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Semi-Implicit Particle-in-Cell Method

Yuxi Chen'®, Gabor Téth?

@ Center for Space Environment Modeling, University of Michigan, Ann Arbor, Michigan
48109, USA

Abstract

The Energy Conserving Semi-Implicit Method (ECSIM) introduced by Lapenta
(2017) has many advantageous properties compared to the classical semi-
implicit and explicit PIC methods. Most importantly, energy conservation
eliminates the growth of the finite grid instability. We have implemented
ECSIM in a different and more efficient manner than the original approach.
More importantly, we have addressed two major shortcomings of the original
ECSIM algorithm: there is no mechanism to enforce Gauss’s law and there
is no mechanism to reduce the numerical oscillations of the electric field. A
classical approach to satisfy Gauss’s law is to modify the electric field and its
divergence using either an elliptic or a parabolic/hyperbolic correction based
on the Generalized Lagrange Multiplier method. This correction, however,
violates the energy conservation property, and the oscillations related to the
finite grid instability reappear in the modified ECSIM scheme. We invented
a new alternative approach: the particle positions are modified instead of
the electric field in the correction step. Displacing the particles slightly does
not change the energy conservation property, while it can satisfy Gauss’s
law by changing the charge density. We found that the new Gauss’s Law
satisfying Energy Conserving Semi-Implicit Method (GL-ECSIM) produces
superior results compared to the original ECSIM algorithm. In some sim-
ulations, however, there are still some numerical oscillations present in the
electric field. We attribute this to the simple finite difference discretization
of the energy conserving implicit electric field solver. We modified the spatial
discretization of the field solver to reduce these oscillations while only slightly
violating the energy conservation properties. We demonstrate the improved
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quality of the GL-ECSIM method with several tests.

Keywords: Particle-in-cell (PIC). Semi-implicit particle-in-cell. energy
conservation. Charge conservation. Gauss’s law

1. Introduction

Conservation properties play an important role to avoid numerical in-
stabilities for the particle-in-cell (PIC) method. The explicit PIC method,
which is widely used due to its simplicity, conserves the total momentum
but tends to increase the total energy of the system by numerical heating.
The implicit PIC method, which relaxes the temporal and spatial stability
constraints, tends to decrease the system energy by numerical cooling. Fully
implicit PIC schemes can achieve energy conservation by solving for the par-
ticle motions and electro-magnetic fields at the same time via a non-linear
Newton-Krylov iterative solver [1, 2, 3, 4]. Recently, Lapenta [5] proposed an
Energy Conserving Semi-Implicit Method (ECSIM) that conserves energy by
ensuring the current used for electric field updating is the same as the current
produced by moving particles. The implementation details and performance
of ECSIM are discussed by Gonzalez et al. [6].

Another important conservation law is related to Gauss’s law:

V-E =4mp (1)

where E is the electric field and p is the electric charge density. Analytically,
Gauss’s law will be satisfied if the initial condition satisfies it and Ampere’s
law and the charge conservation equations are solved exactly. Ampere’s law
describes the evolution equation for the electric field:

OE

— =cV xB—-4nJ 2

ot i @)
where J is the current density, B is the magnetic field vector and c is the
speed of light. The charge density evolves according to

dp B
E—FV'J—O (3)

Taking the divergence of Ampere’s law and using the charge conservation

leads to 9V . E 5
B, 9P
ot am ot (4)
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which means that Gauss’s law is maintained as long as it holds initially.

