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ABSTRACT
We explore the synergy between photometric and spectroscopic surveys by searching for
periodic variable stars among the targets observed by the Apache Point Observatory Galactic
Evolution Experiment (APOGEE) using photometry from the All-Sky Automated Survey for
Supernovae (ASAS-SN). We identified 1924 periodic variables among more than 258 000
APOGEE targets; 465 are new discoveries. We homogeneously classified 430 eclipsing and
ellipsoidal binaries, 139 classical pulsators (Cepheids, RR Lyrae, and δ Scuti), 719 long-period
variables (pulsating red giants), and 636 rotational variables. The search was performed using
both visual inspection and machine learning techniques. The light curves were also modelled
with the damped random walk stochastic process. We find that the median [Fe/H] of variable
objects is lower by 0.3 dex than that of the overall APOGEE sample. Eclipsing binaries and
ellipsoidal variables are shifted to a lower median [Fe/H] by 0.2 dex. Eclipsing binaries and
rotational variables exhibit significantly broader spectral lines than the rest of the sample.
We make ASAS-SN light curves for all the APOGEE stars publicly available and provide
parameters for the variable objects.

Key words: catalogues – surveys – stars: variables: general.

1 INTRODUCTION

Stellar variability is an important field of study in modern astron-
omy. Pulsating variable stars like Cepheids or RR Lyrae stars can
be used as distance indicators thanks to the relations between the
luminosity and the pulsational period (Leavitt 1908; Shapley 1931;
Soszyński et al. 2008, 2009; Matsunaga, Feast & Soszyński 2011;
Storm et al. 2011). Similar period–luminosity relations exist for
close binary star systems (Rucinski 1994, 2004; Pawlak 2016).
Photometry and spectroscopy for detached binary stars can provide

� E-mail: michal.pawlak@utf.mff.cuni.cz

precise physical parameters for their individual components, which
can be used to infer very accurate distances (Pietrzyński et al. 2011,
2013; Graczyk et al. 2014; Hełminiak et al. 2015). Furthermore,
many types of variable stars, especially those providing distance
estimates, trace different stellar populations, which makes them a
perfect tool for studying the structure of the Milky Way (e.g. Dambis
et al. 2015; Pietrukowicz et al. 2015; Skowron et al. 2018) and
the galaxies within the Local Group (e.g. Pejcha & Stanek 2009;
Haschke, Grebel & Duffau 2012; Deb & Singh 2014; Jacyszyn-
Dobrzeniecka et al. 2017).

In recent years, large photometric sky surveys have dramati-
cally increased the number of known variable stars. For example,
the Optical Gravitational Lensing Experiment (OGLE; Udalski,
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Szymański & Szymański 2015) has produced a collection of ∼106

variable stars in some of the most crowded regions of the sky
(Soszyński et al. 2014, 2016a,b, 2017; Pawlak et al. 2016). The
recent Gaia Data Release 2 (Gaia Collaboration et al. 2018) contains
about 5 × 105 variables (Holl et al. 2018). Additional examples
of surveys providing large numbers of new variable stars are the
All-Sky Automated Survey (ASAS; Pojmanski 1997, 2002), the
All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee
et al. 2014; Kochanek et al. 2017; Jayasinghe et al. 2018, 2019b),
the Catalina Sky Survey (Drake et al. 2014, 2017), EROS (Kim
et al. 2014), MACHO (Alcock et al. 1996, 1997), the Asteroid
Terrestrial-impact Last Alert System (ATLAS; Heinze et al. 2018;
Tonry et al. 2018), and the Kilodegree Extremely Little Telescope
(KELT; Pepper, et al. 2007; Rodriguez et al. 2017).

