
Discerning Chemical Pressure amidst Weak Potentials: Vibrational
Modes and Dumbbell/Atom Substitution in Intermetallic Aluminides
Katerina P. Hilleke and Daniel C. Fredrickson*

Department of Chemistry, University of WisconsinMadison, 1101 University Avenue, Madison, Wisconsin 53706, United States

*S Supporting Information

ABSTRACT: The space requirements of atoms are generally
regarded as key constraints in the structures, reactivity, and
physical properties of chemical systems. However, the
empirical nature of such considerations renders the
elucidation of these size effects with first-principles calcu-
lations challenging. DFT-chemical pressure (DFT-CP)
analysis, in which the output of DFT calculations is used to
construct maps of the local pressures acting between atoms
due to lattice constraints, is one productive approach to
extracting the role of atomic size in the crystal structures of
materials. While in principle this method should be applicable
to any system for which DFT is deemed an appropriate
treatment, so far it has worked most successfully when semicore electrons are included in the valence set of each atom to supply
an explicit repulsive response to compression. In this Article, we address this limiting factor, using as model systems
intermetallics based on aluminum, a key component in many structurally interesting phases that is not amenable to modeling
with a semicore pseudopotential. Beginning with the Laves phase CaAl2, we illustrate the difficulties of creating a CP scheme
that reflects the compound’s phonon band structure with the original method due to minimal core responses on the Al atoms.
These deficiencies are resolved through a spatial mapping of three energetic terms that were previously treated as homogeneous
background effects: the Ewald, Eα, and nonlocal pseudopotential components. When charge transfer is factored into the
integration scheme, CP schemes consistent with the phonon band structure are obtainable for CaAl2, regardless of whether Ca
is modeled with a semicore or valence-only pseudopotential. Finally, we demonstrate the utility of the revised method through
its application to the La3Al11 structure, which is shown to soothe CPs that would be encountered in a hypothetical BaAl4-type
parent phase through the substitution of selected Al2 pairs with single Al atoms. La3Al11 then emerges as an example of a more
general phenomenon, CP-driven substitutions of simple motifs.

1. INTRODUCTION

One need only glance through the various definitions of atomic
radii in common use to see both the vital role that atomic size
plays in our understanding of chemical systems and the
challenges it poses. Covalent, ionic, metallic, and van der Waals
radii are frequently referred to in discussions of interatomic
distances,1 while alternative definitions have been derived from
such diverse sources as the maxima in radial density
distributions,2 the sphere radii that enclose a specific fraction
of the electron density,3 or even pseudopotential parameters.4

The issue of defining atomic size is compounded by the
qualifiers (oxidation state, bond order, hybridization, coordi-
nation number) that often accompany these radii. This wide
range of radii for any given element emphasizes that an atom’s
size is highly dependent on its electronic context.
The connection between size and electronic structure would

seem to make quantum mechanical calculations a valuable
resource for understanding the spatial requirements of atoms
in any given structure. Indeed, several schemes have been
devised for determining the volume occupied by an atom from
a compound’s electron density, such as the quantum theory of

atoms in molecules5,6 and the iterative Hirshfeld7−9 or
stockholder atom approaches.10 However, it remains challeng-
ing to extract information about how the strain in atomic
packing due to size constraints influences the structure and
properties of a molecule or material from theoretical
calculations alone. Establishing such a method with these
capabilities is particularly important for intermetallic phases. In
this broad family of solid state compounds, atomic size is
empirically known to play a key role in defining the stability
ranges of the diverse structures encountered,11,12 and such
effects are frequently invoked when structural phenomena are
explained here in a manner analogous to that of sterics in
organic chemistry.13−21 These discussions would benefit from
theoretical tools that analyze how the atomic size factor
specifically directs these structural phenomena.
Recently, we demonstrated that, as a simple implementation

of the quantum mechanical stress density formalism,22−26 the
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chemical pressure (CP) method can illuminate the interaction
between atomic size and electronic structure.27−31 This
approach has allowed the elucidation of a number of structural
phenomena in intermetallic phases, such as the deletion of
atomic layers to create superstructures,29 the formation of local
icosahedral ordering in quasicrystal approximants,32 the
substitution of atoms and dumbbells,33 the appearance of
incommensurately spaced layers of atoms,34 and the inter-
growth of incompatible domains.35−37 We have also found that
the CP schemes of a material can provide a window into its
vibrational modes, where atoms with quadrupolar CP
distributions are subject to soft atomic motions along preferred
directions highlighting potential paths for phase transitions or
modulations.31,34

In principle, this approach is applicable to all systems in
which DFT is considered a reasonable treatment of the
electronic structure. In practice, however, the method relies on
the interpretation of maps in which atomic core regions with
positive pressure stand out against a shallower background of
negative pressure. Depending on the pseudopotentials used,
the pressure magnitudes in the core regions can vary widely,
and the CP method has been most useful in cases where
combinations of pseudopotentials can be chosen such that the
core responses on different elements are of comparable
magnitudes. Unfortunately, this condition excludes a large
fraction of intermetallic chemistry, as the available pseudopo-
tentials for certain staple elements, such as Al and Si, are so
soft that the current implementation of the CP approach shows
only minimal activity in their core regions.
In this Article, we will introduce improvements to the DFT-

CP approach that allow insights into systems involving such
soft pseudopotentials. Our first model system will be the
compound CaAl2 (Figure 1, left), a MgCu2-type phase whose

valence electron density38 and electron localization function
(ELF)39 have been previously analyzed, and whose ternary
variants have been extensively studied in efforts to understand
the structural preferences within Laves phases.40−44 Using the
original CP method, we will see negative Al−Al pressures
emerge for this compound that cannot be reconciled with the
phonon band structure of the material, in contrast to results
previously obtained for its Pd analogue, CaPd2.

31 We will then
reexamine the energetic terms included in the CP maps,
improving the treatment of contributions added homoge-
neously to the map in the original method. After demonstrat-
ing the revised method’s ability to account for the most striking
features of CaAl2’s phonon band structure, we will apply it to
explaining the more complex structure of La3Al11 (Figure 1,
right)45 where Al−Al repulsion will be seen to play a decisive
role.

