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Some new symmetric function tools
and their applications

A. GARsIA*, J. HAGLUND', AND M. ROMERO?

We prove a technical identity involving the A operator from Mac-
donald polynomial theory, which allows us to transform expressions
involving the A operator and the Hall scalar product into other
such expressions. We show how our technical identity, although
following easily from the well-known Koornwinder-Macdonald reci-
procity theorem, contains as special cases several identities occur-
ing in the literature, proved there by more complicated arguments.
We also show how our identity can be used to obtain some new ex-
pressions for the ¢, t-Narayana numbers introduced by Dukes and
Le Borgne, as well as new identities involving the A operator and
the power sum symmetric function p,,.

1. Introduction

We assume the reader is familiar with the standard notation involving bases
of the ring of symmetric functions, as used in the classic texts [19, Chap-
ter 1] and [22, Chapter 7]; the Schur functions sy, the Hall scalar product
(,) (with respect to which the s) are orthonormal), the monomial sym-
metric functions my, the complete homogeneous symmetric functions h,,,
elementary symmetric functions e,, and power-sums p, = >, «'. Note that
hy, = s, and e,, = $1n» = Mqn.

Another important basis, the Macdonald symmetric function basis de-
noted J,(X;q,t), was introduced by Macdonald in 1988 [18], [19, Chapter
VI]. The J,, depend on two parameters, ¢,t, and contain the various bases
listed above, as well as several other popular bases, as limiting or special
cases. Macdonald conjectured that the coefficients of the .J,,, when expanded
in a certain basis connected to the Schur basis, were in NJg, ¢], which became
known as the Macdonald Positivity Conjecture. Garsia and Haiman [10] re-
fined this conjecture by suggesting that the Schur coefficients of a modified
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version of the Macdonald polynomial, denoted ﬁu(X ;q,t), have a repre-
sentation theoretical interpretation which implies their positivity. Specifi-
cally, the H . are the Frobenius image of the bigraded character of a module
M, c C[X,,Y,] under the diagonal action of S, where X,, = z1,...,2,
and Y, = y1,...,¥yn. This module is the linear span of derivatives of a deter-
minant A, a bialternant in X,,,Y,,. Haiman proved their refinement of the
Macdonald Positivity Conjecture in 2001 using the geometry of the Hilbert
scheme [12].

A module which is closely related to the Garsia-Haiman modules is the
space of diagonal harmonics DH,,, defined as the space of polynomials in
C[Xn, Ys] that are killed by the partial differential operators

n
§ : T s

aiviayi’
i=1

for all nonnegative integers r, s satisfying r + s > 0. For each u - n we
have M,, € DH,,. Haiman’s famous formula for the Frobenius image of the
bigraded character of the action on DH,, (conjectured in [9] and proved in
[13]) is

(1) F(charg DHyp) = %Tu H,.
pukn Wn
Here T}, is a certain monomial in ¢, ?, which, together with the other factors
on the right-hand-side of (1), is defined in the next section. Comparing
(1) to the following known identity giving the expansion of the elementary
symmetric function e, in terms of the modified Macdonald basis,

MB,II, ~
2 en = —FrFrH
(2) n % 0,
we see that the difference between the coefficient of H,, in (1) and the coef-
ficient in (2) is just the factor 7),.

This similarity led Bergeron and Garsia [3] to introduce the operator V
which acts diagonally on the modified Macdonald basis by VH, = T, H,,.
A consequence of (1) is that Ve, = F(charq;DH,), and hence when Ve, is
expanded in terms of Schur functions, the coefficients are in Nig, t], i.e. Ve,
is Schur positive. From the representation theoretical side, this is clear, but
is quite mysterious looking just at formula (2). Bergeron, Garsia, Haiman,
and Tesler [4] subsequently introduced an important generalization of V,
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the Delta operator Ap indexed by a symmetric function F', which we define
in the next section. The H . are also eigenfunctions of Ag for any F', and as
operators on symmetric functions of homogeneous degree n, V.= A,, .