The electromagnetic PIC methods usually update the electric field by
solving Ampere’s law from the magnetic field and the current on a grid. This
current is interpolated to the grid from the particles and does not necessarily
satisfy the charge conservation equation. This discrepancy may accumulate
and lead to significant violation of Gauss’s law. Two classes of methods
have been proposed to solve this numerical issue. One approach is enforcing
the electric field to satisfy Gauss’s law by applying a correction term to the
electric field equation. The correction can be applied as an extra correction
step, or added to the electric field solver directly. Boris’ popular V - E
error correction method [7, 8]solves a Poisson equation and reduces the error
in Gauss’s law to the iteration tolerance level. Marder [9] and Langdon [10]
reduce the computational cost by replacing the Poisson solver with a local fix.
Marder [9] calls the correction term as ‘pseudo-current’. The idea of electric
field correction is generalized by Assous et al. [11] and Munz et al. [12] in
a generalized Lagrange multiplier (GLM) numerical framework, where new
variables are introduced to the Maxwell’s equations to constrain the errors
in Gauss’s law. The other class of methods does not require any electric field
correction. Instead, these methods carefully design the algorithm so that the
current assigned to the electric field solver satisfies the charge conservation
equation and hence Gauss’s law automatically . Buneman [13] developed
the ‘zero-order current weighting’ algorithm, which uses an impulse current
assignment when a particle crosses a cell boundary. Similarly, Morse and
Nielson [14] proposed the ‘first-order current weighting” method, where the
current is assigned by area weighting and the particle motion is divided into
two or three orthogonal moves. Villasenor and Buneman [15] introduced
another area weighting method which does not require the orthogonal motion
splitting. This scheme is generalized to any form-factor by Esirkepov [16].
Umeda et al. [17] developed an algorithm similar to Villasenor and Buneman
[15] but assumes the particle trajectory is zigzag. Sokolov [18] introduced a
method to conserve charge using an alternating order form-factor. Eastwood
[19, 20] presented a general description of the charge conserving scheme for
Cartesian and curvilinear grids. Besides these two classes of techniques, Chen
and Chacon [2, 3, 4] designed a class of fully implicit methods that conserve
charge and energy at the same time.

The Energy Conserving Semi-Implicit Method (ECSIM) [5] conserves the
energy up to the iteration tolerance. It is faster than the explicit PIC methods
due to the relaxed temporal and spatial resolution constraints. ECSIM is
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also more efficient than the fully explicit methods, because ECSIM does
not require the particles to be involved during the iterations. Lapental[5]
demonstrated that ECSIM is about one order faster than a fully implicit
PIC code for 1D problems when the same grid resolution and number of
particles are used (Table 1 and Table 2 of [5]). A potential flaw of ECSIM
is the lack of any mechanism ensuring the satisfaction of Gauss’s law. The
violation of Gauss’s law may generate numerical artifacts. The electric field
correction method can be easily applied to ECSIM to improve the charge
conservation, but it destroys the energy conservation property, and more
importantly it does not behave well for certain cases as we will demonstrate
in this paper. It is also not trivial to design a current assignment algorithm
to satisfy both energy conservation and charge conservation at the same time
for the semi-implicit moment method.

We have successfully applied the semi-implicit PIC algorithm implemented
into the iPIC3D code [21] to large-scale kinetic simulations in recent years
22, 23, 24, 25]. We found that the code may create artificial oscillations
in the electric field and heat the particles numerically, which needs to be
alleviated by smoothing the electric field [24, 25, 6]. Smoothing will, of
course, make the solution more diffusive. ECSIM provides another option
to eliminate the numerical heating by enforcing conservation of energy. We
implemented the ECSIM algorithm into iPIC3D in an efficient way, which is
described in section 2, but we found that ECSIM may create other numerical
issues related to the violation of Gauss’s law. In this paper, we introduce the
novel idea to correct the particle locations at the end of each computational
cycle to satisfy Gauss’s law for the ECSIM algorithm. The correction keeps
the energy conservation property of ECSIM because it changes neither the
kinetic energy of each particle nor the electromagnetic field energy. Since
there are usually at least dozens of macro-particles per cell, the displacement
of each particle required to eliminate the errors in Gauss’s law is not unique.
In order to minimize the displacements, we apply a generalized Lagrange
multiplier to minimize the total displacements of the macro-particles while
satisfying Gauss’s law at every grid cell. This correction is accurate but
also computationally intensive. To reduce the computational cost, we also
designed another two alternative approximate correction methods, which do
not eliminate the error entirely, but can suppress the growth of the error
effectively and are computationally less expensive. The three variants of
this novel Gauss’s Law satisfying Energy-Conserving Semi-Implicit Method
(GL-ECSIM) are described in section 2.

