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Gauss’s Law Satisfying Energy-Conserving

Semi-Implicit Particle-in-Cell Method

Yuxi Chen1a, Gábor Tótha

a Center for Space Environment Modeling, University of Michigan, Ann Arbor, Michigan
48109, USA

Abstract

The Energy Conserving Semi-Implicit Method (ECSIM) introduced by Lapenta
(2017) has many advantageous properties compared to the classical semi-
implicit and explicit PIC methods. Most importantly, energy conservation
eliminates the growth of the finite grid instability. We have implemented
ECSIM in a different and more efficient manner than the original approach.
More importantly, we have addressed two major shortcomings of the original
ECSIM algorithm: there is no mechanism to enforce Gauss’s law and there
is no mechanism to reduce the numerical oscillations of the electric field. A
classical approach to satisfy Gauss’s law is to modify the electric field and its
divergence using either an elliptic or a parabolic/hyperbolic correction based
on the Generalized Lagrange Multiplier method. This correction, however,
violates the energy conservation property, and the oscillations related to the
finite grid instability reappear in the modified ECSIM scheme. We invented
a new alternative approach: the particle positions are modified instead of
the electric field in the correction step. Displacing the particles slightly does
not change the energy conservation property, while it can satisfy Gauss’s
law by changing the charge density. We found that the new Gauss’s Law
satisfying Energy Conserving Semi-Implicit Method (GL-ECSIM) produces
superior results compared to the original ECSIM algorithm. In some sim-
ulations, however, there are still some numerical oscillations present in the
electric field. We attribute this to the simple finite difference discretization
of the energy conserving implicit electric field solver. We modified the spatial
discretization of the field solver to reduce these oscillations while only slightly
violating the energy conservation properties. We demonstrate the improved
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quality of the GL-ECSIM method with several tests.

Keywords: Particle-in-cell (PIC). Semi-implicit particle-in-cell. energy
conservation. Charge conservation. Gauss’s law

1. Introduction1

Conservation properties play an important role to avoid numerical in-2

stabilities for the particle-in-cell (PIC) method. The explicit PIC method,3

which is widely used due to its simplicity, conserves the total momentum4

but tends to increase the total energy of the system by numerical heating.5

The implicit PIC method, which relaxes the temporal and spatial stability6

constraints, tends to decrease the system energy by numerical cooling. Fully7

implicit PIC schemes can achieve energy conservation by solving for the par-8

ticle motions and electro-magnetic fields at the same time via a non-linear9

Newton-Krylov iterative solver [1, 2, 3, 4]. Recently, Lapenta [5] proposed an10

Energy Conserving Semi-Implicit Method (ECSIM) that conserves energy by11

ensuring the current used for electric field updating is the same as the current12

produced by moving particles. The implementation details and performance13

of ECSIM are discussed by Gonzalez et al. [6].14

Another important conservation law is related to Gauss’s law:15

∇ · E = 4πρ (1)

where E is the electric field and ρ is the electric charge density. Analytically,16

Gauss’s law will be satisfied if the initial condition satisfies it and Ampère’s17

law and the charge conservation equations are solved exactly. Ampère’s law18

describes the evolution equation for the electric field:19

∂E

∂t
= c∇×B− 4πJ (2)

where J is the current density, B is the magnetic field vector and c is the20

speed of light. The charge density evolves according to21

∂ρ

∂t
+∇ · J = 0 (3)

Taking the divergence of Ampère’s law and using the charge conservation22

leads to23

∂∇ · E
∂t

= 4π
∂ρ

∂t
(4)
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which means that Gauss’s law is maintained as long as it holds initially.24

The electromagnetic PIC methods usually update the electric field by25

solving Ampère’s law from the magnetic field and the current on a grid. This26

current is interpolated to the grid from the particles and does not necessarily27

satisfy the charge conservation equation. This discrepancy may accumulate28

and lead to significant violation of Gauss’s law. Two classes of methods29

have been proposed to solve this numerical issue. One approach is enforcing30

the electric field to satisfy Gauss’s law by applying a correction term to the31

electric field equation. The correction can be applied as an extra correction32

step, or added to the electric field solver directly. Boris’ popular ∇ · E33

error correction method [7, 8]solves a Poisson equation and reduces the error34

in Gauss’s law to the iteration tolerance level. Marder [9] and Langdon [10]35

reduce the computational cost by replacing the Poisson solver with a local fix.36

Marder [9] calls the correction term as ‘pseudo-current’. The idea of electric37

field correction is generalized by Assous et al. [11] and Munz et al. [12] in38

a generalized Lagrange multiplier (GLM) numerical framework, where new39

variables are introduced to the Maxwell’s equations to constrain the errors40

in Gauss’s law. The other class of methods does not require any electric field41

correction. Instead, these methods carefully design the algorithm so that the42

current assigned to the electric field solver satisfies the charge conservation43

equation and hence Gauss’s law automatically . Buneman [13] developed44

the ‘zero-order current weighting’ algorithm, which uses an impulse current45

assignment when a particle crosses a cell boundary. Similarly, Morse and46

Nielson [14] proposed the ‘first-order current weighting’ method, where the47

current is assigned by area weighting and the particle motion is divided into48

two or three orthogonal moves. Villasenor and Buneman [15] introduced49

another area weighting method which does not require the orthogonal motion50

splitting. This scheme is generalized to any form-factor by Esirkepov [16].51

Umeda et al. [17] developed an algorithm similar to Villasenor and Buneman52

[15] but assumes the particle trajectory is zigzag. Sokolov [18] introduced a53

method to conserve charge using an alternating order form-factor. Eastwood54

[19, 20] presented a general description of the charge conserving scheme for55

Cartesian and curvilinear grids. Besides these two classes of techniques, Chen56

and Chacón [2, 3, 4] designed a class of fully implicit methods that conserve57

charge and energy at the same time.58

The Energy Conserving Semi-Implicit Method (ECSIM) [5] conserves the59

energy up to the iteration tolerance. It is faster than the explicit PIC methods60

due to the relaxed temporal and spatial resolution constraints. ECSIM is61
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also more efficient than the fully explicit methods, because ECSIM does62

not require the particles to be involved during the iterations. Lapenta[5]63

demonstrated that ECSIM is about one order faster than a fully implicit64

PIC code for 1D problems when the same grid resolution and number of65

particles are used (Table 1 and Table 2 of [5]). A potential flaw of ECSIM66

is the lack of any mechanism ensuring the satisfaction of Gauss’s law. The67

violation of Gauss’s law may generate numerical artifacts. The electric field68

correction method can be easily applied to ECSIM to improve the charge69

conservation, but it destroys the energy conservation property, and more70

importantly it does not behave well for certain cases as we will demonstrate71

in this paper. It is also not trivial to design a current assignment algorithm72

to satisfy both energy conservation and charge conservation at the same time73

for the semi-implicit moment method.74

We have successfully applied the semi-implicit PIC algorithm implemented75

into the iPIC3D code [21] to large-scale kinetic simulations in recent years76

[22, 23, 24, 25]. We found that the code may create artificial oscillations77

in the electric field and heat the particles numerically, which needs to be78

alleviated by smoothing the electric field [24, 25, 6]. Smoothing will, of79

course, make the solution more diffusive. ECSIM provides another option80

to eliminate the numerical heating by enforcing conservation of energy. We81

implemented the ECSIM algorithm into iPIC3D in an efficient way, which is82

described in section 2, but we found that ECSIM may create other numerical83

issues related to the violation of Gauss’s law. In this paper, we introduce the84

novel idea to correct the particle locations at the end of each computational85

cycle to satisfy Gauss’s law for the ECSIM algorithm. The correction keeps86

the energy conservation property of ECSIM because it changes neither the87

kinetic energy of each particle nor the electromagnetic field energy. Since88

there are usually at least dozens of macro-particles per cell, the displacement89

of each particle required to eliminate the errors in Gauss’s law is not unique.90