2. COMPUTATIONAL DETAILS

DFT-CP calculations were performed on CaAl2, CaPd2, LaAl4
(in the BaAl4-type), and La3Al11. First, non-spin-polarized
LDA-DFT geometry optimizations were carried out using the
ABINIT software package46−49 with Hartwigsen−Goedecker−
Hutter norm-conversing pseudopotentials.50 Following the
determination of the LDA-DFT optimized geometry, calcu-
lations were performed at the equilibrium geometry as well as
at isotropically expanded and contracted volumes (±0.5%) in
preparation for the chemical pressure analysis. Kinetic energy
and electron densities as well as local components of the
Kohn−Sham potential were mapped over a 3D voxel grid.
Further details, including the k-point grids and energy cutoffs
used in the calculations, may be found in the Supporting
Information.
The phonon band structures of CaPd2, CaAl2, and LaAl4

were calculated with ABINIT using the linear-response
method.51,52 Beginning from a wavefunction file generated
for the optimized geometry with a Γ-centered k-point grid,
atomic linear responses in all three directions were determined
via non-self-consistent calculations at individual q-points, with
one q-point for each k-point in the reference calculation. From
these linear response calculations, the ABINIT utilities mrgddb
and anaddb were used to determine force constants for all
atoms. Phonon modes were visualized using Figuretool2, an in-
house MATLAB application.
In order to determine Bader charges for use in the CP

analysis, geometry optimizations were carried out in the
Vienna Ab initio Simulation Package (VASP)53,54 using PAW-
GGA pseudopotentials55,56 in the high precision mode. The
program Bader57−59 was used to extract atomic charges from
the charge density files output by VASP.60 The atomic
pseudopotentials engine (APE)61 was then used to generate
radial electron density profiles corresponding to a range of
charges from 0 to 100% of the Bader charge as applicable for
use in the Hirshfeld-inspired integration scheme.
Prior to carrying out the generation and integration of the

chemical pressure maps, the nonlocal pseudopotential energy
was mapped for the expanded and contracted geometries from
the ABINIT calculations using the new program CPnonlocal,
which produces as output XSF files containing the mapped
nonlocal energy. These were read into the updated Chemical
Pressure Software Package (CPpackage2, available on the
Fredrickson group Web site at http://www.chem.wisc.edu/
~danny/software). CP maps were generated with core
unwarping using tricubic interpolation.30 For the creation of
CP schemes, unit cells were partitioned into contact volumes
between pairs of atoms using the Hirshfeld-inspired scheme.
Following averaging of the CP contained within these contact
volumes, the resulting interatomic pressure contributions were
projected onto atom-centered spherical harmonics (l ≤ 4), and
the results were visualized with Figuretool2.

3. RESULTS AND DISCUSSION

3.1. Energy Partitioning in the CP Method. Over the
course of this Article, we will introduce revisions to the CP
approach to make it more amenable to atoms modeled with
soft pseudopotentials for which interatomic interactions do not
appear to elicit strong repulsive core responses. Let us begin
with a brief review of the current CP map generation scheme,
with particular attention to the energetic terms that are most
likely tied to pseudopotential dependence.

Figure 1. The crystal structures of CaAl2 and La3Al11, model systems
to be used in the CP method development of this work.
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In the production of CP maps, the first step is to create an
energy density distribution for a structure based on the total
DFT energy:

E o V V r

E E E
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where oj is the occupation of the one-electron eigenfunction
ψj.

62 This expression can be partitioned into two sections. The
upper line corresponds to a mappable portion. The energy
density corresponding to the integrand here can be
constructed on a grid of voxels (the three-dimensional
analogues of pixels), using the kinetic energy density, electron
density, and components of the Kohn−Sham potential (minus
the divergent Fourier components at the origin of reciprocal
space, G = 0) provided by the output of a DFT calculation.
The lower line of eq 1, however, contains terms that are not

easily expressed as a simple integral over 3D space: EEwald + Eα

corresponds to the potential energy of a homogeneous electron
gas combined with the pseudopotential ion cores, merging the
G = 0 components of the electron−electron and electron−ion
potential energies and the internuclear repulsion in a
nondivergent manner. The third nonmappable term, Enonlocal,
represents the nonlocal component to the pseudopotential-
electron interaction energy. Until now, we have simply treated
these as homogeneous contributions to the energy map.
With these spatially resolved DFT energy maps in hand, we

can derive a chemical pressure (CP) function by determining
how the energy contained in each voxel changes as the
structure is slightly expanded and contracted. The simplest
expression for this calculation is given by

P
E

V
E E

V Vn
n n n

voxel voxel voxel
= −

∂
∂

≈ −
−
−

+ −

+ −
(2)

with En
+ and En

− being the contributions to the DFT total
energy from voxel n in the expanded (+) and contracted (−)
structures, respectively. A somewhat more sophisticated
approach is given by the core-unwarping procedure, in which
an interpolation is used to reduce the motions of the grid point
positions relative to the atomic core regions between the
expanded and contracted structures.30

For a metallic system, a CP map generally consists of a bath
of negative pressure spread across the interstitial regions of the
unit cell with positive CP features being centered on atomic
cores, as illustrated in Figure 2a. Finer features may be
discerned within the positive core response regions, distorting
them from spherical symmetry, or in the negative background
of the CP map.
Determining the net character of any particular interatomic

interaction, i.e., its magnitude and whether it is attractive or
repulsive, requires us to integrate the positive CP core features
and negative CP interstitial space corresponding to that
interaction. To do this, we divide the unit cell volume into
contact volumes (following one of numerous possible schemes)
that represent the regions of space assigned to the interactions
for pairs of atoms. The individual chemical pressures for the
voxels within a particular contact volume are then averaged to
give a single chemical pressure value for the contact.
For a CP analysis to be successful, then, each contact volume

must enclose the proper balance of positive and negative CP to
accurately represent the spatial preferences of each atom. In

our prior work, we developed a scheme for constructing
contact volumes inspired by the Hirshfeld scheme63 for
assigning atomic charges.30 In the Hirshfeld charge scheme, a
hypothetical pro-density is first created from a superposition of
free atom electron densities. The ground state electron density
of a structure at each point is then divided between atoms
according to their relative contributions to the pro-density at
that point. This can be simply generalized to dividing space
into contact volumes for the CP method: one just assigns a
voxel to the pair of atoms that contribute the most to the pro-
density at that voxel. Using this Hirshfeld-inspired scheme, we
have been able to explain a variety of structural phenomena
and highlight the connection between the presence of soft
phonon modes and structural features, particularly when free
atom electron densities are replaced with those of anions or
cations to account for the ionicity of a compound.31 We are in
the process of developing a new method that circumvents the
use of free-atom reference states and adjustable ion charges,
but for now we will continue to use this Hirshfeld-inspired
approach.
Here, we focus instead on difficulties that can arise from the

features of the CP maps themselves, particularly in cases where
atoms of very dissimilar elements are combined. To illustrate
this issue, we show in Figure 2 a series of CP maps for two
compounds: the MgCu2-type phases CaAl2 and CaPd2. The
majority elements, Al and Pd, have pseudopotentials of quite
different character. Al is often cited as an exemplar of nearly
free electron character;64 as such, its pseudopotential is very
soft. Pd, however, with its localized 4d10 subshell, is modeled
by a much harder pseudopotential. This difference is evident in
the CP maps, where the Pd atoms are decorated by intense

