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Abstract. We construct a finite element approximation of a strain-limiting elastic model on a bounded
open domain in R

d, d ∈ {2, 3}. The sequence of finite element approximations is shown to exhibit
strong convergence to the unique weak solution of the model. Assuming that the material parameters

featuring in the model are Lipschitz-continuous, and assuming that the weak solution has additional
regularity, the sequence of finite element approximations is shown to converge with a rate. An iterative

algorithm is constructed for the solution of the system of nonlinear algebraic equations that arises from
the finite element approximation. An appealing feature of the iterative algorithm is that it decouples
the monotone and linear elastic parts of the nonlinearity in the model. In particular, our choice of
piecewise constant approximation for the stress tensor (and continuous piecewise linear approximation
for the displacement) allows us to compute the monotone part of the nonlinearity by solving an algebraic
system with d(d+1)/2 unknowns independently on each element in the subdivision of the computational
domain. The theoretical results are illustrated by numerical experiments.
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1. Introduction and statement of the problem

Until recently, the term elasticity referred to Cauchy elasticity, and within such a theory, strain-
limiting models are not possible. Motivated by the work of Rajagopal in [13], see also [14], the objective
of this paper is to design, analyze and implement numerical approximations of models that fall outside
the realm of classical Cauchy elasticity. These models are implicit and nonlinear, and are referred to as
strain-limiting, because they permit the linearized strain to remain bounded even when the stress is very
large: a property that cannot be guaranteed within the framework of standard elastic or nonlinear elastic
models.

On a bounded domain Ω ⊂ R
d, d ∈ {2, 3}, and for a given external force f : Ω → R

d, we consider the
nonlinear elastic model

(1.1) −div(T) = f in Ω,

where the symmetric stress tensor T is related to the strain tensor ε(u) := 1
2 (∇u + (∇u)T), for a given

displacement vector u, via a nonlinear constitutive relation of the form

(1.2) ε(u) = λ(Tr(T))Tr(T)I+ µ(|Td|)Td in Ω.

Here λ ∈ C0(R) and µ ∈ C0([0,+∞)) are given functions and Td denotes the deviatoric part of the tensor
T, defined by

Td := T− 1

d
Tr(T)I.
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Additional assumptions on λ and µ are required (see (A1)–(A4) below), which guarantee that, in par-
ticular, the right-hand side of (1.2) is a monotone operator applied to T. This strain-limiting model is
used to describe, for example, the behavior of brittle materials in the vicinity of fracture tips, or in the
neighborhood of concentrated loads, where there is concentration of stress even though the magnitude
of the strain tensor is limited. The model itself is derived and analyzed in the work of Buĺıček et al. [4];
some of the ideas introduced in [4] will also be used in the numerical analysis developed in the sequel.
Of course, there are several strain-limiting models: the reader will find other models in [4] and the refer-
ences quoted therein. This being the first effort though to construct and rigorously analyze a numerical
algorithm for a strain-limiting elastic model, we shall confine ourselves to the model (1.1), (1.2).

The analysis of the model (1.1), (1.2) is far from trivial because the operator involved, although
monotone, lacks coercivity. The authors of [4] show the existence of a weak solution to the problem by
first regularizing (1.2) with the addition of an appropriate coercive term,

Tr(T)I

n|Tr(T)|1− 1
n

+
Td

n|Td|1− 1
n

,

see (3.2), eventually providing a control of T in L1+ 1
n
(Ω)d×d. It is then shown in [4] that, as n → ∞, the

limit of the sequence of solutions to the regularized system satisfies the original problem. This nonlinear
regularization is necessary in order to be able to cope with possibly rough data f . However, for smoother
data, the simpler linear regularization 1

n
T has been used in [4] to recover additional regularity of the

solution; see (6.3).
The same framework is used here in the discrete case. More precisely, the regularized problems

(3.2) and (6.3) are discretized by means of a simple finite element scheme: for instance, on simplices,
by discontinuous piecewise P0 elements for the each component of the stress tensor T, and globally
continuous, piecewise P1 elements for each component of the displacement vector u; see (5.3) and (6.10).
It is worth noting here that for quadrilateral subdivisions of the domain Ω, the corresponding (Q0,Q1)
stress/displacement pair of finite element spaces is (inf-sup) unstable, and discontinuous polynomials of
degree 1 in each direction should be selected for the stress approximations instead of Q0 elements so as
to restore (inf-sup) stability; see Sections 5.3 and 5.4. Convergence to the exact solution is established by
first passing to the limit as the mesh-size tends to zero, for a fixed value of the regularization parameter
n, and then we let n tend to infinity. For rough data, the delicate part in the approximation of (3.2) is the
derivation of a suitable rate of convergence for the approximation error. The difficulty stems from the lack
of a meaningful error bound in a standard Lebesgue norm. Our analysis therefore relies on modular forms
and associated Orlicz norms (see Theorem 5.5 and the subsequent discussion). For smoother data, the
1
n
T regularization mentioned above can be used, and the numerical analysis of (6.10) is then somewhat

simpler because estimates for the stress, for the regularized problem at least, are naturally obtained in
L2(Ω)

d×d (see Theorem 6.2) instead of L1(Ω)
d×d (or L1+ 1

n
(Ω)d×d).

The proposed finite element discretizations (5.3) and (6.10) yield nonlinear systems with constraints.
Since the nonlinear operator is the sum of a monotone and a coercive operator, we take advantage of
the algorithm developed by Lions and Mercier in [11] to decouple these two parts: the unconstrained
monotone system is solved first, followed by solving a constrained coercive system. As the stress tensor
is potentially discontinuous, its simplest possible discretization is, as was suggested above, by means
of a piecewise constant approximation on simplices; thus the associated nonlinearity can be resolved
element-by-element. We establish convergence of this splitting algorithm when applied to (6.10) (see
Theorem 7.1). When applied to (5.3), the rigorous proof of convergence of the splitting algorithm is an
open problem, although our numerical experiments at least appear to indicate that the splitting algorithm
may well be convergent in this case as well.

1.1. Setting of the problem. We consider the system (1.1), (1.2) and describe the assumptions required
on λ and µ. In addition to λ ∈ C0(R) and µ ∈ C0([0,+∞)), we assume that s ∈ R 7→ λ(s)s ∈ C1(R).
Complementing these regularity hypotheses, we assume that λ and µ satisfy, for some positive constants
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C1, C2, κ and α, the following inequalities:

C1s
2

κ+ |s| ≤ λ(s)s2 ≤ C2|s| ∀ s ∈ R;(A1)

C1s
2

κ+ s
≤ µ(s)s2 ≤ C2s ∀ s ∈ R≥0;(A2)

0 ≤ d

ds
(λ(s)s) ∀ s ∈ R;(A3)

C1

(κ+ s)α+1
≤ d

ds
(µ(s)s) ∀ s ∈ R>0.(A4)

We note that, using the continuity of λ, the first inequality in assumption (A1) implies that λ(s) > 0
when s 6= 0 and λ(s) ≥ 0 for s ∈ R. In addition, using now the second inequality in (A1) we have that

(1.3) |λ(s)s| = λ(s)|s| ≤ C2 ∀ s ∈ R.

The same argument applied to the function µ gives µ(s) > 0 when s > 0, and

(1.4) µ(s) ≥ 0, µ(s) s ≤ C2 ∀ s ∈ R≥0.

In particular, these assumptions guarantee that the system will only exhibit finite strain (see Theo-
rem 2.1 below). At this point, we also recall a result from [12] (see also Lemma 4.1 in [4]), which will
play a crucial role in the subsequent analysis.

Under the assumptions (A1)–(A4) stated above, there exists a positive constant C such that the
following inequalities hold for all R1,R2 ∈ R

d×d
sym (the set of all d×d symmetric matrices with real-valued

entries):

(µ(|R1|)R1 − µ(|R2|)R2) : (R1 −R2) ≥ C
|R1 −R2|2

(κ+ |R1|+ |R2|)1+α
;(1.5)

(µ(|R1|)R1 − µ(|R2|)R2) : (R1 −R2) ≥ C
∣∣∣(κ+ |R1|)

1−α
2 − (κ+ |R2|)

1−α
2

∣∣∣
2

;(1.6)

(λ(Tr(R1))Tr(R1)− λ(Tr(R2))Tr(R2)) (Tr(R1)− Tr(R2)) ≥ 0.(1.7)

If, in addition,

(A3’) 0 <
d

ds
(λ(s)s) ∀ s ∈ R,

then, for all R1,R2 ∈ R
d×d
sym such that Tr(R1) 6= Tr(R2), we have

(1.8) (λ(Tr(R1))Tr(R1)− λ(Tr(R2))Tr(R2)) (Tr(R1)− Tr(R2)) > 0.

The system (1.1), (1.2) is supplemented with the boundary conditions

u = g on ∂DΩ and Tν = ℓ on ∂NΩ,

where the boundary of Ω is decomposed into two parts, ∂DΩ and ∂NΩ, with ∂DΩ ∩ ∂NΩ = ∅ and
∂DΩ ∪ ∂NΩ = ∂Ω, ν is the outward-pointing unit normal to ∂Ω, g : ∂Ω → R

d is a given displacement on
∂DΩ, and ℓ : ∂Ω → R

d is a given traction force on ∂NΩ.

1.2. Notation. We shall suppose for the rest of this section that Ω is a bounded simply connected
John domain; see, for instance, [1] or [9]. Henceforth, Lp(Ω) and W k,p(Ω) will denote the standard
Lebesgue and Sobolev spaces, and the corresponding spaces of d-component vector-valued functions and
symmetric d × d-component tensor-valued functions will be denoted, respectively, by Lp(Ω)

d, Lp(Ω)
d×d
sym

and W k,p(Ω)d, W k,p(Ω)d×d
sym . In order to characterize displacements that vanish on the boundary, ∂Ω,

of Ω, we consider for p ∈ [1,∞) the Sobolev space W 1,p
0 (Ω), defined as the closure of the linear space

C∞
0 (Ω), consisting of infinitely many times continuously differentiable functions with compact support in

Ω, in the norm of the space W 1,p(Ω):

W 1,p
0 (Ω) = C∞

0 (Ω)
‖·‖1,p

.
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We recall the Poincaré and Korn inequalities, which, for each p ∈ (1,∞), assert the existence of positive
constants Sp and Kp, such that, respectively (cf. Theorem 1.5 in [9]),

‖v‖Lp(Ω) ≤ Sp ‖∇v‖Lp(Ω) ∀ v ∈ W 1,p
0 (Ω),(1.9)

‖∇v‖Lp(Ω) ≤ Kp ‖ε(v)‖Lp(Ω) ∀v ∈ W 1,p
0 (Ω)d.(1.10)

By combining inequalities (1.10) and (1.9) we obtain the inequality

(1.11) ‖v‖Lp(Ω) ≤ CK,p‖ε(v)‖Lp(Ω) ∀v ∈ W 1,p
0 (Ω)d,

with CK,p = Sp Kp > 0.
For any two symmetric d × d tensors S = (Sij) and T = (Tij), we shall use a colon to denote their

contraction product,

S : T =

d∑

i=1

d∑

j=1

SijTij ,

so that the Frobenius norm of S reads

|S|2 = S : S = Tr(S2).

It is then easy to show that

(1.12) |S|2 = |Sd|2 + 1

d
|Tr(S)|2 ≤ |Sd|2 + |Tr(S)|2 ∀S ∈ R

d×d
sym ,

which implies that

(1.13) |S| ≤ |Sd|+ |Tr(S)| ∀S ∈ R
d×d
sym .

Conversely,

(1.14) |Tr(S)|+ |Sd| ≤
√
2d |S| ∀S ∈ R

d×d
sym ,

since, by elementary inequalities and by noting the equality stated in (1.12),

|Tr(S)|+ |Sd| ≤
√
d

(
1√
d
|Tr(S)|+ |Sd|

)
≤

√
2d

(
1

d
|Tr(S)|2 + |Sd|2

) 1
2

=
√
2d |S|.

Moreover, for any nonnegative real numbers a and b, and for any p ≥ 1 and θ ∈ (0, 1], we have

ap + bp ≥ 21−p(a+ b)p ≥ 21−p(a2 + b2)
p
2 ≥ 21−p(θa2 + b2)

p
2 .

Thus, by taking a = |Tr(S)|, b = |Sd| and θ = 1, we have by (1.12) that, for any p ≥ 1,

(1.15) 21−p|S|p ≤ |Tr(S)|p + |Sd|p.
The remainder of this article is organized as follows. The problem is set into variational form in

Section 2 and the associated existence and uniqueness results are recalled. Sections 3 and 4 are devoted
to the analysis of the sequence of regularized problems (3.2) that will be discretized by finite elements
in Section 5; this includes a priori estimates, convergence, and identification of the limit. The simpler
analysis of (6.3) is sketched in Section 6. In Section 7, we present an iterative algorithm that dissociates
the computation of the nonlinearity from the elastic constraint, and we prove its convergence when
applied to (6.10). In Section 8, we report numerical experiments aimed at assessing the performance of
the iterative algorithm and the discretization scheme.

2. Weak Formulation

We begin by recalling Theorem 4.3 from [4], which guarantees the existence and uniqueness of a
solution to the problem (1.1), (1.2) in the case when ∂DΩ = ∂Ω and g = 0.

When the Neumann part of the boundary ∂NΩ is nonempty, the structure of the solution is potentially
much more complicated. It was shown in [3] that, in general, the solution in that case belongs to the
space of Radon measures, but if the problem is equipped with a so-called asymptotic radial structure,
then the solution can in fact be understood as a standard weak solution, with one proviso: the attainment
of the boundary value is penalized by a measure supported on ∂NΩ. For simplicity, in this initial effort
to construct a provably convergent numerical algorithm for the problem under consideration, we shall
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therefore suppose henceforth that ∂DΩ = ∂Ω (i.e., ∂NΩ = ∅) and that the Dirichlet boundary datum is
g = 0 on ∂Ω.

Theorem 2.1 (Theorem 4.3 in [4]). Assume that ∂NΩ = ∅ and that λ, µ satisfy (A1)–(A4) with 0 ≤
α < 1/d; then, the following statements hold:

(a) Assume that f = −div(F) for F ∈ W β,1(Ω)d×d
sym with β ∈ (αd, 1). Then, there exists a pair (T,u),

such that

T ∈ L1(Ω)
d×d
sym ,

u ∈ W 1,p
0 (Ω)d ∀ p ∈ [1,∞),

ε(u) ∈ L∞(Ω)d×d
sym ,

is a weak solution in the sense that it satisfies

(2.1)

∫

Ω

T : ε(w) dx =

∫

Ω

F : ε(w) dx ∀w ∈ D(Ω)d,

where D(Ω)d := C∞
0 (Ω)d, and the nonlinear relationship between the strain ε(u) and the stress T

stated in (1.2) holds almost everywhere in Ω;

(b) Moreover, if Ω has a continuous boundary, then the equality (2.1) holds for all w ∈ W 1,1
0 (Ω)d

such that ε(w) ∈ L∞(Ω)d×d
sym ;

(c) In addition, u is unique and if λ satisfies the assumption (A3’), then T is also unique;

(d) Furthermore, if F belongs to W 2,2(Ω)d×d
sym , then T ∈ W 1,q

loc (Ω)
d×d
sym with

q

{
:= 2− 2(d−2)(1+α)

(d−2)(1+α)+d(1−α) , for d ≥ 3,

∈ [1, 2), arbitrary for d = 2.

Remark 2.2. We note in connection with part (d) of the above theorem that when d = 3, then

q = 2− 1 + α

2− α

is a monotonic decreasing function of α. Thus, as 0 ≤ α < 1
3 , we have 6

5 < q ≤ 3
2 .

3. Analysis of a Regularized Problem

The proof of existence of weak solutions to the problem is based on constructing a sequence of solutions
to a regularized problem, where the original stress-strain relationship (1.2) is modified to become

(3.1) ε(u) = λ(Tr(T))Tr(T)I+ µ(|Td|)Td +
Tr(T)I

n|Tr(T)|1− 1
n

+
Td

n|Td|1− 1
n

;

here n ∈ N (where N denotes the set of all positive integers) is a regularization parameter, which we shall
ultimately send to the limit n → ∞.

Following this idea, we study in this work the finite element approximation of this regularized problem,
stated in the following variational form: find (Tn,un) ∈ Mn × Xn satisfying

an(Tn,S) + c(Tn;Tn,S)− b(S,un) = 0 ∀S ∈ Mn,

b(Tn,v) =

∫

Ω

F : ε(v) dx ∀v ∈ Xn,
(3.2)

where

an(T,S) :=
1

n

∫

Ω

(
Tr(T)I

|Tr(T)|1− 1
n

+
Td

|Td|1− 1
n

)
: S dx,

c(T;R,S) :=

∫

Ω

(
λ(Tr(T))Tr(R)I+ µ(|Td|)Rd

)
: S dx,

b(S,v) :=

∫

Ω

S : ε(v) dx,
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and
Mn := L1+ 1

n
(Ω)d×d

sym , Xn := W 1,n+1
0 (Ω)d, n ∈ N.

Motivated by the form of the expression appearing on the right-hand side of the relationship (3.1), we
define the mapping An : L1+ 1

n
(Ω)d×d

sym → Ln+1(Ω)
d×d
sym by

(3.3) An(S) := λ(Tr(S))Tr(S)I+ µ(|Sd|)Sd +
Tr(S)I

n|Tr(S)|1− 1
n

+
Sd

n|Sd|1− 1
n

.

It follows from the inequalities (1.3) and (1.4) that An does indeed take its values in Ln+1(Ω)
d×d
sym , since

the first two terms belong to L∞(Ω)d×d
sym for all S ∈ L1+ 1

n
(Ω)d×d

sym , while the third and fourth term belong

to Ln+1(Ω)
d×d
sym for all S ∈ L1+ 1

n
(Ω)d×d

sym , n ∈ N. Moreover, the mapping An : L1+ 1
n
(Ω)d×d

sym → Ln+1(Ω)
d×d
sym

is bounded, continuous and coercive for all n ∈ N, as is asserted in the following lemma.