In order to minimize the displacements, we apply a generalized Lagrange91

multiplier to minimize the total displacements of the macro-particles while92

satisfying Gauss’s law at every grid cell. This correction is accurate but93

also computationally intensive. To reduce the computational cost, we also94

designed another two alternative approximate correction methods, which do95

not eliminate the error entirely, but can suppress the growth of the error96

effectively and are computationally less expensive. The three variants of97

this novel Gauss’s Law satisfying Energy-Conserving Semi-Implicit Method98

(GL-ECSIM) are described in section 2.99
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We note that even though this particle position correction method is de-100

signed to improve the performance of ECSIM, the same idea can be easily101

applied to any other PIC algorithm. Correcting the particle positions instead102

of the electric field may be advantageous, because in general the field quanti-103

ties are smoother and have less error than the particle related quantities, like104

charge density. Correcting the particle positions is likely to remove actual105

errors (compared to an exact solution), while correcting the electric field may106

push the errors in the particle positions into the electric field.107

Besides the Gauss’s law satisfaction issue, we also found ECSIM may108

produce short-wavelength oscillation due to the simple spatial discretization109

used for the electric field solver. Section 2 also discusses the modifications110

that are necessary to suppress the oscillations. Numerical tests in section 3111

justify the necessity of improving the charge conservation property and other112

modifications, and demonstrate the quality of our algorithm. Finally, section113

4 presents the conclusions.114

2. The Gauss’s law satisfying energy-conserving semi-implicit method115

(GL-ECSIM)116

2.1. The electric field solver117

GL-ECSIM is based on the Energy-Conserving Semi-Implicit Method118

(ECSIM) developed by Lapenta [5]. ECSIM uses a staggered grid, where119

the electric field is defined at cell nodes, and the magnetic field is stored at120

cell centers. The position and velocity of a macro-particle are staggered in121

time, i.e., the particle velocity is at the integer time stage and the location122

is at the half time stage. Lapenta [5] updates the electric field and magnetic123

field at the same time by an implicit solver:124

Bn+1 −Bn

Δt
= −c∇× En+θ (5)

En+1 − En

Δt
= c∇×Bn+θ − 4πJ̄ (6)

where J̄ is the predicted current at n+ 1
2
time stage, and it depends on the125

unknown electric field En+θ. The definition of current J̄ can be found in [5].126

The value at time level n+ θ is defined as a linear combination of the values127
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at the n and n+ 1 stages such that:128

En+θ = (1− θ)En + θEn+1 (7)

Bn+θ = (1− θ)Bn + θBn+1 (8)

Instead of solving for En+1 and Bn+1 at the same time, we replace Bn+1
129

and En+1 in eq.(5) and eq.(6) with linear combinations of Bn, Bn+θ and En,130

En+θ, respectively, express Bn+θ from eq.(5) and substitute this into eq.(6)131

to obtain an equation that only contains the electric field as unknowns:132

En+θ + δ2
[∇(∇ · En+θ)−∇2En+θ

]
= En + δ

(
∇×Bn − 4π

c
J̄

)
, (9)

where δ = cθΔt, and the identity ∇ × ∇ × E = ∇(∇ · E) − ∇2E is used,133

which also holds numerically for the specific spatial discretization of the134

ECSIM algorithm. After En+θ is obtained, the magnetic field at time level135

n + 1 can be easily calculated from eq.(5). Solving eq.(9) is equivalent to136

solving eqs.(5) − (6) analytically. But there are some numerical advantages137

of solving eq.(9) instead of eq.(5) - eq.(6):138

• The number of unknown variables per grid cell is reduced from 6 to 3.139

• Eq.(9) transfers two curl operators in eqs.(6) − (5) into a Laplacian140

and a gradient-divergence term. The Laplacian operator is diagonally141

dominant and helps to speed up the convergence. This transformation142

is proposed by Chacón and Knoll [26], and known as the ’physics-based’143

preconditioner.144

We use the GMRES iterative scheme to solve eq.(9). The magnetic field is145

updated from eq.(5) after the electric field is obtained.146

As it has been pointed out by Lapenta [5], the exact energy conservation147

can be achieved only if θ = 0.5 and proper spatial discretizations are used.148

But simulations with θ = 0.5 have more noise than the simulations with θ = 1149

[5]. Our tests in section 3 confirm that simulations with θ = 0.5 may create150

numerical waves. We propose using θ = 0.51 instead. This choice sacrifices151

the energy conservation a little bit, but improves the robustness significantly.152

Our observations are consistent with Tanaka’s work [27, 28] that pointed out153

that θ > 0.5 damps the light waves and the Langmuir oscillations in a semi-154

implicit PIC method that uses a temporal discretization similar to ECSIM.155
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2.2. The pseudo-current156

The ECSIM method is the further development of the iPIC3D code [21],157

which also solves an electric field equation similar to eq.(9). Our numerical158

tests show iPIC3D satisfies Gauss’s law better than the ECSIM method in159

general, because iPIC3D incorporates a ‘pseudo-current’ [9] term into its160

electric field solver. To illustrate this point, we write down the electric field161

equation for iPIC3D first:162

(I+ χn) · En+1 − (cΔt)2
[∇2En+1 +∇∇ · (χn · En+1)

]
=En + cΔt(∇×Bn − 4π

c
Ĵ)

− (cΔt)2∇(4πρ̂n),

(10)

which is eq.(15) in [21]. ρ̂n above is defined as:163

ρ̂n = ρn −Δt∇ · Ĵ. (11)

We add a (cΔt)2∇∇ · En+1 term to both sides of eq.(10), and move all the164

terms containing χn to the right hand side to obtain:165

En+1 + (cΔt)2
[∇(∇ · En+1)−∇2En+1

]
=En + cΔt(∇×Bn − 4π

c
J̄)

− (cΔt)2∇(4πρn+1 −∇ · En+1),

(12)

where J̄ is the current at half time stage, just as the current in eq.(9) but it166

is calculated in a different way, and ρn+1 is the estimated net charge density167

at the n+ 1 stage:168

J̄ = Ĵ+
χn

4πΔt
En+1, (13)

ρn+1 = ρn −Δt∇ · J̄. (14)

Note that the terms involving χ in eq. (10) are all absorbed into these169

new variables. The definition of Ĵ and χn can be found in [21]. The last170

two terms in eq.(12), which are the difference between the charge and the171

divergence of the electric field, correspond to the ’pseudo-current’ and diffuse172

the errors away. The diffusion effect can be seen by taking the divergence of173
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the semi-discretized equation eq.(12), and applying the equality ∇×∇×E =174

∇(∇ · E)−∇2E and the electric charge continuity equation eq.(14):175

(∇ · En+1 − 4πρn+1)− (∇ · En − 4πρn)

Δt
= c2Δt∇2(∇ · En+1 − 4πρn+1), (15)

which is a diffusion equation for the error in Gauss’s law. Ricci et al. [29]176

analyzed the decay rate of the error. The electric field equation they analyzed177

is essentially the same as eq. (12) above, and their decay rate is consistent178

with eq. (15). A more detailed analysis can be also found in Marder [9].179

When θ = 1 is chosen for the ECSIM solver eq.(9), it is very similar to180

the iPIC3D solver eq.(12) except that there is a pseudo-current term in the181

iPIC3D solver and these two PIC methods use different algorithms to calcu-182

late the current J̄. The pseudo-current method can be applied to the EC-183

SIM’s electric field solver eq.(9) as well. We add the term −δ2∇(4πρn+1/2 −184

∇ ·En+θ) to the right-hand side of eq.(9) and move the ∇ ·En+θ term to the185

left-hand side to obtain:186

En+θ + δ2
[
(1− cpc)∇(∇ · En+θ)−∇2En+θ

]
= En + δ

(
∇×Bn − 4π

c
J̄

)
−cpcδ

2∇(4πρn+
1
2 ) (16)

where cpc is the coefficient of the pseudo-current. It is easy to implement this187

pseudo-current term, because the field En+θ is already part of the field solver188

and the net charge ρn+
1
2 can be calculated from the particles in advance. We189

use En+θ and ρn+
1
2 to form the pseudo-current term for simplicity. En+θ and190

ρn+
1
2 are not necessarily at the same time stage unless θ = 0.5. In section 3,191

we show that the pseudo-current scheme does not work well for the ECSIM192

method in general, because it ruins the energy conservation.193

2.3. Particle position correction194

The electric field correction methods, such as the ’pseudo-current’ method,195

modify the electric field to reduce the discrepancy in Gauss’s law. If most196

of the error in Gauss’s law is due to the inaccuracy of the net charge, which197

comes from the particle mover, the field correction method will not work well198

even though Gauss’s law is satisfied formally.199

In this section, we introduce a new idea of displacing the particles to200

satisfy Gauss’s law. The displacement is done at the end of each computa-201

tional cycle after each particle has updated its velocity and position. Since202
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xc − Δx xc − Δx/2 xc xc + Δx/2 xc + Δx
0