Figure 2. Pseudopotential dependence of core responses in the
original CP method. (a) Slice through the CP map of MgCu2-type
CaPd2. (b) CP maps for CaAl2 and CaPd2 with semicore or valence-
only pseudopotentials. Contours at CP = 0.0 are overlaid in black.
Pressures on the color bar labels are given in TPa.
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rings of positive CP, while the corresponding features for the
Al atoms are barely perceptible.
The CP features of the Ca atoms present in both

compounds can also prove illuminating in this comparison.
For CaPd2 (Figure 2b, top row), a semicore Ca pseudopoten-
tial is needed for the Ca core response to stand out against the
Pd atoms’ features. In CaAl2 (Figure 2b, bottom row), the use
of a semicore pseudopotential on Ca completely drowns out
any Al core response, and even a valence-only pseudopotential
confers a much stronger response on the Ca atoms than is seen
around the Al ones. These disparities have consequences for
the integrated CP schemes: positive CP cannot arise between
two atoms whose CP core responses are nigh undetectable
against the negative CP background. Thus, the CP method has
worked best for combinations of elements with similar core
properties, which is an unfortunately narrow range of elements.
In the following sections, we will work to address this

limitation, allowing the CP method to be used freely for a
variety of elemental combinations. Of particular importance
will be the nonmappable energy terms: EEwald, Eα, and Enonlocal.
3.2. Vibrational Modes: CaPd2 vs CaAl2. In our

development of a revised CP map formalism, it will be very
helpful to have a clear view of what a correct CP scheme
should look like. As we saw in our previous analysis of
CaPd2,

31 the phonon band structure of a material can provide a
guide to calibrating the CP method. In Figure 3a, we revisit
these results, beginning with the integrated CP scheme of
CaPd2. Here, the CPs experienced by each atom are illustrated
with radial plots using our standard convention: the length of a
CP lobe emanating from an atom is proportional to the sums
of the pressure contributions along that direction (after
averaging within contact volumes). The color of the lobes
indicates the sign of the CP: negative CP is indicated by black
(by analogy to black holes) and highlights contacts that would
be stabilized by the contraction of the structure. Positive CP,
conversely, is displayed as white, indicating contacts that would
be stabilized by expansion.
The distribution of white and black lobes throughout the CP

scheme of CaPd2 highlights a fundamental tension within the
structure. Black CP features point from the atoms into the
interstitial spaces between the Ca atoms (arranged in a
diamond network) and the Pd atoms (arrayed in tetrahedra
that share corners to form a separate diamond network). The
Ca−Pd contacts are then overly long, and call for the structure
to shrink. However, the structure is prevented from contracting
by positive CPs (white lobes) along the Ca−Ca and Pd−Pd
contacts. The homoatomic contacts are already too short and
push toward expansion of the structure.
As we described earlier in a mode-by-mode analysis,31 these

CP features are in close accord with CaPd2’s phonon band
structure. In Figure 3b, we summarize these results with a
phonon density of states (DOS) distribution plotted alongside
selected vibrational modes at the Γ point. Here, the stiffest
atomic motions tend to run along positive CPs, where
contraction of interatomic distances is expected to face an
exponentially growing energetic cost. The softer atomic
motions, meanwhile, occur along directions of negative CP,
where the contraction of distances is favorable and stretching
them leads to interactions whose energies asymptotically
approach zero (i.e., the local curvature of the interatomic
interaction energy with respect to distance is negative).
A particularly important feature in this scheme is the

presence of a CP quadrupole on each Pd atom (Figure 3a) in
which the positive and negative CP features on a single atom
are arranged perpendicular to each other, creating strong

Figure 3. Calibration of CP schemes against phonon frequencies. (a)
CP scheme of CaPd2. CP plots for the Ca atoms on the cell edges are
omitted for clarity. (b) Phonon density of states (DOS) calculated for
CaPd2, with selected modes at the Γ point plotted in the context of
the CP scheme. (c) Phonon DOS of CaAl2, and selected modes at the
Γ point used for calibration of its CP scheme. (b) is adapted from ref
31 with the permission of the American Chemical Society.
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anisotropy. Indeed, the Pd atoms dominate both the highest
and lowest frequency optical modes at the Γ point,
corresponding respectively to motions parallel and perpendic-
ular to the positive axis of the CP quadrupole. With respect to
the Ca atoms, the lack of a CP quadrupole is reflected in the
smaller gap separating high-frequency from low-frequency
modes.
How do these features change when we move to CaAl2, a

compound with the same structure type but different
elements? In Figure 3c, we show the phonon DOS of CaAl2,
as well as the analogous modes at the Γ point to those
highlighted for CaPd2 in Figure 3b. Two of these modes
involve motions of the Al atoms, and as in CaPd2, the high
frequency one corresponds to the contraction and expansion of
the Al/Pd tetrahedra. The other Al-based mode is among the
lowest frequency optical modes, corresponding to concerted
tilting of the tetrahedra that largely preserve the near-neighbor
Al−Al distances. Just as for their CaPd2 counterparts, the
frequency difference between these two Al-based modes spans
nearly the whole range of optical modes. Here, though, the
range of frequencies is larger than in CaPd2, as may be
expected from Al’s smaller atomic mass. The large energy
splitting between these two modes, which was also present in
CaPd2, is suggestive of the presence of CP quadrupoles on the
Al atoms, oriented so that the Al−Al contacts display positive
CP.
By contrast, the Ca vibrations are distributed differently

across the phonon density of states (DOS) of CaAl2 than in
CaPd2, as can be seen in the projected DOS curves (pink in
Figures 3b,c). For CaPd2, the Ca projected DOS is split across
a deep minimum at about 5 THz, roughly at the center of the
frequency range. The two Ca-based phonon modes at Γ in
Figure 3b straddle this DOS minimum, with the lower and
upper modes corresponding to in-phase and out-of-phase
motions of the Ca atoms. In CaAl2, the Ca projected DOS is
concentrated in the lower half of the phonon band structure,
below the most prominent DOS minimum. Perhaps more
strikingly, the order of the modes with in-phase and out-of-
phase motions of the Ca atoms has become reversed.
The potential origins of these trends become clearer when

we consider the role that the atomic mass difference between
Pd and Al plays in these modes.65 As is shown in the
Supporting Information, the out-of-phase Ca vibrational mode
involves only motions of the Ca atoms; the Pd or Al atoms
remain fixed in place due to symmetry constraints. The relative
frequencies of this mode in CaAl2 and CaPd2 can then be used
to directly compare the stiffness of the Ca atom motions in the
two structures. Its lower frequency in CaAl2 than in CaPd2 (5.1
vs 6.0 THz) suggests that the Ca atoms in CaAl2 have an
effectively looser coordination environment. The in-phase Ca
mode, however, involves motion of both the Ca and Al/Pd
atoms as the two sublattices slide relative to each other. As
such, the frequencies of this mode will be influenced by the
atomic mass of the Al or Pd. As Al atoms are significantly
lighter than Ca and Pd, the in-phase mode appears in CaAl2 at
higher frequencies than it does in CaPd2 (5.6 vs 3.8 THz),
allowing for the frequencies of the in-phase and out-of-phase
motions to be inverted.
In our earlier analysis of CaPd2, we attributed the higher

