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Robust Decentralized Secondary Frequency Control 
in Power Systems: Merits and Trade-Offs

Erik Weitenberg, Yan Jiang, Changhong Zhao, Enrique Mallada, Claudio De Persis, and Florian Dorfler

Abstract—Frequency restoration in power systems is conven­
tionally performed by broadcasting a centralized signal to local 
controllers. As a result of the energy transition, technological 
advances, and the scientific interest in distributed control and 
optimization methods, a plethora of distributed frequency control 
strategies have been proposed recently that rely on communica­
tion amongst local controllers. In this paper we propose a fully 
decentralized leaky integral controller for frequency restoration 
that is derived from a classic lag element. We study steady- 
state, asymptotic optimality, nominal stability, input-to-state 
stability, noise rejection, transient performance, and robustness 
properties of this controller in closed loop with a nonlinear 
and multivariable power system model. We demonstrate that 
the leaky integral controller can strike an acceptable trade­
off between performance and robustness as well as between 
asymptotic disturbance rejection and transient convergence rate 
by tuning its DC gain and time constant. We compare our findings 
to conventional decentralized integral control and distributed- 
averaging-based integral control in theory and simulations.

I. INTRODUCTION

The core operation principle of an AC power system is 
to balance supply and demand in nearly real time. Any 
instantaneous imbalance results in a deviation of the global 
system frequency from its nominal value. Thus, a central 
control task is to regulate the frequency in an economically 
efficient way and despite fluctuating loads, variable generation, 
and possibly faults. Frequency control is conventionally per­
formed in a hierarchical architecture: the foundation is made 
of the generators’ rotational inertia providing an instantaneous 
frequency response, and three control layers - primary (droop), 
secondary automatic generation (AGC), and tertiary (economic 
dispatch) - operate at different time scales on top of it [2], [3], 
Conventionally, droop controllers are installed at synchronous 
machines and operate fully decentralized, but they cannot by
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themselves restore the system frequency to its nominal value. 
To ensure a correct steady-state frequency and a fair power 
sharing among generators, centralized AGC and economic 
dispatch schemes are employed on longer time scales.

This conventional operational strategy is currently chal­
lenged by increasing volatility on all tune scales (due to 
variable renewable generation and increasing penetration of 
low-inertia sources) as well as the ever-growing complexity 
of power systems integrating distributed generation, demand 
response, microgrids, and HVDC systems, among others. 
Motivated by these paradigm shifts and recent advances in 
distributed control and optimization, an active research area 
has emerged developing more flexible distributed schemes to 
replace or complement the traditional frequency control layers.

In this article we focus on secondary control. We refer 
to [4, Section IV.C] for a survey covering recent approaches 
amongst which we highlight semi-centralized broadcast-based 
schemes similar to AGC [5]—[7] and distributed schemes 
relying consensus-based averaging [1], [8]—[12] or primal dual 
methods [13]—[16] that all rely on communication amongst 
controllers. However, due to security, robustness, and eco­
nomic concerns it is desirable to regulate the frequency 
without relying on communication. A seemingly obvious and 
often advocated solution is to complement local proportional 
droop control with decentralized integral control [1], [6], [17]. 
In theory such schemes ensure nominal and global closed- 
loop stability at a correct steady-state frequency, though in 
practice they suffer from poor robustness to measurement 
bias and clock drifts [5], [6], [11], [18]. Furthermore, the 
power injections resulting from decentralized integral control 
generally do not lead to an efficient allocation of generation 
resources. A conventional remedy to overcome performance 
and robustness issues of integral controllers is to implement 
them as lag elements with finite DC gain [19]. Indeed, such 
decentralized lag element approaches have been investigated 
by practitioners: [17] provides insights on the closed-loop 
steady states and transient dynamics based on numerical 
analysis and asymptotic arguments, [20] provides a numerical 
certificate for ultimate boundedness, and [21] analyses lead-lag 
filters based on a numerical small-signal analysis.

Here we follow the latter approach and propose a fully 
decentralized leaky integral controller derived from a standard 
lag element. We consider this controller in feedback with 
a nonlinear and multivariable multi-machine power system 
model and provide a formal analysis of the closed-loop sys­
tem concerning (i) steady-state frequency regulation, power 
sharing, and dispatch properties, (ii) the transient dynamics 
in terms of nominal exponential stability and input-to-state
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stability with respect to disturbances affecting the dynamics 
and controller, and {in) the dynamic performance as measured 
by the Bo-norm. All of these properties are characterized 
by precisely quantifiable trade-offs - dynamic versus steady- 
state performance as well nominal versus robust performance 
- that can be set by tuning the DC gain and time constant 
of our proposed controller. We (iv) compare our findings 
with the corresponding properties of decentralized integral 
control, and (v) we illustrate our analytical findings with a 
detailed simulation study based on the IEEE 39 power system. 
We find that our proposed fully decentralized leaky integral 
controller is able to strike an acceptable trade-off between 
dynamic and steady-state performance and can compete with 
other communication-based distributed controllers.

The remainder of this article is organized as follows. Sec­
tion II lays out the problem setup in power system frequency 
control. Section III discusses the pros and cons of decentral­
ized integral control and proposes the leaky integral controller. 
Section IV analyzes the steady-state, stability, robustness, 
and optimality properties of this leaky integral controller. 
Section V illustrates our results in a numerical case study. 
Finally, Section VI summarizes and discusses our findings.

Key to the analysis of part of the results in this paper 
(Section IV.B) is a strict Lyapunov function. A first attempt 
to arrive at one was made in preliminary work [1], The 
current paper is substantially different from [1], as it estab­
lishes several novel and stronger results, it provides additional 
context, motivation and possible implications, and it discusses 
the trade-offs that arise from the tunable controller parameters.

satisfies a zero net power flow balance: t„VU(9) = 0, where 
ln G Rn is the vector of unit entries. In what follows, we will 
also write these quantities in compact notation as

B(9) = -iTTcos^X VB(9) = BPsin^),

where B G Rn m is the incidence matrix [22] of the power 
transmission grid connecting the n generators with in trans­
mission lines, and T G Rm m is the diagonal matrix with its 
diagonal entries being all the nonzero corresponding
to the susceptance and voltage of the ith transmission line.

We note that all of our subsequent developments can also 
be extended to more detailed structure-preserving models 
with first-order dynamics (e.g., due to power converters), 
algebraic load flow equations, and variable voltages by using 
the techniques developed in [1], [9], In the interest of clarity, 
we present our ideas for the concise albeit stylized model (1).

B. Secondary Frequency Control

In what follows, we refer to a solution (6(t),uj(t)) of (1) 
as a synchronous solution if it is of the form 9{t) = w(f) = 
ivSyncl„, where cvsync is the synchronous frequency.

Lemma 1 (Synchronization frequency). If there is a syn­
chronous solution to the powem system model (1), then the 
synchronous frequency is given by

E'LifT + Ei=l '(/sync (3)

where u* denotes the steady-state control action.

II. Power System Frequency Control 

A. System Model

Consider a lossless, connected, and network-reduced power 
system with n generators modeled by swing equations [2]

9 =lo (la)
Mui = — Duj T P* — VC{9) + u, (lb)

where 9 G T1 and to G Rn are the generator rotor angles and 
frequencies relative to the utility frequency given by 2tt50 Hz 
or 2tt60 Hz. The diagonal matrices M, I) e Rn 71 collect the 
inertia and damping coefficients A/,. //, > 0, respectively. The 
generator primary (droop) control is integrated in the damping 
coefficient A, P* G Rn is vector of net power injections 
(local generation minus local load in the reduced model), and 
u G Rn is a control input to be designed later. Finally, the 
magnetic energy stored in the purely inductive (lossless) power 
transmission lines is (up to a constant) given by

^ cos(% - A,),

where By > 0 is the susceptance of the line connecting gen­
erators i and j with terminal voltage magnitudes V.h Vj > 0, 
which are assumed to be constant.

Observe that the vector of power injections

Proof. In the synchronized case, (lb) reduces to Bcvsyncln + 
VU(9) = P* + u. After multiplying this equation by fand 
using that tflVU{9) = 0, we arrive at the claim (3). □

Observe from (3) that cvsync = 0 if and only if all injections 
are balanced: Y" P,* + "A = 0. In this case, a synchronous 
solution coincides with an equilibrium {9*,to*,u*) G T1 x 
{0„} x Rn of (1). Our first objective is frequency regulation, 
also referred to as secondary frequency control.