In [13], Haiman proved that Ag, ., e, is Schur positive for any A, and fur-
thermore conjectured that Ag, e, is Schur positive for any A. There has been
a lot of research over the past fifteen years devoted to trying to understand
the combinatorial structure of the coeflficients when Ag, e, is expanded in
terms of the monomial symmetric functions, for various choices of \. (Ide-
ally, we would like to understand the Schur coefficients, but so far this has
not proved tractable). The original Shuffle Conjecture of Haglund, Haiman,
Loehr, Remmel, and Ulyanov [16] gives a combinatorial interpretation for the
expansion of A, e, in terms of monomials. Haglund, Remmel, and Wilson
[17] recently introduced a generalization of this they call the Delta Conjec-
ture, which gives a combinatorial interpretation for the expansion of A, e,
into monomials for any k,n € N. The Shuffle Conjecture was proved by
Carlsson and Mellit in 2015 [5] but the Delta Conjecture is still open.

In this article we introduce (Theorem 1) a new transformation identity
which allows one to express certain coefficients involving the Hall scalar
product and the A operator in terms of other such coefficients. In Section
2 we introduce notation and collect a few standard identities used later
on. In Section 3.1 we prove our main result and show how special cases of
this transformation reduce to other transformations which played a central
role in [14], [6], and [7]. In Section 3.2 we use Theorem 1 to obtain some
new transformations involving p,. Section 4 contains applications to the
study of Dukes and Le Borgne’s ¢, t--Narayana numbers [8], as well as other
combinatorial topics connected to the study of the bigraded character of
DH,, and the Delta Conjecture.

2. Preliminaries

Given a partition g drawn as a French diagram, and a cell ¢ € u, we let
l(c),a(c),l'(c), and d'(c) be the number of cells in p strictly North, East,
South, and West of ¢, respectively. These give the leg, arm, coleg, and coarm
of the cell ¢. We will use the notation

Mu(g.t)= [ (1=¢"@"®),  Bugt)=> ¢

cen/(0,0) cEN
wlg,t) = [J(a*© — 8OO — qOH) and M = (1 - q)(1 - ).
cep

We will also need n(u) = Zf(:”l)(z — 1)p; and T),(q,t) = ¢"W)n ),
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Throughout this article, square brackets denote plethystic substitution,
as in F[E], which denotes the plethystic substitution of the expression E
into F. If E is a positive alphabet, then F[E] = F(E), the usual symmetric
function F evaluated at the alphabet E. For background and further exam-
ples of plethystic notation see [15, Chapter 1]. For any symmetric function
F[X], let Ap be the linear operator defined on the Macdonald basis H,
via

(3) ApH,[X;q,1] = F[ByJH,[X;q,1].

For example, B(31y(¢,t) = 1+ ¢ +t, and Ath(271) = h2(1’q7t)g(271) =
(P+2+1+qt+q+t)Ha,).

One of the defining properties of modified Macdonald polynomials are
the orthogonality relations under the *-scalar product. The %-scalar product
is defined by setting

(pxs s = (=10 2 p [MIX (X = ),

where x(A) is 1 if A is true and 0 otherwise. We can rewrite the relation as

(Dxs D) = (P, w(pp) [MXT)

This gives the relationship between the *-scalar product and the Hall scalar
product. For any two symmetric functions F' and G, we have

(FIX], GIX])s = (FIX],w(G)[MX]).

The orthogonality relations for modified Macdonald polynomials are given

by

(4)  (A[X], H[X])e = (HA[X],w(H) [MX]) = wu(q,t)x(A = p).

If we let
(_1)n71 (_1)n71M
(8% = = y
" Infglnle @ —gm(1 -t
then we can write the expansion of p, in terms of the modified Macdonald
basis as

(5) npn =3 f‘i ifu f1,[X].

ukEn
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The summands for o, p, and e, (from (2)) differ by a factor of B, = e1[B,,].
Thus

(6) A, anpn = en.
The expansion for h,, is given [4] by

(™) B = (—qt) Y MH“B’;S/Q’ /1)

we
pukn

Using the fact that for p = n, B,(1/q,1/t)T, = en—1[B,] and e,[B,| = T},
we can write

(8) hp = (_qt)l_nAe_nlAen_lanpm

where for any f, A;lﬁu = H,/f[B,).

For any two partitions o and 3, Macdonald-Koorwinder reciprocity [19],
[11] gives a fundamental relation between the Macdonald polynomial indexed
by « and the one indexed by 3. Expressed in terms of the H,, it says

Ho [l +u(MBg—1)]  Hg[l+u(MB, —1)]
HcEa 1— uqa’(c)tl’(c) o Hceﬁ 1— uqa’(c)tl/(c) '

(9)

Multiplying both sides by (1 — ) and letting u — 1, we get the form of
Macdonald reciprocity we will make the most use of:

(10) ﬁ”%Bﬁ} = ﬁﬁ[rjlwﬂBa].