Spectroscopy can track the motions of a source, whether due
to binarity or pulsations, while also providing physical parameters
such as the effective temperature, surface gravity, chemical compo-
sition, and kinematics. Traditionally, spectra have been obtained
as follow-up observations of objects selected from photometric
surveys, but stand-alone time-resolved spectroscopy is gradually
becoming available due to the advent of large spectroscopic surveys
including the Apache Point Observatory Galactic Evolution Exper-
iment (APOGEE; Majewski et al. 2017), the Galactic Archaeology
with HERMES (GALAH; De Silva et al. 2015), the Large Sky Area
Multi-Object Fiber Spectroscopic Telescope (LAMOST; Zhao et al.
2012), and the Radial Velocity Experiment (RAVE; Steinmetz et al.
2006). This allows the investigation of questions that would be
difficult to address with purely photometric data.

In particular, APOGEE used the 2.5-m telescope of the Sloan
Digital Sky Survey (SDSS; York et al. 2000) to obtain high-
resolution (R = 22 500), high signal-to-noise ratio (S/N > 100),
infrared spectra for about 3 × 105 stars with the goal of estimating
radial velocities to a precision of 200 m s−1 along with the elemental
abundances for 20 chemical species to a precision 0.1 dex (Garcı́a
Pérez et al. 2016; Majewski et al. 2017). Because of the APOGEE
target selection strategy, the observed sample consists mostly of red
giants (Zasowski et al. 2013). Many of the targets were observed on
multiple (up to a few tens) visits, which makes this sample a gold
mine for studying variable and binary stars.

Several authors have searched the APOGEE data for binary
stars. Badenes et al. (2018) used the distributions of maximum
radial velocity shifts among multiple APOGEE visits as a proxy for
stellar multiplicity, finding that low-metallicity stars have higher
radial velocity shifts and hence a higher multiplicity fraction than
metal-rich stars. This has many implications for star formation,
evolution, and demise, including for the progenitors of gravitational
wave sources. Moe, Kratter & Badenes (2019) also found a strong
metallicity dependence in a joint analysis of heterogeneous samples
of binaries, including APOGEE. El-Badry et al. (2018) fit APOGEE
spectra as a superposition of multiple model spectra, leaving aside
the radial velocity information, and identified ∼2700 candidate
main-sequence multiple stars. Radial velocities of about ∼700 of
these stars of these were found to be variable but with no trace of a
secondary in the spectrum. Full orbital solutions were obtained for
64 systems, and mass ratios were estimated for ∼600 binaries from
multi-epoch radial velocities. Finally, Price-Whelan et al. (2018)
used a custom-built Monte Carlo sampler to find periods and other
orbital parameters from radial velocity measurements of red giants
in APOGEE. They found 320 systems with confident estimates of
the orbital parameters, and ∼5000 stars likely to be binaries. Price-
Whelan & Goodman (2018) then used this sample to examine tidal
circularization theory.

Clearly, the small number of epochs presents an obstacle to
characterizing the orbital properties of binaries in spectroscopic
time-domain surveys: the likelihood space for the period is vast
with many peaks (Price-Whelan et al. 2018). However, periods can
be reliably and precisely determined from photometry if the binary
system is eclipsing or displays detectable ellipsoidal or rotational
variability. Thompson et al. (2018) obtained photometric periods
from the All-Sky Automated Survey for Supernovae (ASAS-SN;
Shappee et al. 2014) for several hundred APOGEE targets with the
largest radial velocity accelerations. This led to the identification
of a binary with an unseen 2.5–5.8 M� companion, a first likely
non-interacting binary star composed of a black hole with a field
red giant with implications for physics of supernovae, black holes,
and binaries (Breivik, Chatterjee & Andrews 2019).

This illustrates the great synergy in the study of binary stars
that can be realized by combining spectroscopic and photometric
surveys and we expect similar gains for other types of variable
stars. The amount of time-resolved spectroscopic data will increase
rapidly in the future. For example, the Milky Way Mapper project
in SDSS-V survey plans to obtain spectra of more than 4 million
stars at multiple epochs, starting in 2020 (Kollmeier et al. 2017).
Simultaneously, many efforts in the field of photometric time-
domain surveys will culminate with the Large Synoptic Survey
Telescope scheduled to commence scientific operations in 2023
(LSST Science Collaboration et al. 2009).