Problem 1 (Frequency restoration). Given an unknown 
constant vector P*, design a control strategy u = u(uj) 
to stabilize the power system model (1) to an equilibrium 
{9*,u*,u*) G Tl x {0„} x Rn so that 5T"=1 P* + it* = 0.

Observe that there are manifold choices of u* to achieve this 
task. Thus, a further objective is the most economic allocation 
of steady-state control inputs u* given by a solution to the 
following optimal dispatch problem:

ETl
aguf (4a)

ETl ^
,=1 Pi + z2i=1 Ui = 0 . (4b)

The term a, if with a, > 0 is the quadratic generation cost 
for generator i. Observe that the unique minimizer u* of this 
linearly-constrained quadratic program (4) guarantees identical 
marginal costs at optimality [8], [10]:

(VA#))a = ^^By%T,sin(%-#;) (2) = ViJ E n}. (5)
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We remark that a special case of the identical marginal cost 
criterion (5) is fair proportional power sharing [23] when the 
coefficients a, are chosen inversely to a reference power A > 
0 (normally the power rating) for every generator i:

= Wj/A, Vi J E {1,..., n} . (6)

The optimal dispatch problem (4) also captures the core 
objective of the so-called economic dispatch problem [24], and 
it is also known as the base point and participation factors 
method [24, Ch. 3.8].

Problem 2 (Optimal frequency restoration). Given an un­
known constant vector P*, design a control strategy u = u(to) 
to stabilize the power system model (1) to an equilibrium 
(6*,to*,u*) € Tn x {0„}xl" where it* minimizes the optimal 
dispatch problem (4).

Aside from steady-state optimal frequency regulation, we 
will also pursue certain robustness and transient performance 
characteristics of the closed loop that we specify later.

III. Fully Decentralized Frequency Control

The frequency regulation Problems 1 and 2 have seen many 
centralized and distributed control approaches. Since P* is 
generally unknown, all approaches explicitly or implicitly rely 
on integral control of the frequency error. In the following we 
focus on fidly decentralized integral control approaches mak­
ing use only of local frequency measurements: «, = u, (wl ).

The derivative of V along any trajectory of (1), (7) is

V(0, to) = —lo^Dlo . (10)

Note that for any initial condition (0o,wo) E Tn x Rn the 
sublevel set ft := {(9, to) | V(9,to) < V(0o,ivo)} is compact. 
Indeed ft is closed due to continuity of V and bounded since 
V is radially unbounded due to quadratic terms in to and 0. 
The set ft is also forward invariant since V < 0 by (10).

In order to proceed, define the zero-dissipation set

£ = j(0, to) | V(9,io) = 0 j = {(9, to) | to = 0„} (11)

and £q := £ D ft. By LaSalle’s theorem [25, Theorem 4.4], 
as f ->• +oo, (0(f), w(f)) converges to a nonempty, compact, 
invariant set Cq which is a subset of + ,. In the following, we 
show that any point (O', to') E C<, is an equilibrium of (1),(7). 
Due to the invariance of Cq, the trajectory (6(t),oo(t)) starting 
from (0', to') stays identically in Cq and thus in £q. Therefore, 
by (11) we have to(t) = 0 and hence to(t) = 0. Thus, every 
point on this trajectory, in particular the starting point (0', to'), 
is an equilibrium of (1),(7). This completes the proof. □

The astonishing global convergence merit of decentralized 
integral control comes at a cost though. First, note that the 
steady-state injections from decentralized integral control (7),

w* = _T-i(0*-0o)-Po,

A. Decentralized Pure Integral Control
One possible control action is decentralized pure integral 

control of the locally measured frequency, that is,

u = —p (7a)
(7b)

where p E Rn is an auxiliary local control variable, and 
T E Rn'n is a diagonal matrix of positive time constants 
Ti > 0. The closed-loop system (1),(7) enjoys many favorable 
properties, such as solving the frequency regulation Problem 1 
with global convergence guarantees regardless of the system 
or controller initial conditions or the unknown vector P*.

Theorem 2 (Convergence under decentralized pure integral 
control). The closed-loop system (1),(7) has a nonempty set 
X* C Tn x {0n} x Rn of equilibria, and all trajectories 
(0(f), w(f),p(f)) gfoWfy converge to a? f —» +oo.

Proof. This proof is based on an idea initially proposed in [1] 
while we make some arguments and derivations more rigorous 
here. First note that (7) can be explicitly integrated as

depend on initial conditions and the unknown values of P*. 
Thus, in general u* does not meet the optimality criterion 
(5). Second and more importantly, internal instability due to 
decentralized integrators is a known phenomenon in control 
systems [26], [27]. In our particular scenario, as shown in 
[11, Theorem 1] and [5, Proposition 1], the decentralized 
integral controller (7) is not robust to arbitrarily small biased 
measurement errors that may arise, e.g., due to clock drifts 
[18]. More precisely the closed-loop system consisting of (1) 
and the integral controller subject to measurement bias q E Rn

u = —p (12a)
Tp=io + r/, (12b)

does not admit any synchronous solution unless q E span(ln), 
that is, all biases //, , for all * E {1,..., n}, are perfectly iden­
tical [5, Proposition 1], Thus, while theoretically favorable, 
the decentralized integral controller (7) is not practical.

B. Decentralized Lag and Leaky Integral Control

=-T +0 - 0o) -po = ~T +0 — 0, (8)

where we used 9'0 = 90 -Tp0 as a shorthand. In what follows, 
we study only the state (0(f), oo(t)) without p(t) since p(t) is 
a function of 0(f) and initial conditions as defined in (8). 

Next consider the LaSalle function

V(0, w) = + (7(0) - 0Tp*
2

+ l(0~ a' T-i(0 - 0(,

In standard frequency-domain control design [19] a stable 
and finite DC-gain implementation of a proportional-integral 
(PI) controller is given by a lag element parameterized as

Ts + 1
l-----------
aTs + 1

1

proportional control

a — 1
aTs+ 1 ’

leaky integral control

(9) where T > 0 and a » 1. The lag element consists of a 
proportional channel as well as a first-order lag often referred
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to as a leaky integrator. In our context, a state-space realization 
of a decentralized lag element for frequency control is

u = — to — (a — 1 )p 
aTp = lv — p,

where T is a diagonal matrix of time constants, and a » 1 is 
scalar. In what follows we disregard the proportional channel 
(that would add further droop) and focus on the leaky integra­
tor to remedy the shortcomings of pure integral control (7). 

Consider the leaky integral controller

u = —p (13a)
Tp=uj-I\p, (13b)

Equations (17) take the form of lossless active power flow 
equations [2] with injections P* - (D + l\ ) -vsyiu7„ • Thus, 
Assumption 1 is equivalent assuming feasibility of the power 
flow (17) which is always true for sufficiently small \\P*\\.

Under this assumption, we now show various properties of 
the closed-loop system (15) under leaky integral control (13).

A. Steady-State Analysis

We begin our analysis by studying the steady-state charac­
teristics. At steady state, the control input u* takes the value

u* = —p* = = —/v_1wsyncln , (18)

where K, T G Rn n are diagonal matrices of positive control 
gains Ki,Ti > 0. The transfer function of the leaky integral 
controller (13) at a node i (from ca; to —uf) given by

1 /y'r1
K-i{s) = m . , T,- = ,m / 7-.-- \---“77 > (14)T-i.s + Ki (Ti/Ki) • s + 1

that is, it has a finite DC gain K 1 similar to a primary droop 
control. The following result is analogous to Lemma 1.

Lemma 3 (Steady-state frequency). Consider the closed- 
loop system (15) and its equilibria (16). The explicit synchro­
nization frequency is given by

i.e., the leaky integrator is a first-order lag with DC gain K ■ 
and bandwidth /\',/7). It is instructive to consider the limiting 
values for the gains:

1) For Ti \ 0, leaky integral control (13) reduces to 
proportional (droop) control with gain l\'t 1;

2) for l\ , \ 0, we recover the pure integral control (7);
3) and for K,, A oc or T, / oc, we obtain an open-loop 

system without control action.
Thus, from loop-shaping perspective for open-loop stable 
SISO systems, we expect good steady-state frequency regu­
lation for a large DC gain l\t 1, and a large (respectively, 
small) cutoff frequency / likely results in good nominal 
transient performance (respectively, good noise rejection). We 
will confirm these intuitions in the next section, where we 
analyze the leaky integrator (13) in closed loop with the 
nonlinear and multivariable power system (1) and highlight 
its merits and trade-offs as function of the gains K and T.