Lemma 3.1 (Boundedness, continuity and coercivity of An). Let λ ∈ C0(R) and µ ∈ C0([0,+∞)), and
suppose that hypotheses (A1) and (A2) are valid. Then, the following assertions hold:

(i) For any n ∈ N, the mapping An : L1+ 1
n
(Ω)d×d

sym → Ln+1(Ω)
d×d
sym is bounded; i.e., every bounded set

in L1+ 1
n
(Ω)d×d

sym is mapped by An into a bounded set in Ln+1(Ω)
d×d
sym ;

(ii) For any n ∈ N, the mapping An : L1+ 1
n
(Ω)d×d

sym → Ln+1(Ω)
d×d
sym is continuous, i.e., for any

sequence (Sk)k>0 ⊂ L1+ 1
n
(Ω)d×d

sym , which strongly converges in the norm of L1+ 1
n
(Ω)d×d to some

S ∈ L1+ 1
n
(Ω)d×d

sym , we have that

An(Sk) → An(S) strongly in Ln+1(Ω)
d×d
sym ;

(iii) For any n ∈ N, the mapping An is coercive, i.e.,
∫
Ω
An(S) : S dx

‖S‖L
1+ 1

n
(Ω)

→ ∞ as ‖S‖L
1+ 1

n
(Ω) → ∞.

Proof. (i) It suffices to prove that any bounded ball in L1+ 1
n
(Ω)d×d

sym , centred at the origin, is mapped by

An into a bounded set in Ln+1(Ω)
d×d
sym . Consider, to this end, the bounded ball

BR := {S ∈ L1+ 1
n
(Ω)d×d

sym : ‖S‖L
1+ 1

n
(Ω) ≤ R} with R > 0.

For every S ∈ BR, we have that

‖An(S)‖Ln+1(Ω) ≤ C2d
1
2 |Ω| 1

n+1 + C2|Ω|
1

n+1 +
1

n
d

1
2 ‖Tr(S)‖

1
n

L
1+ 1

n
(Ω) +

1

n
‖Sd‖

1
n

L
1+ 1

n
(Ω)

≤ C2d
1
2 |Ω| 1

n+1 + C2|Ω|
1

n+1 +
1

n
d

1
2 (1+

1
n
)‖S‖

1
n

L
1+ 1

n
(Ω) +

1

n
‖S‖

1
n

L
1+ 1

n
(Ω),

where in the transition to the second inequality we have made use of the facts that, by the identity (1.12)

we have |Tr(S)| ≤ d
1
2 |S| and |Sd|2 = |S|2 − 1

d
(Tr(S))2, whereby |Sd| ≤ |S|. Hence,

‖An(S)‖Ln+1(Ω) ≤ C2d
1
2 |Ω| 1

n+1 + C2|Ω|
1

n+1 +
1

n
d

1
2 (1+

1
n
)R

1
n +

1

n
R

1
n =: R∗,

which implies that An(BR) is contained in a bounded ball in Ln+1(Ω)
d×d
sym , centred at the origin, of radius

R∗. Thus, An : L1+ 1
n
(Ω)d×d

sym → Ln+1(Ω)
d×d
sym is a bounded mapping.

(ii) Suppose that Sk → S strongly in L1+ 1
n
(Ω)d×d

sym . We begin by showing that

λ(Tr(Sk))Tr(Sk)I → λ(Tr(S))Tr(S)I strongly in Ln+1(Ω)
d×d
sym .

By defining ϕk := λ(Tr(Sk))Tr(Sk) and using (1.3), we get

|ϕk| ≤ C2 a.e. in Ω.

Now, the strong convergence of {Sk}k>0 in L1+ 1
n
(Ω)d×d

sym implies that there exists a subsequence (not

indicated) such that Sk → S a.e. on Ω. Thanks to the assumed continuity of λ, it then follows that

ϕk → ϕ := λ(Tr(S))Tr(S)
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a.e. in Ω and |ϕ| ≤ C2 a.e. in Ω. By Lebesgue’s dominated convergence theorem we therefore have that
ϕk → ϕ strongly in L1(Ω). When combined with the boundedness of ϕk, the strong convergence ϕk → ϕ
in L1(Ω), implies that ϕk → ϕ strongly in Lp(Ω) for all p ∈ [1,∞). Therefore, taking p = n+ 1, the first
term of An(Sk) strongly converges in Ln+1(Ω)

d×d
sym to the first term in An(S). The same is true of the

second term.
To handle the third term, we note that since, for any a ∈ (0, 1],

∣∣∣∣
x

|x| |x|
a − y

|y| |y|
a

∣∣∣∣ ≤ 21−a|x− y|a ∀x, y ∈ R \ {0},

it follows with a = 1
n
, n ∈ N, that

∣∣∣∣
Tr(Sk)

|Tr(Sk)|1− 1
n

− Tr(S)

|Tr(S)|1− 1
n

∣∣∣∣ ≤ 21−
1
n |Tr(Sk)− Tr(S)| 1

n ≤ 21−
1
n d

1
2n |Sk − S| 1

n ,(3.4)

whereby the assumed strong convergence Sk → S in L1+ 1
n
(Ω)d×d

sym implies that

Tr(Sk)

|Tr(Sk)|1− 1
n

I → Tr(S)

|Tr(S)|1− 1
n

I

in Ln+1(Ω)
d×d
sym , n ∈ N. By an identical argument the fourth term strongly converges in Ln+1(Ω)

d×d
sym ,

n ∈ N.
(iii) Note that, by assumptions (A1) and (A2),

∫

Ω

An(S) : S dx ≥ 1

n

∫

Ω

(
|Tr(S)|1+ 1

n + |Sd|1+ 1
n

)
dx.

By taking p = 1 + 1
n
with n ∈ N in (1.15) and using (1.15), we then have that

∫

Ω

An(S) : S dx ≥ 2−
1
n

n

∫

Ω

|S|n+1
n dx =

2−
1
n

n
‖S‖1+

1
n

L
1+ 1

n
(Ω).

As the exponent 1 + 1
n
appearing on the right-hand side of the last equality is strictly greater than 1 for

all n ∈ N, the coercivity of the mapping An : L1+ 1
n
(Ω)d×d

sym → Ln+1(Ω)
d×d
sym directly follows. �

Remark 3.2. One can simplify the proof of the continuity of An asserted in Lemma 3.1 (ii) by assuming
that s 7→ λ(s)s and s 7→ µ(s)s are globally Hölder-continuous functions over their respective domains
of definition. The latter assumption will be required in Theorem 5.5 to deduce rates of convergence for
the finite element approximation of the regularized problem; prior to that, we do not assume the global
Hölder-continuity of s 7→ λ(s)s and s 7→ µ(s)s.

Lemma 3.3 (Monotonicity of An). Assume that λ ∈ C0(R) and µ ∈ C0([0,+∞)), and that hypothe-
ses (A1)–(A4) are satisfied. Then, for any n ∈ N, the mapping An : L1+ 1

n
(Ω)d×d

sym → Ln+1(Ω)
d×d
sym is

monotone, i.e.,

(3.5)

∫

Ω

(An(S1)−An(S2)) : (S1 − S2) dx ≥ 0

for any pair of functions S1,S2 ∈ L1+ 1
n
(Ω)d×d

sym . Furthermore, monotonicity is strict, in the sense that

equality holds if, and only if, S1 = S2 a.e. on Ω.

Proof. To prove the monotonicity of An, note first that for any pair of matrices S,R ∈ R
d×d
sym one has

(3.6) (S|S| 1
n
−1 −R|R| 1

n
−1) : (S−R) ≥ 1

n
|S−R|2

∫ 1

0

|R+ θ(S−R)| 1
n
−1 dθ ≥ 0,

and since n ≥ 1, the expression on the right-hand side is equal to 0 if, and only if, S = R. Similarly, for
any s, r ∈ R,

(3.7) (s|s| 1
n
−1 − r|r| 1

n
−1) (s− r) =

1

n
|s− r|2

∫ 1

0

|r + θ(s− r)| 1
n
−1 dθ ≥ 0,
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and the expression on the right-hand side is equal to 0 if, and only if, s = r. Hence, and by noting the
inequalities (1.5) and (1.7), we have that

∫

Ω

(An(S1)−An(S2)) : (S1 − S2) dx

≥ 1

n2
|Tr(S1 − S2)|2

∫ 1

0

∣∣Tr(S2 + θ(S1 − S2))
∣∣ 1n−1

dθ

+
1

n2
|Sd

1 − Sd

2 |2
∫ 1

0

∣∣Sd

2 + θ(Sd

1 − Sd

2 )|
1
n
−1 dθ.

(3.8)

The expression on the right-hand side of this inequality is nonnegative and it is equal to 0 if, and only if,
Tr(S1) = Tr(S2) a.e. on Ω and Sd

1 = Sd
2 a.e. on Ω, that is, when S1 = S2 a.e. on Ω. �

4. A-Priori Estimates for the Regularized Problem

Our aim in this section is to derive a-priori estimates for the regularized problem (3.2). Clearly,
problem (3.2) can be interpreted as a constrained system with a (strictly) monotone nonlinearity. The
constraint is the second equation in problem (3.2); it is linear and nonhomogeneous, and can be, as is
usual in mixed variational problems, transformed into a homogenous constraint via an inf-sup property,
which we state in the next lemma.

Lemma 4.1 (Inf-sup property). The following inequality holds for all n ∈ N:

(4.1) inf
v∈Xn

sup
S∈Mn

b(S,v)

‖S‖L
1+ 1

n
(Ω)‖ε(v)‖Ln+1(Ω)

≥ 1.

Proof. Given v ∈ Xn = W 1,n+1
0 (Ω)d, it suffices to note that R = ε(v)|ε(v)|n−1 ∈ L1+ 1

n
(Ω)d×d

sym and that

we have

b(R,v) = ‖ε(v)‖n+1
Ln+1(Ω) = ‖ε(v)‖Ln+1(Ω)‖ε(v)‖nLn+1(Ω) = ‖ε(v)‖Ln+1(Ω)‖R‖L

1+ 1
n
(Ω).

Whence,

sup
S∈Mn

b(S,v)

‖S‖L
1+ 1

n
(Ω)

≥ ‖ε(v)‖Ln+1(Ω),

and the stated inf-sup property follows. �

We shall assume henceforth that, as in Theorem 2.1, f = −div(F), with F ∈ W β,1(Ω)d×d
sym and β ∈

(αd, 1) (recall that, by hypothesis, 0 < α < 1
d
); hence, by Sobolev embedding F ∈ L1+ β

d−β
(Ω)d×d

sym whereby

also F ∈ L1+ 1
n
(Ω)d×d

sym = Mn for all n ≥ d
β
− 1 (consequently, f ∈ W−1,1+ 1

n (Ω)d = (W 1,n+1
0 (Ω)d)′ = (Xn)

′

for all n ≥ d
β
− 1), and we define

Tf

n := F.

Clearly, the subscript n in the expression on the left-hand side of this equality is redundant, as Tf
n is equal

to F for all n ≥ d
β
−1. We shall however continue to carry this redundant subscript in order to emphasize

the fact that the problem, as a whole, is dependent on n. Should it be desired that F ∈ L1+ 1
n
(Ω)d×d

sym for

all n ∈ N, one can, instead, adopt the slightly stronger assumption that F ∈ W β,1(Ω)d×d
sym ∩ L2(Ω)

d×d
sym .

The use of the function Tf
n will allow us to lift the constraint imposed by the second equation in

problem (3.2) by converting it into a homogeneous equation; we can then replace the first equation in
(3.2) by one that is considered on a linear subspace Vn of Mn, defined below, which we choose to be the
kernel of the mapping div : Mn → (Xn)

′.
Trivially,

(4.2)

∫

Ω

Tf

n : ε(v) dx =

∫

Ω

F : ε(v) dx ∀v ∈ Xn.

We define

(4.3) Vn := {S ∈ Mn : b(S,v) = 0 ∀v ∈ Xn} = {S ∈ Mn : div(S) = 0 ∈ (Xn)
′} = Ker(div).
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As Xn is a reflexive Banach space, transposition yields that the transpose (−div)′ : (Xn)
′′ = Xn → (Mn)

′

of the linear operator −div : Mn → (Xn)
′ is (−div)′ = ε(·). The annihilator V⊥

n of Vn is, by definition,

V
⊥
n := {ℓ ∈ (Mn)

′ : ℓ(S) = 0 ∀S ∈ Vn}.
By the Riesz representation theorem the dual space (Mn)

′ of L1+ 1
n
(Ω)d×d

sym is isometrically isomorphic

to Ln+1(Ω)
d×d
sym . Furthermore, since −div : Mn → (Xn)

′ is a bounded linear operator, it is also a closed
linear operator. Hence, by Banach’s closed range theorem,

V
⊥
n :=

{
R ∈ Ln+1(Ω)

d×d
sym :

∫

Ω

R : S dx = 0 ∀S ∈ Vn

}

= [Ker(div)]⊥ = [Ker(−div)]⊥ = Range((−div)′) = Range(ε(·)).
Furthermore, once again by the closed range theorem,

Range(div) = Range(−div) = [Ker((−div)′)]⊥ = [Ker(ε(·))]⊥ = [{0}]⊥ = (Xn)
′,

where the penultimate equality follows from the inequality (1.11).
Thanks to the definition of Tf

n,

(4.4) ‖Tf

n‖L1+ 1
n
(Ω) = ‖F‖L

1+ 1
n
(Ω).

Using Tf
n, we can eliminate the constraint (3.2)2 by setting

T0
n := Tn −Tf

n ∈ Vn

and consider the problem: find T0
n ∈ Vn such that

(4.5) an(T
0
n +Tf

n,S) + cn(T
0
n +Tf

n;T
0
n +Tf

n,S) = 0 ∀S ∈ Vn.

From here, by using Lemma 3.1 and Lemma 3.3, we easily deduce that the mapping

S ∈ Vn 7→ An(S+Tf

n) ∈ Ln+1(Ω)
d×d
sym = (Mn)

′ ⊂ (Vn)
′

is bounded, continuous (and therefore hemi-continuous), coercive and monotone; in addition, Vn is a
separable reflexive Banach space, as it is a closed linear subspace of the separable and reflexive Banach
space Mn = L1+ 1

n
(Ω)d×d

sym . Therefore, by the Browder–Minty theorem (cf., for instance, [17, 10]) problem

(4.5), and hence also problem (3.2), has a solution Tn = T0
n + Tf

n ∈ Mn, and since by Lemma 3.3 the
operator An is strictly monotone, the solution is unique.

With Tn ∈ Mn thus uniquely fixed, we seek un ∈ Xn such that

b(S,un) = an(Tn,S) + c(Tn;Tn,S) ∀S ∈ Mn.

Consider the linear functional ℓn ∈ (Mn)
′ defined by

ℓn(S) := an(Tn,S) + c(Tn;Tn,S), S ∈ Mn.

Hence, thanks to equation (4.5), we have that ℓn(S) = 0 for all S ∈ Vn; consequently, ℓn ∈ V
⊥
n . Thus,

we are seeking un ∈ Xn such that

b(S,un) = ℓn(S) ∀S ∈ Mn.(4.6)

As ℓn ∈ V
⊥
n = [Ker(div)]⊥ = Range(ε(·)), there exists a un ∈ Xn such that ε(un) = ℓn; that is un ∈ Xn

solves problem (4.6). The inf-sup property (4.1), together with the inequality (1.11), then implies that
such a un ∈ Xn is unique. Thus we have shown the existence of a unique solution pair (Tn,un) ∈ Mn×Xn

to the regularized problem (3.2).
Next we shall prove the following a-priori bounds on ε(un) and Tn.

Lemma 4.2 (A-priori estimates). Suppose that F ∈ L1+ 1
n
(Ω)d×d

sym , and that λ and µ satisfy the properties

(A1) and (A2). We then have that

‖ε(un)‖Ln+1(Ω) ≤
1

n
d
√
2

[
16d2‖F‖1+

1
n

L
1+ 1

n
(Ω) + 2(n+ 1)C2

√
2d |Ω| 1

n+1 ‖F‖L
1+ 1

n
(Ω) + 4(n+ 1)C1κ|Ω|

] 1
n+1

+ C2

√
2d |Ω| 1

n+1 .
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Moreover,

1

n+ 1
‖Tn‖1+

1
n

L
1+ 1

n
(Ω) + C1‖Tn‖L1(Ω) ≤

16d2

n+ 1
‖F‖1+

1
n

L
1+ 1

n
(Ω) + 2C2

√
2d |Ω| 1

n+1 ‖F‖L
1+ 1

n
(Ω) + 4C1κ|Ω|.

Proof. We start by testing problem (3.2) with v = un and S = Tn to get

an(Tn,Tn) + c(Tn;Tn,Tn)− b(Tn,un) = 0,

b(Tn,un) =

∫

Ω

F : ε(un) dx,
(4.7)

whence, by substituting equation (4.7)2 into equation (4.7)1, we have

1

n

∫

Ω

( |Tr(Tn)|2
|Tr(Tn)|1− 1

n

+
|Td

n|2
|Td

n|1−
1
n

)
dx+

∫

Ω

(
λ(Tr(Tn))|Tr(Tn)|2 + µ(|Td

n|)|Td

n|2
)
dx

=

∫

Ω

F : ε(un) dx,

where we have used that

Td : T = Td :

(
Td +

1

d
Tr(T)I

)
= |Td|2 + 1

d
Tr(T) Tr(Td)︸ ︷︷ ︸

=0

= |Td|2.

Hence, Hölder’s inequality yields

1

n

∫

Ω

(
|Tr(Tn)|1+

1
n + |Td

n|1+
1
n

)
dx+

∫

Ω

(
λ(Tr(Tn))|Tr(Tn)|2 + µ(|Td

n|)|Td

n|2
)
dx

≤ ‖F‖L
1+ 1

n
(Ω)‖ε(un)‖Ln+1(Ω).

For the λ and µ terms on the left-hand side of this inequality we note that for s > 0 one has

s2

κ+ s
= s− κ

1 + κ
s

.

This, together with the properties (A1) and (A2), leads to

1

n

∫

Ω

(
|Tr(Tn)|1+

1
n + |Td

n|1+
1
n

)
dx+ C1

∫

Ω

(
|Tr(Tn)|+ |Td

n|
)
dx

≤ ‖F‖L
1+ 1

n
(Ω)‖ε(un)‖Ln+1(Ω) + C1κ

∫

Ω

(
1

1 + κ
|Tr(Tn)|

+
1

1 + κ
|Td

n|

)
dx

≤ ‖F‖L
1+ 1

n
(Ω)‖ε(un)‖Ln+1(Ω) + 2C1κ|Ω|,

since sups>0
1

1+κ
s

= 1.

Moreover, it follows from the inequality (1.15) with p = 1 + 1
n
that

|Tr(Tn)|1+
1
n + |Td

n|1+
1
n ≥ 2−

1
n |Tn|1+

1
n ,

and therefore (1.13) yields

(4.8)
2−

1
n

n
‖Tn‖1+

1
n

L
1+ 1

n
(Ω) + C1‖Tn‖L1(Ω) ≤ ‖F‖L

1+ 1
n
(Ω)‖ε(un)‖Ln+1(Ω) + 2C1κ|Ω|.