1
(a)            b0(

x− xc

Δx
)             

xc − Δx xc − Δx/2 xc xc + Δx/2 xc + Δx
0

1
(b)            b1(

x− xc

Δx
)             

xc − Δx xc − Δx/2 xc xc + Δx/2 xc + Δx

−1/Δx

1/Δx

(c)            b
′

1(
x− xc

Δx
)         

Figure 1: The B-spline functions and the derivative of b1. The b0 spline at the top is
used in the shape function S while the b1 spline in the middle is used for the interpolation
function W . The derivative of b1 at the bottom is needed in the gradient of W .

neither the electromagnetic field nor the particle velocity are changed by the203

particle position correction, the energy conservation still holds. The particle204

position correction method can be accurate or approximate. The accurate205

correction need to calculate the particle displacement carefully to perfectly206

satisfy Gauss’s law at every grid cell, while the approximate correction just207

moves the particles in the right direction to reduce the error in Gauss’s law.208

2.3.1. The accurate correction209

In one computational cycle, the electromagnetic field is updated from En
g210

and Bn
c to En+1

g and Bn+1
c , the particle’s velocity is updated from vn

p to vn+1
p211

and the particle is moved from x
n+ 1

2
p to x̃

n+ 3
2

p . We use subscripts p, c and212

g to represent particles, cell centers and cell nodes, respectively. The tilde213

marks the values before the correction.214

We use the node electric field and cell center net charge to evaluate the215
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error in Gauss’s law. The net charge density at the cell center is interpolated216

from particles. For example,217

ρ
n+ 1

2
c =

∑
p

qpW (x
n+ 1

2
p − xc) (17)

where ρ
n+ 1

2
c is the cell center net charge density at the n+ 1

2
time stage, qp is218

the charge of a macro-particle andW (x
n+ 1

2
p −xc) is the interpolation function,219

which is also known as the weight function, from the particle’s location x
n+ 1

2
p220

to the cell center xc. We note that a macro-particle represents millions of221

physical particles that are close to each other in the phase space, and each222

macro-particle may carry different amounts of charge corresponding to qp but223

the charge per mass ratio is the same for all particles representing the same224

species (for example electrons).225

At the end of one computational cycle, the particle’s position and the226

electric field are at different stages. In order to evaluate and fix the error of227

Gauss’s law at time stage n+1, we interpolate the charge density ρn+1
c from228

ρ
n+ 3

2
c and ρ

n+ 1
2

c . The goal is to add a displacement Δxp to each particle’s229

position x̃
n+ 3

2
p so that the density ρn+1

c satisfies Gauss’s law:230

ρn+1
c = γ

∑
p

qpW (x̃
n+ 3

2
p +Δxp − xc) + (1− γ)ρ

n+ 1
2

c =
1

4π
∇ · En+1, (18)

where γ is an interpolation coefficient. When γ = 0.5, the interpolation is231

second-order accurate. But our tests suggest that using γ = 0.5 may cause232

numerical oscillations. Similarly to the optimal choice of the θ parameter,233

we find that γ = 0.51 works very well. It sacrifices the accuracy slightly but234

eliminates the artificial oscillations. γ = 0.51 is used in this paper. Our goal235

is to displace the particles so that the equation above is satisfied at all cell236

centers. This equation system is likely to be under-determined in general,237

because there are usually more particles (and corresponding unknown dis-238

placement vectors Δxp) than the number of cell centers (corresponding to239

the number of equations). The position correction can be applied to only one240

species (for example electrons only) or all species. In the following derivation241

of this accurate correction method, we assume that the correction is applied242

to all species.243

The displacement Δxp should be small with respect to the cell size. Under244

the assumption of small displacements, the computation can be simplified by245
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linearizing the interpolation function:246

W (x̃
n+ 3

2
p +Δxp−xc) = W (x̃

n+ 3
2

p −xc)+∇W (x̃
n+ 3

2
p −xc)·Δxp+O((Δx)2). (19)

In our GL-ECSIM code, we use the zeroth order B-spline function b0 (see247

Figure.1a) to form the 3-dimensional shape function of the macro-particles:248

S(xp − xc) =
1

ΔxΔyΔz
b0

(xp − xc

Δx

)
b0

(yp − yc
Δy

)
b0

(zp − zc
Δz

)
. (20)

The S function is a top-hat function centered around the particle with the249

width of the cell size. The interpolation function from a particle to a cell250

center is the integral of the particle’s shape function over this cell, which leads251

to the first-order B-spline function b1 (see Figure.1b). In a three dimensions252

(3D), the interpolation function is253

W (xp − xc) = b1

(xp − xc

Δx

)
b1

(yp − yc
Δy

)
b1

(zp − zc
Δz

)
(21)

The b1

(
xp−xc

Δx

)
function is differentiable with respect to xp when xp−xc

Δx
�=254

0,±1 (see Figure.1c):255

b
′
1(

xp−xc

Δx
) =

⎧⎨
⎩

−1/Δx, if xc < xp < xc +Δx
1/Δx, if xc −Δx < xp < xc

0, if xp < xc −Δx or xp > xc +Δx.
(22)

This spatial derivative suggests that if we move a particle toward (away from)256

the cell center, the interpolation weight from the particle to this cell center257

will increase (decrease). If the particle is so close to the cell center that the258

displacement Δxp makes the particle cross the cell center, we cannot predict259

the change of the interpolation weight from the b1 derivative because the b1260

function is not differentiable at b1(0). For these particles, the linearization261

of eq.(19) is not valid. In practice, only a small portion of all the particles262

may encounter this problem when the displacement is generally small. This263

means that the non-differentiability will have little effect in general and the264

problem is getting less severe with smaller displacements.265

With the spatial derivative of the b1 function known, the gradient of266

the interpolation function can be obtained. For example, when xc < xp <267

xc+Δx, yc < yp < yc+Δy and zc < zp < zc+Δz, the interpolation function268

is:269

W (xp − xc) =
(xc +Δx− xp)(yc +Δy − yp)(zc +Δz − zp)

ΔxΔyΔz
(23)
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and its gradient is:270

∇W (xp − xc) =

(−W (xp − xc)

xc +Δx− xp

,
−W (xp − xc)

yc +Δy − yp
,
−W (xp − xc)

zc +Δz − zp

)
. (24)

From this example, we can see that the interpolation function is not linear271

and the O((Δx)2) term in eq.(19) will not vanish.272

We substitute eq.(19) into eq.(18) and drop the O((Δx)2) term to obtain273

the linearized Gauss’s law constrain for a given cell center:274

gc(Δxp) :=
∑
p

qp∇W (x̃
n+ 3

2
p − xc) ·Δxp − Sc = 0 (25)

where the constant term (independent of Δxp) is275

Sc :=
1

γ

[
1

4π
∇ · En+1 − (

(1− γ)ρ
n+ 1

2
c + γ

∑
p

qpW (x̃
n+ 3

2
p − xc)

)]
(26)

Both gc(Δxp) and Sc are defined at every cell center. To find a solution for the276

under-determined equations above while minimizing the displacements, we277

use the Lagrange multiplier method. The function we are trying to minimize278

is defined as279

f(Δxp) =
∑
p

1

2
(Δxp)

2|qp|α (27)

where α is a non-negative exponent to be specified later. Our goal is to280

minimize the function f(Δxp) provided that eq.(25) is satisfied for each cell281

center. The Lagrange function is:282

L(Δxp, λc) = f(Δxp)−
∑
c

λcgc(Δxp)

=
∑
p

1

2
(Δxp)

2|qp|α −
∑
c

λc

[∑
p

qp∇W (x̃
n+ 3

2
p − xc) ·Δxp − Sc

]
(28)

where λc are the Lagrange multiplier for all the cell centers. The function283

f reaches a local extrema if the Lagrange function’s partial derivatives with284

respect to the displacements Δxp and the Lagrange multipliers λc are all285
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zero:286

∂L

∂λc

= gc(Δxp) =
∑
p

qp∇W (x̃
n+ 3

2
p − xc) ·Δxp − Sc = 0 (29)

∂L

∂Δxp

= Δxp|qp|α −
∑
c

λcqp∇W (x̃
n+ 3

2
p − xc) = 0. (30)