In this paper, we perform a detailed search and classification of
periodic variable stars among APOGEE targets using photometric
data from the ASAS-SN survey (Shappee et al. 2014). This paper
is intended as a catalogue, with more detailed investigations of
individual variable classes deferred to further papers. The structure
of the paper is as follows: Section 2 describes the ASAS-SN and
APOGEE data; Section 3 presents the procedure used to select
and classify the variable stars and the catalogue itself; Section 4
discusses the results including a comparison to previously identified
binaries in APOGEE; and Section 5 summarizes the results.

2 DATA

We start with the APOGEE Data Release 14 (DR14; Abolfathi
et al. 2018) and obtain light curves for the 258 484 targets from
ASAS-SN. ASAS-SN (Shappee et al. 2014) is a photometric
transient survey covering the whole sky. The observations used
in this study were carried out with the original two quadruple
telescope units (Brutus at Haleakala, Hawaii, and Cassius at CTIO,
Chile) and have a limiting magnitude of V ∼ 17 mag. ASAS-SN
went through an expansion at the end of 2017, adding three new
g-band units and has recently switched Brutus and Cassius to
g-band as well. The g-band limiting magnitude is ∼18, and these
observations will be used in future studies. The field of view of
each camera is 4.5 deg2, the pixel scale is 8 arcsec, and the full
width at half-maximum is ∼2 pixels. The ASAS-SN photometry
is obtained with differential image analysis (Alard & Lupton
1998; Alard 2000), with aperture photometry on the subtracted
frames. Details of the procedure are described in Jayasinghe et al.
(2019b). Further technical details of the ASAS-SN survey were
described by Kochanek et al. (2017). ASAS-SN recently published
a sample of over 66 000 serendipitously discovered variable stars
(Jayasinghe et al. 2018), reclassified over 4 × 105 known variable
stars (Jayasinghe et al. 2019b) from the Variable Stars Index (VSX;
Watson, Henden & Price 2006), and identified 11 700 variables
in the southern Transiting Exoplanet Survey Satellite continuous
viewing zone (Jayasinghe et al. 2019a).
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Figure 1. Number of data and time span of observations of the APOGEE
DR14 targets from the ASAS-SN survey.

Figure 2. Time-sampling properties of ASAS-SN shown as a histogram of
the time differences between two consecutive observations of the same
object, for all objects. The histogram uses bins equally spaced in the
logarithm of the time difference.

In Fig. 1, we show the the total number of photometric ob-
servations and the time span of the data for all our light curves.
The majority of the targets were observed for more than 3 yr and
typically have at least 150 measurements. The median number of
photometric measurements is 248, but there are objects with 600 or
more measurements. The structure in Fig. 1 is due to the history of
how Cassius and Brutus were built and filled with telescopes (see
Kochanek et al. 2017).

Since ASAS-SN operates several telescopes at different sites,
we also investigate the cadence and time-sampling properties. In
Fig. 2, we show the distribution of time differences between two
consecutive measurements. There are observations separated by
�1 d, which is caused by overlap between the fields of view of
the telescopes in each unit. Peaks at integer numbers of days are
due to diurnal observations from one site, and a small bump at
∼100 d corresponds to the typical seasonal gap. Further details on

photometric properties of ASAS-SN, including characterization of
the time sampling and the window function in frequency space,
were presented by Jayasinghe et al. (2018, 2019b).

3 VARIABILITY CLASSIFICATION

3.1 Period search

The first step in the process of identifying periodic variable stars is
a period search. We searched all of the light curves in the sample for
periodicity using two independent methods. The first is the Lomb–
Scargle periodogram method (LS; Lomb 1976; Scargle 1982) based
on the Fourier transformation. This approach is especially useful for
sinusoidal variability and for light curves that are well represented
by a low-order Fourier sequence (e.g. pulsating stars). However, the
LS method often fails to find periods for variables with strongly
non-sinusoidal light curves such as those of detached eclipsing
binaries. In order to identify the correct periods for the eclipsing
binaries, we used the Box Least Square (BLS) method (Kovács,
Zucker & Mazeh 2002). The BLS algorithm was designed to look
for planetary transits, making it better suited for detecting eclipsing
variability.