frequency of the out-of-phase Ca-based mode to positive Ca−
Ca CP lobes that appear when the charges of the Ca and Pd
atoms used in the Hirshfeld-inspired contact volume
construction are set to ca. 50% of those obtained in a Bader

analysis. However, the comparison with CaAl2 makes it clear
that the lower frequency of the in-phase mode in CaPd2 could
also be explained in terms of the heavier mass of the Pd atoms
that are also involved in the mode. In this way, the influence of
the atomic mass difference between Ca and Al or Pd in the
relative frequencies of the Ca-based modes makes it more
difficult to derive from them specific expectations for the CP
scheme. The Al/Pd-based modes in Figure 3b,c, by contrast,
involve exclusively motions of those atoms, making their
correlations to the CP scheme cleaner. The Al atoms are
clearly expected to show CP quadrupoles whose positive poles
align with the Al−Al interactions.
Upon carrying out a CP analysis on CaAl2, however, the

difficulties of deriving CP schemes for Al-containing
intermetallics become apparent. In Figure 4, we illustrate CP
schemes for CaAl2 using both semicore and valence-only Ca
pseudopotentials, and with a range of ionicities used in the
Hirshfeld-inspired integration scheme. In each case, the Al
atoms exhibit black negative CP lobes pointing toward each of
their six Al neighbors. For most of the schemes, the Al atoms

Figure 4. CP schemes of CaAl2 calculated with (a) semicore and (b)
valence-only Ca pseudopotentials and assuming different charges
during the integration of the CP maps (expressed as percentages of
the Bader charges). Negative Al−Al CPs occur in all cases, in
contradiction to the expectations derived from the phonon band
structure.
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also display smaller positive CP features directed toward the
Ca atoms, nearly the opposite of the CP quadrupole
anticipated by the phonon band structure. The concentration
of the negative CP on the Al atoms results in largely positive
CPs on the Ca, which can be directed toward the other Ca
atoms or toward the Al, depending on the ionicity parameter.
These difficulties can be simply understood from the

features of the CP maps described above. The Al atoms in
these maps display only faint core responses (Figure 2). As the
contact volumes between Al atoms have no significant source
of positive CP, the integrated CP schemes yield no positive
Al−Al CPs. In CaPd2, where the agreement between the CP
scheme and band structure is much stronger, the Pd atoms
show strong positive core responses even when combined with
semicore Ca pseudopotentials.
3.3. Revised Mapping Scheme. It thus appears that the

energetic terms leading to stiffness in the Al−Al interactions
evident in the phonon band structure are not being spatially
mapped correctly in the CP analysis. Particular suspects here
are terms treated as homogeneous background effects: the
Ewald energy, the Eα component, and the nonlocal
pseudopotential energy. We will now examine these terms in
detail to determine how their homogeneous mapping fails to
capture some key interatomic repulsions, and how they can be
spatially resolved.
3.3.1. Ewald Energy. The Ewald energy (EEwald) corre-

sponds to the electrostatic energy for a neutral system
consisting of an array of point charges (corresponding to the
ion cores) and a homogeneous electron gas. It is computed
using Ewald summation,66 in which the Coulomb interactions
are divided into short-range and long-range energetic
components that can be efficiently computed in real and
Fourier space, respectively.
While this energy term contains both an attractive (ion

core−electron) and a repulsive (ion core−ion core, electron−
electron) component, for intermetallic phases the attractive
portion dominates to the point that the EEwald is usually among
the largest contributors of negative pressure to the CP map.
Mapping it homogeneously has the advantage of highlighting
with negative pressure regions of space that are sparsely
populated, indicating how the atomic packing in these regions
is inefficient. However, as we saw above, this negative
background can become overwhelming for atoms modeled
with softer pseudopotentials.
An examination of how the EEwald is calculated can lead us to

ways of mitigating this issue. Following Martin,62 the EEwald for
a system of ions n and m with charges Zn

ion, unit cell volume
Vcell, and interatomic vectors τn,m is given (in atomic units) by
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where T and G are vectors of the real and reciprocal space
lattices, respectively, and the real-space self-interaction terms
(τn,n with T = 0) are excluded. In this equation, η is a

parameter governing the separation of the electrostatic
interactions into the short-range terms handled in real space
(sum over T), and the long-range ones in reciprocal space
(sum over G). Different choices of η can affect the speed of
convergence of these sums but leave the final value for EEwald
invariant.
This equation consists of sums and double sums over the

atoms within the unit cell, which can be rewritten in terms of
atomic contributions:
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From this equation, we can begin to see the origins of the
negative CP flooding over softer atoms. The contribution of
each atom to the EEwald is proportional to the number of
electrons (Zn

ion) it contributes to the valence set. This can lead
to very uneven contributions to the EEwald from the atoms of
the system, particularly when valence-only and semicore
pseudopotentials are mixed. For example, in CaAl2 with
valence-only pseudopotentials on both atoms, the Ewald
contributions are −2.31 Ha from Al and −1.43 Ha from Ca.
When a semicore pseudopotential is used for Ca, taking it from
Zion = 2 to Zion = 10, the Ewald contribution from Ca is raised
to −21.55 Ha (with the Al component now being −3.61 Ha).
This results in a much more negative EEwald for the system,
which is balanced around the Ca atoms by the large positive
pressures decorating the core regions but washes out any
positive core response from the Al atoms, biasing their
interactions toward negative CPs.
What might be a better way of mapping the EEwald? One

simple approach is to consider whether every electron that an
atom contributes to the system should also be contributing to
the homogeneous background pressure. For example, semicore
electrons could be considered to be so localized to their ion
core that their contribution to the Ewald energy should be
mapped locally to that atom rather than distributed over the
whole structure.
Formally, this can be done by splitting the Zn

ion variables into
two terms: Zn

ion = Zn
itin + Zn

loc, corresponding to the numbers of
electrons each atom contributes that should be considered as
itinerant over the structure (from the point of view of the
EEwald, rather than in the sense of metallic conductivity) and
localized to their atom of origin, respectively. Upon making
this substitution in eq 4, the Ewald energy can be separated
into a term that depends exclusively on the Zn

itin values and one
that includes the effects of the localized electrons:

E E EEwald Ewald
itin

Ewald
loc= + (6)

where
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corresponds simply to the Ewald energy for a system with the
ion cores having charges of Zn

itin. The remainder has a more
complicated form:
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But, as is evident from its form as a sum over ions n, this
expression can still be partitioned into contributions from
individual atoms.
Once this breakdown of the EEwald is made, a path opens to

reducing the negative background pressure to accommodate
softer atomic pseudopotentials. Consider again the case of
CaAl2 modeled with a semicore Ca pseudopotential, in which
the Ca 3s23p6 electrons are considered part of the valence set.
If we assign each Ca atom’s eight semicore electrons as
localized, the Ca localized Ewald component comes to −22.85
Ha out of the total −24.25 Ha for the Ca atom, which is nearly
an order of magnitude larger that the Al atoms’ Ewald
contributions of −2.26 Ha/atom. If we were to remove this
localized Ewald component from the homogeneous back-
ground (concentrating it instead around the Ca atoms), each
Ca then adds only −1.40 Ha to the homogeneous part. This
redistribution would greatly reduce the negative CP back-
ground, allowing a greater positive core response on the Al
atoms to emerge.
In implementing such a scheme, we face the issue of how the

localized atomic Ewald energies should be distributed around
their respective atoms. To explore this question, we have tested
a number of schemes. We first tried a homogeneous
distribution of the energies within atomic cells defined for
each atom as the volume where it has the largest weight in the
Hirshfeld scheme. However, this results in discontinuous steps
in the CP map at the atomic cell boundaries and relatively poor
agreement between CP schemes calculated using semicore and
valence-only pseudopotentials of the same element (see the
Supporting Information).
We then considered mappings of the localized Ewald

energies which would generate a more continuous CP map.
Such functions would have a large proportion of the localized
Ewald energies near the atom cores and near negligible
amounts at larger distances from the atomic center. On this

basis, we tested schemes in which an atom’s localized Ewald
energy is distributed to the voxels within its atomic cell in
proportion to either the semicore electron density at that voxel
or the total DFT electron density at that voxel. As is
demonstrated in the Supporting Information, the use of the
total electron density as a weighting function gives CP schemes
with greater consistency between pseudopotential choices than
using the semicore density. The success of this approach may
stem from its tendency to spread the localized Ewald energy
over a radial extent similar to that of the atom’s positive CP
core features.
In Figure 5, we illustrate the effect that such a reallocation of

the localized Ewald energies on the Ca has on the overall CP
map of CaAl2 calculated with a semicore Ca pseudopotential.
In the original CP map (Figure 5a), the Al atoms are again
nigh indistinguishable from the negative background pressure.
A CP = 0.0 contour is drawn over the map in black, from

Figure 5. Revised mapping of terms previously homogeneously
distributed in the CP analysis of CaAl2 (calculated with a Ca semicore
pseudopotential). The CP cross-section and integrated scheme
obtained with the original CP method are first shown in (a), with
the revised mapping of the (b) semicore Ewald, (c) Eα, and (d)
nonlocal pseudopotential energies being turned on in sequence.
Integrated CP schemes (generated assuming atomic charges equal to
50% of those obtained from a Bader analysis, i.e., 50% ionicity) are
shown.
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which it can be seen that the CP in the Al regions is entirely
negative. After the localized Ewald contributions were
reallocated to the Ca atoms (Figure 5b), the map changes
dramatically. Through the reduction in the negative back-
ground pressure, relatively large volumes surrounding the Al
atoms now have positive values of CP. The Ca core regions
also are starkly different, with much more anisotropic features
than before.
This mapping also has consequences for the integrated CP

scheme, as shown with 50% ionicity in the lower panels of the
figure. Without the Ewald redistribution the scheme shows
negative pressures along the Al−Al contacts and positive
pressures along the Ca−Al ones, in opposition to the
expectations derived from the phonon band structure and
the CP results of the isostructural CaPd2 phase. After the
Ewald redistribution is turned on, the decreased negative
pressure background in the Al region allows positive Al−Al
CPs to emerge, with the Ca−Al CPs now being negative. The
Al CP quadrupole implied by the phonon frequencies is now
achievable, illustrating the benefits of treating semicore
electrons as localized in the mapping of the EEwald.
3.3.2. Eα Term. The Ewald energy involves a homogeneous

electron gas interacting with point charges placed at the ion
core positions. Of course, the ion cores are not simply point
charges but have a more complex local potential reflecting the
presence of the core electrons. This correction factor owing to
the difference between the potentials used in EEwald and in the
ion cores of the true system is the Eα component of the total
energy, written as62
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where αn is just the integrated difference between the local
pseudopotential for atom n and the potential for a point
charge:
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Following our treatment of EEwald, Eα can be similarly
divided into itinerant and localized terms:
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With this partitioning, the localized atomic Eα contributions
can be calculated and mapped to atomic regions alongside
their EEwald counterparts. However, as is shown in Figure 5c for
CaAl2, the pressures arising from Eα are small enough that such
a spatial resolution has little consequence for a compound’s CP
scheme.
3.3.3. Nonlocal Pseudopotential Contributions. The

nonlocal pseudopotential energy arises from differential
screening of the s-, p-, d-, and f-components of the pseudo-

wavefunctions. The analytical form of the Hartiwigsen−
Goedecker−Hutter (HGH) norm-conserving pseudopoten-
tials50 used in this work makes it possible to construct maps of
these contributions using the planewave coefficients from the
one-electron pseudo-wavefunctions. For each atomic pseudo-
potential, the nonlocal contributions are given by separable
operators of the form:
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with

P p r Y r r r( ) ( ) ( ) dlm j
n

l j
n

lm, ,∭ψ ψ⟨ ⟩ = * ̂
(13)

where the pl,j
n (r)’s are Gaussian functions tightly focused

around the atomic center defined by parameters in the
pseudopotential, and a local coordinate system is used in which
r = 0 at the nucleus.
In this way, the Kohn−Sham Hamiltonian matrix element

between a pair of basis functions gains contributions of the hl,ij
n

terms weighted by the degree to which the functions share s-,
p-, d-, and f-character in the core regions for l = 0, 1, 2, and 3,
respectively, with the different Gaussians indexed by i and j
allowing for different radial extents to be explored. In
particular, the matrix elements between two planewaves are
given by
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where the functional forms of the pl,j
n (k′) functions are

provided in the original HGH paper.50

With this equation for the nonlocal planewave matrix
elements, contributions to the nonlocal energy can be resolved
by atom and l-component:

E E
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l
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nonlocal
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3

nonlocal,∑ ∑=
= (15)

Once these terms are obtained, we are now faced with the issue
of how they should be mapped spatially around their
corresponding atoms. While numerous choices are available,
the differential screening of the different l-components is an
effect associated with the core of the atom, where the potential
is expected to be largely spherically symmetric. The major
challenge is then to decide how tightly these terms should be
localized to the core of the atom. The form of the nonlocal
operators in eq 12 provides some guidance here. The nonlocal
energy component from eigenstate ψv contains terms of the
form