Wgync En p*
i= 1 ri (19)

Unsurprisingly, the leaky integral controller (13) does gen­
erally not regulate the synchronous frequency ivsync to zero 
unless 5T P* = 0. However, it can achieve approximate 
frequency regulation within a pre-specified tolerance band.

Corollary 4 (Banded frequency restoration). Consider the 
closed-loop system (15). The synchronous frequency ivsync 
takes value in a band around zero that can be made arbitrarily 
small by choosing the gains Ki > 0 sufficiently small. In 
particular, for any e > 0, if

Ei=1
A, ' > S P*

i= i Di (20)

then |cvsync| < e.

IV. Properties of the Leaky Integral Controller

The power system model (1) controlled by the leaky inte­
grator (13) gives rise to the closed-loop system

0 =uj (15a)
Mw = -Dw + f*-VU(g)-p (15b)
Tp = lv — I\ p. (15c)

We make the following standing assumption on this system.

Assumption 1 (Existence of a synchronous solution). As­
sume that the closed-loop (15) admits a synchronous solution

(T =w* (16a)
0»=-Dw*+.P*-VU(6H-p* (16b)
0n = cT — K p*. (16c)

where lv* = cvsyncl„ for some cvsync G M. □

By eliminating the variable p* from (16), we arrive at

While regulating the frequencies to a narrow band is suf­
ficient in practical applications, the closed-loop performance 
may suffer since the control input (13) may become ineffective 
due to a small bandwidth Kf'l). Similar observations have 
also been made in [17], [20]. We will repeatedly encounter 
this trade-off for the decentralized leaky integral controller 
(13) between choosing a small gain K (for desirable steady- 
state properties) and large gain (for transient performance).

The closed-loop steady-state injections are given by (18), 
and we conclude that the leaky integral controller achieves 
proportional power sharing by tuning its gains appropriately:

Corollary 5 (Steady-state power sharing). Consider the 
closed-loop system (15). The steady-state injections u* of 
the leaky integral controller achieve fair proportional power 
sharing as follows:

KiU* = Kjii* \H,j G {1,..., n} . (21)

Hence, arbitrary power sharing ratios as in (6) can be pre­
scribed by choosing the control gains as K, ~ 1/Pi. Similarly, 
we have the following result on steady-state optimality:

P* - (D + K~ CsyncTn VU((T (17)
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Corollary 6 (Steady-state optimality). Consider the closed- 
loop system (15). The steady-state injections u* of the leaky 
integral controller minimize the optimal dispatch problem

Eti
(22a)

subject to ^2 Pi + ^(1 + T>:!\ : II: = 0 . (22b)
i=1 i=1

Assumption 2 (Security constraint). The synchronous solu­
tion (24) is such that BTS* € 0 :=(-§+ p, \ — p)m for a 
constant scalar p e (0, f).

Remark 1. Compared with the conventional security con­
straint assumption [8], we introduce an extra margin p on 
the constraint to be able to explicitly quantify the decay of the 
Lyapunov function we use in proofs of Theorems 7 and 8. □

Proof. Observe from (21) that the steady-state injections (18) 
meet the identical marginal cost requirement (5) with o; = A', . 
Additionally, the steady-state equations (16b), (16c), and (18) 
can be merged to the expression

= DA: w* + P* - V17((T) + w*.

By multiplying this equation from the left by we arrive at 
the condition (22b). Hence, the injections u* are also feasible 
for (22) and thus optimal for the program (22). □

By using Lyapunov techniques following [12], it is possible 
to show that the leaky integral controller (13) guarantees 
exponential stability of the synchronous solution (24).

Theorem 7 (Exponential stability under leaky integral 
control). Consider the closed-loop system (23), (13). Let As­
sumptions 1 and2 hold. The equilibrium (d*, w*,p*) is locally 
exponentially stable. In particular, given the incremental state

x = x(S,uj,p) = col (<5 — S*,lv — la* pp —p*), (25)
The steady-state injections of the leaky integrator are opti­

mal for the modified dispatch problem (22) with appropriately 
chosen cost functions. By (22b), the leaky integrator does not 
achieve perfect power balancing P* + u* = 0 and un­
derestimates the net load, but it can satisfy the power balance 
(4b) arbitrarily well for K chosen sufficiently small. Note that 
in practice the control gain K cannot be chosen arbitrarily 
small to avoid ineffective control and the shortcomings of 
the decentralized integrator (7) (lack of robustness and power 
sharing). The following sections will make these ideas precise 
from stability, robustness, and optimality perspectives.

B. Stability Analysis
For ease of analysis, in this subsection we introduce a 

change of coordinates for the voltage phase angle 0. Let 
6 = 0 — f r ./l 'T = II0 be the center-of-inertia coordinates 
(see e.g., [28], [9]), where II = / - In these
coordinates, the open-loop system (1) becomes

5 = Ucc (23a)
Mw = -Dw + f*-V17(d)+w, (23b)

where by an abuse of notation we use the same symbol U for 
the potential function expressed in terms of S,

17(d) = -lTTcos(#Td), V17(d) = BT sirred).

Note that STII = ST since BTln = 0n [22]. The synchronous 
solution (0*,lv* ,p*f defined in (16) is mapped into the point
(d*, w*,p*), with 5* = lid*, satisfying

j* = (24a)

= -Dw* + A* - V17(d*) - / (24b)
(24c)

The existence of (S*,uj*,p*) is guaranteed by Assumption 1. 
Additionally, we make the following standard assumption 
constraining steady-state angle differences.

the solutions x(t) = col(d(f) —5*,iv(t) — iv*,p(t) —p*), with 
(S(t),oj(t),p(t)) a solution to (23), (13) that start sufficiently 
close to the origin satisfy for all t > 0,

||x(7)||2 < Ae_at||x0||2, (26)

where A and a. are positive constants. In particular, when 
multiplying the gains I\ and T by the positive scalars n and r 
respectively, a is monotonically non-decreasing as a function 
of the gain n and non-increasing as a function of r.

Proof. Consider the incremental Lyapunov function from [12] 
including a cross-term between potential and kinetic energy:

y(%) =

+ 17(d) - I7(d+) - VI7(d*)^(d - <n

+ e(VI7(d) - VI7(<H)TMw, (27)

where e G R is a small positive parameter.
First, we will show that this is indeed a valid Lyapunov 

function, by proving positivity outside of the origin and strict 
negativity of its time derivative along the solutions of (23).

For sufficiently small values of e and if Assumption 2 holds, 
V(x) satisfies

(28)

for some :>,. :>■> >0 and for all x with BTS e 0, by Lemma 14 
in Appendix A. The derivative of V{x) can be expressed as

where %(d,w,p)

#(d)

:= col(V(7(d) - VU(S*),oj - co*,p —p*),

el ^eD — fel
feD D — eE(S) 0n . n
~beI On - n A

(29)

'Of course, care must be taken when interpreting the results in this section 
since the steady-state itself depends on the controller gain K (see Section 
IV-A). Here we are merely interested in the stability relative to the equilibrium.

and we defined the shorthand E(S) = symm(MV2!7(d)) with 
symm(A) = ^ (A + AT).
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We claim that for all 6, H(S) > 0. To see this, apply with equality if z is the eigenvector corresponding to 
Lemma 12 from Appendix A to obtain H(S) > H'{5) with Xmin(H(5)). Let emin denote the normalized eigenvector cor­

responding to AThen, for any vector z satisfying
INI = b Amin{H(S)) = ejfinfT((5)emin < zTH(S)z. Hence,

A = mill Amin(^(^)) = mmgT^@
#'(<%) :=

2
- n D — e(E(S) + D~) 0n . n 

0„ . n A — el

Given that D and I\ are positive dehnite matrices, one can 
select e to be positive yet sufficiently small so that H'{5) > 0.

To show exponential decline of the Lyapunov function 
V(x), which is necessary for proving (26), we must find some 
positive constant a such that V{x) < -aV(x).

We claim that a positive constant /J3, dependent on p from 
Assumption 2, exists such that ||x||2 > Aid’ll2- To see this, 
we note that from Leimna 13 in Appendix A that a constant 
/33 exists so that

(30)

The clahn then follows with L, = iiiinf 1. ).
In order to proceed, we set A := mingr5ee Amin(7T(<5)). 