We used the implementations of both period search algorithms
in the VARTOOLS package (Hartman & Bakos 2016). We selected
the candidates for periodic variables based on the S/N of both
methods. We set the threshold to S/N > 30 for the LS method and to
S/N > 350 for the BLS method. Objects satisfying at least one of
these criteria were identified as candidates.

3.2 Visual inspection

We visually inspected all of the selected candidates. The variables
were divided into the following classes: eclipsing and ellipsoidal
binaries, classical pulsators, rotational variables, long-period vari-
ables (LPV), including Miras and long secondary period variables
(LSP). The binary stars are further subdivided into detached (EA),
semidetached (EB), contact (EW), and ellipsoidal (ELL) systems.
EW systems have a smooth transition from the eclipse to the out-
of-eclipse phase, and two minima of equal or very similar depth.
EB stars also have smooth light curves, however the depth of the
eclipses can be significantly different. EA systems have light curves
that allow the determination of the beginning and end of the eclipse.
ELL binaries do not show eclipses because of the orbital inclination,
but they can still be identified as binaries due to the tidal deformation
of a star in the system.

Classical pulsators are stars that occupy the main instability stripe
in the Hertzsprung–Russell diagram. They are divided into δ Scuti
stars with periods shorter than 0.2 d, RR Lyrae stars with 0.2 < P <

1.0 d, and Classical and Type II Cepheids with the typical periods
longer than 1 d.

LPV stars are pulsating red giants, with typical periods from 20
to a few hundred days. The majority of these objects are relatively
small-amplitude pulsators belonging to the semiregular variable
(SRV) or OGLE Small-Amplitude Red Giants (OSARG; Wray,
Eyer & Paczyński 2004) classes. The much less abundant Miras
are easily distinguishable by their high amplitudes, reaching a few
magnitudes. Finally, there is a group of LPVs showing the Long
Secondary Period (LSP) phenomenon: additional variability, on
much longer periods and higher amplitudes. The origin of LSPs
remains unclear (e.g. Wood, Olivier & Kawaler 2004). For LSPs
we report the longer period as the main period of the variability.
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The last of the variability classes consists of the rotational
variables. These objects are mostly different types of spotted stars.
They can show a broad spectrum of light curve morphologies and
are usually the most difficult to precisely classify. Most of the stars
that show periodic variability, but do not fit into the pulsating or
binary classes, are classified as rotational. However, some rotational
variables might be close binaries with inclinations not allowing us
to see the eclipses. The total number of likely periodic variables
detected in this step is 1980.

3.3 Machine learning

In order to verify the visual classification, we employed the
Random Forest machine learning classification pipeline built from
the previous ASAS-SN variability studies (Jayasinghe et al. 2018,
2019b). The classification is done using 17 features, including
infrared colours from the Two Micron All Sky Survey (2MASS;
Skrutskie et al. 2006), extinction-corrected absolute magnitudes
based on Gaia DR2 (Bailer-Jones et al. 2018; Gaia Collaboration
et al. 2018), as well as various statistical parameters and Fourier
parametrizations of the light curve. A detailed description of the
latest version of the classifier is presented in Jayasinghe et al.
(2019b).

All objects identified in the previous step were passed through
the classifier. For 1342 objects, the machine learning classification
was consistent with the previously attributed class, and for 572 it
was different. We re-inspected the discrepant cases visually. The
classification of 393 objects was changed to the one given by
the machine learning classifier, while for 179 objects the original
classification was retained. The total number of instances correctly
classified by the Random Forest classifier is 1735. This gives us an
estimate for the classifier accuracy of about 91 per cent. In addition
66 objects were removed from the final sample during re-inspection
as being too noisy and 10 objects, which were identified while
working on another APOGEE related project, were added.