We should note that the expansions of e, and p, described above are a
consequence of the orthogonality relations (4) and (9).

Suppose that for a given symmetric function F', there exists a symmetric
function G so that

(I:I“,F) = G[B#]v

for all u F n. Then since <IZIM, sp) = 1, it follows that <ﬁu, F) = (Ag ﬁu» Sn)-
This will be useful in the case that F' = egh,,_ since it is known [19, p. 362]

that (Hy, exhn—k) = ex[B,]. It follows that for any homogeneous symmetric
function P of degree n, we have

(11) <AekP7 Sn> = <P, ekhn,k).
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3. Scalar product identities
3.1. A general transformation

In [14], identity (14) below played a key role, and further applications of
(14) were derived in [6], [7] and [20]. The main result in this article is the
following more general form of (14), which can be shown to be equivalent to
Macdonald reciprocity. After proving it, we devote the rest of the article to
exploring applications.

Theorem 1. Let P be a homogeneous symmetric function of degree k, and
let @ be a homogeneous symmetric function of degree n. Then

(12) (Au(pyanpn, Q) = (AyQ)akPr, P)-

Proof. Tt suffices to check this equality over a basis. We will assume P =
wHa[MX] and Q = wHg[M X] for arbitrary partitions o - k and 8 F n.
Since

Aw(P)Olnpn = Z W ﬁM[XL

w
ukEn ®

we have

MTw(wHa[MX])[B,
3 (wHa[MX])[B,]

. (Hu[X], 0 T [MX])

(Au(pyanpn, Q) =
pukn
B Z MII, H (M B,]

Wy,

(H,LL> H,3>
pukn

_ M1 Ho[M By

wp

wy = MIIgHa[MBg].

A similar computation gives
(A (@ kP, P) = MIL, Hg[M B,]
Therefore, equality holds precisely when
I, Hg[M B, = 115 Ha[M Bg),

which is another way of writing Macdonald reciprocity (10). O

Remark 1. Note that if n = k, so both P and Q are of homogeneous degree
n, we can cancel the factor ay, on both sides of (12), leaving the more compact
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form

(13) (Au(pyPn, Q) = (Ay(@)Pn, P)-

We now list a few significant special cases of Theorem 1, both of which
have already appeared in the literature, but with longer and less insightful
proofs.

Corollary 1 ([14, Corollary 2.9]). For k > 0 and any homogeneous sym-
metric function QQ of degree n, we have

(14) (Aey e, Q) = (Au(Q)€ks Sk)-

Proof. We have seen that
€n = Ael QnPn.-

Therefore, using Theorem 1 with P = hy_1e; we have

<A6k71ena Q> w(hk_1€1)¥nPn; Q>

(A
= (Au @)Dk hi—1€1)
(by (11)) = (Au(Q)e, WPk Sk)
= (Au(Q)Ck> 5k)- O

Corollary 2 (]2, Proposition 4.2]). For k > 0 and any homogeneous sym-
metric function Q of degree n, we have

(15) (A _ren, Q) = (—at)* " {Aughu, s1¢).
Proof. Letting n = k in (8) yields

hi = (—qt) " FAZT A, cgpi
Plugging this into the right-hand side of (15) we get

(—at)* MA@ s s10) = (—at)" H(—at) AL AL e, i ex)

(by (11)) = AekA_lAw(Q)ek,lakpkask>
Aw( )ek_lakpk,8k>
(by (11)) = (A @)Dk, €k—1h1)

(by Theorem 1) = (Ap, e, 0nPn, Q)

Ahk,lena Q> O

o~ N N N~/
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3.2. Some new identities involving A¢, p,

In the introduction we mentioned some of the connections between the
symmetric functions Ag, e, to representation theory and geometry, and re-
sults like the Shuffle Theorem expressing some of these symmetric func-
tions in terms of monomials. There are also many nice results involving
(—=1)"~'Vp,. In particular, Sergel [21] has proved the Square Paths Conjec-
ture of Loehr and Warrington, which gives a combinatorial interpretation
for the expansion of (—1)""!Vp, into monomials. One thing that is miss-
ing from this theory though is a DH,,-type representation-theoretic inter-
pretation for (—1)"~'Vp,, and more generally for the symmetric functions
(=) Vpn, Accen, (—1)" " TA pn, (—1)" 1Ay, pn, which all appear to be
Schur positive.