We now derive a bound on ‖ε(un)‖Ln+1(Ω), using the inf-sup property (4.1). We begin by noting that

‖ε(un)‖Ln+1(Ω) ≤ sup
S∈L

1+ 1
n
(Ω)d×d

sym

b(S,un)

‖S‖L
1+ 1

n
(Ω)

= sup
S∈L

1+ 1
n
(Ω)d×d

sym

an(Tn,S) + c(Tn;Tn,S)

‖S‖L
1+ 1

n
(Ω)

.

We invoke Hölder’s inequality, the equality |I| =
√
d, the elementary inequality a+ b ≤ 21−

1
n (an + bn)

1
n

where a, b ≥ 0 and n ∈ N with a =
√
d |Tr(Tn)|

1
n , b = |Td

n|
1
n , and note that 1√

d
|Tr(Tn)|+|Td

n| ≤
√
2 |Tn|,
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to deduce that

an(Tn,S) ≤
2
√
d

n

(
d

2

) 1
2n

‖Tn‖
1
n

L
1+ 1

n
(Ω)‖S‖L1+ 1

n
(Ω).

Further, by noting the properties (A1) and (A2) again together with the inequality (1.14), we have

(4.9) c(Tn;Tn,S) ≤ C2

√
2d |Ω| 1

n+1 ‖S‖L
1+ 1

n
(Ω),

where we have bounded
√
d+ 1 by

√
2d for the sake of simplifying the constants appearing in the subse-

quent calculations. Hence,

(4.10) ‖ε(un)‖Ln+1(Ω) ≤
2
√
d

n

(
d

2

) 1
2n

‖Tn‖
1
n

L
1+ 1

n
(Ω) + C2

√
2d |Ω| 1

n+1 .

By substituting the inequality (4.10) into the inequality (4.8) we obtain

2−
1
n

n
‖Tn‖1+

1
n

L
1+ 1

n
(Ω)+C1‖Tn‖L1(Ω) ≤ ‖F‖L

1+ 1
n
(Ω)

(
2
√
d

n

(
d

2

) 1
2n

‖Tn‖
1
n

L
1+ 1

n
(Ω)+C2

√
2d |Ω| 1

n+1

)
+2C1κ|Ω|;

thus, by applying Young’s inequality,

ab ≤ ε
ap

p
+ ε−

1
p−1

bq

q
for a, b ≥ 0, ε > 0, p > 1 and 1

p
+ 1

q
= 1,

to the first term on the right-hand side with p = n+ 1, ε = 1
n
2−

1
n ,

a = ‖Tn‖
1
n

L
1+ 1

n
(Ω) and b =

2
√
d

n

(
d

2

) 1
2n

‖F‖L
1+ 1

n
(Ω)

in order to absorb the factor ‖Tn‖
1
n

L
1+ 1

n
(Ω) into the left-hand side, we deduce that

2−
1
n

n+ 1
‖Tn‖1+

1
n

L
1+ 1

n
(Ω) + C1‖Tn‖L1(Ω)

≤ 21+
1
2n+ 1

2n2 (
√
d)(1+

1
n
)2

n+ 1
‖F‖1+

1
n

L
1+ 1

n
(Ω) + C2

√
2d |Ω| 1

n+1 ‖F‖L
1+ 1

n
(Ω) + 2C1κ|Ω|.

Hence, after multiplying by 2
1
n and noting that 1 ≤ 2

1
n ≤ 2 and 1 + 3

2n + 1
2n2 ≤

(
1 + 1

n

)2
, we obtain

1

n+ 1
‖Tn‖1+

1
n

L
1+ 1

n
(Ω) + C1‖Tn‖L1(Ω) ≤

(2
√
d)(1+

1
n
)2

n+ 1
‖F‖1+

1
n

L
1+ 1

n
(Ω) + 2C2

√
2d |Ω| 1

n+1 ‖F‖L
1+ 1

n
(Ω) + 4C1κ|Ω|.

Bounding 1 + 1
n

by 2 in the exponent of 2
√
d in the first term on the right-hand side then yields the

second inequality in the statement of the lemma.
Omitting the second term from the left-hand side of that inequality and multiplying by n + 1 then

yields

‖Tn‖1+
1
n

L
1+ 1

n
(Ω) ≤ 16d2‖F‖1+

1
n

L
1+ 1

n
(Ω) + 2(n+ 1)C2

√
2d |Ω| 1

n+1 ‖F‖L
1+ 1

n
(Ω) + 4(n+ 1)C1κ|Ω|.

Therefore, by the inequality (4.10), we have that

‖ε(un)‖Ln+1(Ω) ≤
2
√
d

n

(

d

2

) 1
2n

[

16d2‖F‖1+
1
n

L
1+ 1

n
(Ω) + 2(n+ 1)C2

√
2d |Ω| 1

n+1 ‖F‖L
1+ 1

n
(Ω) + 4(n+ 1)C1κ|Ω|

] 1
n+1

+ C2

√
2d |Ω| 1

n+1 .

Bounding the exponent 1
2n by 1

2 in the prefactor on the right-hand side yields the first bound in the
lemma. �
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Lemma 4.2 implies in particular that

lim sup
n→∞

‖ε(un)‖Ln+1(Ω) ≤ C2

√
2d

and

lim sup
n→∞

‖Tn‖L1(Ω) ≤
2C2

C1

√
2d ‖F‖L1(Ω) + 4κ|Ω|.

These bounds are consistent with the properties of the strain-limiting model under consideration, ex-
pressed by Theorem 2.1 (a), which asserts that the strain tensor is contained in L∞(Ω)d×d

sym , even though

the stress tensor is, in general, an element of L1(Ω)
d×d
sym only.

In connection with this, we recall from Section 4 of [4] that the sequence of (unique) weak solution pairs
((Tn,un))n∈N to the regularized problem (3.2) converges to a weak solution pair (T,u) of the problem
(1.1), (1.2), supplemented by a homogeneous Dirichlet boundary condition on ∂Ω (which is also unique
if the condition (A3’) holds), in the sense that, as n → ∞,

Tn → T strongly in Lq(Ω0)
d×d
sym for any q ∈

[
1, 1 + 1

2
β−αd
d−β

)
, β ∈ (αd, 1), 0 ≤ α < 1

d
, Ω0 ⊂⊂ Ω;(4.11)

furthermore,

un ⇀ u weakly in W 1,2d
0 (Ω)d,

un → u strongly in C(Ω)d,
(Tn)

d

n|(Tn)d|1− 1
n

→ 0 strongly in L1(Ω)
d×d
sym ,

Tr(Tn)

n|Tr(Tn)|1− 1
n

→ 0 strongly in L1(Ω).

(4.12)

In particular,

(4.13) ε(un) ⇀ ε(u) weakly in L2d(Ω)
d×d
sym .

We note though that the weak convergence result (4.13) can be strengthened to

(4.14) ε(un) → ε(u) strongly in Lp(Ω0)
d×d
sym ∀Ω0 ⊂⊂ Ω, ∀ p ∈ [1,∞)

and consequently to

(4.15) ε(un) → ε(u) strongly in L2d(Ω)
d×d
sym .

To show this, we fix any Ω0 ⊂⊂ Ω and note that by subtracting the constitutive relation (1.2) from
its regularized counterpart (3.1) we have

ε(un − u) = A(Tn)−A(T) +
Tr(Tn)I

n|Tr(Tn)|1− 1
n

+
Td

n

n|Td
n|1−

1
n

,

where A : L1(Ω0)
d×d
sym → L∞(Ω0)

d×d
sym is given by

(4.16) A(S) := λ(Tr(S))Tr(S)I+ µ(|Sd|)Sd.

A similar argument to the one in the proof of Lemma 3.1 yields that the mapping A : L1(Ω0)
d×d
sym →

Lp(Ω0)
d×d
sym is well-defined and continuous for all p ∈ [1,∞). Whence, because Tn converges strongly to

T in L1(Ω0)
d×d
sym , it follows that so does A(Tn) to A(T) in Lp(Ω0)

d×d
sym for all p ∈ [1,∞). For the first

regularization term, Hölder’s inequality implies that

1

n
‖|Tr(Tn)|

1
n ‖Lp(Ω0) ≤

1

n
‖Tr(Tn)‖

1
n

L1(Ω0)
|Ω0|

1
p
(1− p

n
) → 0 as n → ∞,

and similarly for the second regularization term, containing Td
n. The convergence result (4.14) then

follows by collecting the above results. To show (4.15), we consider a nested sequence of Ω0 that exhausts
Ω. By (4.14) there exists a subsequence (still indexed by n) such that ε(un) → ε(u) almost everywhere
on Ω. Hence, in view of (4.13), (4.15) follows by Vitali’s theorem.
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Motivated by these convergence results our objective is to construct a sequence of finite element
approximations ((Tn,h,un,h))h∈(0,1] to the solution pair (Tn,un) of the regularized problem, for a fixed
value of n, and then pass to the limit h → 0+ with the discretization parameter h ∈ (0, 1], followed by
passage to the limit n → ∞ with the regularization parameter n ∈ N, — instead of approximating the
solution pair (T,u) directly by a finite element method. Our reasons for proceeding in this way will be
made clear at the start of Section 5.2.

5. Finite Element Approximation

For the sake of simplicity we shall suppose from now on that Ω is a polygon when d = 2 or a Lipschitz
polyhedron when d = 3.

We consider a sequence of shape-regular simplicial subdivisions (Th)h∈(0,1] of Ω; by this we mean that
there exists a positive real number η, independent of the mesh-size h, such that all closed simplices K in
the subdivision Th satisfy the inequality

(5.1)
hK

̺K
≤ η,

where hK is the diameter ofK and ̺K is the diameter of the largest ball inscribed inK; see for instance [5].
The extension to quadrilateral and hexahedral meshes is discussed in Sections 5.3 and 5.4.

Let Pr
h be the space of piecewise (subordinate to Th) polynomials of degree at most r. We consider

the conforming finite element spaces

(5.2) Mn,h :=
(
P0
h

)d×d

sym
⊂ Mn, Xn,h :=

(
P1
h

)d ∩ Xn ⊂ Xn,

for the approximation of Tn and un, respectively. We note in passing that in the set-theoretical sense
Mn,h and Xn,h are independent of n; we shall however continue to label them with the double subscript

n,h instead of just h in order to emphasize that they are being thought of as finite-dimensional normed
linear subspaces of Mn and Xn, respectively, throughout the paper.

As the exact solution is not expected to be very smooth, we have restricted ourselves to considering
a first-order finite element approximation. There are, of course, other choices of first-order spaces than
the one we shall be focusing on, but for the sake of brevity we shall not dwell on those here in detail; for
extensions and alternative choices of spaces, we refer the reader again to Sections 5.3 and 5.4.

5.1. Discrete Scheme. The discrete counterpart of problem (3.2), based on Xn,h and Mn,h, is then
defined as follows: find (Tn,h,un,h) ∈ Mn,h × Xn,h such that

an(Tn,h,Sh) + c(Tn,h;Tn,h,Sh)− b(Sh,un,h) = 0 ∀Sh ∈ Mn,h,

b(Tn,h,vh) =

∫

Ω

F : ε(vh) dx ∀vh ∈ Xn,h.
(5.3)

We start by proving the discrete version of the inf-sup property (4.1).

Lemma 5.1 (Discrete inf-sup property). For each n ∈ N, we have

(5.4) inf
vh∈Xn,h

sup
Sh∈Mn,h

b(Sh,vh)

‖Sh‖L
1+ 1

n
(Ω)‖ε(vh)‖Ln+1(Ω)

≥ 1.

Proof. The argument is based on mimicking the proof of Fortin’s Lemma. Indeed, the assertion directly
follows from the continuous inf-sup property (4.1), upon noting that for all vh ∈ Xn,h ⊂ Xn, ε(vh)
belongs to Mn,h. Thus, for all vh ∈ Xn,h, all S ∈ Mn, and all K ∈ Th, one has

∫

K

ε(vh) : ΠhS dx =

∫

K

ε(vh) : S dx,

where ΠhS ∈ Mn,h is defined componentwise by

(5.5) Πhf |K :=
1

|K|

∫

K

f dx ∀K ∈ Th, ∀ f ∈ L1(K),
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and the projector Πh : Mn → Mn,h is stable in (the norm of) Mn because

‖Πhf‖L
1+ 1

n
(K) ≤ ‖f‖L

1+ 1
n
(K) ∀K ∈ Th, ∀ f ∈ L1+ 1

n
(K),

whereby

‖ΠhS‖L
1+ 1

n
(Ω) ≤ ‖S‖L

1+ 1
n
(Ω) ∀S ∈ L1+ 1

n
(Ω)d×d

sym .

That completes the proof. �

The above proof suggests eliminating the constraint by defining

(5.6) Tf

n,h = ΠhT
f

n = ΠhF;

we recall that Tf
n ∈ Mn satisfies the equality (4.2). Then, by setting

(5.7) Vn,h := {Sh ∈ Mn,h : b(Sh,vh) = 0 ∀vh ∈ Xn,h}
and

V
⊥
n,h :=

{
Sh ∈ Mn,h :

∫

Ω

Sh : Rh dx = 0 ∀Rh ∈ Vn,h

}
,

we deduce from the equalities (4.2), (5.6), and by noting that ε(vh) ∈ Mn,h for all vh ∈ Xn,h, that
Tf

n,h ∈ Mn,h satisfies

(5.8)

∫

Ω

ε(vh) : T
f

n,h dx =

∫

Ω

F : ε(vh) dx ∀vh ∈ Xn,h;

furthermore, the equality (5.6) implies that

(5.9) ‖Tf

n,h‖L1+ 1
n
(Ω) ≤ ‖F‖L

1+ 1
n
(Ω).

We observe further that, as h → 0+,

(5.10) Tf

n,h → Tf

n strongly in Mn.

Given Tf

n,h ∈ Mn,h defined by the equality (5.6), we shall seek T0
n,h := Tn,h−Tf

n,h ∈ Vn,h that solves

(5.11) an(T
0
n,h +Tf

n,h,Sh) + c(T0
n,h +Tf

n,h;T
0
n,h +Tf

n,h,Sh) = 0 ∀Sh ∈ Vn,h.

The existence of a unique such T0
n,h ∈ Vn,h, and therefore of a unique Tn,h = T0

n,h+Tf

n,h ∈ Mn,h and

a unique un,h ∈ Xn,h satisfying equation (5.3)1 for all Sh ∈ Mn,h, can be shown by proceeding as in the
case of the continuous problem discussed in Section 4, but with the continuous inf-sup property stated
in Lemma 4.1, that was used there, now replaced by the discrete inf-sup property stated in Lemma 5.1.
Indeed, let An,h : Mn,h → (Mn,h)

′ be defined by the projection of An onto Mn,h,
∫

Ω

An,h(Sh) : Rh dx = an(Sh,Rh) + c(Sh;Sh,Rh) ∀Rh ∈ Mn,h.

In the present case where the tensors of Mn,h are piecewise constant functions, An,h(Sh) coincides with
An(Sh), but this equality is not necessary. It is easy to check that An,h has the same boundedness,
continuity, coercivity, and monotonicity properties (all uniform in h) as An, as stated in Lemmas 3.1 and
3.3. The same is true of the mapping

Sh ∈ Vn,h 7→ An,h(Sh +Tf

n,h).

Therefore, another application of the Browder–Minty theorem gives existence and uniqueness of T0
n,h

solving (5.11) and we set Tn,h = T0
n,h + Tf

n,h. The discrete inf-sup property (5.4) then guarantees

the existence of a corresponding un,h ∈ Xn,h such that (Tn,h,un,h) solves the system (5.3). This is
summarized in the following lemma.

Lemma 5.2 (Existence and uniqueness of the discrete solution). Assume that λ and µ satisfy the hy-
potheses (A1)–(A4). Then, the system (5.3) has exactly one solution (Tn,h,un,h) ∈ Mn,h × Xn,h.
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5.2. Convergence of the sequence of discrete solutions. Without regularization (i.e., with 1
n
for-

mally set equal to zero in problem (5.3), resulting in the absence of the form an(·, ·) from the left-hand
side of (5.3)1), the proof of convergence of the sequence of solutions generated by the resulting numerical
method to (T,u) is an open problem. The source of the technical difficulties is that, as n → ∞, the
only uniform (w.r.t. n ∈ N) bound on Tn,h, with h ∈ (0, 1] fixed, that is directly available to us is in the
L1(Ω)

d×d norm; a uniform bound in the L1(Ω)
d×d norm only guarantees biting weak convergence, via

Chacon’s biting lemma, for example, and this is insufficient to deduce even convergence of a subsequence
in the weak topology of L1(Ω)

d×d. The proof of existence of a solution to the continuous problem in ref-
erence [4] succeeds because the L1(Ω)

d×d norm bound on Tn in the sequence of solution pairs (Tn,un) to
the regularized problem is supplemented by fractional derivative estimates. Unfortunately, the extension
of those fractional derivative estimates to the finite element discretization considered here is problematic.
For this reason, we freeze the parameter n ∈ N and we now discuss convergence, without rates, of the
sequence of solution pairs (Tn,h,un,h) of the discrete scheme to the solution (Tn,un) of the regularized
problem as h → 0+. Having done so, we will invoke the converge results stated at the end of Section 4
to pass to the limit n → ∞ to deduce that limn→∞ limh→0+(Tn,h,un,h) = (T,u) in the strong topology

of L1(Ω0)
d×d
sym × C(Ω)d, for any Ω0 ⊂⊂ Ω.

We begin by establishing the weak convergence of the sequence (Tn,h)h∈(0,1] ⊂ Mn, with n ∈ N fixed.

Lemma 5.3 (Weak convergence of Tn,h). Assume that F ∈ L1+ 1
n
(Ω)d×d

sym and that the functions λ and

µ satisfy the hypotheses (A1)–(A4). Let (Tn,un) ∈ Mn × Xn be the unique solution of the regularized
problem (3.2). Then, as h → 0+,

Tn,h ⇀ Tn weakly in Mn = L1+ 1
n
(Ω)d×d

sym .