3.4 Damped random walk

The APOGEE target selection function includes a large fraction
of red giants, which often exhibit semiregular or even completely
irregular variations. In order to characterize this variability and to
compare with the periodic classification, we also modelled the light
curves using the Damped Random Walk (DRW) stochastic process.
The DRW is defined by the covariance function

Sij = σ exp(− ∣
∣ti − tj

∣
∣ /τ ) (1)

between times ti and tj, where σ describes the variance of the
light curve on long time-scales and τ is the coherence time. After
removing objects with too few measurements (<30) and substituting
missing values of photometric uncertainties with the mean of
uncertainties from the rest of the data points for that particular
object, we fitted 248 867 light curves using the Gaussian processes
module CELERITE (Foreman-Mackey et al. 2017). An additional
linear parameter m was introduced to remove the light-curve mean.
To allow for photometric uncertainties we add a noise matrix to the
process covariance matrix Sij. The best-fitting parameters σ and τ

were obtained by maximizing the log-likelihood function using a
SCIPY implementation of the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) optimization routine (Broyden 1969), with bounds 0.1 and
1000 d on the parameter τ and no bounds on σ and m. The initial
values were chosen at random from a uniform distribution for τ , set

Table 1. Number of variables by class.

Type Subtype Number

ECL 430
EA 203
EB 126
EW 65
ELL 36

Pulsating 139
δ Scuti 11

RR Lyrae 108
Class Cepheids 15

Type II Cepheids 6
LPV 719

Mira 10
LSP 185

SRV/OSARG 524
Rotational 636
Total 1924

to the standard deviation of the observed magnitudes for σ , and to
the light-curve mean for m.

We used the variances of these parameters as a proxy for the
goodness of fit, leveraging the fact that the inverse Hessian matrix
of the log-likelihood function provides a reasonable estimate of
the variance–covariance matrix of parameters at the maximum, as
shown in appendix A of Yuen (2010). Models with variance greater
than one (in log-scale) in either parameter were discarded, as were
those with decorrelation time τ comparable to the survey duration
(�1000 d). Because of the survey duration, we can only reasonably
identify objects with τ � 100 d (see Kozłowski 2017).

3.5 Catalogue

The final sample consists of 1924 periodic variables. This includes
430 binary stars, 719 LPV, including 185 LSP variables, 139
classical pulsators, and 636 rotational variables. A summary of
the cataloge is presented in Table 1. For each of the objects with
a V-band ASAS-SN light curve, we give the position on the sky,
the period, the variability classification, and the APOGEE DR14
spectroscopic parameters (surface gravity log g, rotational broad-
ening vsin i, effective temperature Teff, and metallicity [Fe/H]).
The data are available via the ASAS-SN data repository at https:
//asas-sn.osu.edu/variables. Additionally, we provide the ASAS-SN
photometry for all of the APOGEE targets at https://asas-sn.osu.ed
u/photometry.

We also cross-matched the sample with the variable star cata-
logues of OGLE, Gaia DR2, MACHO, ATLAS, and KELT surveys,
as well as to the VSX (Watson et al. 2006). Out of the 1924 objects,
1460 were found in these catalogues of variable stars and 464 are
likely new discoveries. Our classification was consistent with the
literature for 703 and different for 757 known variables. Figs 3–7
show example light curves of the objects from the catalog.

4 DISCUSSION

Here we discuss the overall characteristics of the variability in the
APOGEE targets using both the photometric and spectroscopic
information. We plan to perform a more detailed analysis for
individual classes of variable stars in future papers. Specifically, we
outline interesting differences between LSP stars and other LPVs,
which will be investigated in a following paper.
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4.1 APOGEE parameters

We use the spectroscopic parameters taken from ASPCAP (Garcı́a
Pérez et al. 2016). In Fig. 8, we present the cumulative distributions
in log g for the whole APOGEE sample and for individual classes
of variables. The APOGEE sample consists of a mixture of giants
(log g < 1.0), dwarfs (log g > 2.0), and subgiants (1.0 < log g < 2.0).