Then, it follows using (28) that, as far as BTS e 0,

y(z) < -Allxll2 < -AAldll2 < =: -

For this inequality to lead to the claimed exponential stability, 
we must guarantee that the solutions do not leave 0. To do 
so, we study the sublevel sets of V{x) and find one that is 
contained in 0. Recall that the sublevel sets of V(x) are 
invariant and thus solutions x(t) are bounded for all t > 0 
in sublevel sets {x : V(x) < V(xo)} for which BTS e 0. 
Hence, we require the initial conditions x0 of solutions x(t) 
to be within a suitable sublevel set {x : V(x) < V(x0)} 
where BTS e 0. We now construct such a sublevel set. Let

c := A
c2

(31)

and £ > 0 a parameter with the property that any 6 satisfying 
||ST<5 - ST<5*|| < S, also satishes BTS e 0. The parameter £ 
exists because BTS* e 0 and 0 is an open set. Accordingly, 
define the sublevel set <L := {x : V(x) < c}, with c defined 
above, and note that any point in flc satishes BTS e 0. As 
a matter of fact V(x) < c hnplies ||x||2 < j—^ggry and 

therefore ||<5 - <5*||2 < ^This in turn hnplies that 
||BT((5 - d*)||2 < ^2, and hence BTS e 0 by the choice of 

We conclude that any solution issuing from the sublevel set 
flc will remain inside of it. Hence along these solutions the 
inequality V{x) < -aV(x) holds for all time.

By the comparison lemma [25, Lemma B.2], this inequality 
yields V(x(t)) < e~atV(x(0)), which we combine again with 
(28) to arrive at (26) with A = /J2/fti- 

Finally, we address the effect of I\ and 7’ on o by 
introducing the scalar factors n and r multiplying I\ and 
T, and by studying the effect of manipulations of k and r 
on the exponential decline of V{x) and therefore of x(t). 
Note that a is a monotonically increasing function of 7, = 
mingT5ee Amin(H(6)). Recall that for any vector z,

where the last equality holds by noting that emin is one of the 
vectors z at which the minimum is attained.

Now suppose we multiply K by a factor k > 1. Let H'(S) = 
H(S) + blockdiag(0, 0, (k - 1 )I\). The new value of /J4 is

A = T min (ztH(S)z + ^2. (k - l)A'iz|l+i) . 
BJsee ,c:|L||=iT_________  l=}___________ —L

The argument of the minhnization is not smaller 
than ztH(S)z for any z. It follows that 7j >
mingT(5e01..||.|| = 1 ztH(S)z = /?4. Shnilarly, if 0 < k < 1, 
then p'A < mingT(5e0 ;=:||;=|| = 1 zt7T((5)z = /J4. Hence, /J4 
is a monotonically non-decreasing function of the gain k. 
Likewise, a is a monotonically decreasing function of /A, 
which itself is a non-decreasing function of r. □

Theorem 7 is in line with the loop-shaping insight that the 
bandwidth K J'I) determines nominal performance: the decay 
rate a is monotonically non-decreasing in /\',/7).

C. Robustness Analysis
We now depart from nominal performance and focus on 

robustness. Recall a key disadvantage of pure integral control: 
it is not robust to biased measurement errors of the form (12). 
We now show that leaky integral control (13) is robust to such 
measurement errors. In what follows, instead of (13), consider 
leaky integral control subjected to measurement errors

u = —p (32a)
Tp = uj — Kp + p, (32b)

where the measurement noise rj = ij(l) G Rn is assumed to be 
an cxD-nonn bounded disturbance. In this case, the bias-induced 
instability (reported in Section III-A) does not occur.

Let us first offer a qualitative steady-state analysis. For a 
constant vector ?y, the equilibrium equation (16c) becomes

<Dn = lu* — Kp* + ip

so that the closed loop (1), (32) will admit synchronous 
equilibria. Indeed, the governing equations (17) determining 
the synchronous frequency cvsync change to

(D + ar-1) Wsyaci = A * - vf7((T) - .

Observe that the noise terms ;/ now takes the same role as the 
constant injections /' , and their effect can be made arbitrarily 
small by increasing K. We now make this qualitative steady- 
state reasoning more precise and derive a robustness criterion 
by means of the same Lyapunov approach used to prove 
Theorem 7. We take the measurement error ;/ as disturbance 
input and quantify its effect on the convergence behavior along 
the lines of input-to-state stability. First, we define the specific 
robust stability criterion that we will use, adapted from [29].
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Definition 1 (Input-to-state-stability with restrictions). A
system x = f(x, p) is said to be input-to-state stable (ISS) 
with restriction X on x(0) = x0 and restriction rj € R>o on 
?/(•) if there exist a class ICC-fimction /3 and a class )ClX- 
function 7 such that

Mb II < d(IMIIb) + 0 (I b? (•) 1100)
for all t G R>o, x0 G X, and inputs ?/(•) G Lrf satisfying 

ll?7( 0 ll oo := ess sup ||??(t)|| <fj.

Theorem 8 (ISS under biased leaky integral control).
Consider system (23) in closed-loop with the biased leaky 
integral controller (32). Let Assumptions 1 and 2 hold. Given 
a diagonal matrix I\ > 0, there exist a positive constant rj and 
a set X such that the closed-loop system is ISS from the noise 
i] to the state x = col (6 — 6*, w — tv*,p—p*) with restrictions 
X on xq and rj on ?/(•), where (6*,u*,p*) is the equilibrium 
of the nominal system, i.e., with p = 0. In particular, the 
solutions x(t) = col(S(t) — S*,uj(t) — uj*,p(t) — p*), with 
(S(t),uj(t),p(t)) a solution to (23), (32) for which x(0) G X 
and IfOlloo < rj satisfy for all t G R>o,

||T(t)ir<Ae-^||T(0)||' + 7||,7(-)ll^, 03)

where a, A and 7 are positive constants. Furthermore, when 
multiplying the gains I\ and T by the positive scalars n and r 
respectively, then 7 is monotonically decreasing (respectively, 
non-increasing) as a function of n (respectively, t), and a 
is monotonically non-decreasing as a function of n and non­
increasing as a function of r.

Proof. We start by extending the Lyapunov arguments from 
the proof of Theorem 7 to take the noise p(t) into account, 
obtaining again an upper bound of V(x) in terms of V(x).

From the proof of Theorem 7 recall the Lyapunov function 
derivative V(x) = -xTH(S)x - (p - p*)Tp. Since for any 
positive parameter //,

-{p-p*)Tv < p\\p-p*\\2 + -IMI2,
p

We now again make sure that no solutions can leave the set 
0. To make this possible, it is necessary to impose a restriction 
on the magnitude of the noise, rj, and the set of possible initial 
states, X. In the remainder of the proof, we fix rj such that

fj = acp.

with c defined as in (31) in the proof of Theorem 7.
Define the sublevel set flc, again as in the proof of Theorem 

7. We now claim that the solutions of the closed-loop system 
cannot leave flc. In fact, on the boundary <90 c of the sublevel 
set Clc, the right-hand side of (34) equals -ac+^||?/||2, which 
is a non-positive constant by the choice of fj. Hence a solution 
leaving Oc would contradict the property that V(x) < 0 for 
all x G <90c. We conclude that all solutions must satisfy (34) 
for all t G R>o- Hence, we choose X = Cl.

Having validated (34), we now derive the exponential bound 
(33). By the Comparison Lemma, the use of convolution 
integral and bounding ||?y(f)||2 by ||p(-)|M we arrive at

yMf))<e-^yW +J-||,7(.)||^.
ap

We combine this inequality with (28) and (30) to arrive at (33) 
with A = /tL/di and 7 = (afiip)^1.

Finally, we address the effect of I\ and T on a and 7 by 
introducing the scalar factors k and r multiplying K and T.

As K increases, there is no need to increase e, while it is 
possible to increase p. Analogously to the reasoning in the 
proof of Theorem 7, increasing the value of k for constant e 
and increasing p can not lower the value of /I4 and a, and 
decreases the value of 7. If one decreases k, but multiplies p 
by the same factor so as to keep /I4 constant, p will also 
decrease. This guarantees a remains constant in this case, 
preserving its status as a non-decreasing function of k. On 
the other hand, a decrease in p results in an increase in 7, 
retaining its status as a decreasing function of k. Therefore, a 
is non-decreasing as a function of k and 7 is decreasing.