Y Y h p r p rr r r r r rd d ( ) ( ) ( ) ( ) ( ) ( )lm lm l ij
n

l i
n

l j
n

v v, , ,∭ ψ ψ′ ̂ * ′̂ ′ * ′
(16)

whose r = r′ components are simply the electron density
contribution from that state weighted by a product of two
core-centered Gaussian functions and an angular function. The
contributions from different r values will then be strongest
where the pl,i

n (r) pl,j
n (r) and ψv*(r) ψv(r) products are simulta-

neously large. Distributions of the Enonlocal,l
n terms that behave
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in this way can be constructed by replacing the Ylm terms with
1 to produce a spherically symmetric projector and the
wavefunction terms ψv*(r) ψv(r′) with the electron density
ρ(r), while setting r = r′:
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with rn being the position of atom n.
How does this mapping of the nonlocal energies affect the

CP scheme of CaAl2? In Figure 5, we continue with the case of
Ca being treated with a semicore pseudopotential. The atomic
nonlocal pressures of the Al atoms are positive (5.5 GPa/
atom) and yield positive CP contributions, while those of the
Ca are negative (−23.9 GPa/atom). The mapping of these
positive nonlocal pressures near the Al atomic centers then
leads to a small enhancement of their core responses. The CP
features near the Ca atoms, meanwhile, are lessened,
permitting anisotropic core features to surface. In the
integrated scheme, this results in even stronger positive Al−
Al CPs and more significant Al CP quadrupoles.
The importance of the nonlocal CP contributions is more

pronounced in the case where Ca is modeled with a valence-
only pseudopotential, and thus no localization of the EEwald or
Eα terms is applicable. In the original scheme, the CP features
on the Al atoms are reversed relative to the dictates of the
phonon band structure (Figure 6a), just as in the semicore
case. Turning on the mapping of the Al nonlocal pressures
leads to much more significant positive core responses around
the Al atoms. The nonlocal atomic pressures for the Ca,

however, are negative, and mapping them leads to a reduction
of the positive core responses on the Ca. The combined effect
is that the integrated CP scheme (Figure 6b) now shows
positive Al−Al CPs and negative Ca−Al ones, in agreement
with our analysis of the frequencies of the structure’s phonon
modes. The final scheme also shows close correspondence to
that obtained with a Ca semicore pseudopotential once the
localized EEwald, Eα, and Enonlocal terms are mapped (Figure 5d).
The integrated schemes shown so far have been generated

by assuming that the charges on the Ca and Al are 50% of
those obtained in a Bader charge analysis. We are now in a
position where we can fine-tune the CP scheme through
adjustments of the atomic charges used in the Hirshfeld-
inspired scheme for constructing contact volumes. In the case
of CaAl2, with Bader charges of +1.2 on Ca and −0.6 on Al, the
large occupancy of the 3p orbital for an Al0.6− anion prevented
us from being able to obtain a converged ground state far
beyond 75% of this charge. Nonetheless, the 0% to 75%
ionicity range of charges is sufficient to see the role that this
parameter plays in the analysis.
For the results of both pseudopotentials with neutral free

atomic electron densities, the Al−Al contacts (as well as the
Ca−Ca ones for the valence-only Ca case) display positive CPs
while the Ca−Al contacts show negative CP (Figure 7, top). At
higher ionicities, these Al−Al positive CPs persist, as could be
expected from the growing size of the Al anions. The Ca−Al
contacts remain characterized by negative CP as well. The only
major change across the schemes is the growth of negative CP
along the Ca−Ca contacts with increasing ionicity, reflecting
the decrease in the effective size of the Ca cations.
The classic sphere packing model of the MgCu2 type, as

analyzed with near-neighbor diagrams by Pearson,67−69

provides a useful framework for interpreting these trends. If
we consider an AB2 MgCu2-type Laves phase as a packing of
hard spheres with radii rA and rB, it is impossible to achieve
contacts between the A and B spheres without forcing overlap
at the A−A or B−B contacts. At the ideal radius radio rA/rB =
1.225, the B spheres and A spheres are in contact with each
other along the homoatomic contacts, leaving gaps along the
A−B interatomic paths. Obtaining shorter A−B distances
would then require the spheres to overlap or flatten at the A−A
and B−B contacts, a conflict that corresponds well to the 0%
ionicity, valence-only Ca CP scheme in Figure 7, where Ca−Al
negative CPs are countered by positive Al−Al and Ca−Ca
CPs. For smaller rA/rB ratios, the gaps appear along both the
A−A and A−B interatomic paths, which are now prevented
from closing solely by the B−B contacts. This picture coincides
with the CP schemes with increased ionicity, where both the
Ca−Al and Ca−Ca interactions are marked by negative CP
and resisted only by the Al−Al interactions.
The Al CP quadrupoles that appear across these schemes are

in close accord with our analysis of the phonon modes of the
system. For a range of ionicity choices, vibrations correspond-
ing to contractions of the Al tetrahedra are now correctly
predicted to be stiff by the CP schemes, with softer modes
being expected for the twisting of the Al tetrahedra.
As we described in section 3.2, it is more difficult to derive a

clear prediction for the sign of the Ca−Ca pressure from the
phonon frequencies. We can note, though, that the placement
of the mode with out-of-phase motions at the bottom of the
phonon band structure would point toward the negative Ca−
Ca CPs seen at higher ionicities. These schemes at ionicities
between 50 and 75% have the added advantages of showing

Figure 6. CP maps and integrated schemes for CaAl2 calculated with
a valence-only pseudopotential for the Ca atoms. (a) With
homogeneous mapping of the Ewald and nonlocal components,
only a minimal core response on the Al atoms is achievable. (b) With
mapping of the nonlocal energy, stronger positive Al core responses
appear. The integrated CP schemes were generated by assuming
atomic charges equal to 50% of those obtained from a Bader analysis.
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qualitative agreement between the schemes calculated with
semicore and valence-only pseudopotentials, and involving
atomic charges similar to those expected for the system.
Overall, then, the revised mapping of the localized EEwald, Eα,

and Enonlocal terms have addressed the challenges we originally
encountered for CaAl2.
Upon applying the revised method to the CP analysis of

CaPd2, we obtain a picture similar to that of CaAl2 (see the
Supporting Information for a range of pseudopotential
choices). The presence of CP quadrupoles on the Pd atoms
persists across these schemes for reasonable choices of the
ionicity. The Ca−Ca contacts, however, are now marked by
negative CP, without the positive lobes that we earlier used to
explain the relative ordering of the phase’s Ca-based phonon
modes. In section 3, though, we saw that such positive Ca−Ca
CPs are not essential to interpretating the features of the
phonon band structure: the involvement of the heavier Pd
atoms in the in-phase mode but not the out-of-phase mode can
also explain their order in frequency.