Proof. In this proof C denotes a generic positive constant that is independent of n and h. We use again
the lift Tf

n,h = ΠhT
f
n of the data satisfying the equality (5.8) and set T0

n,h = Tn,h −Tf

n,h ∈ Vn,h, which

satisfies the equation (5.11). The a-priori estimates provided by Lemma 4.2 guarantee that

‖ε(un,h)‖Ln+1(Ω) ≤
d
√
2

n

[
16d2‖F‖1+

1
n

L
1+ 1

n
(Ω) + 2(n+ 1)C2

√
2d |Ω| 1

n+1 ‖F‖L
1+ 1

n
(Ω) + 4(n+ 1)C1κ|Ω|

] 1
n+1

+ C2

√
2d |Ω| 1

n+1(5.12)

and

1

n+ 1
‖Tn,h‖1+

1
n

L
1+ 1

n
(Ω) + C1‖Tn,h‖L1(Ω) ≤

16d2

n+ 1
‖F‖1+

1
n

L
1+ 1

n
(Ω)

+ 2C2

√
2d |Ω| 1

n+1 ‖F‖L
1+ 1

n
(Ω) + 4C1κ|Ω|.

(5.13)

Hence, in particular,

1

n+ 1
‖Tn,h‖1+

1
n

L
1+ 1

n
(Ω) + ‖Tn,h‖L1(Ω) + ‖ε(un,h)‖Ln+1(Ω) ≤ cn ∀n ∈ N, ∀h ∈ (0, 1],

where cn is a positive constant, depending on ‖F‖L
1+ 1

n
(Ω), C1, C2, d, κ and |Ω| only. Thanks to the

stability inequality (5.9) satisfied by the lift Tf

n,h we then deduce that

1

n+ 1
‖T0

n,h‖
1+ 1

n

L
1+ 1

n
(Ω) + ‖T0

n,h‖L1(Ω) ≤ cn ∀n ∈ N, ∀h ∈ (0, 1].

Therefore, for each fixed n ∈ N there exists a subsequence with respect to h (and still indexed by h) and

T
0

n ∈ L1+ 1
n
(Ω)d×d

sym , such that, as h → 0+,

(5.14) T0
n,h ⇀ T

0

n weakly in L1+ 1
n
(Ω)d×d

sym .

We note that T
0

n ∈ Vn, in fact. Indeed, for any vn ∈ Xn there exists a sequence (vn,h)h∈(0,1], with

vn,h ∈ Xn,h, such that ε(vn,h) → ε(vn) strongly in Ln+1(Ω)
d×d
sym . As

b(T0
n,h,vn,h) = b(Tn,h,vn,h)− b(Tf

n,h,vn,h) = (f ,vn,h)− (f ,vn,h) = 0,
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passage to the limit h → 0+, using the weak convergence (5.14) and the strong convergence ε(vn,h) →
ε(vn) in Ln+1(Ω)

d×d
sym implies that b(T

0

n,vn) = 0 for all vn ∈ Xn. Hence, T
0

n ∈ Vn thanks to the definition
of the linear space Vn.

We now show, using Minty’s method, that T
0

n satisfies the equation (4.5). To this end, we recall the
notation (3.3) for An and first prove that, for Sn,h ∈ Vn,h,

(5.15)

∫

Ω

An(Sn,h +Tf

n,h) : (T
0
n,h − Sn,h) dx ≤ 0.

We begin the proof of the inequality (5.15) by invoking the monotonicity result (3.5) to deduce that,
for Sn,h ∈ Vn,h,

∫

Ω

(
An(T

0
n,h +Tf

n,h)−An(Sn,h +Tf

n,h)
)
: (T0

n,h − Sn,h) dx

=

∫

Ω

(
An(T

0
n,h +Tf

n,h)−An(Sn,h +Tf

n,h)
)
: (T0

n,h +Tf

n,h −Tf

n,h − Sn,h) dx ≥ 0.

Moreover, as T0
n,h and Sn,h both belong to Vn,h, we use the relation (5.11) satisfied by T0

n,h to deduce
that ∫

Ω

An(T
0
n,h +Tf

n,h) : (T
0
n,h − Sn,h) dx = 0,

and thus we obtain the inequality (5.15).

We can now use the inequality (5.15) to show that T
0

n solves the problem (4.5). To see this, we consider
ΠhSn for a given Sn ∈ Vn. As h → 0+, the weak convergence (5.14), the strong convergence ΠhSn → Sn

(by density) and Tf

n,h = ΠhT
f
n → Tf

n (see (5.10)) in Mn guarantee that

T0
n,h −ΠhSn ⇀ T

0

n − Sn weakly in Mn,

and

ΠhSn +Tf

n,h → Sn +Tf

n strongly in Mn.

Hence, the inequality (5.15) and the continuity of An (cf. Lemma 3.1 (ii)) lead to
∫

Ω

An(Sn +Tf

n) : (T
0

n − Sn) dx ≤ 0 ∀Sn ∈ Vn.

Choosing Sn = T
0

n − tWn for t > 0 and some Wn ∈ Vn, we get
∫

Ω

An(T
0

n +Tf

n − tWn) : Wn dx ≤ 0 ∀Wn ∈ Vn.

Thanks to the continuity (and therefore hemicontinuity) of An (cf., again, Lemma 3.1 (ii)), we can pass
to the limit t → 0+ to deduce that

∫

Ω

An(T
0

n +Tf

n) : Wn dx ≤ 0 ∀Wn ∈ Vn,

and consequently, since Vn is a linear space, after replacing Wn by −Wn in the inequality above and
then combining the two inequalities,

∫

Ω

An(T
0

n +Tf

n) : Wn dx = 0 ∀Wn ∈ Vn,

which shows that T
0

n = T0
n = Tn−Tf

n satisfies equation (4.5), and thus Tn,h ⇀ Tn in Mn as h → 0+. �

Lemma 5.4 (Strong convergence). Assume that F ∈ L1+ 1
n
(Ω)d×d

sym , that the functions λ and µ satisfy

the assumptions (A1)–(A4), and let (Tn,un) denote the unique solution to the regularized problem (3.2),
with n ∈ N. Then, for each fixed n ∈ N, as h → 0+,

Tn,h → Tn strongly in Lp(Ω)
d×d
sym for all p ∈

[
1, 1 + 1

n

)
,(5.16)

ε(un,h) ⇀ ε(un) weakly in Lp(Ω)
d×d
sym for all p ∈ [1, n+ 1].(5.17)
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When n = 1, the strong convergence result (5.16) holds for all p ∈ [1, 2]. In addition, for each n ∈ N,

un,h → un

{
strongly in Lp(Ω)

d for all p ∈
[
1, d(n+1)

d−(n+1)

)
when 1 ≤ n ≤ d− 1,

strongly in C0,α(Ω)d for all α ∈
(
0, 1− d

n+1

)
when d < n+ 1,

(5.18)

and for each n ∈ N, n ≥ 2,

(5.19) ε(un,h) → ε(un) strongly in Ln(Ω)
d×d
sym .

Furthermore, if λ satisfies (A3’), we have that, for any Ω0 ⊂⊂ Ω,

lim
n→∞

lim
h→0+

‖Tn,h −T‖L1(Ω0) = 0 and lim
n→∞

lim
h→0+

‖un,h − u‖C(Ω) = 0,

and

lim
n→∞

lim
h→0+

‖ε(un,h)− ε(u)‖Lp(Ω0) = 0 ∀Ω0 ⊂⊂ Ω, ∀ p ∈ [1,∞).

where (T,u) denotes the unique solution of the original (nonregularized) continuous problem (1.1), (1.2)
subject to a homogeneous Dirichlet boundary condition on ∂Ω.

Proof. In this proof, again, C denotes a generic positive constant, independent of h and n. Also, we use
again the notation Tn = T0

n + Tf
n and Tn,h = T0

n,h + Tf

n,h, where Tf
n = F satisfies the equality (4.2)

and Tf

n,h = ΠhT
f
n satisfies the equality (5.8).

To establish control on T0
n,h −T0

n, we write

(5.20) T0
n,h −T0

n = (T0
n,h −ΠhT

0
n) + (ΠhT

0
n −T0

n).

Since ΠhT
0
n → T0

n strongly in L1+ 1
n
(Ω)d×d

sym for all n ∈ N, it suffices to focus on the discrepancy

T0
n,h −ΠhT

0
n.

Thanks to the inequality (3.6), for any pair of matrices S,R ∈ R
d×d
sym , one has

(S|S| 1
n
−1 −R|R| 1

n
−1) : (S−R) ≥ 1

n
|S−R|2

∫ 1

0

|R+ θ(S−R)| 1
n
−1 dθ

≥ 1

n

|S−R|2
(|R|+ |S−R|)1− 1

n

.

Analogously, for any pair of real numbers s, r ∈ R,

(s|s| 1
n
−1 − r|r| 1

n
−1) (s− r) ≥ 1

n

|s− r|2
(|r|+ |s− r|)1− 1

n

.

Hence, and by invoking the inequalities (1.5) and (1.7) (guaranteed by the assumptions (A1)–(A4)), we
have that ∫

Ω

(
An(T

0
n,h +Tf

n,h)−An(ΠhT
0
n +Tf

n,h)
)
: (T0

n,h −ΠhT
0
n) dx

≥ 1

n2

∫

Ω

|Tr(T0
n,h +Tf

n,h)− Tr(ΠhT
0
n +Tf

n,h)|2

(|Tr(ΠhT0
n +Tf

n,h)|+ |Tr(T0
n,h +Tf

n,h)− Tr(ΠhT0
n +Tf

n,h)|)1−
1
n

dx

+
1

n2

∫

Ω

|(T0
n,h +Tf

n,h)
d − (ΠhT

0
n +Tf

n,h)
d|2

(|(ΠhT0
n +Tf

n,h)
d|+ |(T0

n,h +Tf

n,h)
d − (ΠhT0

n +Tf

n,h)
d|)1− 1

n

dx.

(5.21)

Moreover, because T0
n = T

0

n ∈ Vn (cf. the last sentence in the proof of Lemma 5.3), we have
∫

Ω

ε(vh) : ΠhT
0
n dx =

∫

Ω

ε(vh) : T
0
n dx = 0 ∀vh ∈ Xn,h,

and so ΠhT
0
n ∈ Vn,h. As a consequence, T0

n,h −ΠhT
0
n ∈ Vn,h and there holds

∫

Ω

An(T
0
n,h +Tf

n,h) : (T
0
n,h −ΠhT

0
n) dx = 0.
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Using this in the inequality (5.21) and noting that ΠhT
0
n +Tf

n,h = Πh(T
0
n +Tf

n) = ΠhTn, we obtain

−
∫

Ω

An(ΠhT
0
n +Tf

n,h) : (T
0
n,h −ΠhT

0
n) dx

≥ 1

n2

∫

Ω

|Tr(T0
n,h −ΠhT

0
n)|2

(|Tr(ΠhTn)|+ |Tr(T0
n,h −ΠhT0

n)|)1−
1
n

dx

+
1

n2

∫

Ω

|(T0
n,h −ΠhT

0
n)

d|2

(|(ΠhTn)d|+ |(T0
n,h −ΠhT0

n)
d|)1− 1

n

dx ≥ 0.

(5.22)

On the one hand, T0
n,h −ΠhT

0
n weakly converges to T0

n −T0
n = 0 in Mn as h → 0+ (cf. Lemma 5.3).

On the other hand, ΠhT
0
n + Tf

n,h strongly converges to T0
n + Tf

n in Mn = L1+ 1
n
(Ω)d×d

sym as h → 0+.

Therefore the continuity of the mapping An : L1+ 1
n
(Ω)d×d

sym → Ln+1(Ω)
d×d
sym (cf. Lemma 3.1 (ii)), which

implies that An(ΠhT
0
n +Tf

n,h) strongly converges to An(T
0
n +Tf

n) in Ln+1(Ω)
d×d
sym as h → 0+, yields

−
∫

Ω

An(ΠhT
0
n +Tf

n,h) : (T
0
n,h −ΠhT

0) dx → 0 as h → 0+.

Whence, returning to the inequality (5.22),

0 ≤ 1

n2

∫

Ω

|Tr(T0
n,h −ΠhT

0
n)|2

(|Tr(ΠhTn)|+ |Tr(T0
n,h −ΠhT0

n)|)1−
1
n

dx

+
1

n2

∫

Ω

|(T0
n,h −ΠhT

0
n)

d|2

(|(ΠhTn)d|+ |(T0
n,h −ΠhT0

n)
d|)1− 1

n

dx → 0 as h → 0+.

Consequently, for each n ∈ N,

lim
h→0+

∫

Ω

|Tr(T0
n,h −ΠhT

0
n)|2

(|Tr(ΠhTn)|+ |Tr(T0
n,h −ΠhT0

n)|)1−
1
n

dx = 0,

lim
h→0+

∫

Ω

|(T0
n,h −ΠhT

0
n)

d|2

(|(ΠhTn)d|+ |(T0
n,h −ΠhT0

n)
d|)1− 1

n

dx = 0.

In the special case when n = 1, we directly deduce from these, the equality (1.12) and the strong
convergence of ΠhT

0
n to T0

n in L2(Ω)
d×d
sym , that T0

n,h → T0
n strongly in L2(Ω)

d×d
sym , as h → 0+. Since

Tf

n,h = ΠhT
f
n → Tf

n strongly in L2(Ω)
d×d
sym as h → 0+, it follows that, for n = 1, Tn,h → Tn strongly in

L2(Ω)
d×d
sym , and therefore also strongly in Lp(Ω)

d×d
sym for all p ∈ [1, 2], as h → 0+. That completes the proof

of the assertion of the lemma concerning (Tn,h)h∈(0,1] for n = 1.
Let us now consider the case when n > 1. Let M(f) denote the Hardy–Littlewood maximal function of

f ∈ L1(Ω), with f extended by zero outside Ω to the whole of Rd, and let Br(x) denote the d-dimensional
ball of radius r centred at x ∈ R

d. Clearly,

|ΠhTn(x)| ≤
1

|K|

∫

K

|Tn(y)| dy ≤ |BhK
(x)|

|K|

(
1

|BhK
(x)|

∫

BhK
(x)

|Tn(y)| dy
)

≤ c(η)M(|Tn|)(x)

for all x ∈ K and all K ∈ Th, where hK = diam(K) and c(η) is a positive constant that only depends on
the shape-regularity parameter η of the family (Th)h∈(0,1] of simplicial subdivisions of the domain Ω (see
(5.1)). Thus,

(5.23) |ΠhTn(x)| ≤ c(η)M(|Tn|)(x) ∀x ∈ Ω.

Since the Hardy–Littlewood maximal function is of weak-type (L1, L1,∞) (with L1,∞ signifying a Lorentz
space) with norm at most 3d (cf. Theorem 2.1.6 and inequality (2.1.3) in [7]), we have that

|{x ∈ Ω : M(|Tn|)(x) > t}| ≤ 3d

t
‖Tn‖L1(Ω) ∀ t > 0.

For k ∈ N we define
Ωk := {x ∈ Ω : M(|Tn|)(x) ≤ k}.



FINITE ELEMENT APPROXIMATION OF A STRAIN-LIMITING ELASTIC MODEL 19

Hence,

Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ω and |Ω \ Ωk| ≤
3d

k
‖Tn‖L1(Ω) ∀ k ∈ N;(5.24)

in particular,

lim
k→∞

|Ω \ Ωk| = 0.(5.25)

By recalling (1.12), (5.23) and the definition of the set Ωk, we have that

|Tr(ΠhTn)(x)| ≤ d
1
2 |ΠhTn(x)| ≤ d

1
2 c(η)M(|Tn|)(x) ≤ d

1
2 c(η) k ∀x ∈ Ωk, ∀ k ∈ N,

|(ΠhTn)
d(x)| ≤ |ΠhTn(x)| ≤ c(η)M(|Tn|)(x) ≤ c(η) k ∀x ∈ Ωk, ∀ k ∈ N.

Thus we deduce that, for each k ∈ N,

lim
h→0+

∫

Ωk

|Tr(T0
n,h −ΠhT

0
n)|2

(
√
dc(η) k + |Tr(T0

n,h −ΠhT0
n)|)1−

1
n

dx = 0,

lim
h→0+

∫

Ωk

|(T0
n,h −ΠhT

0
n)

d|2

(c(η) k + |(T0
n,h −ΠhT0

n)
d|)1− 1

n

dx = 0,

as h → 0+; hence, for each k there exists a null-sequence (h(k)) ⊂ (0, 1], with (h(k+1)) ⊂ (h(k)) for all
k ∈ N, such that

|Tr(T0
n,h(k) −Πh(k)T0

n)|2

(
√
dc(η) k + |Tr(T0

n,h(k) −Πh(k)T0
n)|)1−

1
n

→ 0 and
|(T0

n,h(k) −Πh(k)T0
n)

d|2

(c(η) k + |(T0
n,h(k) −Πh(k)T0

n)
d|)1− 1

n

→ 0

a.e. on Ωk as h(k) → 0+. Since

a2

(k + a)1−
1
n

≥ 2
1
n
−1 min

(
a2

k1−
1
n

, a1+
1
n

)
∀ a ≥ 0, ∀ k ∈ N,(5.26)

it follows that

|Tr(T0
n,h(k) −Πh(k)T0

n)| → 0 and |(T0
n,h(k) −Πh(k)T0

n)
d| → 0 a.e. on Ωk, ∀ k ∈ N

as h(k) → 0+. We then deduce from inequality (1.13) that

T0
n,h(k) −Πh(k)T0

n → 0 a.e. on Ωk for all k ∈ N as h(k) → 0+.

Hence,

T0
n,h(k) → T0

n a.e. on Ωk for all k ∈ N as h(k) → 0+.

By Cantor’s diagonal argument we can then extract a ‘diagonal’ null-sequence (h(∞)) such that

T0
n,h(∞) → T0

n a.e. on Ωk for all k ∈ N as h(∞) → 0+.

Since the sets Ωk are nested (cf. (5.24)) and they exhaust the whole of Ω (cf. (5.25)), it follows that

T0
n,h(∞) → T0

n a.e. on Ω as h(∞) → 0+.

For the sake of simplicity of our notation we shall henceforth suppress the superscript (∞) and will simply
write

T0
n,h → T0

n a.e. on Ω as h → 0+.

As Tf

n.h = ΠhT
f
n → Tf

n strongly in L1+ 1
n
(Ω)n×n

sym , and therefore (for a subsequence, not indicated) a.e.

in Ω, it follows that

Tn,h = T0
n,h +Tf

n.h → T0
n +Tf

n = Tn a.e. on Ω as h → 0+.