As in Theorem 7, r affects only and :>■>, and the same 
result holds: a is a monotonically non-increasing function of 
t. Analogously, 7 is monotonically non-increasing in r. □

one further obtains

y(%) < -X? I #(d) -
0 pi

X

Theorem 8 shows that larger gains K (and T) reduce 
(respectively, do not amplify) the effect of the noise ;/ on 
the state x. This further emphasizes the trade-off between 
frequency banding and controller performance already touched 
on in Section IV-A. We further extend and formalize this trade­
off in Subsection V-D by means of a H > performance analysis.

Following the reasoning in the proof of Theorem 7, we note 
that H(S) > H'(6), where

7T(d) :=
¥

D-e(E(d) + D2
Is — el — pi

It follows that for sufficiently small values of e and p, H(5) > 
H'(6) > 0. To continue, let /I4 := mingT5ee Amin(H(S)). As 
a result, we find that for a positive constant a = -AAi,

V(x) < —aV(x) -|—| 
P

(34)

for all x such that BT5 G 0.

Remark 2 (Exponential ISS with restrictions). The ICC- 
fimction from the ISS inequality (33) is an exponential func­
tion, so the stability property is in fact exponential ISS with 
restrictions. The need to include restrictions X on the initial 
conditions and fj on the noise is due to the requirement of 
maintaining the state response within the safety region 0. □

I). Ho Performance Analysis
All findings thus far show that the closed-loop performance 

crucially depends on the choice of lx ,, and . Small gains lx ,. 
are advantageous for steady-state properties, large gains l\ , 
and Ti are advantageous for noise rejection, and the nominal
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performance does not deteriorate when increasing KJT,. To 
further understand this trade-off we now study the transient 
performance in the presence of stochastic disturbances by 
means of the H, norm. The use of the H, norm for evaluating 
power network performance was first introduced in [30]. This 
versatile framework allows to characterize various network 
properties such as resistive power losses [30], voltage devi­
ations [31], the role of inertia [32], phase coherence [33], in 
the presence of stochastic disturbances, as well as network­
wide frequency transients induced by step changes [34], [35].

Here we investigate in a stochastic setting the effect of 
the gains K and T on the steady-state frequency variance in 
the presence of power disturbances and noisy frequency mea­
surements modeled as white noise inputs. More precisely, we 
compute the Ho norm of the system (15) with output co(t) and 
inputs in (15b) and (15c). With this aim, we first linearize (15) 
around a steady state (0* ,uj* ,p*).2 Using X2U(0*) = LB, 
where LB is a weighted Laplacian matrix [22], and redefining 
(6, co,p) as deviation from steady state, the closed-loop model 
(15) becomes

Via the observability Gramian X, , can be computed as

||G||^=tr(.BDfg) 07)

where X solves the Lyapunov equation

+ XA = -G^G. (38)

Although a closed form solution of (37) is generally hard to 
calculate, it is possible to provide a qualitative analysis by 
assuming homogeneous parameters as in the following result.

Theorem 9 (Ho norm of leaky integrator). Consider the 
LTI power system model Gieaky in (35). Assume homogeneous 
parameters, i.e., M* = in, Dt = d,Ti = t, Ki = k, = ctq, 
and a7hi = av, Vi € n}. Then the squared Ho norm
df Gieaky ^ gtVf H 6y

11 Gieaky 11 2
%2

mr2 
2 md +E

k 0
~r<

2d 'ink2 + + drj k + r + XiT2

(39)

In particular, setting k = 0 in (39) gives
Muj = — Duj — Lb9 — p ,

Tp =uj - Kp .

We use S‘cC to denote the disturbances on the net power 
injection and Svq to model the noise incurred in the frequency 
measurement required to implement the controller (13). Then, 
by defining the system output as y = to, we get the LTI system

(35)
0 0 I 0 'o'
UJ = -M-lLB -M-lD -M-1 UJ
P. 0 S 1

1 S 1

P_

0
M-i#

0
C

0
0

T-XS„

'C
]1_

y=[o I o]
= G

=B

IIGIIL bm: E[y{ (t)y(t)]. (36)

11 Gjntegrator 11 TV 2 ~ 2m d E 2 d(r + XiT2
(40)

where Gjntegrator denotes the linearized power system model 
controlled by the pure integral controller (7).

Proof. Consider the orthonormal change of input, state, and 
output variables 0 = UO', tv = Uuj' , p = Up', y = Uy', ( = 
UC, and rj = Uif, where U is the orthonormal transformation 
that diagonalizes LB: UTLBU = diagjAi,..., An} with A* 
being the ith eigenvalue of LB in increasing order (Ay = 
0 < A2 < • • • < An). The Ho norm is invariant under this 
transformation and (35) decouples into n subsystems:

The signals C £ R" and ;/ e Rn represent white noise with unit 
variance, i.e., 5[CT)tC(t)] = - t)/„ and S[»y(()T»y(r)] =
S(t - t)In, and = diag-fcr^j, i G {1,..., ??-}}, 5',, = 

G {1,... ,n}}.
We are interested in understanding the effects of iv, and 

Ti on the system performance. To this aim, we will compute 
the Ho norm of (35) and compare it with that of the pure 
integrator, as well as the open loop system. From (14) we see 
that for I\i \ 0 (respectively, for I\i oo) for i G ??-}
we recover the closed-loop system controlled by pure integral 
control (7) (respectively, the open-loop system). Thus, in what 
follows, we denote the LTI system (35) by Gieaky, for K =
On - n by Gjntegrator> and for l\ ; OO by Gopen-loop •

The squared Ho norm of the LTI system (35) is given by

0 1 0
At d l
m rn f
0 — L

T T J

0
Ti
m
0

0 
0 

n if
t .

dp,i

=Ai

Vi = [ 0 1 0]

= Ci

(41)

Then based on (37) and (38), ||Gleaky||^, can be calculated 
by computing the norm of the n subsystems (41) (see, e.g., 
[30], [32], [36]—[38]). The key step is to solve n Lyapunov 
equations

AjQ + QAi = —CjCi , (42)

where Q must be symmetric and can thus be parameterized as

Q
711 712 713
712 722 723
713 723 733

(43)

2Of course, care must be taken when interpreting the results in this section 
since the steady-state itself depends on the controller gain K (see Section 
IV-A), but here we are merely interested in the transient performance.

Whenever A; / 0 (42) has a unique solution Q. For A, 0
the system (41) has a zero pole which could render infinite
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Ho norm and non-unique solutions to (42). We will later see 
that this mode is unobservable and thus the H> norm is finite. 

We now focus on the case A, / 0. Direct calculations show
A: ( km 1A A:

912 = 0 ,

913 = 7,933 ,
m ( km 1A

km
923 =------ 933 ,T

where all solutions are parameterized in
1

933
2 cl

(44a)

(44b)
(44c)

(44d)

(44e)

(45)

Therefore, we obtain

||Gleaky,i||p2 — tv(BjQB.j) — 922 + yf933 • (46)

By substituting (44d) and (45) into (46), we arrive at

HOeakyll^, which is consistent with the ISS insights obtained 
from Theorem 8.

Corollary 10 (Monotonicity of the % norm). Under the 
assumptions of Theorem 9, for any k > 0 the closed-loop Ho 
norm under leaky integral control is strictly smaller than under 
pure integral control: ||Gieaky||2H2 < || integrator ||^2- Moreover, 
in absence of power disturbances, = 0, ||Gieaky|| % is a 
strictly decreasing function of k > 0 and r > 0.

Remark 3 (Optimal Ho performance at open loop). Ob­
serve from (39) that in the absence of power disturbances 
((Jq =0) and in the presence of measurement noise (ori fO), 
the optimal gains are k fr oo or r 7 oo which from (14) 
reduces to the open-loop case. This insight is consistent with 
the noise rejection bounds (33) in Theorem 8. Of course, the 
steady-state characteristics in Section IV-A all demand a suffi­
ciently small value of k, and power disturbances will typically 
be present as well. Nevertheless, these considerations pose the 
question of whether leaky integral control can ever improve 
the open-loop performance ||G0pen-ioop||«, := nao/(2md) 
obtained for k, t fr oo. We explicitly address this question 
below. □

||Gieaky,- IL

2d fit. --- h A.;
2 md

(47)

We now consider the case A, = 0, i.e., i = 1. Since Ai = 0, 
neither io[, nor /Vj, nor y[ depend on 6[ in (41). Thus, 6- is 
not observable, and we can simplify the system (41) to

d 1' r<

i |T
 ® iu'i

Pi.
= rn 1

u'i
Pi.

