,1,n, as k — oco. Instead, given T;Lk), one can define ﬁ;lk) € X, » as the solution to the elasticity

problem

~ 1
/ s(uglk)) ce(vp)dx = —/ T;lk) ce(vp) dx+/ th(Tgk)) ce(vp)dx Vv, €Xpp.
Q Q Q

n

The convergence of ﬁ;bk) towards uy, 1,5, follows from the convergence of Tglk) towards Ty, 1.5, as k — oo.

8. NUMERICAL EXPERIMENTS

We now illustrate the performance of the decoupled algorithm in several situations. We start with a
setting where the exact solution is accessible, in order to demonstrate the asymptotic behavior of the
algorithm and to determine adequate values for the numerical parameters to be used in other situations.
We then challenge our algorithm in the two-dimensional case of a crack.

The numerical results presented below are obtained using the deal.ii library [2]. The subdivisions of
consist of quadrilaterals/hexahedra. Unless stated otherwise, the stress tensor T is approximated using
piecewise constant polynomials while the displacement u is approximated by piecewise polynomials of
degree one in each co-ordinate direction; see Section 5.3.
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8.1. Details of the Implementation. For a given tolerance parameter TOL> 0, the decoupled iterative
algorithm described in Section 7 is terminated once the relative tolerance on the increment

ITED TP @) + IV —al?) 1,

Q)
< TOL

k k —

T N2, ) + 1V 10

(8.1)

is satisfied, where p = 2 when ¢t = 1 and p = 1 otherwise.
Each step of the decoupled algorithm requires subiterations (only step 1 when ¢t = 1), which are
terminated once the relative tolerance on the increments is smaller than TOL/5.

8.2. Validation on Smooth Solutions. We illustrate the performance of the decoupled algorithm
introduced in Section 7 on the discretization of the regularized system

an(T,S)+c(T;T,S)fb(S,u):/G:de VS e M,
(8.2) «
b(T,V):/f~de Vv eX
Q
dxd

The presence of the given tensor G : Q2 — R on the right-hand side of the first equation allows us to

Sym
exhibit an exact solution in closed form; compare with (3.2). In fact, we let A(s) = u(s) = (1 4 s2)~2,

Q= (0,1)? and, given n > 1, we define f and G so that

(53 wen = ("0 0) e = (5 e,)

cosy

solves (8.2).

Regarding the numerical parameters, we fix the pseudo-time increment parameter 7 = 0.01 and perform
simulations for several values of the regularization parameter n and for ¢ = 1 (linear regularization) and
t = n. The computational domain {2 is subdivided by using a sequence of uniform partitions consisting

of squares of diameter h = 27%, 4 = 0,...,7. The target tolerance for the iterative algorithm is set to
TOL = 1077,

Convergence as h — 0. We provide in Table 1 the corresponding errors ey := ||V(u, — Wy n)| 1, (0) and
er := [|[Tn — TpnllL, (). Theorem 5.5 predicts a rate of convergence of O(ht) for both quantities which

seems to be pessimistic (in this model problem with a smooth solution) since convergence of order O(h)
is observed for t = 1 and t = n. In fact, we also ran tests with other values of t > 1 and observed the
same order O(h).

h = n=2
t=1 t=1 t=2
€u er €u er Cu er
272 10.14438 | 0.03946 | 0.14436 | 0.05453 | 0.14434 | 0.05182
2731 0.07217 | 0.01973 | 0.07217 | 0.02725 | 0.07217 | 0.02486
2741 0.03609 | 0.00986 | 0.03609 | 0.01363 | 0.03609 | 0.01224
2721 0.01804 | 0.00493 | 0.01804 | 0.00681 | 0.01804 | 0.00625
276 1 0.00902 | 0.00247 | 0.00902 | 0.00341 | 0.00902 | 0.00327
2771 0.00451 | 0.00124 | 0.00451 | 0.00171 | 0.00451 | 0.00177

TABLE 1. Asymptotic behaviour of e, and ex forn =t =1and n =2 with ¢t =1 or
t = 2. The method exhibits convergence of order one in all cases. This is in accordance
with Theorem 5.5 when t = 1 but better than predicted for ¢ > 1.
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FIGURE 1. Decay of ||[u —up||z,) and [|T — T4z, (o) as a function of the mesh-size h
using the unstable pair in (5.52). Both quantities decay linearly.