As, by Lemma 5.3, Tn,h ⇀ Tn weakly in L1+ 1
n
(Ω)d×d

sym , it follows that the sequence (Tn,h)h∈(0,1] is

equiintegrable in L1(Ω)
d×d
sym , and therefore by Vitali’s theorem

(5.27) Tn,h → Tn strongly in L1(Ω)
d×d
sym as h → 0+,
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whereby, because of the weak convergence Tn,h ⇀ Tn in L1+ 1
n
(Ω)d×d

sym , it follows that

Tn,h → Tn strongly in Lp(Ω)
d×d
sym for all p ∈ [1, 1 + 1

n
), as h → 0+,

where the limiting function Tn is the first component of the unique solution (Tn,un) of the regularized
problem. That completes the proof of the strong convergence result (5.16) for n > 1. For n = 1, (5.16)
was already shown in the first part of this proof for all p ∈ [1, 2]; hence (5.16) holds for all n ∈ N.

To prove the strong convergence of the sequence (un,h)h∈(0,1] ⊂ Xn,h to un ∈ Xn, we note that the

inequality (5.12) implies that the sequence (ε(un,h))h∈(0,1] is bounded in Ln+1(Ω)
d×d
sym . Hence there exists

a subsequence, not indicated, and ε(un,h) ∈ Ln+1(Ω)
d×d
sym such that, as h → 0+,

ε(un,h) ⇀ ε(un,h) weakly in Ln+1(Ω)
d×d
sym .(5.28)

Here, and henceforth, for any weakly (respectively, strongly) convergent sequence of the form (an,h)h∈(0,1]

in a function space, with n ≥ 1 held fixed, an,h will denote the weak (respectively, strong) limit of the
sequence as h → 0+, in instances where the limit of the sequence is yet to be identified.

This will imply the assertion (5.17) once we have shown that ε(un,h) = ε(un), which we shall do
now. For 1 ≤ n ≤ d − 1, Korn’s inequality (1.10) and Poincaré’s inequality (1.9) together imply that

(un,h)h∈(0,1] is bounded in W 1,n+1
0 (Ω)d, and by Kondrashov’s compact embedding theorem the sequence

therefore possesses a strongly convergent subsequence (not indicated), with limit un,h ∈ Lp(Ω)
d, such

that

un,h → un,h strongly in Lp(Ω)
d as h → 0+ for all p ∈

[
1, (n+1)d

d−(n+1)

)
.

This will imply the first line of the assertion (5.18) once we have shown that un,h = un, which we shall

do below. In any case, by the uniqueness of the weak limit it then follows that ε(un,h) = ε(un,h), and
therefore

ε(un,h) ⇀ ε(un,h) weakly in Ln+1(Ω)
d×d
sym as h → 0+.

For n > d− 1, by an analogous argument,

un,h → un,h strongly in C0,α(Ω)d as h → 0+ for all α ∈ (0, 1− d
n+1 ).

This will imply the second line of the assertion (5.18) provided we show that un,h = un, the second
component of the unique solution (Tn,un) of the regularized problem. We shall do so by passing to the
limit in equation (5.3)1.

To this end, take any S ∈ L1+ 1
n
(Ω)d×d

sym and let Sh := ΠhS in equation (5.3)1, resulting in

an(Tn,h,ΠhS) + c(Tn,h;Tn,h,ΠhS)− b(ΠhS,un,h) = 0.(5.29)

As

ΠhS → S strongly in L1+ 1
n
(Ω)d×d

sym(5.30)

it follows from the weak convergence (5.28) that, for each n ∈ N,

lim
h→0+

b(ΠhS,un,h) = b(S,un,h) ∀S ∈ L1+ 1
n
(Ω)d×d

sym .(5.31)

We shall now pass to the limit h → 0+ in the first two terms on the left-hand side of the equation (5.29).
Thanks to the strong convergence result Tn,h → Tn in L1(Ω)

d×d
sym , which follows from the assertion

(5.16) for all n ∈ N, as h → 0+, an identical argument to the one in the proof of Lemma 3.1 (ii) implies
that, as h → 0+,

λ(Tr(Tn,h))Tr(Tn,h)I → λ(Tr(Tn))Tr(Tn)I strongly in Ln+1(Ω)
d×d
sym

and

µ(|Td

n,h|)Td

n,h → µ(|Td

n|)Td

n strongly in Ln+1(Ω)
d×d
sym .

Together with the strong convergence (5.30) these then imply that, for each n ∈ N,

lim
h→0+

c(Tn,h;Tn,h,ΠhS) = c(Tn;Tn,S) ∀S ∈ L1+ 1
n
(Ω)d×d

sym .(5.32)
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Finally, we consider the first term on the left-hand side of the equation (5.29). By the inequality (3.4),
∣∣∣∣

Tr(Tn,h)

|Tr(Tn,h)|1− 1
n

− Tr(Tn)

|Tr(Tn)|1− 1
n

∣∣∣∣ ≤ 21−
1
n d

1
2n |Tn,h −Tn|

1
n .

Thus, because of the strong convergence (5.16), we have that, as h → 0+,

Tr(Tn,h)

|Tr(Tn,h)|1− 1
n

I → Tr(Tn)

|Tr(Tn)|1− 1
n

I strongly in Lp(Ω)
d×d
sym for all p ∈ [1, n+ 1).

Furthermore, by the uniform bound (5.13), for each fixed n ∈ N,
(

Tr(Tn,h)

|Tr(Tn,h)|1− 1
n

I

)

h∈(0,1]

is a bounded sequence in Ln+1(Ω)
d×d
sym , which therefore has a weakly convergent subsequence (not indi-

cated), whose (weak) limit in Ln+1(Ω)
d×d
sym , by the uniqueness of the weak limit, coincides with

Tr(Tn)

|Tr(Tn)|1− 1
n

I.

Hence, as h → 0+,

Tr(Tn,h)

|Tr(Tn,h)|1− 1
n

I ⇀
Tr(Tn)

|Tr(Tn)|1− 1
n

I weakly in Ln+1(Ω)
d×d
sym .

By an identical argument,

Td

n,h

|Td

n,h|1−
1
n

⇀
Td

n

|Td
n|1−

1
n

weakly in Ln+1(Ω)
d×d
sym .

By combining these two weak convergence results with the strong convergence result (5.30) we deduce
that, for each n ∈ N,

lim
h→0+

an(Tn,h,ΠhS) = an(Tn,S) ∀S ∈ L1+ 1
n
(Ω)d×d

sym .(5.33)

Using the convergence results (5.31), (5.32) and (5.33) we can now pass to the limit h → 0+ in equation
(5.29) to deduce that

an(Tn,S) + c(Tn;Tn,S)− b(S,un,h) = 0 ∀S ∈ L1+ 1
n
(Ω)d×d

sym .(5.34)

By subtracting equation (5.34) from equation (3.2) we deduce that

b(S,un,h − un) = 0 ∀S ∈ L1+ 1
n
(Ω)d×d

sym .

Hence,

ε(un,h − un) = 0 in Ln+1(Ω)
d×d
sym .

Thus, by noting the inequality (1.11) we deduce that

un,h − un = 0 in W 1,n+1
0 (Ω)d.

In other words, un,h = un ∈ W 1,n+1
0 (Ω)d, as has been asserted above.

The strong convergence (5.19) in Ln(Ω)
d for n ≥ 2 follows by an argument which we have already

used, so we only sketch the proof. For any Sh ∈ Mn,h, the constitutive relations in (3.2) and (5.3) imply
∫

Ω

(ε(un,h)−ε(un)) : Sh dx =

∫

Ω

(An(Tn,h)−An(Tn)) : Sh dx ≤ ‖An(Tn,h)−An(Tn))‖Ln(Ω)‖Sh‖L n
n−1

(Ω).

Now, using an argument similar to the one leading to (3.4), we find that

1

n

∫

Ω

∣∣∣∣
Tr(Tn,h)

|Tr(Tn,h)|1− 1
n

− Tr(Tn)

|Tr(Tn)|1− 1
n

∣∣∣∣
n

dx+
1

n

∫

Ω

∣∣∣∣
Td

n,h

|Td

n,h|1−
1
n

− Td
n

|Td
n|1−

1
n

∣∣∣∣
n

dx

≤ C‖Tn,h −Tn‖L1(Ω) → 0 as h → 0+,

(5.35)
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for a constant C only depending on d and n. For the monotone part, A, in An (cf. (4.16)), we invoke a
similar argument to the one used in Lemma 3.1 to deduce that

‖A(Tn,h)−A(Tn)‖Ln(Ω) → 0 as h → 0+.

Hence, in conjunction with (5.35), we arrive at

1

‖Sh‖L n
n−1

(Ω)

∫

Ω

(ε(un,h)− ε(un)) : Sh dx → 0 as h → 0+.

Using the decomposition ε(un,h)− ε(un) = ε(un,h)−Πh(ε(un)) + Πh(ε(un))− ε(un), we write

1

‖Sh‖L n
n−1

(Ω)

∫

Ω

(ε(un,h)−Πh(ε(un))) : Sh dx

=
1

‖Sh‖L n
n−1

(Ω)

∫

Ω

(ε(un,h)− ε(un)) : Sh dx− 1

‖Sh‖L n
n−1

(Ω)

∫

Ω

(Πh(ε(un))− ε(un)) : Sh dx.

Choosing Sh = (ε(un,h)−Πh(ε(un)))|ε(un,h)−Πh(ε(un))|n−2 ∈ Mn,h yields

‖ε(un,h)−Πh(ε(un)))‖Ln(Ω) → 0 as h → 0+.

It remains to employ a density argument to deduce the strong convergence result (5.19).
The final claim in the statement of the lemma follows from the strong convergence results (4.11),

(4.12)2, (4.14), (5.16), and (5.18)2, which together imply that, for any Ω0 ⊂⊂ Ω,

lim
n→∞

lim
h→0+

‖Tn,h −T‖L1(Ω0) = 0,

lim
n→∞

lim
h→0+

‖un,h − u‖C(Ω) = 0,

and
lim
n→∞

lim
h→0+

‖ε(un,h − u)‖Lp(Ω0) = 0 ∀ p ∈ [1,∞).

The assertions concerning the uniqueness of u and T follow from Theorem 2.1 (c). �

The hypotheses (A3’) and (A4) adopted in the statement of Lemma 5.4 guarantee that the derivatives
of the functions s ∈ R 7→ λ(s)s and s ∈ R≥0 7→ µ(s)s are bounded below by 0 on R and R>0, respectively.
These two functions are, in fact, Lipschitz-continuous on any compact subinterval of R and R≥0, respec-
tively. If they are assumed to be globally Hölder-continuous on R and R≥0, respectively, with Hölder
exponent β ∈ (0, 1], then an error inequality holds, for all n ∈ N, in the limit of h → 0+, as we shall now
show.

Theorem 5.5. In addition to the assumptions of Lemma 5.4, let us also suppose that the functions
s ∈ R 7→ λ(s)s ∈ R and S ∈ R

d×d
sym 7→ µ(|S|)S ∈ R

d×d
sym are Hölder-continuous with exponent β ∈ (0, 1],

i.e., there exists a positive constant Λ such that

(5.36) |λ(r)r − λ(s)s| ≤ Λ|r − s|β ∀ r, s ∈ R, |µ(|R|)R− µ(|S|)S| ≤ Λ|R− S|β ∀R,S ∈ R
d×d
sym .

Then, assuming that Tn ∈ L∞(Ω)d×d
sym for n ≥ 2, the following error bound holds:

∫

Ω

Φn(|Tn,h −ΠhTn|) dx

≤ C(d,Λ, β, n,Kn,K)

(
inf

vh∈Xn,h

∫

Ω

Φ∗
n(|ε(vh − un)|) dx+

∫

Ω

Φ∗
n(|Tn −ΠhTn|min(β, 1

n
)) dx

)
.

(5.37)

Here,

Φn(s) :=
s2

(1 + s)1−
1
n

, s ∈ [0,∞), n ∈ N,

Φ∗
n, defined by Φ∗

n(s) := supt≥0(st − Φn(t)) for s ∈ [0,∞), is the convex conjugate of the function Φn,
Kn := max(1, ‖Tn‖L∞(Ω)), and K = K(n) is a positive constant that will be specified in the proof. When

n = 1 the inequality (5.37) holds without the additional assumption that Tn ∈ L∞(Ω)d×d
sym .
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Proof. We proceed similarly as in the proof of Lemma 5.4. From the relations (3.2) and (5.3) we have,
for all Sh ∈ Mn,h, that

∫

Ω

(An(Tn,h)−An(ΠhTn)) : Sh dx =

∫

Ω

ε(un,h − un) : Sh dx

+

∫

Ω

(An(Tn)−An(ΠhTn)) : Sh dx.

The choice Sh = Tn,h −ΠhTn ∈ Vn,h guarantees that
∫

Ω

ε(vh) : Sh dx = 0 ∀vh ∈ Xn,h.

Thus by defining, for any vh in Xn,h,

Un,h := ε(vh − un) +
(
An(Tn)−An(ΠhTn)

)
,

and proceeding similarly as in the proof of the inequality (5.21), we have that

1

n2

∫

Ω

|Tr(Tn,h)− Tr(ΠhTn)|2
(|Tr(ΠhTn)|+ |Tr(Tn,h)− Tr(ΠhTn)|)1− 1

n

dx

+
1

n2

∫

Ω

|Td

n,h −ΠhT
d
n|2

(|ΠhTd
n|+ |Td

n,h −ΠhTd
n|)1−

1
n

dx

≤
∫

Ω

Un,h : (Tn,h −ΠhTn) dx.

(5.38)

Thanks to the equality (1.12),

|ΠhT
d

n(x)|2 +
1

d
|Tr(ΠhTn)(x)|2 = |ΠhTn(x)|2 ≤ ‖ΠhTn‖2L∞(Ω) ≤ ‖Tn‖2L∞(Ω) for a.e. x ∈ Ω.

Thus, by denoting Kn := max(1, ‖Tn‖L∞(Ω)), it follows that

‖ΠhT
d

n‖L∞(Ω) ≤ Kn and ‖Tr(ΠhTn)‖L∞(Ω) ≤ d
1
2Kn.

Hence we have from the inequality (5.38) that

1

n2

∫

Ω

|Tr(Tn,h)− Tr(ΠhTn)|2
(d

1
2Kn + |Tr(Tn,h)− Tr(ΠhTn)|)1− 1

n

dx+
1

n2

∫

Ω

|Td

n,h −ΠhT
d
n|2

(Kn + |Td

n,h −ΠhTd
n|)1−

1
n

dx

≤
∫

Ω

Un,h : (Tn,h −ΠhTn) dx.

Because Kn ≥ 1 and by noting the decomposition T = 1
d
Tr(T)I+Td, the above inequality implies that

1

n2
(d

1
2Kn)

1
n
−1

∫

Ω

|Tr(Tn,h)− Tr(ΠhTn)|2
(1 + |Tr(Tn,h)− Tr(ΠhTn)|)1− 1

n

dx

+
1

n2
(Kn)

1
n
−1

∫

Ω

|Td

n,h −ΠhT
d
n|2

(1 + |Td

n,h −ΠhTd
n|)1−

1
n

dx

≤ 1

d

∫

Ω

Tr(Un,h) Tr(Tn,h −ΠhTn) dx+

∫

Ω

Ud

n,h : (Tn,h −ΠhTn)
d dx

≤ 1

d

∫

Ω

|Tr(Un,h)| |Tr(Tn,h)− Tr(ΠhTn)| dx+

∫

Ω

|Ud

n,h| |Td

n,h −ΠhT
d

n| dx.

(5.39)

Let us consider the function Φn : R → R≥0 defined by

(5.40) Φn(s) :=
s2

(1 + |s|)1− 1
n

, n ∈ N.

The values of s of interest to us below will always be in the range [0,∞), and therefore the absolute value
sign appearing in the denominator of Φn(s) can be ignored for such s.
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Clearly, Φn(0) = 0, Φn is even, continuous, strictly monotonic increasing for s ≥ 0, and convex, with

Φn(s) ≍ s2 as s → 0+ and Φn(s) ≍ s1+
1
n as s → +∞.(5.41)

Here A ≍ B means that there exist constants c and c̃ independent of A and B such that cB ≤ A ≤ c̃B.
Following Rao & Ren [15], a function Φ : R → R≥0 is called an N-function (nice Young function),
if: (i) Φ is even and convex; (ii) Φ(s) = 0 if, and only if, s = 0; and (iii) lims→0 Φ(s)/s = 0 and
lims→+∞ Φ(s)/s = +∞.

Hence, Φn is an N-function. Simple calculations show that

Φn(2s) ≤ 4Φn(s) ∀ s ∈ [0,∞) and
1

2c
Φn(cs) ≥ Φn(s) ∀ s ∈ [0,∞), ∀ c ≥ 2n;(5.42)

therefore Φn satisfies the ∆2 and ∇2 conditions on [0,∞) (cf. Definition 1 on p.2 of [15]). Now, let Φ∗
n

denote the convex conjugate of the function Φn. Then, (Φn,Φ
∗
n) is a pair of complementary N-functions

and, by Theorem 2 on p.3 in [15], Φ∗
n also satisfies the ∆2 and ∇2 conditions on [0,∞); i.e., there exists

a constant K = K(n) > 2 such that

Φ∗
n(2s) ≤ KΦ∗

n(s) ∀ s ∈ [0,∞),(5.43)

and there exists a constant c = c(n) > 1 such that

1

2c
Φ∗

n(cs) ≥ Φ∗
n(s) ∀ s ∈ [0,∞).

More precisely, by the inequality (5.26),

2
1
n
−1 min

(
s2, s1+

1
n

)
≤ Φn(s) ≤ min

(
s2, s(1 + s)

1
n

)
∀ s ∈ [0,∞).

By recalling that Φ∗
n(s) := supt≥0(st− Φn(t)), we get from (5.41) that

Φ∗
n(s) ≍

1

4
s2 as s → 0+ and Φ∗

n(s) ≍
sn+1

n+ 1

(
n

n+ 1

)n

as s → +∞.(5.44)

Therefore, there exist positive constants c1,n and c2,n, with c1,n ≤ c2,n, such that

0 ≤ Φ∗
n(s) ≤ c1,ns

2 for all s ∈ [0, 1]

and

c1,n ≤ Φ∗
n(s) ≤ c2,ns

n+1 for all s ∈ [1,∞).

Reverting to (5.39), by the Fenchel–Young inequality, for any real number δ > 0,

1

n2
(d

1
2Kn)

1
n
−1

∫

Ω

Φn(|Tr(Tn,h)− Tr(ΠhTn)|) dx+
1

n2
(Kn)

1
n
−1

∫

Ω

Φn(|Td

n,h −ΠhT
d

n|) dx

≤ 1

d

∫

Ω

|Tr(Un,h)| |Tr(Tn,h)− Tr(ΠhTn)| dx+

∫

Ω

|Ud

n,h| |Td

n,h −ΠhT
d

n| dx

=
1

dδ

∫

Ω

|Tr(Un,h)| δ |Tr(Tn,h)− Tr(ΠhTn)| dx+
1

δ

∫

Ω

|Ud

n,h| δ |Td

n,h −ΠhT
d

n| dx

≤ 1

dδ

∫

Ω

Φn(δ|Tr(Tn,h)− Tr(ΠhTn)|) dx+
1

dδ

∫

Ω

Φ∗
n(|Tr(Un,h)|) dx

+
1

δ

∫

Ω

Φn(δ|Td

n,h −ΠhT
d

n|) dx+
1

δ

∫

Ω

Φ∗
n(|Ud

n,h|) dx.