+ m
0

Vp,i
77w,/_

_ T T _ V 7 J

[1 0]

The next corollary, whose proof is in Appendix B2, will 
use the characterization of the effect of r on the performance 
as a mechanism to derive an optimal choice for both k and r 
that can not only ensures improvement of the leaky integrator 
performance ||Gleaky|| h2 with respect to the pure integrator 
performance |Girilcgrill()r| H., but also with respect to the open- 
loop performance ||G0pen-ioop || h2-

Corollary 11 (Ho optimal tuning). Under the assumption of 
Theorem 9 and for any r > 0, and k such that

k
d > (48)

Again, we solve the Lyapunov equation (42), but here Q = QT 
is a 2-by-2 matrix. A similar calculation as before yields that 
||Gieaky,i||«2 is also given by (47) with Ai = 0. Therefore, 
l|Gieaky||2H2 = ZLi IIGieaky,*IIn2, which is equal to (39).

Finally, note from (7) and (13) that the leaky integrator 
reduces to an integrator when K = 0n n. It follows that 
II Gintegrator || "f;2 can be obtained by setting k = 0 in (39). □

Theorem 9 provides an explicit expression for the closed- 
loop Ho performance under leaky integral control (13) as well 
as under pure integral control (7). Observe from (37), (39), and 
(40) that power disturbances and measurement noise have an 
independent additive effect on the Ho norm. Thus, either of 
the two effects can be obtained by setting av 0 or 0.

The following corollary, whose proof is in Appendix Bl, 
shows the supremacy of leaky integral control over pure 
integral control for any positive gain k. Further, in the presence 
of only measurement noise, increasing k or r always improves

the closed-loop performance under the leaky integral control 
outperforms the open-loop system performance, i.e.,

l|Gieaky||^2 < IIG0pen-loop||%2 ■

Moreover, the global minimum of the Ho norm under leaky 
integral control is obtained by setting r —> t* = 0 and k to

k’ =" (a) (1 + i + iT (49)

Remark 4 (Necessity of condition (48)). We highlight that 
condition (48) is in fact necessary for improving performance 
Wond||Gopen_ioop||H2. WAfn(48)f?TWaW, ^||Gbah,||^ < 
0; see Appendix B2. In this case, if (48) does not hold, it is 
f&ry tO ./TOM (39) tW ||Gieaky||% \ ||Gopen_ioop||H2 ^ 
r y oo, WucA IIGleakyll H2 > l|Gopai-loop|| O

Corollary 11 suggests that the optimal controller tuning 
requires r* = 0 which reduces the leaky integrator to a 
proportional droop controller with gain l/k*. However, setting 
t to small values reduces the response time T.,,/Kj, = r/k of 
the leaky integrator, which in an actual implementation will 
be limited by the actuator’s response time (not modeled here). 
We point out, however, that Corollary 11 also shows that the
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Fig. 1. The 39-bus New England system used in simulations.

as 1/200 of that of a generator. Note that the generator turbine- 
governor dynamics are ignored in the model (1)~(2) leading to 
a simulated frequency response that is faster than in practice, 
but the fundamental dynamics of the system are retained for 
a proof-of-concept illustration of the proposed controller. For 
all simulations below, a 300MW step increase in active-power 
load occurs at each of buses 15, 23, 39 at time t = 5s.

A. CompariMM cofzfroZZgrj wzf&owf fzozjg
We implement each of the following controllers across the 

10 generators to stabilize the system after the increase in load:
1) mfggmZ coMfroZ (DAI):

u = — p (50a)
Tp =A~1lu — LAp. (50b)

leaky integrator provides performance improvements for any 
r > 0, and thus this limitation will only affect the extent to 
which the % performance is improved.

The optimal value k* in (49) also unveils interesting trade­
offs between performance and robustness. More precisely, in 
the high power disturbance regime a^ oo, the optimal gain 
is k* \ 0. The latter choice of course weakens the robustness 
properties described in Section IV-B. On the other hand, in the 
presence of large measurement errors av oo, one losses the 
ability to properly regulate the frequency as k* oo, i.e., the 
open-loop case.

Remark 5 (Joint banded frequency restoration and optimal 
% performance). This last discussion also unveils a critical 

of Zga&y Zfzfe^raZ cofzfmZ/ Zf may 6a Zfz/eaMZ?Zg to 
JozMfZy jafw/y (20) (48) fZ# fzoifg
i? Zargg. jFbr a jpecZ/zaf ZgveZ 6 qfyrggwgfzcy r&sforafZofz, fZ# 
paramgtgr & f&af ^atZ^/z^^ (20), or egwzvaZgfzfZy

Zc < -d

?way Mot ^atZ/y (48) a/wf Zga^k to woryg /?e?fb?7MaMCg t/ia/z 
opg/z Zoop. Of oowryg, of# oa/z ^tZZZ ta& T Zargg to ywZtZ^atg t/n^ 
^ggra^ZatzoM, a^ Z/z jRgmar^: 3. FZowgvg?; fZzzj comgj" at t/zg co^t 
of Zower ooMvgy^gMCg rata; Za?^g T Zgaak to ^Zowfgg^ao^. 
refer to Section VI for further discussion of these tradeoffs. □

V. Case Study: IEEE 39 New England System

In this section we perform a case study with the 39-bus New 
England system, see Figure 1, which is modeled as in (l)-(2) 
with parameters Mi (for the 10 generator buses), Vi, and Be­
taken from [39]. The inertia coefficients Mi are set to zero for 
the 29 (load) buses without generators. Note that Mfs in our 
simulations are heterogeneous, which relaxes our simplifying 
assumption in Section IV-D that Mf s are homogeneous and 
allows for testing the proposed scheme under a more realistic 
setting. For every generator bus i, the damping coefficient 
Di is chosen as 20 per unit (pu) so that a 0.05pu (3Hz) 
change in frequency will cause a lpu (1000MW) change in 
the generator output power. For every load bus i, Di is chosen

Here L = LT is the Laplacian matrix of a communication 
graph among the controllers, which we choose as a ring 
graph with uniform weights 0.1. The matrix A is diagonal 
with entries An = ai being the cost coefficients in (4a) 
chosen as 1.0 for generators G3, G5, G6, G9, G10 and 2.0 
for all others. We choose the time constant Ti = 0.05s 
for every generator i. The DAI control (50) is known 
to achieve stable and optimal frequency regulation as in 
Problem 2; see [1], [8]—[12]. Even DAI control is based 
on a reliable and fast communication environment, we 
include it here as a baseline for comparison purposes.

2) decentralized pure integral control (7) with time constant 
Ti = 0.05s for every generator i.

3) decentralized leaky integral control (13) with time con­
stant Ti = 0.05s for every generator i. The gain Ki equals 
0.005 for generators G3, G5, G6, G9, G10 and 0.01 for 
the others. The Kf s are proportional to af s in DAI (50) 
so that the dispatch objectives (4a) and (22a) are identical.

Figure 2 (dashed plots) shows the frequency at G1 (all 
other generators display similar frequency trends), and Figure 
3 shows the active-power outputs of all generators, under the 
different controllers above and without noisy measurements. 
First, note that all closed-loop systems reach stable steady- 
states; see Theorems 2 and 8. Second, observe from Figure 2 
that both pure integral and DAI control can perfectly restore 
the frequencies to the nominal value, whereas leaky integral 
control leads to a steady-state frequency error as predicted 
in Lemma 3. Third, as observed from Figure 3, both DAI 
and leaky integral control achieve the desired asymptotic 
power sharing (2:1 ratio between G3, G5, G6, G9, G10 
and other generators) as predicted in Corollary 5. However, 
leaky integral control solves the dispatch problem (22) thereby 
underestimating the net load compared to DAI which solves 
(4); see Corollary 6. We conclude that fully decentralized leaky 
integral controller can achieve a performance similar to the 
communication-based DAI controller - though at the cost of 
steady-state offsets in both frequency and power adjustment.

ComparZiMM cofzfroZZgrj wzf/z fzozjg
Next, a noise term rji(t) is added to the frequency measure­

ments cv in (50b), (7b), and (13b) for DAI, pure integral, and
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Fig. 2. Frequency at generator G1 under different control methods.
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Fig. 3. Changes in active-power outputs of all the generators without noise.
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Changes in active-power outputs of all the generators, under a frequency measurement noise bounded by 1] = 0.01Hz.

leaky integral control, respectively. The noise %(() is sampled 
from a uniform distribution on |0.7/; |, with 7/, selected such 
that the ratios of % between generators are 1:2:3:--: 10 
and ||[pi,p2, • • • 111 =r} = 0.01Hz. The meaning of p here is 
consistent with that in Definition 1 and Theorem 8. At each 
generator i, the noise has non-zero mean fji/2 (inducing a 
constant measurement bias) and variance or ; = rpj 12.