3.4. Demonstration: Origins of the La3Al11 Type. New
opportunities emerge from the revisions to the CP approach
described in the previous sections: intermetallic aluminides
exhibit a diverse structural chemistry that ranges from simple
variants of the fcc and bcc structures to icosahedral and
decagonal quasicrystals,70−73 but the softness of the Al
pseudopotentials has limited the insights obtainable with the
CP method for these systems. To illustrate these new
opportunities, let us consider a moderately complex structure,
La3Al11.

45 This compound represents a vast family of structures
that can be derived from the simple BaAl4 type, including the
CaAl4 and EuIn4 types74,75 as well as the structures of
La2NiAl7

76 and RE7Zn21Tt2.
77 The La3Al11 type itself is also

parent to a number of ternary variants, including
Tb3Zn3.6Al7.4,

78 Dy3Co6Sn5,
79 Eu3Ag2In9,

80 and Y3Cu4Ga7,
81

with varying degrees of order in their coloring patterns. The
electronic driving forces stabilizing the La3Al11 type and its
parent structure have been explored extensively with
theoretical calculations, but the role of atomic size has been
so far inferred largely from indirect or empirical consid-
erations.14,39,82

We begin by showing how the La3Al11 structure is derived
from the BaAl4 type (Figure 8). In the BaAl4 type, square nets

of Al are capped above and below on alternate squares to make
sheets (which, in fact, are layers of edge-sharing Al@Al4
tetrahedra). These layers stack up along c such that each of
the outer atoms finds a neighbor directly above or below in the
next layer. This creates 16-coordinate polyhedra that
accommodate the cations (shown in Figure 8 with two
additional capping atoms to create space-filling volumes, for
ease of visualization). To see the relationship of this structure
to that of La3Al11, we first move to a 3 × 1 × 1 supercell of
“LaAl4”, producing a structure with a formula unit of “La3Al12”.

Figure 7. CP schemes of CaAl2 with (a) semicore and (b) valence-
only pseudopotentials on Ca. Nonlocal energies are mapped, as well
as the localized Ewald energy and Eα for CaAl2 with a semicore Ca
pseudopotential. As the ionicity is raised, the Ca−Ca CPs become
increasingly negative, reflecting the smaller size of the Ca cation. The
Al−Al CPs are positive throughout.

Figure 8. The structure of La3Al11 derived from a hypothetical BaAl4-
type parent compound. To aid visualization, sets of space-filling
volumes centered by the La atoms are highlighted in light green.
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The La3Al11 composition is then obtained by condensing a
selection of the Al2 pairs into single Al atoms where the Al
layers meet (one Al2 pair per formula unit, or two per cell
where Z = 2). The full La3Al11 structure is then obtained as the
structure relaxes around the substituted atoms, with 2/3 of the
La cations now having coordination numbers of 14 instead of
16, and appearing to lie in pseudopentagonal channels along
the a axis rather than hexagonal ones.
Such a contraction of the cation coordination environments

upon replacing Ba with La would seem to be in agreement with
the expectations of atomic size, with the metallic radius of La
being significantly smaller than that of Ba (1.87 Å vs 2.22 Å).
Using CP analysis, we can now test this notion and explore the
details of the driving forces leading to the La3Al11 structure.
We begin by exploring the CP tensions present in a

hypothetical BaAl4-type LaAl4 structure that might anticipate
the formation of the more complex observed structure. In
Figure 9a, we show CP schemes calculated for this LaAl4
structure using (1) the original homogeneous mapping of the
EEwald + Eα + Enonlocal terms and (2) the full mapping of the
Enonlocal term and the localization of the EEwald + Eα

contributions from the La semicore electrons to the La atomic
regions. The charges for both schemes are set to 75% of the
Bader charges. In the Supporting Information, versions
calculated with varying ionicity values are also provided,
illustrating that this parameter has little influence on the overall
CP features.
As in our earlier analysis of CaAl2, the revised mapping of

the EEwald + Eα + Enonlocal terms leads to drastic effects on the
CP scheme of LaAl4. With homogeneous mapping of these
contributions, the interactions involving La atoms mostly show
positive pressures, in line with the strong core responses
expected from the La semicore electrons. Meanwhile, the Al−
Al interactions are marked with negative pressure, as is
predestined by their small core responses and the depth of the
negative pressure background arising from the total Ewald
energy. Applying the new mapping (Figure 9a, right)
essentially reverses the picture: the Al−Al short contacts now
have primarily positive CP, while the La−Al contacts are
decorated by negative CP.
Which of these CP schemes provides a better description of

the interactions within this structure? To answer this question,
we turn to the phonon band structure of LaAl4 calculated after
a full structural relaxation (Figure 9b), focusing on a selection
of the modes at Γ as shown in Figure 9c. Upon overlaying the
phonon modes with the CP lobes calculated with the revised
mapping, simple interpretations of their relative frequencies
begin to take shape. In the lower frequency modes (Figure 9c,
bottom), the arrows corresponding to atomic motions tend to
lengthen or at least leave fixed contacts with positive CP, or
else run along directions of negative CP. For example, in the
lowest frequency mode, zigzag chains of Al atoms defined by
positive CPs move past each other as rigid units, which serve to
lengthen the Al−Al contacts with positive CP between the
rigid chains. In the next mode (frequency = 3.60 THz), the
Al−Al distances are held essentially constant as the Al and La
sublattices move against each other along the negative La−Al
CPs.
This is in contrast to the picture painted by the high

frequency modes (Figure 9c, top). In one of these modes
(frequency = 9.48 THz), the Al−Al distances within the layers
of Al tetrahedra (positive CP) oscillate, with little net change
to the average La−Al distances. The highest frequency mode at

Figure 9. Correspondences between the CP schemes and the phonon
band structure of a hypothetical BaAl4-type LaAl4 phase. (a) CP
schemes calculated with the original and revised mappings of the
EEwald, Eα, and Enonlocal terms. (b) Phonon band structure and DOS
distribution, with the contributions from the La atoms shaded. (c)
Selected modes at the Γ point overlaid with the CP scheme obtained
with the revised method.
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Γ forms part of a narrow band that stretches across the band
structure diagram (Figure 9b, highlighted in red); it involves
the stretching and contraction of the interlayer Al pairs, where
the strongest positive CPs are present in the structure. With
the revised mapping, the CP scheme thus provides a simple
guide to the relative phonon frequencies. The homogeneous
mapping yields essentially the inverse scheme, and is thus
clearly not consistent with the phonon band structure.
Now that we have validated the CP scheme derived from the

revised EEwald + Eα + Enonlocal mapping, what can we glean from
it in terms of expectations for structural chemistry? The La
atoms are dominated by negative CP, indicating that they are
too small for their 16-coordinate polyhedra and are calling for
the contraction of the structure. Meanwhile, the positive CPs
between the Al atoms reveal the reason this structural
contraction cannot occur: the Al atoms are already too tightly
packed. The especially large positive CPs along the interlayer
Al neighbors reveal the interlayer regions to be particularly
strained parts of the Al lattice. These are the very Al pairs that
undergo partial substitution by single atoms in the observed
structure of La3Al11. The hypothesis that size effects provide a
driving force for the formation of this superstructure appears to
be borne out by the CP scheme of its parent structure.
The ways in which the superstructure provides strain relief