Clearly, for any a ∈ R≥0 and δ ∈ (0, 1], we have that

Φn(δa) =
δ2a2

(1 + δa)1−
1
n

≤ δ1+
1
nΦn(a).
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Hence,

1

n2
(d

1
2Kn)

1
n
−1

∫

Ω

Φn(|Tr(Tn,h)− Tr(ΠhTn)|) dx+
1

n2
(Kn)

1
n
−1

∫

Ω

Φn(|Td

n,h −ΠhT
d

n|) dx

≤ δ
1
n

d

∫

Ω

Φn(|Tr(Tn,h)− Tr(ΠhTn)|) dx+
1

dδ

∫

Ω

Φ∗
n(|Tr(Un,h)|) dx

+ δ
1
n

∫

Ω

Φn(|Td

n,h −ΠhT
d

n|) dx+
1

δ

∫

Ω

Φ∗
n(|Ud

n,h|) dx.

Let δ1, δ2 > 0 be such that

d

2n2
(d

1
2Kn)

1
n
−1 = δ

1
n

1 and
1

2n2
(Kn)

1
n
−1 = δ

1
n

2 .

Thus, with δ := min(1, δ1, δ2), we have that
∫

Ω

Φn(|Tr(Tn,h)− Tr(ΠhTn)|) dx+

∫

Ω

Φn(|Td

n,h −ΠhT
d

n|) dx

≤ C(d, n,Kn)

(∫

Ω

Φ∗
n(|Tr(Un,h)|) dx+

∫

Ω

Φ∗
n(|Ud

n,h|) dx
)
.

(5.45)

Now, the assumption (5.36) and (3.4) yield

|Un,h| ≤ |ε(vh − un)|+ |An(Tn)−An(ΠhTn)|

≤ |ε(vh − un)|+ C
(
|Tn −ΠhTn|

1
n + |Tn −ΠhTn|β

)
.

As Φ∗
n is an N-function, it is strictly monotonic increasing (cf. the top of p.2 in [15]) and convex, and

therefore by (5.43),

Φ∗
n(|Un,h|) ≤ Φ∗

n(|ε(vh − un)|+ |An(Tn)−An(ΠhTn)|)

≤ 1

2

(
Φ∗

n(2|ε(vh − un)|) + Φ∗
n(2|An(Tn)−An(ΠhTn)|)

)

≤ K

2

(
Φ∗

n(|ε(vh − un)|) + Φ∗
n(|An(Tn)−An(ΠhTn)|)

)
.

(5.46)

In order to proceed we need to bound the right-hand side of the last inequality and that involves comparing

An(Tn) := λ(Tr(Tn))Tr(Tn)I+ µ(|Td

n|)Td

n +
Tr(Tn)I

n|Tr(Tn)|1− 1
n

+
Td

n

n|Td
n|1−

1
n

with

An(ΠhTn) := λ(Tr(ΠhTn))Tr(ΠhTn)I+ µ(|ΠhT
d

n|)ΠhT
d

n +
Tr(ΠhTn)I

n|Tr(ΠhTn)|1− 1
n

+
ΠhT

d
n

n|ΠhTd
n|1−

1
n

.

We have from inequalities (5.36) and (3.4) that

|An(Tn)−An(ΠhTn)| ≤ d
1
2Λ|Tr(Tn)−ΠhTr(Tn)|β + Λ|Td

n −ΠhT
d

n|β

+
d

1
2n

n
21−

1
n |Tr(Tn)− Tr(ΠhTn)|

1
n

+ C(d, n)|Td

n −ΠhT
d

n|
1
n

≤ C(d,Λ, β) |Tn −ΠhTn|β + C(d, n) |Tn −ΠhTn|
1
n

≤ C(d,Λ, β, n,Kn)|Tn −ΠhTn|min(β, 1
n
).

By the inequality (5.43), Φ∗
n(2

ℓs) ≤ KℓΦ∗
n(s) for all s ∈ [0,∞) and all ℓ ≥ 1. Hence, with

ℓ := [log2 C(d,Λ, β, n,Kn)] + 1
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we have that C(d,Λ, β, n,Kn) ≤ 2ℓ, whereby

Φ∗
n(|An(Tn)−An(ΠhTn)|) ≤ Φ∗

n(C(d,Λ, β, n,Kn)|Tn −ΠhTn|min(β, 1
n
))

≤ Φ∗
n(2

ℓ|Tn −ΠhTn|min(β, 1
n
))

≤ KℓΦ∗
n(|Tn −ΠhTn|min(β, 1

n
)).

By substituting this into the inequality (5.46) we deduce that

Φ∗
n(|Un,h|) ≤ Φ∗

n(|ε(vh − un)|+ |An(Tn)−An(ΠhTn)|)

≤ 1

2
KΦ∗

n(|ε(vh − un)|) +
1

2
Kℓ+1Φ∗

n(|Tn −ΠhTn|min(β, 1
n
)).

We then substitute this into the inequality (5.45) and note, once again, the monotonicity of Φ∗
n, which

gives
∫

Ω

Φn(|Tr(Tn,h)− Tr(ΠhTn)|) dx+

∫

Ω

Φn(|Td

n,h −ΠhT
d

n|) dx

≤ C(d,Λ, β, n,Kn,K)

(∫

Ω

Φ∗
n(|ε(vh − un)|) dx+

∫

Ω

Φ∗
n(|Tn −ΠhTn|min(β, 1

n
)) dx

)
.

For any pair of numbers a, b ∈ R≥0, by (5.42) and convexity, we have Φn(a + b) ≤ 2Φn(a) + 2Φn(b);
hence, by the inequality (1.13),

∫

Ω

Φn(|Tn,h −ΠhTn|) dx

≤ C(d,Λ, β, n,Kn,K)

(∫

Ω

Φ∗
n(|ε(vh − un)|) dx+

∫

Ω

Φ∗
n(|Tn −ΠhTn|min(β, 1

n
)) dx

)
.

As this inequality holds for all vh ∈ Xn,h, the bound (5.37) directly follows. �

The error bound (5.37) can be restated in the following equivalent form. Given an N-function Ψ, let

L̃Ψ(Ω) :=

{
S : Ω → R

d×d
sym measurable, such that ρΨ(S) :=

∫

Ω

Ψ(|S(x)|) dx < ∞
}
;

the function ρΨ(·) is called a modular. In terms of the modulars ρΦn
and ρΦ∗

n
the error bound (5.37)

takes the form:

ρΦn
(|Tn,h −ΠhTn|)

≤ C(d,Λ, β, n,Kn,K)

(
inf

vh∈Xn,h

ρΦ∗

n
(|ε(vh − un)|) + ρΦ∗

n
(|Tn −ΠhTn|min(β, 1

n
))

)
.

(5.47)

Here, as before,

Φn(s) :=
s2

(1 + s)1−
1
n

, s ∈ [0,∞), n ∈ N,

and Φ∗
n is the convex conjugate of Φn.

Under the above assumptions, convergence rates can be derived by strengthening the regularity hy-
pothesis Tn ∈ L∞(Ω)d×d

sym from Theorem 5.5. Thus, for example, suppose that

Tn ∈ W r,q(Ω)d×d
sym with 1 ≥ r > d

q
and un ∈ W 1+t,p(Ω)d ∩W 1,n+1

0 (Ω)d with 1 ≥ t > d
p
,

and q, p ∈ (1,∞], which ensure, by Morrey’s embedding theorem, that

Tn ∈ W r,q(Ω)d×d
sym →֒ C0,γ(Ω)d×d

sym →֒ W γ,∞(Ω)d×d
sym with γ := r − d

q
;

and

ε(un) ∈ W t,p(Ω)d×d
sym →֒ C0,ζ(Ω)d×d

sym →֒ W ζ,∞(Ω)d×d
sym with ζ := t− d

p
.

With these stronger regularity hypotheses we then have that

|Tn(x)−ΠhTn(x)| ≤ Chγ
K‖Tn‖Wγ,∞(K) ≤ Chγ‖Tn‖Wγ,∞(Ω) ∀x ∈ K, ∀K ∈ Th.
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Thus, thanks to the fact that Φ∗
n is monotonic increasing, and by the first asymptotic property in (5.44),

ρΦ∗

n
(|Tn −ΠhTn|min(β, 1

n
)) ≤ ρΦ∗

n
(Chγ min(β, 1

n
)‖Tn‖min(β, 1

n
)

Wγ,∞(Ω)) ≍ Ch2γ min(β, 1
n
)‖Tn‖2min(β, 1

n
)

Wγ,∞(Ω)

as h → 0+. Analogously,

inf
vh∈Xn,h

ρΦ∗

n
(|ε(vh)− ε(un)|) ≤ ρΦ∗

n
(Chζ‖ε(un)‖W ζ,∞(Ω)) ≍ Ch2ζ‖ε(un)‖2W ζ,∞(Ω) as h → 0+.

By substituting these bounds into the error inequality (5.47) we deduce that

ρΦn
(|Tn,h −ΠhTn|) ≤ C

(
h2ζ‖ε(un)‖2W ζ,∞(Ω) + h2γ min(β, 1

n
)‖Tn‖2min(β, 1

n
)

Wγ,∞(Ω)

)
,

as h → 0+. In particular, if β = 1
n
and ζ = γ

n
,

ρΦn
(|Tn,h −ΠhTn|) ≤ Ch2 γ

n

(
‖ε(un)‖2

W
γ
n

,∞(Ω)
+ ‖Tn‖

2
n

Wγ,∞(Ω)

)
,(5.48)

as h → 0+, where γ ∈ (0, 1] and n ∈ N. The error bound (5.48) on ρΦn
(|Tn,h − ΠhTn|) can be used to

derive bounds on norms of the error |Tn,h − ΠhTn|. For example, in the special case when n = 1, we
have that Φn(s) = s2, and therefore

‖Tn,h −ΠhTn‖L2(Ω) ≤ Chγ
(
‖ε(un)‖Wγ,∞(Ω) + ‖Tn‖Wγ,∞(Ω)

)
,

as h → 0+, where γ ∈ (0, 1]. In this special case, the regularity requirements on u and T can, in fact, be

relaxed to un ∈ W 1+γ,2(Ω)d×d
sym ∩W 1,2

0 (Ω)d×d
sym and Tn ∈ W γ,2(Ω)d×d

sym , γ ∈ (0, 1].
More generally, for n ∈ N, we divide the inequality (5.48) by |Ω|, recall the definition of the modular

ρΦn
(·), and apply Jensen’s inequality on the left-hand side to deduce that

Φn

(
−
∫

Ω

|Tn,h −ΠhTn| dx
)

≤ Ch2 γ
n

(
‖ε(un)‖2

W
γ
n

,∞(Ω)
+ ‖Tn‖

2
n

Wγ,∞(Ω)

)
,

as h → 0+, where γ ∈ (0, 1]. Because Φ−1
n , the inverse function of Φn (which is uniquely defined on [0,∞)

thanks to the fact that Φn is strictly monotonic increasing on [0,∞)), is monotonic increasing, we have
that

−
∫

Ω

|Tn,h −ΠhTn| dx ≤ Φ−1
n

(
Ch2 γ

n

(
‖ε(un)‖2

W
γ
n

,∞(Ω)
+ ‖Tn‖

2
n

Wγ,∞(Ω)

))
,

as h → 0+, where γ ∈ (0, 1] and n ∈ N. Since Φn(s) ≍ s2 as s → 0+, it follows that Φ−1
n (s) ≍ s

1
2 as

s → 0+, and therefore

(5.49) ‖Tn,h −ΠhTn‖L1(Ω) ≤ Ch
γ
n

(
‖ε(un)‖W γ

n
,∞(Ω)

+ ‖Tn‖
1
n

Wγ,∞(Ω)

)
,

as h → 0+, where γ ∈ (0, 1], n ∈ N, and C = C(d,Λ, n,Kn,K, γ, |Ω|).
5.3. Other elements that fit into the theory. We shall comment here on some alternative choices of
finite element spaces to which our analysis applies. LetQr

h denote the finite element space on quadrilateral
or hexahedral meshes for d = 2 or d = 3, respectively, consisting of (possibly discontinuous) mapped
piecewise d-variate functions that are polynomials of degree r in each variable over each element in the
subdivision. We consider the conforming finite element spaces

(5.50) Mn,h := (Qr
h)

d×d
sym ⊂ Mn, Xn,h := (Qr

h)
d ∩ Xn ⊂ Xn,

for the approximation of Tn and un, respectively. Clearly, ε(Xn,h) ⊂ Mn,h and the L2(Ω)
d×d orthogonal

projector Πh : Mn 7→ Mn,h is stable in the Lp(Ω)
d×d norm for all p ∈ [1,∞].1 Then, Lemma 5.3 can be

shown to hold by an identical argument; if in addition it is assumed that Tn ∈ L∞(Ω)d×d
sym , then Lemma

5.4 and Theorem 5.5 also hold. We note that our proof of Lemma 5.4 in the special case of

(5.51) Mn,h =
(
P0
h

)d×d

sym
⊂ Mn and Xn,h =

(
P1
h

)d ∩ Xn ⊂ Xn

1This stability result is a consequence of the stability in the Lp(−1, 1) norm of the L2(−1, 1) orthogonal projection
onto the space of univariate polynomials of degree r on the interval (−1, 1), for all p ∈ [1,∞], with a stability constant

Cr,p = C · r
1
2

∣

∣

∣
1− 2

p

∣

∣

∣

; for p = ∞, see Gronwall [8] eq. (29) on p.230; for p = 2, Cr,2 = 1 for all r ≥ 1; for p ∈ (2,∞), the form

of Cr,p follows by function space interpolation; and for p ∈ [1, 2) it follows from the result for p = (2,∞] by duality.
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did not require the additional assumption Tn ∈ L∞(Ω)d×d
sym , thanks to the connection between the explicit

formula for the projection onto piecewise constant functions and the Hardy–Littlewood maximal function.

5.4. A simple quadrilateral/hexahedral element to which the theory does not apply. The
simplest extension to quadrilaterals or hexahedra of the spaces defined in (5.2) is of course

(5.52) Mn,h :=
(
Q0

h

)d×d

sym
⊂ Mn, Xn,h :=

(
Q1

h

)d ∩ Xn ⊂ Xn,

for the approximation of Tn and un, respectively. Everything done previously applies to this pair of
elements, except the uniform discrete inf-sup condition. Indeed the proof of Lemma 5.1 does not carry
over to this case because ε(Xn,h) is not contained in Mn,h.

Let us look more closely at the greatest lower bound in (5.4), say βh. First, for any given vh, the
choice in each element K (which generalizes (5.5))

(5.53) Th =
1

|K|n
(∫

K

ε(vh) dx

) ∣∣∣∣
∫

K

ε(vh) dx

∣∣∣∣
n−1

,

shows that βh ≥ 0. The next lemma shows that on a structured mesh (i.e., a mesh with a Cartesian
numbering), βh 6= 0. To avoid excessive technicalities, it is stated for quadrilaterals, but it extends to
structured hexahedral meshes.

Proposition 5.6. Let Th be a structured quadrilateral mesh. Then, the greatest lower bound βh in (5.4)
is strictly positive.

Proof. We argue by contradiction. Suppose that βh = 0. Then there is a displacement vh in Xn,h such
that

sup
Sh∈Mn,h

b(Sh,vh) = 0.

In particular b(Th,vh) = 0 for Th defined by (5.53). This implies that

(5.54)

∣∣∣∣
∫

K

ε(vh) dx

∣∣∣∣ = 0 ∀K ∈ Th.

Let us examine the consequences of (5.54) on specific elements K of the mesh. Let K̂ = [0, 1]2 be the
reference square with vertices â1 = (0, 0), â2 = (1, 0), â3 = (1, 1), â4 = (0, 1). Let ai, 1 ≤ i ≤ 4 denote

the vertices of K and FK the bilinear mapping from K̂ onto K that maps âi to ai, 1 ≤ i ≤ 4. Since the
mesh is assumed to be nondegenerate, FK is invertible and the functions of Q1

h are the images by F−1
K

of the functions of Q̂1 defined on K̂. Their derivatives are transformed as follows:

∂v

∂x1
◦ FK =

1

JK

( ∂v̂

∂x̂1

(
a42 − a12 + x̂1(a

3
2 − a22 − a42 + a12)

)
− ∂v̂

∂x̂2

(
a22 − a12 + x̂2(a

3
2 − a22 − a42 + a12)

))
,

∂v

∂x2
◦ FK =

1

JK

( ∂v̂

∂x̂2

(
a21 − a11 + x̂2(a

3
1 − a21 − a41 + a11)

)
− ∂v̂

∂x̂1

(
a41 − a11 + x̂1(a

3
1 − a21 − a41 + a11)

))
,

the subscript indicating the coordinate, and JK the Jacobian of FK .
Now, let us start with a corner element; since the mesh is structured, all corner elements have at least

two sides and three vertices on the boundary, say a1, a2, and a4. As vh vanishes on ∂Ω, this means that
vh(a1) = vh(a2) = vh(a4) = 0 and thus

(∫

K

ε(vh) dx
)
:
(∫

K

ε(vh) dx
)
=

1

4

[
(v̂31)

2(a42 − a22)
2 + (v̂32)

2(a41 − a21)
2
]

+
1

4

[1
4

(
v̂32(a

4
2 − a22) + v̂31(a

4
1 − a21)

)2]
= 0.

As |a4 − a2| > 0, we easily derive from this expression that vh(a3) = 0, and hence vh vanishes on K.
This implies that vh also vanishes at its neighbors adjacent to the boundary, and by progressing element
by element along the boundary, we have that vh = 0 on all boundary elements. From here, the same
argument gives vh = 0 on all elements of Th. �
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The positivity of βh implies that (5.4) holds with a positive constant for each h, but does not guarantee
that the positive constant is uniformly bounded away from zero as h tends to zero. Let us give an example
when βh tends to zero, inspired by the checkerboard modes of the Stokes problem; see [6]. The idea is
to construct a displacement vh such that the integral average of ε(vh) vanishes on a large number of
elements, while ε(vh) is nonzero there. Consider a square domain Ω = (0, 1)2 divided into (N +1)2 equal
squares Kij , 0 ≤ i, j ≤ N , with mesh-size h = 1

N+1 . Take vh = 0 on ∂Ω and define each component vh

by

vh(xij) =

{
1, if i+ j is odd

−1, if i+ j is even.
for 1 ≤ i, j ≤ N.