Figure 2 (solid plots) shows the frequency at generator Gl, 
and Figure 4 shows the changes in active-power outputs of all 
the generators under such a measurement noise. Observe from 
Figures 2(b)—2(c) and Figures 4(FhKc) that leaky integral 
control is more robust to measurement noise than pure integral 
control. Figures 4(a) and 4(c) show that the DAI control is even 
more robust than the leaky integral control in terms of genera­
tor power outputs, which is not surprising since the averaging 
process between neighboring DAI controllers can effectively 
mitigate the effect of noise - thanks to communication.

C. Impacts of leaky integral control parameters

Next we investigate the impacts of inverse DC gains lx ,, and 
time constants T) on the performance of leaky integral control.

First, we fix the integral tune constant T.,, = t = 0.05s for 
every generator i, and tune the gains l\ , = k for generators 
G3, G5, G6, G9, G10; Iu = 2k for other generators to 
ensure the same asymptotic power sharing as above. The 
following metrics of controller perfonnance are calculated for 
the frequency at generator Gl: (i) the steady-state frequency 
error without noise; (ii) the convergence tune without noise, 
which is defined as the time when frequency error enters and 
stays within [0.95,1.05] times its steady state; and (iii) the 
frequency root-mean-square-error (RMSE) from its nominal 
steady state, calculated over 60-80 seconds (the average 
RMSE over 100 random realizations is taken). The RMSE 
results from measurement noise //,(/) generated every second 
at every generator i from a unifonn distribution on [—%,%], 
where the meaning of T\, is the same as in Section V-B; 
ij fl) has zero mean so that the performance in mitigating 
steady-state bias and noise-induced variance can be observed
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Fig. 6. Convergence time (upper) and RMSE (lower) of frequency at generator 
Gl, as functions of the time constant Ti = r for leaky integral control. The 
gains Ki are 0.005 for G3, G5, G6, G9, G10 and 0.01 for other generators.

to-state-stability of the nonlinear model, will not be at stake, 
provided that the initial conditions and the maximum noise 
magnitude are those characterized in the proof of Theorem 8.

Fig. 5. Steady-state error (upper), convergence time (middle), and RMSE 
(lower) of frequency at generator Gl, as functions of the gain k for leaky 
integral control. The time constants are T) = r = 0.05s for all generators.

separately. Figure 5 shows these metrics as functions of k. It 
can be observed that the steady-state error increases with k, as 
predicted by Lemma 3; convergence is faster as k increases, 
in agreement with Theorem 7; and robustness to measurement 
noise is unproved as k increases, as predicted by Theorem 8 
and Corollary 10.

Next, we tune the integral time constants T) = r for all 
generators and fix k = 0.005, i.e., A* = 0.005 for G3, 
G5, G6, G9, G10 and l\, = 0.01 for other generators, for a 
balance between steady-state and transient perfonnance. Since 
the steady state is independent from r, only the convergence 
tune (measured for the case without noise) and RMSE (taken 
as the average of 100 runs with different realizations of noise) 
of frequency at generator Gl are shown in Figure 6. It can be 
observed that convergence is faster as r decreases, which is 
in line with Theorem 7. Robustness to measurement noise is 
improved as r increases, which is in line with Theorem 8 and 
predicted by Corollary 10.

Finally, we discuss perfonnance degradation if the response 
tune of leaky integral controller is smaller than the actuation 
response time. The generator turbine-governor dynamics can 
be modeled as first or second-order transfer functions, with 
dominant tune constants in the range of [0.25 s, 2.5 s] for 
hydraulic turbines and [4 s, 7 s] for steam turbines [40, Chapter 
9], The analogous time constant for our controller corresponds 
to the parameter ratio Tj/Ay. For the simulations in Figures 2- 
4 this ratio was chosen as 10 s for generators G3, G5, G6, G9, 
G10 and of 5 s for others. Thus, they are compatible with 
actuation through steam and hydraulic turbines. If this was 
not the case, the controllers have to be slowed down and their 
perfonnance can be inferred through Figures 5 and 6. Finally, 
we stress that the proven robustness guarantees, i.e., input-

D. Tuning Recommendations
Our results quantifying the effects of the gains K and T 

on the system behavior lead to a number of insights about 
tuning the gains in a practical setting. Specifically, a possible 
approach is as follows. First, the ratios between the values 
A71 can be detennined using Corollary 5 and knowledge 
about the generator operation cost. Second, a lower bound 
on the sum of these values 7" AT1 can be obtained from 
Corollary 4 according to the required steady-state perfor­
mance. Since by Theorem 7 larger gains A', are beneficial 
to faster convergence, it is preferable to set the values of 
K- equal to the lower bound from Corollary 4. Note that 
in Corollary 4, the value of e is normally specified in the 
grid code and is thus assumed to be known. The grid code 
also specifies a worst case power unbalance 7" i A that 
frequency controllers have to counter-act before the system 
is re-dispatched. Specifically in our simulations, we assumed 
an admissible frequency deviation e = 0.3Hz = O.OOSpu, a 
worst-case power imbalance 7" A* = 1800MW = 18pu 
(approximately the simultaneous loss of the two largest gen­
erators), and D"=1 Di = 2100pu based on practical generator 
droop settings and load damping values. As a result of Corol­
lary 4, we obtained 7" A'r1 = 1500pu, which together with 
Corollary 5 leads to our choice of A'; = 0.005 for generators 
G3, G5, G6, G9, G10 and 0.01 for the others. Third, with 
the inverse gains l\'t fixed, the time constants T.,, can be 
determined to strike a desired trade-off between frequency 
convergence rate and noise rejection. We outline two possible 
approaches below based on Theorem 8 or simulation data.

One possible approach to determine T.,, is foreshadowed by 
the proof of Theorem 8. The maximum noise magnitude ;/ (for 
which input-to-state stability can be established in Theorem 8) 
is linear in /3i//T, which are both defined as functions of T in 
the proof of Lemma 14. From their definitions, one learns that 
fj is a convex function of each of the values of T. By requiring

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted
manuscript. The published version of the article is available from the relevant publisher.

0018-9286 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DO I 10.1109/TAC.2018.2884650, IEEE
Transactions on Automatic Control

that the value of fj exceeds the sensor noise estimate, one can 
then finds bounds on the values of T.,,. Within these bounds one 
should select the lowest values of Tt, as this is both beneficial 
for a faster convergence rate a and a smaller deviation due to 
the disturbance 7 if, as seen in the proof of Theorem 8.

If the system under investigation makes the above con­
siderations for T infeasible, an alternative tuning approach 
for T relies on simulation data. For example, consider the 
simplified case presented in Figure 6, where there is a single 
tune constant r = T.,, for all the generators i to be tuned. 
By means of regression methods, one can approximate the 
relationships between the frequency convergence time Y’:()I1V, 
the frequency RMSE /rmse, and the gain r via the functions

Conv (r™) — clt T b
/RMSE(-r) = + d

where a > 0, b e R, c > 0, d e R, 0. > 0 are constants. The 
tune constant r can then be chosen according to the criterion

mm
T> 0

7 Conv(r) + /rMSe(t)

where 7 > 0 is a trade-off parameter selected according to the 
relative importance of convergence time and noise robustness. 
The unique optimal solution to this trade-off criterion is

t = max

VI. Summary and Discussion

In the following, we summarize our findings and the various 
trade-offs that need to be taken into account for the tuning of 
the proposed leaky integral controller (13).