can be seen in the CP scheme of La3Al11 (Figure 10). The La
atoms still experience negative CP, which again are balanced
by positive CPs between the Al atoms. Overall, however, the
magnitudes of the pressure features are lower than in the

original LaAl4 scheme. This reduction can be rationalized from
the Al2/Al substitution: the newly inserted Al atoms show
much smaller CP lobes, both positive and negative, than the
dumbbell atoms that they are replacing. They partake in longer
Al−Al contacts and shorter La−Al ones than either of the Al
atoms they replace. The surrounding Al atoms also achieve
substantial CP relief, not only through longer distances to the
newly substituted atoms but also through motions into the
space formerly filled by the Al2 dumbbells that alleviate strong
positive CPs experienced by Al−Al contacts further away from
the substitution sites. The Al2/Al substitution and the
accompanying relaxation allow the Al sublattice to form a
tighter grip on the La coordination environments, leading to
less negative La−Al CPs.
The strongest residual positive CP features in the structure

are on the remaining interlayer Al2 dumbbells. One could then
imagine continuing this process of decompressing the Al
sublattice through Al2/Al substitutions on the remaining sites.
The end result would be a body-centered tetragonal lattice of
cations, each with cuboctahedral coordination by Al atoms: the
TiAl3 structure type. The placement of TiAl3 as the end-
member in a CP-driven Al2/Al substitution starting from the
BaAl4 type would be consistent with the trends in metallic radii
on going from Ba to La to Ti.

4. CONCLUSIONS
In principle, the DFT-chemical pressure method offers a
framework for giving precision to arguments based on atomic
size effects across the chemistry of solid state materials. Over
the course of this Article, we have worked toward the
realization of this general applicability by delving into one of
the most challenging cases for this method: systems including
atoms whose pseudopotential’s local components are so soft
they appear to be largely unresponsive to compression by their
neighbors. Through a comparison of the CP schemes and
phonon band structures of CaPd2 and CaAl2, we illustrated
how the atomic pseudopotential we use for Al can create just
this scenario, with negative CPs persistently being found along
the Al−Al contacts in sharp contrast to the stiffness of the Al−
Al interactions evident in the phonon frequencies. These
observations led us to reevaluate the components of the total
energy which had previously been homogeneously mapped in
the creation of the CP maps (the EEwald, Eα, and Enonlocal
energies) due to their lack of an unambiguous manner of
decomposing them spatially. With a revised treatment of these
terms, the responsiveness of the Al atoms to their surroundings
became much more evident in their CP schemes. This allowed
us to capture key aspects of the relative phonon frequencies in
CaAl2 and a hypothetical BaAl4-type LaAl4 structure, as well as
to interpret the more complex La3Al11 structure as the result of
a CP-driven Al2 dumbbell/Al atom substitution from the BaAl4
type.
Through these analyses, we found that a correct mapping of

the EEwald term, being one of the largest contributors to the
total energy for densely packed arrays of metal atoms, can be
among the most crucial to the CP map. Our approach to
treating EEwald (along with Eα) here is to recognize that not all
electrons in the valence set of a calculation are necessarily
active in shaping the structure, but that some may be heavily
localized to their parent atom. Mapping the energetic
contributions from these localized electrons to their corre-
sponding atoms could bring positive core responses from the
remaining atoms to the foreground. A limitation of this

Figure 10. CP schemes illustrating relief on going from (a) a
hypothetical BaAl4-type LaAl4 phase to (b) the observed structure of
La3Al11.
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treatment, however, is the ambiguity we face in assigning the
number of electrons on each atom that should be considered
localized. In the current results and in our preliminary
examination of a range of other systems, we have found that
reasonable CP schemes can be fairly consistently obtained by
simply equating the number of localized electrons contributed
by an atom to the number of semicore electrons that atom
contains. Care should be taken, though, to check the validity of
this assignment for new systems, as can be done with
comparisons of CP schemes calculated with different
pseudopotential choices and calibrations against phonon
band structure results.
The Enonlocal term, meanwhile, is smaller than EEwald but can

still play a large role in the core responses of soft
pseudopotentials, as illustrated in the CP scheme of CaAl2
modeled with a valence-only Ca pseudopotential. Unlike the
case of EEwald, partitioning of Enonlocal into atomic contributions
should likely be applied regardless of whether valence-only or
semicore pseudopotentials are used.
Beyond the methodological developments, one theme to

emerge from this work is the continued role of CP quadrupoles
as strong indicators of soft atomic motions. In our previous
analyses, the predictive nature of these features was apparent in
transition metal-rich phases, as in the incommensurately
modulated CaPd5 phase34 and the superconductor Nb3Ge,

31

where the majority atoms exhibited strong core responses.
With the revisions to the CP method described here, these
conclusions can be extended to systems, such as aluminides,
where the core responses are more subtle. For both CaAl2 and
the hypothetical LaAl4 phase, the highest frequency phonon
modes at the Γ point involved Al−Al contraction against the
positive poles of their CP quadrupole, while those containing
the perpendicular motions were among the softest of the
optical modes. Together with the appearance of CP relief upon
going from the hypothetical LaAl4 structure to the observed
La3Al11 superstructure, these results highlight how insights
similar to those previously obtained for transition metal-based
systems should now be available for aluminides and related
phases. Along these lines, it will be interesting to explore how
CP quadrupoles may underlie a broader range of structural
phenomena in aluminides, such as disorder, modulations, and
phase transitions.
In addition, the case of La3Al11 highlights how the

substitution of atomic units can serve as a mechanism for
CP relief, with a selection of particularly strained Al2 dumbbells
in the BaAl4 type being replaced by single atoms. The Al2/Al
substitution is particularly suited to the specific geometrical
situation as it replaces eight overly short Al−Al contacts with
longer ones, while exchanging eight overly long Al−La contacts
for four shorter ones. This is the reverse case of the Th2Zn17
structure type that we analyzed previously,33 where single
cations were partially replaced by transition metal dumbbells to
achieve CP relief. One might wonder whether analogous CP
features in other simple crystal structures may yield similar
tendencies for atom/dumbbell interchange.
Finally, while our focus has been on intermetallic aluminides

in this work, this choice was based on the particular challenges
they pose for CP analysis. The improvements to the CP
method presented here should enhance its abilities to elucidate
the role atomic size plays in other inorganic materials. We are
looking forward to exploring the degree to which the revised
method can serve as a general tool for analyzing structural

chemistry in the solid state, and seeing where new limiting
factors may arise.
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