It is easy to check that, in all interior elements K,
∫

K

ε(vh) dx = 0,

and in each boundary element K,

0 < c1h ≤
∣∣∣
∫

K

ε(vh) dx
∣∣∣ ≤ C1h,

where here and below all constants are independent of K and h. Let T b
h denote the union of the boundary

elements. Since the choice of Th in all interior elements does not affect the value of b(Th,vh), let us
choose Th = 0 in these elements; this will minimize its norm there. On the boundary elements K, we
choose Th by (5.53); this gives

b(Th,vh) =
∑

K∈T b
h

1

|K|n
∣∣∣∣
∫

K

ε(vh) dx

∣∣∣∣
n+1

,

and

‖Th‖L
1+ 1

n
(Ω) =

( ∑

K∈T b
h

1

|K|n
∣∣∣∣
∫

K

ε(vh) dx

∣∣∣∣
n+1) n

n+1

,

so that
b(Th,vh)

‖Th‖L
1+ 1

n
(Ω)

≤ C2h
− n

n+1 .

On the other hand, ε(vh) does not vanish in the interior elements, and we have

‖ε(vh)‖L1+n(Ω) ≥ C3h
−1.

Hence with this choice of Th,

(5.55) inf
vh∈Xn,h

b(Th,vh)

‖Th‖L
1+ 1

n
(Ω)‖ε(vh)‖Ln+1(Ω)

≤ C4h
1

n+1 .

Of course, we have not proved that this choice of Th realizes the supremum in (5.55). But since the
number of interior elements, that do not contribute to the numerator of (5.55) but do contribute to the
norm of vh, is much larger than that of the boundary elements, more precisely, this ratio is of the order
of h−1, no value of Th can balance this ratio.

6. The case of smoother data

The regularization (3.1) is a particular case of

(6.1) ε(u) = λ(Tr(T))Tr(T)I+ µ(|Td|)Td +
Tr(T)I

n|Tr(T)|1− 1
t

+
Td

n|Td|1− 1
t

,

n ∈ N, t ∈ R>0, with t = n in (3.1). When the data are smoother, as in part (d) of Theorem 2.1, the
following simpler regularization is used in reference [4]

(6.2) ε(u) = λ(Tr(T))Tr(T)I+ µ(|Td|)Td +
1

n
T,
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which corresponds to t = 1 (up to the factor 1
d
multiplying Td). The analysis developed in the previous

sections applies to (1.1)–(6.2) but is in fact much simpler. Indeed, let (Tn,1,un,1) denote a solution to
(1.1)–(6.2), i.e., (Tn,1,un,1) ∈ Mn,1 × Xn,1 satisfies

an,1(Tn,1,S) + c(Tn,1;Tn,1,S)− b(S,un,1) = 0 ∀S ∈ Mn,1,

b(Tn,1,v) =

∫

Ω

f · v dx ∀v ∈ Xn,1,
(6.3)

where

an,1(T,S) :=
1

n

∫

Ω

T : S dx,

and

Mn,1 := L2(Ω)
d×d
sym , Xn,1 := H1

0 (Ω)
d.

The function F is used in deriving more regularity of the solution, but as far as the numerical scheme
is concerned, we can simply proceed with the original data f . Let us briefly sketch the analysis of (6.3).
We define the mapping An,1 : L2(Ω)

d×d
sym → L2(Ω)

d×d
sym by

(6.4) An,1(S) := λ(Tr(S))Tr(S)I+ µ(|Sd|)Sd +
1

n
S,

and we easily prove as in Lemma 3.1 that An,1 is bounded, continuous and coercive for all n ∈ N. The
inf-sup condition is satisfied, as in Lemma 4.1,

(6.5) inf
v∈Xn,1

sup
S∈Mn,1

b(S,v)

‖S‖L2(Ω)‖ε(v)‖L2(Ω)
≥ 1.

The lifting Tf
n,1 is defined by the analogue of (4.2)

(6.6)

∫

Ω

Tf

n,1 : ε(v) dx =

∫

Ω

f · v dx ∀v ∈ Xn,1,

and is bounded by

(6.7) ‖Tf

n,1‖L2(Ω) ≤ CK‖f‖L2(Ω),

where CK is the constant of (1.11) with p = 2. The a priori estimates of Lemma 4.2 simplify, we have

(6.8) ‖ε(un,1)‖2L2(Ω) ≤
4

n2
C2

K‖f‖2L2(Ω) +
8

n
C1κ|Ω|+ 8C2

2d|Ω|,

(6.9)

1

n
‖Tn,1‖2L2(Ω) + C1‖Tn,1‖L1(Ω) ≤ 2C1κ|Ω|+ CK‖f‖L2(Ω)

(
4

n2
C2

K‖f‖2L2(Ω) +
8

n
C1κ|Ω|+ 8C2

2d|Ω|
) 1

2

.

Thus, up to a subsequence, un,1 converges weakly in W 1,2
0 (Ω)d, and thanks to the results in [4] (see also

part (d) of Theorem 2.1 and Remark 2.2), the additional regularity F ∈ W 2,2(Ω)d×d
sym enables one to prove

in particular that Tn,1 is bounded in W 1,q(Ω0)
d×d
sym for any Ω0 ⊂⊂ Ω, with q ∈ [1, 2) when d = 2 and

q ∈ [1, 3
2 ] when d = 3, and therefore, up to a subsequence, weakly converges to T in W 1,q(Ω0)

d×d
sym for

any Ω0 ⊂⊂ Ω for q ∈ [1, 2) when d = 2 and q ∈ [1, 3
2 ] when d = 3. Hence, by the Rellich–Kondrashov

theorem, up to a subsequence, Tn,1 tends to T strongly in Lp(Ω0)
d×d
sym on any Ω0 ⊂⊂ Ω for all p ∈ [1,∞)

when d = 2 and all p ∈ [1, 3
2 ) when d = 3.

6.1. Finite element discretization. With the spaces Mn,h and Xn,h defined in (5.2) or (5.50), the
system (6.3) is discretized by : Find (Tn,1,h,un,1,h) in Mn,h × Xn,h such that

an,1(Tn,1,h,Sh) + c(Tn,1,h;Tn,1,h,Sh)− b(Sh,un,1,h) = 0 ∀Sh ∈ Mn,h,

b(Tn,1,h,vh) =

∫

Ω

f · vh dx ∀vh ∈ Xn,h.
(6.10)
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As previously, the constraint in the second part of (6.10) is lifted by means of the projection operator

Πh defined in (5.5), Tf
n,1,h is defined by (5.6),

Tf

n,1,h = ΠhT
f

n,1,

and

T0
n,1,h := Tn,1,h −Tf

n,1,h.

Existence and uniqueness of the discrete solution (Tn,1,h,un,1,h) is derived as in Lemma 5.2. Again,
the a priori bounds (6.8) and (6.9) hold for un,1,h and Tn,1,h. In fact, even without regularization, i.e.,
without the form an,1(·, ·), existence by a Brouwer’s Fixed Point and if moreover (A3’) holds, uniqueness
follow by a finite-dimensional argument. But we shall not pursue the no regularization option, because,
as stated at the beginning of Section 5.2, we are then unable to show convergence.

The arguments of Lemma 5.3, under analogous assumptions, show that, as h → 0+, for each n,

Tn,1,h ⇀ Tn,1 weakly in L2(Ω)
d×d
sym .

Let us sketch the proof of the strong convergence, which is much simpler than that of Lemma 5.4.

Lemma 6.1 (Strong convergence). Assume that f ∈ L2(Ω)
d, that the functions λ and µ satisfy the

assumptions (A1)–(A4), and let (Tn,1,un,1) denote the unique solution to the regularized problem (6.3),
with n ∈ N. Then, for each fixed n ∈ N, as h → 0+,

Tn,1,h → Tn,1 strongly in Mn,1 = L2(Ω)
d×d
sym and un,1,h → un,1 strongly in Xn,1 = W 1,2

0 (Ω)d.

Proof. We retain the notation and the setting of the proof of Lemma 5.4. The discrepancy T0
n,1,h−ΠhT

0
n,1

satisfies

1

n
‖T0

n,1,h −ΠhT
0
n,1‖2L2(Ω) + C

∫

Ω

|T0
n,1,h −ΠhT

0
n,1|2

(κ+ |T0
n,1,h|+ |ΠhT0

n,1|)1+α
dx

≤
∫

Ω

(
An,1(Tn,1,h)−An,1(ΠhT

0
n,1 +Tf

n,1,h)
)
: (T0

n,1,h −ΠhT
0
n,1) dx,

(6.11)

where C is the constant in (1.5). As T0
n,1,h −ΠhT

0
n,1 ∈ Vn,h, (6.11) reduces to

1

n
‖T0

n,1,h −ΠhT
0
n,1‖2L2(Ω) + C

∫

Ω

|T0
n,1,h −ΠhT

0
n,1|2

(κ+ |T0
n,1,h|+ |ΠhT0

n,1|)1+α
dx

≤ −
∫

Ω

An,1(ΠhT
0
n,1 +Tf

n,1,h) : (T
0
n,1,h −ΠhT

0
n,1) dx.(6.12)

Then the weak convergence of T0
n,1,h −ΠhT

0
n,1 to zero, the strong convergence of ΠhT

0
n,1 +Tf

n,1,h both
in Mn,1 as h → 0+, and the continuity of the mapping An,1 : Mn,1 → Mn,1 yield

−
∫

Ω

An,1(ΠhT
0
n,1 +Tf

n,1,h) : (T
0
n,1,h −ΠhT

0
n,1) dx → 0 as h → 0+.

Whence, returning to (6.12),

1

n
‖T0

n,1,h −ΠhT
0
n,1‖2L2(Ω) → 0 as h → 0+,

and the asserted strong convergence of Tn,1,h to Tn,1 in Mn,1 = L2(Ω)
d×d
sym , as h → 0+, follows for any

n ≥ 1.
For the strong convergence of un,1,h, we use again the discrete inf-sup property (5.4) to define Rh ∈

V
⊥
n,h satisfying

∫

Ω

ε(un,1,h −Πsz
h un,1) : ε(vh) dx =

∫

Ω

Rh : ε(vh) dx ∀vh ∈ Xn,h,

where Πsz
h is the Scott–Zhang projector onto Xn,h; see [16]. In particular, we have

(6.13) ‖Rh‖L2(Ω) ≤ ‖ε(un,1,h −Πsz
h un,1)‖L2(Ω).
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For vh = un,1,h −Πsz
h un,1 we then get

‖ε(un,1,h −Πsz
h un,1)‖2L2(Ω) =

∫

Ω

Rh : ε(un,1,h − un,1) dx+

∫

Ω

Rh : ε(un,1 −Πsz
h un,1) dx

=

∫

Ω

(An,1(Tn,1,h)−An,1(Tn,1)) : Rh dx+

∫

Ω

Rh : ε(un,1 −Πsz
h un,1) dx,

where we have also used the relations (6.3) and (6.10) to obtain the second equality. We now argue that
both terms on the right-hand side of the above equality vanish as h → 0+. To see this, it suffices to
recall the uniform bound (6.13) on Rh; hence, the strong convergence results Πsz

h un,1 → un,1 in Xn,1

and Tn,1,h → Tn,1 in Mn,1, as h → 0+, together with the continuity of An,1 guaranteed by Lemma 3.1,
imply the stated claim. Thanks to Korn’s inequality (1.10),

‖∇(un,1,h −Πsz
h un,1)‖L2(Ω) ≤ K‖ε(un,1,h −Πsz

h un,1)‖L2(Ω) → 0 as h → 0+,

and therefore un,1,h → un,1 in Xn,1. �

Thus when λ satisfies (A3’), we have again, for any Ω0 ⊂⊂ Ω,

lim
n→∞

lim
h→0+

‖Tn,1,h−T‖L1(Ω0) = 0, lim
n→∞

lim
h→0+

‖un,1,h−u‖C(Ω) = 0, lim
n→∞

lim
h→0+

‖ε(un,1,h)−ε(u)‖L2(Ω0) = 0.

As in the preceding section, an error inequality can be established when the functions λ(s)s and µ(s)s
are Lipschitz continuous, but again the situation is much simpler.

Theorem 6.2. In addition to the assumptions of Lemma 6.1, suppose that the real-valued functions
s ∈ R 7→ λ(s)s and s ∈ R≥0 7→ µ(s)s are Lipschitz continuous, i.e., that there exists a positive constant
Λ such that

(6.14) |λ(s)s− λ(r)r| ≤ Λ|r − s| ∀ r, s ∈ R, |µ(s)s− µ(r)r| ≤ Λ|r − s| ∀ r, s ∈ R≥0.

Then, the following error inequality holds:

1

n
‖Tn,1,h −Tn,1‖L2(Ω) ≤ inf

vh∈Xh

‖ε(vh − un,1)‖L2(Ω) + 2

(
1

n
+ Λ

)
‖Tn,1 −Πh(Tn,1)‖L2(Ω).(6.15)

Proof. As in the proof of Theorem 5.5, from the relations (6.3) and (6.10), we infer that on one hand,
∫

Ω

ε(vh) : Sh dx = 0,

and on the other hand, for any vh in Xn,h,

1

n
‖Tn,1,h −ΠhTn,1‖2L2(Ω) + C

∫

Ω

|Tn,1,h −ΠhTn,1|2
(κ+ |Tn,1,h|+ |ΠhTn,1|)1+α

dx

≤
(
‖ε(vh − un,1)‖L2(Ω) +

1

n
‖Tn,1 −ΠhTn,1‖L2(Ω)

)
‖Tn,1,h −ΠhTn,1‖L2(Ω)

+

∫

Ω

(An,1(Tn,1)−An,1(ΠhTn,1)) : (Tn,1,h −ΠhTn,1) dx,

(6.16)

where C is the constant in (1.5). The Lipschitz property (6.14) implies that

|An,1(Tn,1)−An,1(ΠhTn,1)| ≤
1

n
|Tn,1 −ΠhTn,1|+ 2Λ|ΠhTn,1 −Tn,1|,

so that

(6.17)
1

n
‖Tn,1,h −ΠhTn,1‖L2(Ω) ≤

(
‖ε(vh − un,1)‖L2(Ω) + 2

(
1

n
+ Λ

)
‖Tn,1 −ΠhTn,1‖L2(Ω)

)
,

which yields (6.15). �
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Under the above assumptions, convergence rates can be derived provided that Tn,1 ∈ W 1,q(Ω)d×d
sym

with q > 2d
2+d

(ensuring that W 1,q(Ω)d×d →֒ L2(Ω)
d×d) and un,1 ∈ W 1+t,2(Ω)d, t > 0 (ensuring that

W 1,1+t(Ω)d →֒ W 1,2(Ω)d). Rates of convergence for ‖∇(un,1 − un,1,h)‖L2(Ω) are obtained using the
inf-sup properties and interpolation theory again.

7. Decoupled Iterative Algorithm

The convergent iterative algorithm proposed in this section for the solution of the discrete problem
(6.10), is designed to dissociate the computation of the nonlinearity from that of the elastic constraint.
We have also applied it numerically to (5.3) in Section 8 but proving its convergence is still an open
problem.

The algorithm, which belongs to the class of alternating direction methods, proceeds in two steps. In
both steps, an artificial divided difference, analogous to a discrete time derivative, is added to enhance
the stability of the algorithm. The first half-step involves the monotone nonlinearity while, in the case of
(6.10), the second half-step solves for the elastic part from a system of linear algebraic equations whose
matrix is the mass-matrix (Gram matrix) generated by the basis functions of the finite element space
Xn,h. In the case (5.3), this second system is nonlinear. But in both cases, our choice of the finite element
space Mn,h, consisting of piecewise constant approximations for the stress tensor Tn,1 or Tn allows us
to deal with the monotone nonlinearity involved in the first half-step in an efficient way, by solving an
algebraic system with d(d + 1)/2 unknowns independently on each element K in the subdivision Th of
the computational domain Ω. Let us describe the algorithm applied to (6.1).

The initialization consists of finding (T
(0)
h ,u

(0)
h ) ∈ Mn,h × Xn,h satisfying

∫

Ω

ε(vh) : T
(0)
h dx =

∫

Ω

f · vh dx, ∀vh ∈ Xn,h,

∫

Ω

T
(0)
h : Sh dx =

∫

Ω

ε(u
(0)
h ) : Sh dx ∀Sh ∈ Mn,h.

Let τ > 0. Given (T
(k)
h ,u

(k)
h ) in Mn,h × Xn,h for a nonnegative integer k, the algorithm proceeds in

the following two steps.

Step 1. Find T
(k+ 1

2 )

h in Mn,h such that, for all Sh ∈ Mn,h,

1

τ

∫

Ω

(T
(k+ 1

2 )

h −T
(k)
h ) : Sh dx

+

∫

Ω

(
λ(Tr(T

(k+ 1
2 )

h ))Tr(T
(k+ 1

2 )

h )Tr(Sh) + µ(|(T(k+ 1
2 )

h )d|)(T(k+ 1
2 )

h )d : Sh

)
dx

=

∫

Ω

ε(u
(k)
h ) : Sh dx−

∫

Ω

( Tr(T
(k)
h )I

n|Tr(T(k)
h )|1− 1

t

+
(T

(k)
h )d

n|(T(k)
h )d|1− 1

t

)
: Sh dx.

As was already mentioned, because T
(k+ 1

2 )

h is piecewise constant, the above system reduces to decoupled
algebraic systems of d(d+1)/2 unknowns each, in every element in the subdivision of the computational
domain.
Step 2. Find T

(k+1)
h ∈ Mn,h and u

(k+1)
h ∈ Xn,h such that

1

τ

∫

Ω

(T
(k+1)
h −T

(k+ 1
2 )

h ) : Sh dx+

∫

Ω

( Tr(T
(k+1)
h )I

n|Tr(T(k+1)
h )|1− 1

t

+
(T

(k+1)
h )d

n|(T(k+1)
h )d|1− 1

t

)
: Sh dx

=

∫

Ω

ε(u
(k+1)
h ) : Sh dx−

∫

Ω

(
λ(Tr(T

(k+ 1
2 )

h ))Tr(T
(k+ 1

2 )

h )Tr(Sh) + µ(|(T(k+ 1
2 )

h )d|)(T(k+ 1
2 )

h )d : Sh

)
dx,

and such that, for all vh ∈ Xn,h,
∫

Ω

ε(vh) : T
(k+1)
h dx =

∫

Ω

f · vh dx.