The distribution of all variables (black dashed line) follows this
trend, but with a higher variability fraction for red giants (LPV
and LSP). Rotational variables (green line) are found mostly on the
main sequence, while the eclipsing and ellipsoidal variables are also
detected among the red giants. Classical pulstors are not shown in
Fig. 8 and the later figures, since the number of these objects with
APOGEE parameters is too small to analyse their distribution.

We show the cumulative distributions of effective temperatures
(Teff) in Fig. 9. Here, we also split the whole APOGEE sample into
low and high log g subsamples, which are separated rather arbitrarily
at log g = 2. As can be seen in Fig. 8, more than 90 per cent
of LPV have log g below this value and more than 90 per cent
of eclipsing binaries have log g >2. In this way, we distinguish
between dwarfs and giants (grey dashed and dotted lines). We see
that the distribution of binary stars is similar to the whole APOGEE
sample except that there are more binaries at higher Teff. Rotational
variables are shifted to lower Teff relative to APOGEE dwarfs, which
can be understood as a trend of increasing stellar activity with
decreasing Teff (West et al. 2004). As expected, LPV and LSP stars
are very cool and have very similar Teff distributions.

In Fig. 10, we show the cumulative distributions in [Fe/H]. We
see that the median [Fe/H] of the APOGEE giants is about 0.1
dex lower than for the dwarfs. The rotational variables follow the
general trend of the dwarfs, but their distribution is somewhat more
compact. The median metallicities for the eclipsing binaries and
ellipsoidal variables are shifted by about 0.2 dex to lower [Fe/H] as
compared with the dwarfs or the APOGEE catalogue as a whole.
Badenes et al. (2018) and Moe et al. (2019) previously noted the
higher binary fraction at lower metallicities, but our result is based
on a completely different selection method. The distributions of
eclipsing and ellipsoidal variables in log g and Teff are broadly
consistent with those of the dwarfs rather than giants due to two
effects. First, the binary fraction of red giants should be lower as
a result of stellar evolution. Second, it is harder to see the eclipses
in main sequence plus giant star binaries. The median [Fe/H] of
the LPV and LSP stars is shifted to lower metallicities by 0.3 and
0.5 dex, respectively, relative to the rest of the APOGEE giants.
The significant difference between the LPV and LSP will be the
subject of a future paper. The median metallicity of the overall
sample of variables is about 0.3 dex lower than for APOGEE as
a whole.

Finally, Fig. 11 shows the distributions in vsin i. Most of the
APOGEE stars have low rotational velocities, vsin i � 15 km s−1.
As expected, vsin i is significantly higher for rotational variables
and even higher for eclipsing and ellipsoidal stars. It can also be
seen that about half of the binary sample lies at the upper limit
of vsin i ≈ 90 km s−1. This is due to the upper limit on vsin i in
ASPCAP. Rotational velocities are unavailable for most of the LPV
stars in our sample because the library of giant spectra used in
ASPCAP does not include rotation.

4.2 Combining spectroscopic and photometric information

The combination of the ASAS-SN and APOGEE data allows for
a more detailed analysis of the sample and verification of the

accuracy of the photometric classifications. In Fig. 12, we present
the distribution of the sample in the log g–P plane. The first thing to
notice is the clear separation between the red giants, occupying the
upper right-hand corner of the plot with long P and low log g,
and the rest of the sample. Among the giants, the LPVs with
longer P typically have lower log g, which is a manifestation of the
dependence of the pulsational period on the mean stellar density.
LSPs do not show a similar correlation, partly because they span a
relatively smaller period range than LPVs. Even though the LSPs are
considered part of the LPV class, for the purpose of this analysis
they are treated as a separate group since their secondary period
(which is the most prominent source of variability of these objects)
is much longer than the typical pulsation periods of LPV stars and
likely has a different physical origin.