4



100 We note that even though this particle position correction method is de-
1w signed to improve the performance of ECSIM, the same idea can be easily
102 applied to any other PIC algorithm. Correcting the particle positions instead
w3 of the electric field may be advantageous, because in general the field quanti-
w4 ties are smoother and have less error than the particle related quantities, like
s charge density. Correcting the particle positions is likely to remove actual
s errors (compared to an exact solution), while correcting the electric field may
w7 push the errors in the particle positions into the electric field.

108 Besides the Gauss’s law satisfaction issue, we also found ECSIM may
109 produce short-wavelength oscillation due to the simple spatial discretization
o used for the electric field solver. Section 2 also discusses the modifications
m that are necessary to suppress the oscillations. Numerical tests in section 3
2 justify the necessity of improving the charge conservation property and other
u3  modifications, and demonstrate the quality of our algorithm. Finally, section
us 4 presents the conclusions.

us 2. The Gauss’s law satisfying energy-conserving semi-implicit method
116 (GL-ECSIM)

ur 2.1. The electric field solver

118 GL-ECSIM is based on the Energy-Conserving Semi-Implicit Method
e (ECSIM) developed by Lapenta [5]. ECSIM uses a staggered grid, where
1o the electric field is defined at cell nodes, and the magnetic field is stored at
1 cell centers. The position and velocity of a macro-particle are staggered in
122 time, i.e., the particle velocity is at the integer time stage and the location
123 is at the half time stage. Lapenta [5] updates the electric field and magnetic
14 field at the same time by an implicit solver:

Bn+1 —B”

T = —cV x En+9 (5)
En—i—l — En _

—Q eV x B" — 473 (6)

s where J is the predicted current at n + % time stage, and it depends on the
s unknown electric field E"*?. The definition of current J can be found in [5].
127 The value at time level n 4 6 is defined as a linear combination of the values
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at the n and n 4 1 stages such that:

E" = (1 - 9)E" + 9E"! (7)
B" = (1-6)B" +6B""! (8)

Instead of solving for E*™! and B"™! at the same time, we replace B*!
and E"*! in eq.(5) and eq.(6) with linear combinations of B®, B"*? and E",
E"*Y respectively, express B"? from eq.(5) and substitute this into eq.(6)
to obtain an equation that only contains the electric field as unknowns:

4 —
E" 462 [V(V-E") — V’E'"] =E"+§ (V x B" — —”J) ;9
C

where § = cfAt, and the identity V x V x E = V(V - E) — V?E is used,
which also holds numerically for the specific spatial discretization of the
ECSIM algorithm. After E"*? is obtained, the magnetic field at time level
n + 1 can be easily calculated from eq.(5). Solving eq.(9) is equivalent to
solving eqs.(5) — (6) analytically. But there are some numerical advantages
of solving eq.(9) instead of eq.(5) - eq.(6):

e The number of unknown variables per grid cell is reduced from 6 to 3.

e Eq.(9) transfers two curl operators in egs.(6) — (5) into a Laplacian
and a gradient-divergence term. The Laplacian operator is diagonally
dominant and helps to speed up the convergence. This transformation
is proposed by Chacén and Knoll [26], and known as the 'physics-based’
preconditioner.

We use the GMRES iterative scheme to solve eq.(9). The magnetic field is
updated from eq.(5) after the electric field is obtained.