When t = 1, the initialization is unchanged and the two steps simplify as follows:
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Step 1. Find T
(k+ 1

2 )

h in Mn,h such that, for all Sh ∈ Mn,h,

1

τ

∫

Ω

(T
(k+ 1

2 )

h −T
(k)
h ) : Sh dx

+

∫

Ω

(
λ(Tr(T

(k+ 1
2 )

h ))Tr(T
(k+ 1

2 )

h )Tr(Sh) + µ(|(T(k+ 1
2 )

h )d|)(T(k+ 1
2 )

h )d : Sh

)
dx

=

∫

Ω

ε(u
(k)
h ) : Sh dx− 1

n

∫

Ω

T
(k)
h : Sh dx.

Step 2. Find T
(k+1)
h ∈ Mn,h and u

(k+1)
h ∈ Xn,h such that

1

τ

∫

Ω

(T
(k+1)
h −T

(k+ 1
2 )

h ) : Sh dx+
1

n

∫

Ω

T
(k+1)
h : Sh dx

=

∫

Ω

ε(u
(k+1)
h ) : Sh dx−

∫

Ω

(
λ(Tr(T

(k+ 1
2 )

h ))Tr(T
(k+ 1

2 )

h )Tr(Sh) + µ(|(T(k+ 1
2 )

h )d|)(T(k+ 1
2 )

h )d : Sh

)
dx,

and such that, for all vh ∈ Xn,h, ∫

Ω

ε(vh) : T
(k+1)
h dx =

∫

Ω

f · vh dx.

Following the general theory of Lions and Mercier [11], we now prove that the iterative algorithm for
t = 1 converges to the solution of the decoupled system.

Theorem 7.1 (Convergence of the Iterative Decoupled Algorithm). Assume that λ and µ satisfy (A1)–

(A4) and that n ≥ 1. Let Tn,1,h ∈ Mn,h be the first component of the solution of (6.10) and let T
(k)
h ∈

Mn,h, k = 1, 2, . . . , be successive iterates computed by the iterative algorithm, with τ > 0. We then have
that

lim
k→∞

‖T(k)
h −Tn,1,h‖L2(Ω) = 0.

Proof. The nonlinear part of the system is represented by the following operator, Ah : Mn,h → Mn,h

defined by AhSh = Ah, where for all Rh ∈ Mn,h,∫

Ω

Ah : Rh dx =

∫

Ω

(
λ(Tr(Sh))Tr(Sh)Tr(Rh) + µ(|(Sd

h |)Sd

h : Rh

)
dx,

and the linear part, excluding the artificial time derivative, is represented by the function

B
(k)
h :=

1

n
T

(k)
h − ε(u

(k)
h ).

With these notations, the first step of the iterative algorithm reads

(I + τAh)T
(k+ 1

2 )

h = T
(k)
h − τB

(k)
h ,

or, equivalently,

T
(k+ 1

2 )

h = (I + τAh)
−1(T

(k)
h − τB

(k)
h ).

It is convenient to introduce the following two auxiliary tensors:

(7.1) Λ
(k)
h := T

(k)
h + τ

(
1

n
T

(k)
h − ε(u

(k)
h )

)
= T

(k)
h + τB

(k)
h

and
Θ

(k)
h := 2T

(k)
h −Λ

(k)
h ,

whereby

T
(k)
h =

1

2
(Θ

(k)
h +Λ

(k)
h ).

We shall see that the convergence of T
(k)
h will result from that of Λ

(k)
h and Θ

(k)
h . With these tensors, the

second step of the iterative algorithm reads

Λ
(k+1)
h = (I − τAh)T

(k+ 1
2 )

h = (I − τAh)(I + τAh)
−1(T

(k)
h − τB

(k)
h ).
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Notice that, from (7.1), B
(k)
h = 1

2τ (Λ
(k)
h −Θ

(k)
h ), and we define C

(k)
h := 1

2τ (Θ
(k)
h −Λ

(k+1)
h ). In addition,

we note for later that

(I + τAh)
−1Θ

(k)
h =

1

2
(Λ

(k+1)
h +Θ

(k)
h ),

which implies that

Ah

(
Λ

(k+1)
h +Θ

(k)
h

2

)
=

1

2τ
(Θ

(k)
h −Λ

(k+1)
h ) = C

(k)
h .

We also define the analogous quantities

Bh :=
1

n
Tn,1,h − ε(un,1,h), Λh := Tn,1,h + τBh, Ch := AhTn,1,h, Θh = Tn,1,h + τCh.

With these notations, the first relation in (5.3) reads

Ch +Bh = AhTn,1,h +
1

n
Tn,1,h − ε(un,1,h) = 0,

and so

Λh +Θh = 2Tn,1,h + τ(Bh +Ch) = 2Tn,1,h,

which in turn implies that

Ch =
1

τ
(Θh −Tn,1,h) =

1

2τ
(Θh −Λh).

Similarly, for Bh we have the decomposition

Bh =
1

2τ
(Λh −Θh).

We can now express the discrepancy between Tn,1,h and T
(k)
h as follows:

1

n
‖T(k)

h −Tn,1,h‖2L2(Ω) =
1

n

∫

Ω

(T
(k)
h −Tn,1,h) : (T

(k)
h −Tn,1,h) dx

=

∫

Ω

(B
(k)
h −Bh) : (T

(k)
h −Tn,1,h) dx+

∫

Ω

ε(u
(k)
h − un,1,h) : (T

(k)
h −Tn,1,h) dx.

Because, for all vh ∈ Xn,h,
∫

Ω

T
(k)
h : ε(vh) dx =

∫

Ω

f · vh =

∫

Ω

Tn,1,h : ε(vh) dx,

we deduce that T
(k)
h −Tn,1,h ∈ Vn,h, and therefore

1

n
‖T(k)

h −Tn,1,h‖2L2(Ω) =

∫

Ω

(B
(k)
h −Bh) : (T

(k)
h −Tn,1,h) dx.

The relations

B
(k)
h −Bh =

1

2τ

(
Λ

(k)
h −Λh − (Θ

(k)
h −Θh)

)

and

T
(k)
h −Tn,1,h =

1

2

(
Λ

(k)
h −Λh + (Θ

(k)
h −Θh)

)

further lead to

(7.2)
1

n
‖T(k)

h −Tn,1,h‖2L2(Ω) =
1

4τ

(
‖Λ(k)

h −Λh‖2L2(Ω) − ‖Θ(k)
h −Θh‖2L2(Ω)

)
.

This, of course, implies that

(7.3) ‖Θ(k)
h −Θh‖L2(Ω) ≤ ‖Λ(k)

h −Λh‖L2(Ω).
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In addition, we have that
∫

Ω

(C
(k)
h −Ch) :

(
Λ

(k+1)
h +Θ

(k)
h

2
−Tn,1,h

)
dx

=

∫

Ω

(
Ah

(
Λ

(k+1)
h +Θ

(k)
h

2

)
− AhTn,1,h

)
:

(
Λ

(k+1)
h +Θ

(k)
h

2
−Tn,1,h

)
dx

≥ 0,

(7.4)

thanks to the monotonicity property of Ah due to (1.5) and (1.7). On the other hand, we compute

(7.5)

∫

Ω

(C
(k)
h −Ch) :

(
Λ

(k+1)
h +Θ

(k)
h

2
−Tn,1,h

)
dx =

1

4τ

(
‖Θ(k)

h −Θh‖2L2(Ω) − ‖Λ(k+1)
h −Λh‖2L2(Ω)

)
.

Hence, we find that

(7.6)
1

4τ

(
‖Θ(k)

h −Θh‖2L2(Ω) − ‖Λ(k+1)
h −Λh‖2L2(Ω)

)
≥ 0,

and therefore, in view of (7.3),

(7.7) ‖Λ(k+1)
h −Λh‖L2(Ω) ≤ ‖Θ(k)

h −Θh‖L2(Ω) ≤ ‖Λ(k)
h −Λh‖L2(Ω).

This guarantees that the sequence ‖Λ(k)
h − Λh‖L2(Ω) of nonnegative real numbers is monotonic nonin-

creasing, and so converging. In particular, we have

lim
k→∞

(
‖Λ(k)

h −Λh‖L2(Ω) − ‖Λ(k+1)
h −Λh‖L2(Ω)

)
= 0.

Consequently, (7.7) yields that

lim
k→∞

‖Θ(k)
h −Θh‖L2(Ω) = 0.

From (7.6), this also means that

lim
k→∞

‖Λ(k)
h −Λh‖L2(Ω) = 0.

With these two limits, (7.2) implies that

lim
k→∞

1

n
‖T(k)

h −Tn,1,h‖L2(Ω) = 0.

That completes the proof. �

Remark 7.2 (Post-processing). Since T
(k+ 1

2 )

h within the iterative algorithm does not satisfy the con-

straint, it seems difficult to prove its convergence to Tn,1,h, and as a consequence the convergence of u
(k)
h

to un,1,h, as k → ∞. Instead, given T
(k)
h , one can define ũ

(k)
h ∈ Xn,h as the solution to the elasticity

problem
∫

Ω

ε(ũ
(k)
h ) : ε(vh) dx =

1

n

∫

Ω

T
(k)
h : ε(vh) dx+

∫

Ω

Ah(T
(k)
h ) : ε(vh) dx ∀vh ∈ Xn,h.

The convergence of ũ
(k)
h towards un,1,h follows from the convergence of T

(k)
h towards Tn,1,h, as k → ∞.

8. Numerical Experiments

We now illustrate the performance of the decoupled algorithm in several situations. We start with a
setting where the exact solution is accessible, in order to demonstrate the asymptotic behavior of the
algorithm and to determine adequate values for the numerical parameters to be used in other situations.
We then challenge our algorithm in the two-dimensional case of a crack.

The numerical results presented below are obtained using the deal.ii library [2]. The subdivisions of Ω
consist of quadrilaterals/hexahedra. Unless stated otherwise, the stress tensor T is approximated using
piecewise constant polynomials while the displacement u is approximated by piecewise polynomials of
degree one in each co-ordinate direction; see Section 5.3.
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8.1. Details of the Implementation. For a given tolerance parameter TOL> 0, the decoupled iterative
algorithm described in Section 7 is terminated once the relative tolerance on the increment

(8.1)
‖T(k+1)

h −T
(k)
h ‖Lp(Ω) + ‖∇(u

(k+1)
h − u

(k)
h )‖L2(Ω)

‖T(k)
h ‖Lp(Ω) + ‖∇u

(k)
h ‖L2(Ω)

≤ TOL

is satisfied, where p = 2 when t = 1 and p = 1 otherwise.
Each step of the decoupled algorithm requires subiterations (only step 1 when t = 1), which are

terminated once the relative tolerance on the increments is smaller than TOL/5.

8.2. Validation on Smooth Solutions. We illustrate the performance of the decoupled algorithm
introduced in Section 7 on the discretization of the regularized system

an(T,S) + c(T;T,S)− b(S,u) =

∫

Ω

G : S dx ∀S ∈ M,

b(T,v) =

∫

Ω

f · v dx ∀v ∈ X.

(8.2)

The presence of the given tensor G : Ω → R
d×d
sym on the right-hand side of the first equation allows us to

exhibit an exact solution in closed form; compare with (3.2). In fact, we let λ(s) = µ(s) = (1 + s2)−
1
2 ,

Ω = (0, 1)2 and, given n ≥ 1, we define f and G so that

(8.3) u(x, y) =

(
y(1− y)

0

)
, T(x, y) =

(
ex 0
0 cos y

)

solves (8.2).
Regarding the numerical parameters, we fix the pseudo-time increment parameter τ = 0.01 and perform

simulations for several values of the regularization parameter n and for t = 1 (linear regularization) and
t = n. The computational domain Ω is subdivided by using a sequence of uniform partitions consisting
of squares of diameter h = 2−i, i = 0, . . . , 7. The target tolerance for the iterative algorithm is set to
TOL = 10−5.

Convergence as h → 0. We provide in Table 1 the corresponding errors eu := ‖∇(un − un,h)‖L2(Ω) and

eT := ‖Tn −Tn,h‖Lp(Ω). Theorem 5.5 predicts a rate of convergence of O(h
1
t ) for both quantities which

seems to be pessimistic (in this model problem with a smooth solution) since convergence of order O(h)
is observed for t = 1 and t = n. In fact, we also ran tests with other values of t > 1 and observed the
same order O(h).

h n = 1 n = 2

t = 1 t = 1 t = 2
eu eT eu eT eu eT

2−2 0.14438 0.03946 0.14436 0.05453 0.14434 0.05182
2−3 0.07217 0.01973 0.07217 0.02725 0.07217 0.02486
2−4 0.03609 0.00986 0.03609 0.01363 0.03609 0.01224
2−5 0.01804 0.00493 0.01804 0.00681 0.01804 0.00625
2−6 0.00902 0.00247 0.00902 0.00341 0.00902 0.00327
2−7 0.00451 0.00124 0.00451 0.00171 0.00451 0.00177

Table 1. Asymptotic behaviour of eu and eT for n = t = 1 and n = 2 with t = 1 or
t = 2. The method exhibits convergence of order one in all cases. This is in accordance
with Theorem 5.5 when t = 1 but better than predicted for t > 1.
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 0.001

 0.01

 0.1

 1

 10

 0.1  1

h

y(x)=x
stress error
disp. error

Figure 1. Decay of ‖u− uh‖L2(Ω) and ‖T−Th‖L1(Ω) as a function of the mesh-size h
using the unstable pair in (5.52). Both quantities decay linearly.

Convergence as n → ∞. We now turn our attention to the convergence of the algorithm when n → ∞ for
a fixed subdivision corresponding to h = 2−7. Again, we consider two cases: t = 1 (linear regularization)
and t = n. The data f andG are modified so that (u,T) given by (8.3) solves (8.2) without regularization,
i.e., without the bilinear form an(·, ·). The results are reported in Table 2; they indicate that in this
smooth setting, eu + eT → 0 as n → ∞.

t = 1
n = 1.0 n = 500 n = 1000

eu 0.80168 0.00927 0.00617
eT 1.53397 0.06777 0.03583

t = n
n = 1.0 n = 500 n = 1000

eu 0.80167 0.00519 0.00470
eT 2.18173 0.04052 0.02234

Table 2. Convergence of the decoupled algorithm when n → ∞ for a fixed spatial
resolution (h = 2−7) using linear (t = 1) and nonlinear (t = n) regularization. In the
nonlinear regularization case, the error in the stress is always measured in L1(Ω) (instead
of L2(Ω) when t = 1). The two algorithms yield similar results.

8.3. Inf-Sup condition. We conclude the section containing our numerical experiments with an obser-
vation on the inf-sup condition when using quadrilaterals. We consider the discretization of the linear
problem, for which the solution (u,T) ∈ X×M is defined as the one satisfying

∫

Ω

T : S−
∫

Ω

ε(u) : S+

∫

Ω

ε(v) : T =

∫

Ω

f · v ∀ (v,S) ∈ X×M.

In view of the discussion in Section 5.3, any pair of discrete spaces satisfying ε(Xn,h) ⊂ Mn,h, such
as in (5.50) or in (5.51), yields an inf-sup stable scheme. In contrast, unstable modes (that violate the
discrete inf-sup condition with an h-independent positive inf-sup constant) can be proved to exist when
using the pair in (5.52). However, for the exact (smooth) solution

u(x, y) =

(
x ey

sinx

)
, T(x, y) = ε(u(x, y))

on a square domain Ω = (0, 1)2, the finite element approximations using this unstable pair showed no
signs of instability in our numerical experiments. In fact a linear rate of convergence for ‖∇(u−uh)‖L2(Ω)

and ‖T−Th‖L1(Ω) was observed in the limit of h → 0; see Figure 1.

It is worth mentioning that, when using (Q1
h)

d×d
sym instead of (Q0

h)
d×d
sym for Th, the approximation of uh

remains exactly the same while the approximation of Th is more accurate on any given subdivision, but
it still only exhibits first-order convergence as h → 0. The intriguing fact that, for the exact solution
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Figure 2. Crack problem. A horizontal compressive force Tn = (f, 0)T for f > 0 is
applied on the side III, while no force (i.e., Tn = 0) is imposed on the side marked by
I and II. The top and bottom sides are fixed, i.e., u = 0.

(u,T) considered above, the scheme exhibits the optimal rate of convergence dictated by interpolation
theory, even though an inf-sup unstable finite element pair is being used, will be the subject to future
work.

8.4. Crack problem. We consider the “crack problem” described in Figure 2. A horizontal force of
magnitude f is applied to the right face of the domain (III), while the left faces (I and II) are free to
deform (i.e., no external force is being applied there). The top and bottom (IV) are fixed with u = 0.

We set λ(s) = µ(s) = (1 + s2)−
1
2 . In view of the performance observed in Section 8.2, we set the

numerical parameters at τ = 2, n = 100, and t = 1. The domain is partitioned into 16384 quadrilaterals
of minimal diameter h = 0.011. The stress is approximated in (Q0

h)
d×d
sym and the displacement in (Q1

h)
d ∩

Xn. In Figure 3, we provide the deformed domain predicted by the algorithm for different values of f .
We also report in Table 3 the evolution of ‖∇uh‖L∞(Ω) and ‖Th‖L∞(Ω) as the magnitude of the force
increases. The influence of the latter is severe on ‖Th‖L∞(Ω) while relatively moderate on ‖ε(uh)‖L∞(Ω) ≤
‖∇uh‖L∞(Ω). This is in accordance with the properties of the strain-limiting model considered.

Figure 3. Crack problem. The deformed domain for different force-magnitudes f =
0.25, 0.5, 0.75, 1 (from left to right) pulling the right face of the computational domain.
The gray scale describes the magnitude of the displacement |u|, where white corresponds
to 0 and black to 0.92.
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f = 0.25 f = 0.5 f = 0.75 f = 1 f = 1.25 f = 1.5
‖∇un,1,h‖L∞(Ω) 1.0656 2.2510 3.5032 5.2703 7.0492 8.8003
‖Tn,1,h‖L∞(Ω) 0.92231 5.3090 18.17 46.5215 95.3902 166.335

Table 3. Evolutions of ‖∇uh‖L∞(Ω) and ‖Th‖L∞(Ω) as functions of the force-magnitude
f pulling the right face of the domain. The influence of increasing the magnitude of the
force is severe on the stress while relatively moderate on the strain. This is in accordance
with the properties of the strain-limiting model considered.
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