Thanks to the linearization, the displacement of each particle can be easily287

expressed as a function of λc by solving eq.(30):288

Δxp =
∑
c

λc|qp|−αqp∇W (x̃
n+ 3

2
p − xc) (31)

and substituted into eq.(29) to obtain a linear system of equations that only289

contains λc as unknowns:290

∂L

∂λc

=
∑
p

qp∇W (x̃
n+ 3

2
p − xc) ·

[
|qp|−αqp

∑
c′

λc′∇W (x̃
n+ 3

2
p − xc′)

]
− Sc = 0.(32)

We note that this is an equation for cell center c so we introduced c′ for the291

summation. After exchanging the order of the two summations for c′ and p,292

we obtain293 ∑
c′

Mcc′λc′ = Sc (33)

where the matrix element Mcc′ is defined as:294

Mcc′ :=
∑
p

|qp|2−α∇W (x̃
n+ 3

2
p − xc) · ∇W (x̃

n+ 3
2

p − xc′). (34)

Once the ‘mass matrix’ M is calculated, the Lagrange multipliers λc can295

be obtained by solving the linear system eq.(33), then we can calculate the296

particle displacement Δxp from eq.(30) and add the displacements to x̃
n+ 3

2
p297

to obtain the corrected particle positions:298

x
n+ 3

2
p = x̃

n+ 3
2

p +Δxp. (35)

We use the GMRES iterative method to solve eq. (33).299
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Since the O((Δx)2) term is not zero in eq.(19), there is still an error300

of O((Δx)2) in Gauss’s law (see eq.(18) after the correction. To further301

minimize the error, we can repeat the correction several times. The particle302

displacement decreases when we repeat the correction, so it also helps to303

reduce the influence of the singularity in the b1 derivative (see eq.(22)). In304

section 3, we show that after three corrections, the error in Gauss’s law305

reduces to a very small value.306

We can now determine the most sensible value for the α exponent in-307

troduced in eq.(27). If two particles of the same species overlap with each308

other before the correction, it is natural to correct them with the same dis-309

placement, i.e., their displacements Δxp should not depend on the particle’s310

charge qp. According to eq.(31) this will hold if we set α = 1, which is the311

value used in all simulations in this paper. When α = 1, eq.(27) implies that312

the Lagrange function minimizes the sum of |qp|(Δxp)
2 over the particles.313

We assumed that all species are corrected above, but we have the free-314

dom to correct one species only. In that case only the particles that require315

correction are looped through to calculate the matrix M (see eq.(34)) and316

the displacement Δxp (see eq.(31)), which are the two most expensive parts317

of one correction cycle. So it is better to correct only one species in terms of318

computational efficiency. We find that correcting the lightest species (typi-319

cally electrons) only is a reasonable choice in practice.320

With the help of the linearization of the interpolation function (eq. (19)),321

there is a simple linear relation between the particle displacement Δxp and322

the Lagrange multiplier λc (eq. (31)), so that the equation system eq. (34)323

only contains λc as unknowns, which are linear, and its size is only related to324

the grid size. The matrix Mcc′ does not depend on either Δxp or λc. So we do325

not need to loop through the particles during the linear iteration. Without326

the linearization, the problem can also be solved by a non-linear iterative327

solver, but there will be no simple relation between Δxp and λc, so that328

the unknowns Δxp can not be easily eliminated from the equation system,329

and the size of the system will be proportional to the particle number. The330

linearization is singular at the cell edges. Preventing particles from crossing331

the cell edges is a natural idea to avoid the singularity, although it might332

generate cell related patterns in the spatial distribution of particles. We333

have not tested this idea because the repetition of the correction already334

reduces the influence of the singularity, and our numerical tests do no show335

any necessity to worry about the singularity so far.336
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2.3.2. The approximate global correction337

The accurate correction reduces the error in Gauss’s law to the iterative338

tolerance level. But it requires looping through particles to calculate the339

matrix M (see eq.(34)). This step is computationally expensive. If the goal340

is to suppress the growth of the error in Gauss’s law instead of eliminating341

it entirely, the calculation of the matrix M can be avoided.342

Boris’ electric field correction method solves the following Poisson equa-343

tion of the scalar function φ defined at cell centers:344

∇2φ = ∇ · Ẽn+1 − 4πρ̃n+1
c , (36)

where Ẽ and ρ̃c are the uncorrected electric field and charge density at the cell345

center. After φ is obtained, the electric field is corrected to satisfy Gauss’s346

law:347

En+1 = Ẽn+1 −∇φ. (37)

Instead of correcting the electric field, we design an analogous algorithm348

that corrects the particle positions. Similar to the Boris field correction, we349

solve the Poisson equation (36) first with the GMRES scheme. The charge350

density is interpolated as351

ρ̃n+1
c = γρ̃

n+ 3
2

c + (1− γ)ρ
n+ 1

2
c (38)

where the tilde represents the charge density before position correction and352

γ = 0.51 is an interpolation coefficient as in eq.(18). If we could find dis-353

placements Δxp for each particle so that354

ρn+
3
2 (x̃

n+ 3
2

p +Δxp) = ρ̃n+
3
2 (x̃

n+ 3
2

p ) +
1

4πγ
∇2φ, (39)

then the interpolated charge density ρn+1
c = ρ̃n+1

c + 1
4π
∇2φ and the original355

electric field En+1 = Ẽn+1 satisfy Gauss’s law. By substituting ∇2φ from eq.356

(36) into the expression of ρn+1
c , we obtain:357

∇ · Ẽn+1 = 4πρn+1
c . (40)

So, the goal is to find the displacement Δxp that satisfies eq. (39).358

When we add the displacement Δxp to a particle, it is equivalent to add359

a ‘virtual current’ jv for a ‘virtual time’ Δtv to change the charge density360
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from ρ̃n+
3
2 (x̃

n+ 3
2

p ) to ρn+
3
2 (x̃

n+ 3
2

p + Δxp). The charge conservation equation361

describes how the ‘virtual current’ changes the charge density:362

ρn+
3
2 (x̃

n+ 3
2

p +Δxp)− ρ̃n+
3
2 (x̃

n+ 3
2

p ) = ∇ · (Δtvjv) + discretization error. (41)

Combining eq.(41) and eq.(39), we obtain the equation for the Δtvjv term:363

Δtvjv =
1

4πγ
∇φ+ discretization error. (42)

For the sake of simplicity, we only displace the electrons or the lightest species364

to create the ‘virtual current’. For a given position xp, if we displace the365

surrounding electrons by Δxp, it will generate a ’virtual current’:366

(Δtvjv)p = ρe,pΔxp ≈ ρe,gΔxp (43)

where ρe,p, ρe,g are the electron charge densities at xp and its closest node,367

respectively. Combining the two equations above and ignoring the discretiza-368

tion errors, the displacement Δxp is obtained as369

Δxp =
1

4πγρe,g
∇φ. (44)

This global approximate correction method solves a Poisson’s equation370

to distribute the ’virtual current’ globally. It does not eliminate the error in371

Gauss’s law exactly, but it pushes the particles toward the direction to reduce372

the error. To avoid potential overshoot, we can apply partial correction only:373

Δxp =
ε

4πγρe,g
∇φ. (45)

where ε is a constant between 0 and 1. We use ε = 0.9 in practice. The374

spatial discretization is described in the section 2.3.3.375

2.3.3. The approximate local correction376

The approximate global correction method described in the previous sec-377

tion needs to solve a Poisson equation. Its computational cost is negligible378

within our GL-ECSIM scheme. But the cost may not be acceptable for an379

explicit PIC algorithm. To avoid solving the Poisson equation, we introduce380

a local correction method.381
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(i+1/2, j+1/2)

V1

V2

Figure 2: The black solid lines represent the cell edges. The black squares are the cell
centers. The red square represents the shape function Sp of a macro-particle with its
position xp marked by the red circle. The two shaded squares are two complementary
volumes (node-centered volumes) V1 and V2.
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Again, we only correct the electrons for simplicity. We calculate the382

relative error at each cell center first:383

rc =
ρ̃n+1
c −∇ · En+1/(4π)