From the discussion following the Laplace-domain repre­
sentation (14), the gains A/ and 7’ of the leaky integral con­
troller (13) can be understood as interpolation parameters for 
which the leaky integral controller reduces to a pure integrator 
(K, \ 0) with gain 7’,, a proportional (droop) controller 
(Ti \ 0) with gain AT-1, or no control action (A*, T* /* 00). 
Within these extreme parameterizations, we found the fol­
lowing trade-offs: The steady-state analysis in Section IV-A 
showed that proportional power sharing and banded frequency 
regulation is achieved for any choice of gains A/ > 0: 
their sum gives a desired steady-state frequency performance 
(see Corollary 4), and their ratios give rise to the desired 
proportional power sharing (see Corollary (5)). However, a 
vanishingly small gain A', is required for asymptotically exact 
frequency regulation (see Corollary 6), i.e., the case of integral 
control. Otherwise, the net load is always underestimated. With 
regards to stability, we inferred global stability for vanishing 
l\ , \ 0 (see Theorem 2) but also an absence of robustness 
to measurement errors as in (12). On the other hand, for 
positive gains A', > 0 we obtained nominal local exponential 
stability (see Theorem 7) with exponential rate as a function 
of Ki/Ti and robustness (in the form of exponential ISS with 
restrictions) to bounded measurement errors (see Theorem 8) 
with increasing (respectively, non-decreasing) robustness mar­
gins to measurement noise as A', (or Tf become larger. 
From a %-performance perspective, we could qualitatively 
(under homogeneous parameter assumptions) confirm these

results for the linearized system. In particular, we showed 
that measurement disturbances are increasingly suppressed for 
larger gains A/ and T) (see Corollary 10), but for sufficiently 
large power disturbances a particular choice of gains A/ 
together with sufficiently small tune constants T.,, optimizes 
the transient perfonnance (see Corollary 11), i.e., the case of 
droop control.

Our findings, especially the last one, pose the question 
whether the leaky integral controller (13) actually improves 
upon proportional (droop) control (the case T) = 0) with suf­
ficiently large droop gain K- 1. The answers to this question 
can be found in practical advantages: (i) leaky integral control 
obviously low-pass filters measurement noise; (ii) has a finite 
bandwidth thus resulting in a less aggressive control action 
more suitable for slowly-ramping generators; and (Hi) is not 
susceptible to wind-up (indeed, a proportional-integral control 
action with anti-windup reduces to a lag element [19]). (iv) 
Other benefits that we did not touch upon in our analysis are 
related to classical loop shaping; e.g., the frequency for the 
phase shift can be specified for leaky integral control (13) to 
give a desired phase margin (and thus also practically relevant 
delay margin) where needed for robustness or overshoot.

In summary, our lag-element-inspired leaky integral control 
is fully decentralized, stabilizing, and can be tuned to achieve 
robust noise rejection, satisfactory steady-state regulation, and 
a desirable transient performance with exponential conver­
gence. We showed that these objectives are not always aligned, 
and trade-offs have to be found. Our tuning recommendations 
are summarized in Section V-D. From a practical perspective, 
we recommend to tune the leaky integral controller towards 
robust steady-state regulation and to address transient perfor­
mance with related lead-element-inspired controllers [38].

We believe that the aforementioned extension of the leaky 
integrator with lead compensators is a fruitful direction for 
future research. Another relevant direction is a rigorous anal­
ysis of decentralized integrators with dead-zones that are often 
used by practitioners (in power systems and beyond) as alter­
natives to finite-DC-gain implementations, such as the leaky 
integrator. Finally, all the presented results can and should be 
extended to more detailed higher-order power system models.
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Appendix

A. Technical lemmas
We recall several technical lemmas used in the main text.

Lemma 12 (Matrix cross-terms). [12, Lemma 15] Given 
any four matrices A, B, C and D of appropriate dimensions,

M ' A Bh7 > "A - BtB 0
D 0 D-Ch? M'

Lemma 13 (Bounding the potential function). [12, 
Lemma 5] Consider the Bregman distance Vs := U(S) — 
U(S) — VU(S)T(S — S*). The following properties hold for 
all <5,5 that satisfy BTS, BTS e 0.
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1) There exist positive scalars a.\ and a2 such that whose derivative with respect to k is

a# - <HI < ||Vt/(d) - W/(<nil < mild - d*||.
2) There exist positive scalars <13 and 04 such that

m||d-dT <% <m||d-d*||T

Lemma 14 (Positivity of V). Suppose that Assumption 2 
holds and BTS e 0. The Lyapunov function V in (27) satisfies

AIMb < y(%) < All^f

for some positive constants and /J2, with x given in (25), 
provided that e is sufficiently small.

Proof. This proof follows the same line of arguments as the 
proof of [12, Lemma 8], but accounts for our slightly different 
Lyapunov function. We will bound V(x) in (27) term-by-term. 
The quadratic terms in lo-lo* and p—p' are easily bounded in 
terms of the eigenvalues of the matrices M and T, respectively. 
The term in S and S* is addressed in the second statement of 
Lemma 13. These three terms lead to the early bound

, _ _ 03(203k + 04)
^ ^*=i(o3&3+a4/i; + a:5(Ai))3 (53)

Clearly, for all k > 0, fiff < 0. An analogous reasoning 
holds when analyzing HGieakyll^, as a function of r, which 
shows the second claimed statement. Further, fn( If < 0 also 
implies that | G|eaky II f 2 = J'ii f !■') < /?; (0) = | niegi aloi' 11 f.

If only power disturbances are applied, i.e., when av = 0 
in (39) and (40), then f(k) reduces to

/<;(&) = E: 01 k
= 1 o-^k2 T 04A* T ‘i:- (A,

(54)

Clearly, for all k > 0, ||Gieaky||% = fc(k) < /c(0) = 
|| ^integrator || f.2 ■ Therefore, Since I G|C4V | 44 = /(A") = /(," (A") + 
Lfik), it follows for all k > 0 that ||Gleaky||2H2 = fifik) +
/<(*) < fv(0) + A(0) = ||Gintegrator ||p2 • D

min(Amin(M),Amm(T),03)||T||2 <
< max(Amax(M), Amax(T), 04)||T||2. 

The cross-term e(VU(S) - VU(S*))tMoj can be written as

/V(7(d)-V(7(d*)yi0 iM'

This allows us to apply Lemma 12, which yields

- ||WA(d) - WA(d*)f - Amax(M)2|H|2 

< (V(7(d) - V(7(dD)^Mw 

< ||VfA(d) - VfA(dD||" + Amax(M)2|H|T

AV(7(d)-V(7(dCj

2) Proof of Corollary 11 :

Proof. First notice that for o2 — ofifid > 0 the hrst term of 
(39) is always positive and thus ||Gleaky|| H2 > ||Gopen ioopII h2 
for all t. As a result, one can only improve the performance 
beyond open loop when o2 — rr'ik/d <: 0, which is equivalent 
to (48). The derivative of (39) with respect to r equals

yp||Gleaky||2H2-X/
— (°p _ —,crP)2d{2TAj, + 1)

l 2d mk2 + ( — +dr ) k+T+AiT2
2 •

By applying the hrst statement of Lemma 13, we can bound 
the entire Lyapunov function using

Pi = min(Am;n(M) — eAmax(Mp, Am;n(T), 03 — eaf)
@2 = max(Amax(M) + eAmax(Mp, Amax(T), 04 + ear,).

Finally, we select e sufficiently small so that 7 > 0. □

Therefore ^r||Gleaky||p2 > 0 whenever (48) holds. It follows 
that the minimal norm in the limit when r = 0.

We now compute the derivative of Jiff as

/<;(&) = 1Z
i= 1

afia-ik2 - a5(Ai))
(a3&2 + 04& + as(A^))2

(55)

B. Proof of Corollaries
We provide here the proof of corollaries 10 and 11. 
1) Proof of Corollary 10 :

Proof. For a given value of r, consider the function
* —04 A: + 04
=1 0:3 A2 + + asDi)f{k) = na6+yz (51)

where 04 = oy/d, o2 = o2, 03 = 2dm, 04 =
2d.(ni/d+ dr), <15(A.;) = 2d(r + Ajr2), and o@ = o2/2ind
are all positive parameters. The function f(k) interpolates 
between ||Gieaky||= f(k) and |Gmlc2ral(:ir|| f2 = /(0).

We prove that if either power disturbances or or measure­
ment noise ov equal zero, then ||Gieaky||2H2 < ||Gmtegrator|lZ2 
holds for all k > 0. In presence of only measurement noise, 
i.e., when = 0 the function f(k) reduces to

Notice that r = 0 implies 05(A*) = r(l + A.;r)

01 (03 A:2) 
(03&2 + 04 A:)2

0 so that

Thus, when considering /,, and A for r = 0, we get

O1O3&2 — 20303 A: — 09 04 
(03A:2 + O4A:)2

By setting /'(&)] = 0, the opthnal k value is obtained as
the unique positive root of the second-order polynomial

p(k) = 01O3A:2 —2o2o3A: —o2o4 = 2/?? (<j2A:2 - 2dcr2A: - a2) ,
a2

(52) which is given explicitly by (49).v 1 a3p2 _|_ a4p _|_ 05 (Aj
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