Convergence as n — oco. We now turn our attention to the convergence of the algorithm when n — oo for
a fixed subdivision corresponding to h = 277. Again, we consider two cases: t = 1 (linear regularization)
and t = n. The data f and G are modified so that (u, T) given by (8.3) solves (8.2) without regularization,
i.e., without the bilinear form a,(-,-). The results are reported in Table 2; they indicate that in this
smooth setting, ey + e — 0 as n — oo.

t=1 t=n
|n=1.0 n=500 n=1000 |n=10 n=500 n=1000
0.80168 0.00927  0.00617 eu | 0.80167 0.00519  0.00470
1.53397  0.06777  0.03583 er | 218173 0.04052  0.02234

TABLE 2. Convergence of the decoupled algorithm when n — oo for a fixed spatial
resolution (h = 277) using linear (¢t = 1) and nonlinear (¢ = n) regularization. In the
nonlinear regularization case, the error in the stress is always measured in L1 () (instead
of Ly(€2) when ¢t = 1). The two algorithms yield similar results.

8.3. Inf-Sup condition. We conclude the section containing our numerical experiments with an obser-
vation on the inf-sup condition when using quadrilaterals. We consider the discretization of the linear
problem, for which the solution (u, T) € X x M is defined as the one satisfying

/TS/ /Qe(v):T:/Qf-v V(v,S) € X x M.

In view of the discussion in Section 5.3, any pair of discrete spaces satistying (X, ;) C M, p, such
as in (5.50) or in (5.51), yields an inf-sup stable scheme. In contrast, unstable modes (that violate the
discrete inf-sup condition with an h-independent positive inf-sup constant) can be proved to exist when
using the pair in (5.52). However, for the exact (smooth) solution

o) = (550) . Tl = <(ulen)
sinz

on a square domain © = (0,1)?, the finite element approximations using this unstable pair showed no
signs of instability in our numerical experiments. In fact a linear rate of convergence for ||V (u—up)| 1, )
and [|T — Th| 1, ) was observed in the limit of » — 0; see Figure 1.

It is worth mentioning that, when using (Q})4%¢ instead of (Qf )& for T, the approximation of uy,
remains exactly the same while the approximation of T}, is more accurate on any given subdivision, but
it still only exhibits first-order convergence as h — 0. The intriguing fact that, for the exact solution
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(0,2) (1,2)

Iy (3,1 | 111

Vv

(0,0) (1,0)

FIGURE 2. Crack problem. A horizontal compressive force Tn = (f,0)T for f > 0 is
applied on the side I11, while no force (i.e., Tn = 0) is imposed on the side marked by
I and 1. The top and bottom sides are fixed, i.e., u = 0.

(u, T) considered above, the scheme exhibits the optimal rate of convergence dictated by interpolation
theory, even though an inf-sup unstable finite element pair is being used, will be the subject to future
work.

8.4. Crack problem. We consider the “crack problem” described in Figure 2. A horizontal force of
magnitude f is applied to the right face of the domain (IIT), while the left faces (I and II) are free to
deform (i.e., no external force is being applied there). The top and bottom (IV) are fixed with u = 0.

We set A(s) = u(s) = (1+ s2)"2. In view of the performance observed in Section 8.2, we set the
numerical parameters at 7 = 2, n = 100, and ¢ = 1. The domain is partitioned into 16384 quadrilaterals
of minimal diameter A = 0.011. The stress is approximated in (Q?l)g;;‘f and the displacement in (Q})¢N
X,,- In Figure 3, we provide the deformed domain predicted by the algorithm for different values of f.
We also report in Table 3 the evolution of |[Vuyl[z__ (o) and || Ty (o) as the magnitude of the force
increases. The influence of the latter is severe on || T4z (o) While relatively moderate on [|e(us)|| (o) <
[Vun| (). This is in accordance with the properties of the strain-limiting model considered.

FiGure 3. Crack problem. The deformed domain for different force-magnitudes f =
0.25,0.5,0.75,1 (from left to right) pulling the right face of the computational domain.
The gray scale describes the magnitude of the displacement |u|, where white corresponds
to 0 and black to 0.92.
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| f=025|f=05|f=07] f=1 |f=125]f=15
[Vu,1inllo | 1.0656 | 2.2510 | 3.5032 | 5.2703 | 7.0492 | 8.8003
IThnllno | 092231 | 53090 | 18.17 | 46.5215 | 95.3902 | 166.335

TABLE 3. Evolutions of ||[Vuy|[1__ (o) and || Tx| 1. (o) as functions of the force-magnitude
f pulling the right face of the domain. The influence of increasing the magnitude of the
force is severe on the stress while relatively moderate on the strain. This is in accordance
with the properties of the strain-limiting model considered.
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