γρe,c
(46)

where ρ̃n+1
c is obtained from eq.(38). The displacement Δxp for a particle at384

xp is calculated from385

(Δxp/Δx,Δyp/Δy,Δzp/Δz) = −ε

(
Δx

2

∂rc
∂x

,
Δy

2

∂rc
∂y

,
Δz

2

∂rc
∂z

)
p

(47)

where the right-hand side is the difference of the relative error rc in the three386

directions, Δx, Δy and Δz are the cell sizes, and ε is the correction ratio387

between 0 and 1. The difference of the relative error rc indicates the direction388

to move particles. As an example, let us consider a uniform 1D simulation389

with a pair of electron and ion at each node at time stage n + 1
2
. Assume390

the cell size is 1, each ion macro-particle has charge qi and each electron has391

charge qe = −qi, so the cell center electron charge density is ρe,c = qe and392

the net charge at n+ 1
2
stage is zero. We assume the electric field at n+1 is393

also zero. If an electron macro-particle at the cell center xi is misplaced at394

xi+0.1Δx at n+ 3
2
stage and other particles do not move, the electron charge395

at cell centers xi−1/2 and xi+1/2 will become 0.9qe and 1.1qe, respectively.396

The relative errors rc at xi−1/2 and xi+1/2 are −0.1
0.9

≈ −0.11 and 0.1
1.1

≈ 0.091,397

respectively. Based on the correction formula above, the correction for this398

electron particle is Δxp/Δx = −Δx
2

∂rc
∂x

≈ −(0.091 + 0.11)/2 ≈ −0.1 when399

ε = 1, which means the electron at xi +0.1Δx will be moved back to xi. For400

this simple example, ε = 1 cancels the error almost perfectly.401

Figure 2 shows a two-dimensional example. Among the 4 cell centers402

around the particle in the figure, the smallest index cell center is (i+ 1
2
, j+ 1

2
).403

Based on the relative errors at these 4 cell centers, this particle will move404

toward or away from the cell center (i+ 1
2
, j + 1

2
). However, the information405

in the complementary volume V2 has no influence on this particle although406

particles inside V2 also contribute to cell center (i + 1
2
, j + 1

2
). Due to the407

locality of this correction method, it is impossible to find a correction ratio ε408

to eliminate the error accurately in general. A large ε can lead to overshoots409

easily, while a small ε may not be sufficient to suppress the growth of the410

error. Our tests suggest that ε = 0.5 reaches a reasonable balance between411

the effectiveness and robustness, and it is used in the following numerical412

tests.413
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We use Figure 2 to illustrate the calculation of the spatial derivatives414

in eq. (47) and eq. (45). Assume the particle is at (xp, yp) and we need415

to calculate ∂rc
∂x

. We interpolate rxi+1/2,yp (rxi+3/2,yp) from rxi+1/2,yi+1/2
and416

rxi+1/2,yi+3/2
(rxi+3/2,yi+1/2

and rxi+3/2,yi+3/2
) first. Then the spatial derivative is417

obtained by ∂rc
∂x

= (rxi+3/2,yp − rxi+1/2,yp)/Δx.418

2.3.4. Limiting the displacement419

All the three correction methods described above assume that if a par-420

ticle moves toward (away from) a cell center, its charge contribution to this421

center would increase (decrease). This assumption is true only when the422

particle center does not cross the complementary volume boundaries. When423

the displacement is small, there are not too many particles violating this424

assumption and the correction methods work well. However, in the region425

where the plasma is rarefied or the numerical error in Gauss’s law is large,426

the displacement can be large compared to the cell size. To fix this problem,427

we limit the displacement with the following simple algorithm:428

Δxnew
p = min

(
1, c0

Δx

|Δxp|
)

Δxp (48)

where Δxp the particle displacement calculated by one of the correction meth-429

ods, Δx is the cell size in the x-direction, and c0 is the maximum allowed430

relative displacement. We use c0 = 0.1 for the simulations.431

2.4. Spatial discretization432

The spatial discretization of the semi-discretized equations eq.(16) and433

eq.(5) on a uniform Cartesian grid can be done following the iPIC3D con-434

vention. Since E and B are staggered in space, we need first-order derivatives435

from cell centers to nodes and from nodes to cell centers, and second-order436

derivatives from nodes to nodes. The node-to-node second-order derivatives437

can be obtained in two steps: first calculate the node-to-center first-order438

derivatives and then calculate the center-to-node derivatives of these first-439

order derivatives. Each cell center (node) first-order derivative is calculated440

by averaging the 4 nodes (centers) in the transverse directions and then tak-441

ing the difference between the two averaged values along the direction of the442

derivative. For example, the cell centered first-order derivative of Ex in the443

x direction is calculated as444

∂Ex

∂x

∣∣∣∣
i+ 1

2
,j+ 1

2
,k+ 1

2

=
1

Δx

l,m=1∑
l,m=0

1

4
(Ex,i+1,j+l,k+m − Ex,i,j+l,k+m) (49)
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Figure 3: 2D examples of the cell centered first order spatial derivatives in the x-direction.
Black circles are the nodes and the squares are the cell centers. Figure (a) shows the
traditional compact discretization: the derivative at the red square is calculated from the
surrounding nodes. Figure (b) shows the extended stencil discretization: the derivative
at the red square is calculate from the surrounding cell center values that are obtained as
averages of the surrounding nodes, respectively.
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where the integer indices i, j and k represent the cell nodes while the half445

indices represent the cell centers. All the spatial derivatives in eq.(16) can446

be calculated based on this rule. An 2D example is shown in the left panel447

of Figure 3. We note that not all spatial discretizations satisfy the iden-448

tities needed for energy conservation [5] but, fortunately, the discretization449

described above does. It also satisfies the identity ∇ × ∇× = (∇∇·) − ∇2
450

used in deriving eq.(9).451

This finite difference algorithm uses as few neighbors as possible while452

maintaining symmetric discrete formulas that satisfy the various identities.453

It is quite optimal and it behaves well for most of our simulations. But454

spurious short-wavelength oscillations with wavelength of ∼ 2 cells may occur455

with this compact discretization for some simulations. We found that using456

an extended stencil for part of the the spatial discretization of ∇ · En+θ in457

eq.(9) helps to suppress these oscillations. We take ∂Ex/∂x at the cell center458

as an example to define the difference formula with an extended stencil:459

∂Ex

∂x

∣∣∣∣
i+ 1

2
,j+ 1

2
,k+ 1

2

=
1

2Δx

l,m=1∑
l,m=−1

1

9
(Ex,i+ 3

2
,j+ 1

2
+l,k+ 1

2
+m − Ex,i− 3

2
,j+ 1

2
+l,k+ 1

2
+m)

(50)

where the cell center electric field values, such as Ex,i+ 3
2
,j+ 1

2
,k+ 1

2
, are averaged460

form the nearby 8 nodes. An 2D example is shown in the right panel of Fig-461

ure 3. We denote the divergence calculated on the extended stencil shown by462

eq.(50) as ∇′ ·En+θ, while ∇ ·En+θ represents the usual compact discretiza-463

tion of eq.(49). The difference of these two divergence operators can be used464

to diffuse the oscillatory errors related to the ∇∇ · E term. Using a linear465

combination of ∇′ · En+θ and ∇ · En+θ, the electric field equation becomes:466

En+θ + δ2
[∇(ccpt∇ · En+θ + (1− ccpt)∇′ · En+θ))−∇2En+θ

]
= (51)

En + δ

(
∇×Bn − 4π

c
J̄

)
,

where the coefficient ccpt is the fraction of the divergence calculated with the467

compact derivative.468

We illustrate the smoothing effect of using the extended stencil for the469

divergence operator with a 1D example. Let us assume that there is charge470

separation in a 1D simulation along the x-direction that generates a variation471

in the Ex component with a short wavelength. Since ∇×E = 0 for this case,472
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the ∇(∇ · En+θ) and ∇2En+θ terms cancel each other both analytically and473

numerically when the compact derivatives are applied. However, if ccpt is less474

than 1 so that the extended stencil derivative ∇′· is also used, then in effect475

we add476

δ2(1− ccpt)∇(∇−∇′)En+θ
x (52)

to the right hand side of the original equation (9). The leading term in the477

Taylor expansion will be a fourth derivative −δ2(1 − ccpt)
Δx2

2
∂4Ex

∂x4 since the478

third derivative has zero coefficient due to the symmetry of the discrete di-479

vergence and gradient operators. This operator has a net effect of smoothing480

the short-wavelength oscillations in Ex.481

We remark that when ccpt is not 1, i.e., the extended stencil divergence of482

the electric field is used, the total energy is not exactly conserved any more.483