In Fig. 13, we show the distribution of P with respect to Teff.
Most of the objects are cool stars with Teff < 5000 K, as expected
given the APOGEE target selection. However, there are also hotter
objects, including Cepheids and some binaries. We do not see any
prominent correlations between these parameters. Next, in Fig. 14,
we show the distribution in [Fe/H] and P. There is a wide span of
metallicities, as expected from the variety of populations targeted
by APOGEE. For example, at low [Fe/H], we can identify RR Lyrae
stars, while the Cepheids cluster near solar metallicity.

Finally, in Fig. 15, we show the distribution of the sources in
the sample in the vsin i –P plane. We see a broad sequence with
vsin i decreasing with period. This sequence is mostly formed by
rotational variables and eclipsing binaries, where such a relation is
expected. The clumping of stars around 90 km s−1 is again due to
the upper limit on vsin i in ASCAP.

4.3 DRW results

There have not been many works applying stochastic or quasi-
periodic models to photometry of variable stars (see Kozłowski
et al. 2010; Zinn et al. 2017, and the references therein). It is
therefore worthwhile to investigate DRW models of the APOGEE
variable stars. In Fig. 16, we show the distribution of all 47 828
objects with well-fitted light curves (defined as an uncertainties
in ln σ and ln τ smaller than unity and σ ≥ 0.001) with a two-
dimensional histogram shown as grey bitmap. The concentration of
objects at τ of few days (the typical cadence of the survey, Fig. 2)
is likely caused by the noise being higher than what is reported in
photometric uncertainties. As the DRW time-scale becomes shorter
than the observing cadence, the model increasingly resembles white
noise (i.e. uncorrelated photometric errors). Indeed, if we apply
even a mild a cut of σ greater than twice the median photometric
uncertainty, the number of objects drops to 17 530.

Objects classified as periodic variables are shown with coloured
points in Fig. 16. These objects have σ � 0.02 mag and occupy
distinct regions. For example, DRW typically picks up the shorter
pulsational period of the LSPs, so they occupy a nearly identical
parameter region to the LPVs. The correlation between σ and τ

for these objects is expected from pulsational models of red giants,
where the pulsational period and growth rate of modes increase with
the radius of the star (Trabucchi et al. 2019).

It is also of interest to compare the DRW variability time-scale
τ with the periods from Section 3.1. Fitting the DRW models is
comparable in terms of computational effort to Fourier analysis,
but it is faster than a BLS search, which is especially useful for
detached binaries. In Fig. 17, we compare P and τ for our sample
of variable stars. We see that there is a clear correlation between
these two quantities and for different types variable stars. However,
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Figure 3. Example light curves of binary stars from the catalogue.

Figure 4. Example light curves of pulsating variables from the catalogue.

the correlation is very weak for eclipsing binaries, where sharper
features like occultation ingress and egress dominate the DRW
inferences. Interestingly, the relation between P and τ is not linear,
but power law with an exponent of approximately 0.6 (Kozłowski

et al. 2010; Zinn et al. 2017). Fig. 17 also illustrates the expected
fact that DRW cannot reliably infer variability time-scales shorter
than the survey cadence: for P � 3 d, the correlation between P
and τ breaks down. This limits the utility of DRW for classifying
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Figure 5. Example light curves of LPV variables from the catalogue.

Figure 6. Example light curves of LSP variables from the catalogue.

variability in surveys with long cadence. The upper limit on
τ � 100 d is defined by the survey duration (∼1000 d). The majority
of the objects in our sample have τ in the region where it can be
reliably recovered, but values τ at both the lower and higher end of
the distribution should be interpreted with caution.

4.4 Comparison with previous searches for binary stars in
APOGEE

Comparing our sample of 1924 variable stars with spectroscopic
searches based on radial velocities or spectral fitting allows us to
assess the completeness of both approaches. We first cross-matched
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Figure 7. Example light curves of rotational variables from the catalogue.