Suppose for a moment we have a module M, for which F(charyM,) =
(—1)""1Vp,. It can be shown that

(16) (=1)""er Von = [nlg[n] Ven,
where * is the operator which is adjoint to multiplication with respect to
the Hall scalar product, i.e. for all f,g,h,

(17) (g~ f.h) = (f, gh).

Since e; F(charM) gives the Frobenius image of the restriction from an S,,-
action to an S,,_i-action, we see that M, ig;ll gives n? copies of diagonal
harmonics. One may hope that M, may be represented by some space of
polynomials that are killed by certain partial differential operators. In eq.
(18) below we will see that the same property holds for A.,. This together
with other identities we will derive suggest a remarkable relation between
the yet to be discovered-modules corresponding to (—1)" ' Ac, pn, A, €n_1
and even Ay, €,_1.

Corollary 3. For positive integers k and n we have
(18) (_1)n716f—Aekpn = [n]q[n]tAe, , €n—1.

Proof. The statement is equivalent to saying ellAek anpn = Ae,_,en—1. Now
two symmetric functions F' and G are equal if and only if (F, P) = (G, P) for
any choice of P. It is easy to see that by applying Theorem 1 and Corollary
1, we have for any homogeneous symmetric function P of degree n,

<6%A€k,anpnvp> = <Aw(hk)anpmelp>



Some new symmetric function tools and their applications 663

(by Theorem 1) = (A (p)e, WDk Sk)

= (Au(pyerk k)
(by Corollary 1 with Q@ — P) = (A, ,en, P). O

€r—1

Eq. (18) can be viewed as a special case of the following result.

Theorem 2. For positive integers m,n, k we have

(19) hin e, OntmPrtm = De, ., CnPn-

In particular, when m =1 and n is replaced by n — 1, we have

(20) (=1)" i Aeepn = [nlg[n]eDe, ,en—1.

If instead, in (19), k is replaced by k + 1 and m by k we have

(21) (=) Ay Pk = [0+ Klg[n + KleApen

Proof. Let P be a homogeneous symmetric function of degree n. Then

<hrJﬁAekan+mPn+ma > <Aekan+mpn+ma h P>
(by Theorem 1) = (A W emakpk,sk>
=(A
=

(by (11)) w(P)OkDPEs €mBk—m)

Aek m,hwn anpn? P> D

We now show there is a similar identity for the symmetric function
ht A
mShy, Ont+-mPn+m-

Theorem 3. For positive integers m,n, k we have

(22) h#Ahkaneranrm = hﬁAhmekﬂ”an+kpn+k.

In particular, when m =1 and n is replaced by n — 1, we have
(23) (=1)"er Appn = lelnlghi e, enir1-
When m =k — 1 and n is replaced by n + 1, we have

(24) (=) b APk = [0+ kle[n + k]thi_Ahk—len*i’k*i’l'
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Proof. Let P be a homogeneous symmetric function of degree n. Then

<h#1Ahkan+mpn+m; > Ahkan—i-mpn—l-mah P>

(by Theorem 1)
(by (11))
(by (11))
(by Theorem 1)

Aw (P)e,, ¥kPk, €k>
Aw P)emekakpka $k>
A

w(P)er, XkDk; emhkfm>

Ap, ex o OntkPntks i P)

héAhmek m an+kpn+k7 P> D

{
=
=
=
{
=

4. Combinatorial applications

The contents of Section 4.1 below are purely expository, giving background
on the Delta Conjecture from [17]. We also include a discussion of results
of D’Adderio and Wyngaerd [7], and D’Adderio and Iraci [6], which prove
special cases of the Delta Conjecture, as well as a discussion of related work
of Zabrocki [23]. We will refer to this material in Section 4.2 where we show
how Theorem 1 and the combinatorics of the Delta Conjecture can be used
to obtain some new results on the g,¢-Narayana numbers introduced by
Dukes and Le Borgne.