In section 3, we are going to show that simulations with ccpt = 0.9 suppress484

the oscillations while still conserve energy reasonably well.485

3. Numerical tests486

This section presents three numerical tests to demonstrate the perfor-487

mance of the GL-ECSIM algorithm. The two-dimensional (2D) magneto-488

sphere simulation and the 2D reconnection test show the improvement of489

the GL-ECSIM scheme compared to iPIC3D and the original ECSIM algo-490

rithm. The 1D Weibel instability test demonstrates that the particle position491

correction step does not change the physics.492

In this test section, we set the electric field solver tolerance to be 10−6.493

In all the simulations shown below, the electric field solver converges within494

20 iterations, and the solver only consumes about 5% of the total computa-495

tional time. A preconditioner is not in urgent demand for these simulations.496

However, in some of our more challenging applications, the field solver can497

take more than 50% of the simulation time. A good preconditioner will ben-498

efit these applications a lot. We are going to design a preconditioner in the499

future. We have tried a smaller tolerance 10−12 for most tests of this session,500

and the reduced tolerance makes little difference.501

For the accurate correction method, the correction procedure is repeated502

three times per computational cycle. A iteration tolerance of 0.01 and a503

maximum iteration number of 20 are used for the linear equation systems of504

the correction methods. We have not implemented any preconditioner for the505

iterative solver, so the linear equations may not be able to converge within 20506
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iterations. But the correction methods still work well as the following tests507

demonstrate. Further improving the accuracy of the linear solver leads to508

smaller errors in Gauss’s law, but it improves the overall simulation quality509

little.510

Table 1 shows 9 different parameter combinations for the tests. We per-511

formed simulations with iPIC3D, which uses θ = 1, the original ECSIM and512

GL-ECSIM. For the original ECSIM, the role of θ is studied (ECSIM-1 and513

ECSIM-2), and we show that Marder’s pseudo-current method [9] does no514

work well (ECSIM-3). For GL-ECSIM, we show that the extended stencil515

spatial discretization helps to suppress the short-wavelength oscillations by516

comparing GL-ECSIM-1 and GL-ECSIM-2, and we also compare different517

particle position correction methods (GL-ECSIM-2 to GL-ECSIM-5).518

Table 1: Simulation parameters and the normalized wall time for the 2D reconnection
simulations. In the particle correction method column, ‘accurate’, ‘approximate-global’
and ‘approximate-local’ represent three methods described in section 2.3, and ‘all’ indicates
that the correction method is applied to all species, otherwise the correction is applied
to electrons only. ccpt is the coefficient of the compact ∇ · E discretization. cpc is the
coefficient of the pseudo-current term. The 2D magnetic reconnection (MR) simulation
wall time is normalized by the iPIC3D wall time.

Simulation ID θ Correction method ccpt cpc MR wall time
iPIC3D 1.0 N/A N/A 1.0 1.0
ECSIM-1 0.5 N/A 1 0 1.8
ECSIM-2 0.51 N/A 1 0 1.8
ECSIM-3 0.51 N/A 1 0.1 N/A

GL-ECSIM-1 0.51 accurate 1 0 2.6
GL-ECSIM-2 0.51 accurate 0.9 0 2.6
GL-ECSIM-3 0.51 accurate-all 0.9 0 2.9
GL-ECSIM-4 0.51 approximate-global 0.9 0 2.1
GL-ECSIM-5 0.51 approximate-local 0.9 0 2.0

3.1. Two-dimensional magnetosphere simulation519

The numerical modeling of the 3D magnetosphere has been the original520

motivation for us to develop the GL-ECSIM method. Here we use a 2D521

magnetosphere simulation to show the problems we encountered with iPIC3D522

and ECSIM, and also to demonstrate that GL-ECSIM cures these issues.523
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In the 2D Earth’s magnetosphere simulation, we solve the ideal MHD524

equations with a separate electron equation to capture the global structure525

of the 2D magnetosphere. After a steady solution is obtained, we use the526

embedded PIC model to cover Earth’s dayside magnetopause. The MHD527

code and the PIC code are two-way coupled. More details about the MHD-528

EPIC algorithm can be found in [22, 24]529

The 2D simulation domain extends from x = −480RE to x = 32RE and530

y = −128RE to y = 128RE, where RE = 6380 km is Earth’s radius. The531

intrinsic magnetic field is represented by a 2D line dipole with magnetic field532

strength -3110 nT at the magnetic equator. The dipole is aligned with the Y533

axis. The field strength of the 2D dipole is chosen so that the magnetopause534

forms at about the same distance (≈ 10RE) as in reality. The inner boundary535

condition is set at r = 2.5RE with a fixed plasma density 10 amu/cc and zero536

plasma velocity. The external magnetic field (total field minus the intrinsic537

dipole) and the ion and electron pressures have zero gradient inner boundary538

conditions. The solar wind enters the simulation domain from the +x direc-539

tion with mass density ρmass = 5 amu/cc, electron pressure pe = 0.0124 nP,540

ion pressure pi = 0.0062 nP, plasma velocity u = [−400, 0, 0] km/s, and mag-541

netic field B = [−0.1,−0.5, 0] nT. Figure 4 shows the ion pressure in part of542

the simulation domain. After the MHD code reaches a steady state, the em-543

bedded PIC model is used to simulate the dayside reconnection region. The544

PIC region covers 6RE < x < 12RE and −6RE < y < 6RE shown by the545

black box in Figure 4. The ion mass-charge ratio mi/qi is set to be 32 times546

larger than the ratio of a proton so that the ion inertial length di is about547

0.27RE in the magnetosheath (see [25] for more detail on the scaling). A548

reduced ion-electron mass ratio mi/me = 100 is used so that the electron skin549

depth de is about di/10 ≈ 0.027RE. The PIC code resolution is 1/32RE,550

so that there are about 10 cells per ion inertial length or 1 cell per electron551

skin depth. 400 macro-particles per cell per species are used. The time step552

is fixed to be Δt = 0.05 s unless otherwise specified, and the corresponding553

CFL number CFL = max(vmax
x,e,th/Δx, vmax

y,e,th/Δy, vmax
z,e,th/Δz)Δt is about 0.25,554

where vmax
e,th is the maximum electron thermal velocity component. A reduced555

speed of light c = 3000 km/s is used. These parameters are comparable to556

what we are using for realistic 3D magnetospheric simulations.557

Figure 5 compares the electric field component Ex inside the PIC domain558

at t = 400 s for iPIC3D, ECSIM with θ = 0.5 (ECSIM-1), ECSIM with559

θ = 0.51 (ECSIM-2), and ECSIM with θ = 0.51 and the pseudo-current term560

(ECSIM-3). iPIC3D produces short-wavelength oscillations in the magneto-561
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sphere (black arrow in Figure 5 (a)). Our numerical tests show its wavelength562

is proportional to the cell size, so the oscillations can not be physical. The563

oscillations can be reduced by smoothing the electric field after each update564

[25]. ECSIM-1 and ECSIM-2 successfully suppress the magnetosphere oscil-565

lations, but there are some spurious small scale oscillations (red arrows in566

Figure 5 (b) (c)), whose wavelengths are proportional to the cell size in a567

grid convergence study, around the magnetopause. We do not know the cause568

of the oscillations, but these oscillations disappear in simulations satisfying569

Gauss’s law as we will see later. ECSIM-2 improves significantly relative to570

ECSIM-1 in terms of the behavior in the magnetosheath. ECSIM-1 generates571

wave-like structures, which are marked by the red boxes in Figure 5, while572

the result of ECSIM-2 is still clean. Because of the tremendous improvement573

from θ = 0.5 to θ = 0.51, we use θ = 0.51 as our default value in practice.574

We have also tried to used θ = 1.0 for ECSIM, and the result also shows575

short-wavelength oscillations along the magnetopause just as ECSIM-1 and576

ECSIM-2. ECSIM-3 tries to satisfy Gauss’s law better by incorporating the577

pseudo-current term, however, it creates oscillations in the magnetosphere578

(black arrow in Figure 5 (d)) just as iPIC3D does.579

Figure 6 and Figure 7 show the importance of satisfying Gauss’s law and580

compare different particle position correction methods. We define the er-581

ror in Gauss’s law as ∇ · En+1/(4π) − ρn+1
c . For ECSIM-2, the net charge582

density and the error are the same order, which suggests Gauss’s law is al-583

ready dramatically violated. After the accurate correction method is applied584

to electrons to fix the Gauss’s law error (GL-ECSIM-1), the error reduces585

to about 10−1 [nT/s], which is about 5 orders smaller than the net charge586

density. GL-ECSIM-1 also eliminates most of the small scale structures in587

ECSIM-2, such as the Ex oscillations near the edge of the magnetopause,588

but GL-ECSIM-1 produces significant short-wavelength oscillations at the589

magnetosphere side in the Ex and net charge density ρc profiles. By using590

the extended stencil ∇ ·E spatial discretization (GL-ECSIM-2), these spuri-591

ous oscillations are suppressed. Applying the accurate correction to all the592

species (GL-ECSIM-3) also obtain small error and smooth solution. The ap-593

proximate global correction (GL-ECSIM-4) and approximate local correction594

(GL-ECSIM-5) can not perfectly eliminate the error in Gauss’s law, and the595

errors are about 103 [nT/s], which is 10 times smaller than the net charge ρc.596