Figure 8. Cumulative distribution of log g for variable objects and the APOGEE catalogue as whole.

our sample with the list of spectroscopic binaries from El-Badry
et al. (2018). This catalogue consists of 20 141 dwarfs, 16 833 of
them classified as spectroscopically single, 663 as SB1, 2423 as
SB2, 108 as SB2 with an underlying third body signal, and 114
as SB3. We found that 171 of our variable sources are also in the
El-Badry et al. (2018) catalogue, with 70 classified as single stars
and 101 identified as binary or triple systems. Out of the 70 stars
classified as spectroscopically single by El-Badry et al. (2018), 32
were identified in our sample as eclipsing binaries. The remaining
38 objects were classified as rotational variables (35 objects) or
pulsating stars (3 objects).

Out of 101 stars that were identified as binary or triple by
El-Badry et al. (2018), 42 were also classified as eclipsing in

our list, with 19, 20, 2, and 1 classified as SB1, SB2, SB2 with
underlying third body signal, and SB3, respectively. The remaining
59 spectroscopic binary candidates from El-Badry et al. (2018) were
classified as rotational (58 objects) or pulsating (1 object) variables
in our catalogue.

We also matched to the list of binaries identified based on
radial velocity variations from Price-Whelan et al. (2018), who
classified 320 objects as uniquely determined binaries (having
unimodal posterior for the period) and 106 as binaries with bimodal
period posteriors, among the 96 231 APOGEE targets that were
analysed. Only seven systems (1.6 per cent of our list) overlap with
our catalogue. Four of them were flagged as uniquely determined
binaries and three as binaries with bimodal sampling.
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Figure 9. Same as Fig. 8, but for Teff.

Figure 10. Same as Fig. 8, but for [Fe/H].

Figure 11. Same as Fig. 8, but for vsin i.
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Figure 12. Variable stars in the P–log g plane. LPV stars are marked with red, LSP with pink, binary stars with blue, rotational variables with green, and
classical pulsators with orange points.

Figure 13. Variables in the P –Teff plane. The meaning of colours is the same as in Fig. 12.
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Figure 14. Variables in the P–[Fe/H] plane. The meaning of colours is the same as in Fig. 12.

Figure 15. Variables in the P–vsin i plane. The meaning of colours is the same as in Fig. 12.
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Figure 16. Amplitude of the variability σ relative to the decorrelation time-scale τ for the DRW models. Grey pixels in the background encode the density of
all well-fitted light curves. The coloured points denote objects classified as variable, and the meaning of colours is given in the legend.

Figure 17. Comparison of the photometric period P with the DRW decorrelation time τ .
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The periods of the uniquely determined binaries from Price-
Whelan et al. (2018) are in good agreement with the photometricaly
derived ones. The fractional difference is <2 per cent for all four
systems, and for two, the agreement is ∼0.01 per cent. On the
other hand, most the periods derived for the bimodal binaries differ
significantly from the photometric ones, even though in one case
the difference is relatively low (3.5 per cent).

5 SUMMARY

We performed an independent search for periodic variables in
the APOGEE survey using light curves from ASAS-SN. The
search was done with both visual inspection and machine learning
techniques. The light curves were also modelled with the DRW
stochastic process, allowing us to compare these approaches. The
final classification of every object was verified manually.

The total number of identified periodic variables is 1924, of
which 465 are likely newly discovered. The sample include 430
eclipsing and ellipsoidal binaries, 139 classical pulsators, 719 LPVs,
and 636 rotational variables. For each of these objects, we make
the ASAS-SN photometric data publicly available at: https://asas
-sn.osu.edu/variables. The APOGEE spectra and spectroscopicaly
derived parameters, including: log g, vsin i, Teff, as well as chemical
abundances of 26 elements, are available in the APOGEE DR14.
We also make the ASAS-SN photometry of all the APOGEE targets
avalaible at https://asas-sn.osu.edu/photometry.

We then compared the distribution of the variable stars and
the overall APOGEE sample in log g, Teff, [Fe/H], and vsin i.
Like Badenes et al. (2018) and Moe et al. (2019), we find an
anticorrelation between binarity fraction and metallicity, but using a
completely different selection method. In fact, the whole population
of variables has a lower average metallicity than the APOGEE target
sample as a whole. There is also a strong correlation of binary and
rotational variables to high vsin i.
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