4.1. The Delta Conjecture
A Dyck path is a lattice path from (0,0) to (n,n) consisting of unit North

and East steps which never goes below the line y = x. As a running example,
we take the Dyck path D below.
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Given a Dyck path 7 let a; = a;(7) denote the number of squares in the
ith row (from the bottom) which are to the right of 7 and to the left of the
diagonal y = x, where 1 < i < n. In the case of D above,

(ala az,as, a4, as, ag, a7) = (07 11 17 27 07 17 1)

We let area(m) denote the sum of the a;. Furthermore let dinv(7) denote the
number of pairs (7,j), 1 <i < j < n, with either

(25) a; =a; or a; = aj + 1.

Next define the reading order of the rows of m to be the order in which the
rows are listed by decreasing value of a;, where if two rows have the same
a;-value, the row above is listed first. For the path D above, the reading
order is

(26) row 4, row 7, row 6, row 3, row 2, row 5, Tow 1.

Finally let by = bg(m) be the number of inversion pairs as in (25) which
involve the kth row in the reading order and rows before it in the reading
order. For D we have

(27) by =0,by = 1,b3 = 2,by = 2,b5 = 3,bg = 2,b7 = L.

Note dinv is the sum of the bz, and that values of ¢ for which b; > b;_4
correspond to tops of columns in 7 (where we define by = —1 so that b; > bp).
One way of defining the g, t-Schroder polynomial from [14] is by setting

(28) qdinv(fr) H (l_i_z/qbl)

bi>b;_q
i>2

Here D,, denotes the set of all Dycks paths from (0, 0) to (n,n). For example,
the weight assigned to D in the right-hand-side of (28) is

(29) " (1+2/9)(1+ 2/¢*) (1 + 2/¢°).

In particular, Cy(g,t,0) is Garsia and Haiman’s ¢, t-Catalan sequence [9].
Let

(30) C q,t w, Z Ztarea(ﬂ) dinv(7) H (1+z/qbi) H (1—|—w/t“i).

bi>bi_q a;>aq_q
i>2 i>2
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This four variable Catalan polynomial appears in [17] under the context of
the Delta Conjecture. Two different conjectured expressions for Cy,(q, t, z, w)
are given there in terms of the A operator. One of these, eq. (31) below,
was proved by Zabrocki in [23], and the other, (32) below, was proved by
D’Adderio and Wyngaerd [7]. (Without the results in both [23] and [7], it
is not known how to show the two A-operator expressions for C,(q,t, z, w)
are equal).

Theorem 4 (Zabrocki [23], D’Adderio and Wyngaerd [7]). For integers a, b,

(31) Cn (‘L t, 2, w) = <Ah,,,en_aen—a7 3b+1,1“*a*b*1>

zewb

(32) (14 2)(1 +w)Cp(g, t,w, 2)|sawe = (Ae, _,€n, Na€n—a)-
We also have

(33) Cnlg, t,w,z) = Cp(t,q,w, z) = Cylq,t, z,w).
Remark 2. An equivalent form of (32) is

(3 (L+0)C(@ b, 2) ot = (e e Saptar—ses).

We include here is a simple proof that the symmetry relations (33) follow
from (32) using (11).

Proof. Suppose we know that
(14 2)(1 4+ w)Cp(g, t,w, 2)| e = (Ae, _,€n, Na€n—q)-
The right-hand-side above equals
(Ae, _,en,haen—qa) = (Dec, _,en_.n,Sn)s

which is clearly symmetric in a,b, so Cy(q,t, z,w) = Cy(q,t,w,z). To see
the symmetry in ¢, ¢, consider the expansion of

Aen—aenfben

in terms of the H,,, using (5) and (6), as a sum over partitions y. One easily
sees that the terms in this sum corresponding to p and its conjugate are
the same, after we interchange ¢ and ¢, and hence their sum is symmetric in
q,t. O
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The Delta Conjecture gives a combinatorial description of A, e,. Let
P be a parking function, viewed as a placement of the integers 1 through
n just to the right of the North steps of a Dyck path, with strict decrease
down columns.

Conjecture 1 (Delta Conjecture [17]). For any integer k, 0 < k < n,

(35)
en en = Z Z tareafr dinv(P )Fdes(Tead(P)’l) H (1+w/tai)

a;>a;_
T PePF(r) ok 1

wk

where PF(m) is the set of parking functions with supporting path m from
(0,0) to (n,n); and F is the quasi-symmetric function weight attached to P.
(See [15, Chapters 5 and 6] for a definition of dinv(P), and also the quasi-
symmetric function weight attached to P.)