Although the errors in GL-ECSIM-4 and GL-ECSIM-5 with the approximate597

correction are much larger than the errors in GL-ECSIM-2 and GL-ECSIM-3598

employing the accurate correction, these four simulations produce results of599
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similar quality. The linear problem for the correction is slow to converge,600

and the residual can not reach the tolerance 0.01 within 20 steps most of the601

time. However, Gauss’s law errors are still significantly reduced in the GL-602

ECSIM simulations. We performed a test with tolerance 0.001 and unlimited603

iteration number for GL-ECSIM-2, and the error in Gauss’s law further re-604

duces to about 10−3 [nT/s], but there is little improvement in other variables605

compared to the one with tolerance 0.01 and 20 steps limit.606

Since the extended stencil spatial discretization smooths the electric field,607

this discretization alone may be able to smooth out the short-wavelength608

oscillations near the magnetopause in the ECSIM simulations (red arrows in609

Figure 5 (b) (c)). To verify this hypothesis, we performed a simulation for610

ECSIM with θ = 0.51 and the extended stencil spatial discretization. This611

test eliminates almost all spurious structures in the electric field, but it has no612

improvement in terms of Gauss’s law satisfaction, and some variables, such613

as the net charge, are still incorrect just like in the ECSIM-2 simulation.614

For this 2D magnetosphere test with the numerical parameters described615

above, the typical maximum particle displacement for GL-ECSIM-2 that616

corrects the electron particle positions only is about 4.0% of the cell size after617

the first linear solve, 0.2% after the second, and 0.03% after the final third618

solve which is the end of the non-linear correction. When both electron and619

proton particle positions are corrected (GL-ECSIM-3), the corrections are620

half of these values. For the approximate correction methods (GL-ECSIM-4621

and GL-ECSIM-5) the typical correction is about 2% of the cell size.622

The PIC simulation domain of this 2D magnetopause test is not a closed623

system. The particles and waves can enter and leave the PIC domain, so624

the total energy of the PIC system is not conserved and we do no show the625

energy variation here.626

This 2D magnetopause test is similar to our realistic 3D magnetospheric627

applications. It helps us to identify numerical issues and verify the perfor-628

mance of new algorithms. It demonstrates that the GL-ECSIM method is629

more robust and accurate than iPIC3D and also the original ECSIM for a630

challenging problem. Since the pseudo-current method does not work well631

in general, θ = 0.51 is more robust than θ = 0.5, and the extended stencil632

discretization of the ∇ · E helps to suppress spurious oscillations, we will633

ignore the pseudo-current method, use θ = 0.51 and the extended stencil634

discretization with ccpt = 0.9 as default in the following tests.635
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3.2. Two-dimensional double-current-sheet magnetic reconnection636

The two-dimensional magnetic reconnection problem is widely used to637

test plasma simulation codes. The double-current-sheet setup allows periodic638

boundary conditions for both directions. Here we use a setup based on the639

GEM-challenge [30].640

The initial condition is set to satisfy the fluid force balance for both641

electrons and ions [31]. The simulation domain is −12.8 < x < 12.8 and642

−6.4 < y < 6.4 in normalized CGS unit. The speed of light is set to be c = 1.643

The ion density is uniform and ni = 0.0975. The ion plasma frequency is644

ωpi =
√

4πnie2

mi
= 1.107 and the ion inertial length di = c/ωpi = 0.903 since645

mi = 1 and qi = −qe = 1. A reduced ion-electron mass ratio mi/me = 25 is646

used, so the electron skin depth is about de = di/5 = 0.18. Initially, there is647

no charge separation, ne = ni, and the electric field is E = 0.648

The background magnetic filed is649

Bx = B0

(
−1 + tanh

y − yB
δ

+ tanh
yT − y

δ

)
(53)

where B0 = 0.07, the positions of the two current sheets are yB = −3.2 and650

yT = 3.2, respectively, and the width of the currents sheets are controlled by651

δ = 0.5. The electrons have a velocity in the z-direction to generate current652

equal to the curl of the magnetic field, i.e, Jz = neqeue,z = −∂Bx/∂y. The653

ion pressure pi is uniform in the whole domain. Far away from the current654

sheets, the ion plasma beta is 1, and the electron pressure is 1/5 of the655

ion pressure. Near the current sheet, the electrons are heated to balance656

the magnetic field gradient force, which is the same as the Lorentz force657

−neqeue,zBx. This unperturbed initial condition is in fluid force balance [31].658

A perturbation is added to excite the reconnection [32]. The magnetic659

field perturbation vector potential is Ax = 0, Ay = 0 and:660

Az = A0B0

{
− e

− (x−xT )2

G2
x

− (y−yT )2

G2
y cos [kx(x− xT )] cos [ky(y − yT )]

+ e
− (x−xB)2

G2
x

− (y−yB)2

G2
y cos [kx(x− xB)] cos [ky(y − yB)]

} (54)

where the perturbation amplitude is set by A0 = 0.1, the locations along the661

top and bottom current sheets are xT = 6.4 and xB = −6.4, respectively,662

the width of Gaussian profiles are Gx = Gy = 0.5, and the wave vectors are663
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kx = 2π/25.6 and ky = 2π/12.8. Since these two reconnection sites, i.e., the664

bottom left one at (xB, yB) and the top right one at (xT , yT ), produce the665

same signatures, we only plot and discuss the bottom left reconnection site666

for simplicity.667

For the simulations shown in Figures 8, 9 and 10, the grid resolution is668

Δx = 0.05 and the time step is Δt = 0.1. There are 900 macro-particles669

per cell per species. The simulation results at t = 400 are shown. Figure 8670

shows the net charge ρc, electric field Ex and the error in Gauss’s law for671

iPIC3D and ECSIM. iPIC3D produces good quality results for this test.672

Near the reconnection site, the divergent field-aligned electric field Ex is well673

resolved, a double-sandwich structure of the net charge in the center of the674

reconnection site is captured, and the error is small and dominated by the675

random particle noise. However, ρc and Ex of ECSIM are dominated by the676

unphysical oscillations along the separatrices, and the huge error indicates677

that Gauss’s law is dramatically violated. The ECSIM simulation shown here678

uses θ = 0.5, and the simulation with θ = 0.51 does not alleviate the issue.679

The double-sandwich net charge structure is physical and more details can680

be found in [33].681

Comparing the GL-ECSIM-1 and GL-ECSIM-2 results in Figure 9 demon-682

strates that the extended stencil discretization of ∇ · E helps to reduce the683

noise. All the position correction methods produce essentially the same net684

charge structure (GL-ECSIM-2 to GL-ECSIM-5). The error in Gauss’s law is685

about 5 orders smaller than the net charge density in the simulations employ-686

ing the accurate correction method (GL-ECSIM-1 to GL-ECSIM-3), and it687

is about 1 order smaller for the approximate corrections (GL-ECSIM-4 and688

GL-ECSIM-5). When the accurate correction is only applied to electrons689

(GL-ECSIM-1 and GL-ECSIM-2), the typical maximum particle displace-690

ment is 4.5%, 0.12% and 0.002% of the cell size for the three linearized cor-691

rections. These values reduce by a factor of 2 when both electrons and ions692

are corrected (GL-ECSIM-3). For the approximate corrections GL-ECSIM-4693

and GL-ECSIM-5, the typical maximum displacement is about 3% of the cell694

size.695

Figure 10 shows the total energy variation. For ECSIM with θ = 0.5696

(ECSIM-1), the energy is conserved, the small error corresponds to the ac-697

curacy of the iterative implicit electric field solver. ECSIM with θ = 0.51698

(ECSIM-2) dissipates 0.5% of the total energy after 4000 iterations. The699

plots of GL-ECSIM-1 and ECSIM-2 are overlapped with each other because700

the particle position correction does not change the energy. The extended701
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stencil discretization of ∇ · E (GL-ECSIM-2) dissipates 3% of the energy,702