As it has been pointed out by Lapenta [5], the exact energy conservation
can be achieved only if # = 0.5 and proper spatial discretizations are used.
But simulations with # = 0.5 have more noise than the simulations with § = 1
[5]. Our tests in section 3 confirm that simulations with § = 0.5 may create
numerical waves. We propose using # = 0.51 instead. This choice sacrifices
the energy conservation a little bit, but improves the robustness significantly.
Our observations are consistent with Tanaka’s work [27, 28] that pointed out
that 8 > 0.5 damps the light waves and the Langmuir oscillations in a semi-
implicit PIC method that uses a temporal discretization similar to ECSIM.
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2.2. The pseudo-current

The ECSIM method is the further development of the iPIC3D code [21],
which also solves an electric field equation similar to eq.(9). Our numerical
tests show iPIC3D satisfies Gauss’s law better than the ECSIM method in
general, because iPIC3D incorporates a ‘pseudo-current’ [9] term into its
electric field solver. To illustrate this point, we write down the electric field
equation for iPIC3D first:

I+ x") - E"™ — (cAt)? [VPE" + VV - (X" - E"M)] =E" + cAt(V x B" — —1J)
~ (A (4mp"),
(10)
which is eq.(15) in [21]. p" above is defined as:
o= p" — AtV - J. (11)

We add a (cAt)?VV - E"™! term to both sides of eq.(10), and move all the
terms containing x"™ to the right hand side to obtain:

E™ 4 (cA)? [V(V - E™Y) - V’E] =E" 1 cA{(V x B" 47”3)

— (cAt)?’V (4rp™t — V- BT,
(12)

where J is the current at half time stage, just as the current in eq.(9) but it
is calculated in a different way, and p"*! is the estimated net charge density
at the n + 1 stage:

I 3 Xn n+1
J=J+-">~—E

+ 4 At _’
P = p" — AtV - . (14)

Note that the terms involving x in eq. (10) are all absorbed into these
new variables. The definition of J and y” can be found in [21]. The last
two terms in eq.(12), which are the difference between the charge and the
divergence of the electric field, correspond to the 'pseudo-current” and diffuse
the errors away. The diffusion effect can be seen by taking the divergence of

47 A
c
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the semi-discretized equation eq.(12), and applying the equality Vx V xE =
V(V - E) — V2E and the electric charge continuity equation eq.(14):

(V .Ertl 47Tpn+1) _ (V .E" — 47Tp”)

A7 = AAtVA(V - EM —drp™t) (15)

which is a diffusion equation for the error in Gauss’s law. Ricci et al. [29]
analyzed the decay rate of the error. The electric field equation they analyzed
is essentially the same as eq. (12) above, and their decay rate is consistent
with eq. (15). A more detailed analysis can be also found in Marder [9].

When 6 = 1 is chosen for the ECSIM solver eq.(9), it is very similar to
the iPIC3D solver eq.(12) except that there is a pseudo-current term in the
iPIC3D solver and these two PIC methods use different algorithms to calcu-
late the current J. The pseudo-current method can be applied to the EC-
SIM’s electric field solver eq.(9) as well. We add the term —§2V (4mp"+1/2 —
V - E"Y) to the right-hand side of eq.(9) and move the V - E"? term to the
left-hand side to obtain:

E" 4+ 6 [(1 =) V(V-E") —V?E""] = E"+§ (v x B" — 415)
C
—cpc52V(47T,0”+%) (16)

where ¢, is the coefficient of the pseudo-current. It is easy to implement this
pseudo-current term, because the field E"*? is already part of the field solver
and the net charge p"+% can be calculated from the particles in advance. We
use E"*0 and p"*2 to form the pseudo-current term for simplicity. E"*? and
p"*é are not necessarily at the same time stage unless # = 0.5. In section 3,
we show that the pseudo-current scheme does not work well for the ECSIM
method in general, because it ruins the energy conservation.

2.3. Particle position correction

The electric field correction methods, such as the 'pseudo-current’ method,
modify the electric field to reduce the discrepancy in Gauss’s law. If most
of the error in Gauss’s law is due to the inaccuracy of the net charge, which
comes from the particle mover, the field correction method will not work well
even though Gauss’s law is satisfied formally.