The case k = 0 of (35) is the Shuffle Theorem of Carlsson and Mellit [5]).
The results of D’Adderio and Wyngaerd [7] may be viewed as the Schroder
case of the Delta Conjecture (it is common usage to refer to the coefficient
of a Schur function of hook shape in symmetric functions defined via the
A operator as the Schroder case, since in [14] it was first shown that the
coefficient of a hook Schur function in Ve, can be expressed combinatorially
in terms of Schroder lattice paths).

In related work D’Adderio and Iraci [6] were able to extend the work in
[1] and give an interpretation of (A, e, hgh,—g) in terms of polyominoes,
showing it agrees with a predicted combinatorial interpretation from the
Delta Conjecture. We can rewrite this polynomial as

<Aek €n, hdhn—d> = <Aeden,d€k+1a 5k+1>
= (Ac,_,€kt1, Niy1—ded)

=1+ 2)(1+w)Crii(g, t,w, 2) i
also relating these scalar-products with the polynomial C1(q,t, w, z). This
transformation will play a role in the following section, where we connect
Narayana numbers to the 4-variable Catalan polynomial using the scalar
product identities.

4.2. The Narayana numbers

The Narayana number N (n, k) counts the number of Dyck paths from (0, 0)
to (n,n) with k columns, i.e. k pairs of consecutive NE steps. It is known
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that

(36) o= (") (3)

and furthermore that N(n,k) = hg_1, the kth element of the h-vector of
the type A,_1 associahedron. The Narayana numbers can be decomposed
into Kreweras numbers Krew(\) which count the number of non-crossing
partitions of {1,...,n} whose blocks have sizes that rearrange to A. For a
partition A of length k, we have

1 n+1
(37) Krew(}) = n+1(ml(/\),...,mn()\),n—k+1>’

where m;(A) is the number of parts in A of size i. This also counts (by
the Cyclic Lemma) the number of Dyck paths from (0,0) to (n,n) whose
columns have lengths that rearrange to A. This gives

(38) N(n,k)= Y Krew()).
0k

Perhaps the most natural g-analog of (38) is given by

q<n+1—k><n—k>i[ n } m
[n]q [k — 1], K],

—L(N)— 1 n+1
39 = 3 M) e [
(39) )\zl_;b n+1lg (mi(A),...,my(A),n—k+1 .

)=k

with ¢(\) = Z)\S)\; 41, providing as well a natural g-analog of Kreweras
numbers.

There is a ¢, t version of the Narayana numbers N (n, k, ¢,t) introduced
by Dukes and LeBorgne [8], defined there as a weighted sum over parallel-
ogram polyominoes. It was later shown by Aval, D’Adderio, Dukes, Hicks,
and Le Borgne [1] that

(40) N(TL, k: q, t) = <V€n_1, hkflhnfk>-

They use the fact that a combinatorial description for the right-hand-side of
(40) was proved in [14] (resolving a special case of the Shuffle Conjecture).
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Now a basic result of Garsia and Haiman is that for any symmetric
function F,
1

(41) () (Ve, [X], F[X)) PR e GOl LRl

It follows that

42)  qUIN(n kg, 1/q) = ﬁek_l [[7la] ens [[nlg]

(43) _ 4'3%(?)@ [k " 1] q L " k] i

giving up to a scaling power of ¢ the g-analog of N(n,k) appearing on the
left in (39).

At the Wachfest conference held at the University of Miami in January
2015, Vic Reiner of the University of Minnesota gave a talk involving repre-
sentation theory and identities involving g-Narayana and ¢-Kreweras num-
bers for various types, including (39). In a subsequent private conversation
with the first author, Reiner posed the question of finding a ¢, t-Kreweras
number which when ¢ is specialized to 1/¢ reduces to the g-Kreweras number
appearing on the right in (39), in the same way that N(n,k, q,t) reduces to
the g-Narayana in (43). So far we have been unable to solve this problem, but
this study has led to a new and perhaps better way of expressing N (n, k, q,t)
as a weighted sum over lattice paths. The expression (40) for N(n,k,q,t)
from [14] involves weighted lattice paths from (0,0) to (n — 1,n — 1) satis-
fying certain constraints, while in the new formulation below it is expressed
as a weighted sum over lattice paths from (0,0) to (n,n) with & columns, a
formulation which is compatible (when ¢ = ¢ = 1) with the definition of the
Kreweras numbers and (38).