which is still a relatively small value. The energy variation for other cor-703

rection methods (GL-ECSIM-3 to GL-ECSIM-5) are essentially the same as704

GL-ECSIM-2. As a comparison, the total energy of the iPIC3D simulation705

reduces about 3.5%706

The normalized wall time for each simulation is presented in Table 1.707

From the timing results, we conclude:708

• In our implementation, ECSIM is about twice slower than iPIC3D.709

• For the accurate correction method (GL-ECSIM-1 to GL-ECSIM-3),710

the correction takes 30% to 40% of the total simulation time.711

• Correcting all species (GL-ECSIM-3) is about 10% slower than correct-712

ing one species only (GL-ECSIM-1 and GL-ECSIM-2).713

• The approximate correction methods only take about 10% or less of714

the total wall time.715

In practice, we prefer the approximate global correction method since it716

reaches a balance between robustness and efficiency. The approximate local717

correction method is even faster, but it is less robust and accurate for some718

challenging problems.719

Figure 11 shows the results with the approximate global correction for720

grid resolution 0.2, 0.1, 0.05 and 0.025. The CFL number is fixed and the721

corresponding time steps are 0.4, 0.2, 0.1 and 0.05, respectively. All the722

simulations capture the Hall magnetic field Bz, even the electron flows, such723

as ue,x, very well. Once the grid resolution is close to or higher than half of the724

electron skin depth de = 0.18, the details of the off-diagonal electron pressure725

terms are also well resolved, while the simulation with Δx = 0.2 is too726

diffusive to capture these details. The pressure components presented here is727

similar to other high-resolution PIC simulations, such as the Figure 9 in [34].728

The double-sandwich structure of the net charge is even harder to capture.729

Even the simulation with Δx = 0.1 does not resolve this structure well. The730

normalized reconnection rate is shown in Figure 12. The four simulations731

with different grid resolution have the same normalized reconnection rate of732

0.07. The algorithm to calculate the reconnection rate can be found in [31].733

These four simulations demonstrate that the GL-ECSIM method converges734

well with increasing grid resolution, and a variety of reconnection related735
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structures can be captured once the grid resolution is close to or higher than736

half of the electron skin depth.737

3.3. Weibel instability738

Finally, we perform the 1D Weibel instability test to quantitatively prove739

that the particle correction methods do not interfere with properly capturing740

the growth and evolution of this instability.741

The simulation is performed on a 1D domain of size Lx = 2πde, resolved742

by cells of size Δx = Lx/64 and time step Δt = 0.05/ωpe. 400 particles per743

cell per species are used. Each of the two counter-streaming electron beams744

has a speed of 0.8c along the positive or negative y-direction. The thermal745

velocity of the electrons is ue,th = 0.01c. The ions are uniformly distributed746

to satisfy the charge neutrality requirement, but the ions are much colder747

and heavier than the electrons (mi/me = 104 and ui,th = 10−8c), so that the748

ions do not move essentially. The linear theory [35] predicts the growth rate749

of the mode with wavelength πde is γ = 0.716ωpe. Figure 13 shows that the750

growth rates are essentially the same for all the simulations, and the rate is751

close to the analytic value during the linear growth stage.752

4. Conclusion753

In this paper, we introduce the novel GL-ECSIM algorithm, which can754

satisfy both the total energy conservation and Gauss’s law to the accuracy of755

the iterative solvers. In practice, we need to sacrifice the energy conservation756

a little bit and introduce a small amount of diffusion to reduce noise and757

suppress numerical oscillations by using a time centering parameter θ = 0.51758

instead of 0.5 of the original ECSIM algorithm. In addition, we introduce759

a linear combination of the original compact stencil (with a 0.9 weight) and760

a new extended stencil (with 0.1 weight) for the discretization of the ∇ · E761

term in the electric field equation. In effect, this adds a dissipation term762

proportional to the 4th derivative of the electric field, which helps to remove763

spurious oscillations.764

Our 2D reconnection and magnetosphere simulations suggest that the765

original ECSIM scheme may produce numerical artifacts due to the violation766

of Gauss’s law. In order to solve this problem without changing the energy,767

we design a class of new algorithms to correct the particle positions after768

each ECSIM update to satisfy Gauss’s law. The accurate correction method769

carefully calculates the displacement of each particle to eliminate the error in770
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Gauss’s law accurately while minimizing the norm of the total displacements.771

This accurate correction method requires a non-linear iterative solver and772

takes 30% to 40% of the total wall time to do the correction. In order to speed773

up the simulation, we introduce another two approximate methods. The774

approximate global correction method solves a Poisson’s equation to estimate775

the particle displacement, and the approximate local correction estimates the776

displacement based on the surrounding errors. The local correction method777

is faster than the global correction. But the global correction calculate the778

displacement based on global information, which makes the global correction779

more robust for challenging problems.780

Using the approximate global GL-ECSIM method with its optimal pa-781

rameter settings, we performed a grid convergence study for the magnetic782

reconnection problem. We found that the solution converges well with di-783

minishing grid resolution, and it is converged in most variables if the grid784

resolution is about one half of the electron skin depth.785

Our tests demonstrate that the GL-ECSIM is robust and accurate. It has786

been successfully applied to our ongoing 3D global magnetospheric simula-787

tions.788
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Figure 4: The ion pressure of the 2D magnetosphere simulation. The region inside the
black rectangle is simulated by the PIC code.
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Figure 5: The electric field Ex[nT km/s] of the 2D magnetosphere simulations inside the
PIC domain at t = 400s with four different simulation parameters described in Table 1.
iPIC3D produces short-wavelength oscillations (black arrow in (a)) inside the magneto-
sphere. ECSIM with θ = 0.5 (ECSIM-1) generates more noise in the magnetosheath than
ECSIM with θ = 0.51 (ECSIM-2). The noise is marked by the red boxes. There are some
spurious small scale oscillations (red arrows) near the magnetopause for both ECSIM-1
and ECSIM-2. If the pseudo-current is used to fix the error in Gauss’s law (ECSIM-3), it
generates oscillations (black arrow in (d)) that are similar to the iPIC3D code.
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Figure 6: The 2D magnetopause simulations with different parameters. From top to
bottom: the net charge ρc[nT/s], the absolute value of the error in Gauss’s law, defined
as ∇ · En+1/(4π) − ρn+1

c with units [nT/s], in logarithmic scale, and the electric field
Ex[nT · km/s]. From left to right: ECSIM with θ = 0.51, GL-ECSIM using compact
discretization only, and GL-ECSIM with extended stencil for the ∇ ·E discretization. See
Table 1 for more details about the parameters. We note that the color bar scale of the net
charge density ρc for ECSIM-2 is different from that of the others.
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Figure 7: The same variables as in Figure 6. From left to right: the accurate correction
for all species, the approximate global correction, and the approximate local correction.
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off-diagonal pressure tensor elements pe,xy, pe,xz and pe,yz, and the net charge density ρc
at t = 400 are shown in normalized units. From left to right, the cell sizes are Δx = 0.2,
Δx = 0.1, Δx = 0.05 and Δx = 0.025, and the corresponding time steps are Δt = 0.4,
Δt = 0.2, Δt = 0.1 and Δt = 0.05, respectively.
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Figure 12: The reconnection rate for the simulations shown in Figure 11. All simulations
have a reconnection rate of ∼ 0.07.
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Figure 13: The growth of the Weibel instability. The analytic growth rate is γ = 0.716ωpe.
The particle correction methods do not change the growth rate at all.
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[22] L. K. S. Daldorff, G. Tóth, T. I. Gombosi, G. Lapenta, J. Amaya,852

S. Markidis, J. U. Brackbill, Two-way coupling of a global Hall mag-853

netohydrodynamics model with a local implicit Particle-in-Cell model,854

J. Comput. Phys. 268 (2014) 236. doi:10.1016/j.jcp.2014.03.009.855
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