Using our scalar product identities, we are able to rewrite the q,t-
Narayana numbers as follows:

N(TL, ka q, t) = <Aen_1€n—17 hkflhn7k>
(Ae,_ten_n€nsSn) (by Corollary 1)
= <Aek,1enyenfkhk> (by (11)

We could have also written this two other ways:

N(?’L, k7Q>t) = <Aek_1en_k€na 5n>

= (Aen_kem ekflhnfk+1>
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and

N(n7k7q7t) Aekflen,kelanpn73n>
Aek,lelanpna en—khk>

A h, 00D, hr—1€1) (by Theorem 1)
A

ekhn7k81 ak‘pk‘? Sk>
Ap, ey QkDPEs k)
Ap ek ex)  (by (6).

{
{
{
{
{
{

The first and second equalities give

N(n,k,q,t) = (1+2)(1 +w)Chr(g, t,w,z)

zkyn—k+1

=(1+4+2)(1+w)Cy(q,t,w,z)

zn—k+1q)k

We can then write N(n,k,q,t) as

(I1+2)(1+w) Ztarea(ﬁ)qdinv(w)

x I a+z/d) T @ +w/tm)

bi>bi 1 ;>0 1
i>2 i>2

Zkn—k+1

Recall that if b; > b;_1, then b; corresponds to the top of a column. Thus, if
we are taking the coefficient of 2¥, we are asking that our path 7 contains at
least k columns. By taking the coefficient of w™ **! we are asking that our
path contains at least n — k North steps which are preceded by a North step,
i.e. rows ¢ for which a; > a;—1. But our path is from (0,0) to (n,n), leaving
only those paths which have precisely k columns. This answers the question
of giving N(n, k,q,t) as a sum over Dyck paths with exactly k& columns. To
be more precise, let area(w) be the sum over all a; for which a; < a;—1, and
let dinv(7) be the sum over all b; for which b; < b;_1. In other words, area(r)
is the area contributed by rows ¢ whose North step is preceded by an East
step. Then,

(44) N(n,k,q,t) = Z faTea() dinv(r)
7 with k£ columns

One can then potentially define a ¢,t-analog of the Kreweras number
Krew(\) by restricting the sum (44) to paths m whose k columns have lengths
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which rearrange to A. Unfortunately, examples for small n show that this way
of defining a ¢, t-Kreweras number does not have the desired specialization
at t = 1/q, and we must leave the question of whether this definition can
be modified to obtain the desired ¢ = 1/q specialization as a question for
future research.

The equality N(n, k,q,t) = (A, _, ek, ex), also found in [1], gives another
natural way of decomposing N (n, k, ¢,t). First note that

Ay er = E AV
puFEn—k

If ¢(p) > k, we have A, e, = 0. The partitions of n with k parts are
in bijection with set of partitions of n — k& with at most k parts, simply
by removing the first column. Let A be the partition obtained from X\ by
removing the first column. Then

N(n> k,q, t) = <Ah“,kekz7 €k> = Z (Amyelm €k>-
A-n
)=k
It can be shown by the methods in [20] that (A, ex, ex)|q=1 gives the number

of Dyck paths whose columns have lengths that rearrange to A. The statistic
on t is given by area as is the case in N(n, k,q,t). This means

Remark 3. For a partition \ of length k, we have
(Amsers ex)|g=t=1 = Krew()),

This gives another potential ¢, t analogue of the Kreweras number. How-
ever, at t = 1/q, it also does not give the desired g-Kreweras number ap-
pearing in (39).

Our last observation is that N(n,k,q,t) also appears in the symmetric
function Ac, ., onpp. Recall that (21) gives

A e = hfl‘_k,Ae"leanpn.

n—k
This means
(Ap, e er) = (Ac, o) 0nDn, hn_rer),

embedding the ¢,¢-Narayana numbers in the symmetric function
Ac, .1 Qnpp. In other words,

(_1>n71<A6n7k+1pn’ hn*kek> = [n]Q[n]tN(nv k,q, t)'
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