In this section, we introduce a new idea of displacing the particles to
satisfy Gauss’s law. The displacement is done at the end of each computa-
tional cycle after each particle has updated its velocity and position. Since
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(a) bo(*5%)

11 Ax
0+ - d . - -
Xc — Ax X — Ax/2 Xc Xc+ Ax/2 Xc + Ax
(b) by (5X)
1 Ax
0- - . . . ;
Xc— Ax Xc — Ax/2 Xc Xc + Ax/2 Xc + Ax
(c) by (*5)
X i :
—1/AxA i , f , i
Xc — Ax X — Ax/2 Xc Xc + Ax/2 Xc + Ax

Figure 1: The B-spline functions and the derivative of b;. The by spline at the top is
used in the shape function S while the b; spline in the middle is used for the interpolation
function W. The derivative of by at the bottom is needed in the gradient of W.

neither the electromagnetic field nor the particle velocity are changed by the
particle position correction, the energy conservation still holds. The particle
position correction method can be accurate or approximate. The accurate
correction need to calculate the particle displacement carefully to perfectly
satisfy Gauss’s law at every grid cell, while the approximate correction just
moves the particles in the right direction to reduce the error in Gauss’s law.

2.3.1. The accurate correction
In one computational cycle, the electromagnetic field is updated from E7
and B to EJ*" and B, the particle’s velocity is updated from v} to vi+!

. . n+3 _n+3 .
and the particle is moved from x, * to X, *. We use subscripts p, ¢ and

g to represent particles, cell centers and cell nodes, respectively. The tilde
marks the values before the correction.
We use the node electric field and cell center net charge to evaluate the
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error in Gauss’s law. The net charge density at the cell center is interpolated
from particles. For example,

nt+i n+i
pe * = Z%W(Xp P - xe) (17)
p

1
where p?+2 is the cell center net charge density at the n + % time stage, g, is

1
the charge of a macro-particle and VV(XZJr2 —X,.) is the interpolation function,
1

which is also known as the weight function, from the particle’s location XZ 2

to the cell center x.. We note that a macro-particle represents millions of
physical particles that are close to each other in the phase space, and each
macro-particle may carry different amounts of charge corresponding to ¢, but
the charge per mass ratio is the same for all particles representing the same
species (for example electrons).

At the end of one computational cycle, the particle’s position and the
electric field are at different stages. In order to evaluate and fix the error of
Gauss’s law at time stage n + 1, we interpolate the charge density p?*! from

3
Pec

1

T2 2
oy ~ T
position X,

and ngr . The goal is to add a displacement Ax, to each particle’s
n+1
c

3
"2 g0 that the density pi"" satisfies Gauss’s law:

1
n+3

n n+3 1 n
pitt = vzp:qu(Xp A% =X+ (L= )pe T = VBT (1)

where 7 is an interpolation coefficient. When ~ = 0.5, the interpolation is
second-order accurate. But our tests suggest that using v = 0.5 may cause
numerical oscillations. Similarly to the optimal choice of the 6 parameter,
we find that v = 0.51 works very well. It sacrifices the accuracy slightly but
eliminates the artificial oscillations. v = 0.51 is used in this paper. Our goal
is to displace the particles so that the equation above is satisfied at all cell
centers. This equation system is likely to be under-determined in general,
because there are usually more particles (and corresponding unknown dis-
placement vectors Ax,) than the number of cell centers (corresponding to
the number of equations). The position correction can be applied to only one
species (for example electrons only) or all species. In the following derivation
of this accurate correction method, we assume that the correction is applied
to all species.

The displacement Ax, should be small with respect to the cell size. Under
the assumption of small displacements, the computation can be simplified by

10
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linearizing the interpolation function:

nad | g3
W (R 2 4+Ax,—x.) = W(Xp 2 =% )+VW(Xp *—x.)-Ax,+O0((Az)?). (19)

In our GL-ECSIM code, we use the zeroth order B-spline function by (see

Figure.la) to form the 3-dimensional shape function of the macro-particles:

1 T, — T, Up — Ye Zp — Zc
Sty —30) = (Y (BB (2 g
(xp = %) AxAyAz '\ Az 0 Ay "NTAz (20)
The S function is a top-hat function centered around the particle with the
width of the cell size. The interpolation function from a particle to a cell
center is the integral of the particle’s shape function over this cell, which leads

to the first-order B-spline function b; (see Figure.1b). In a three dimensions
(3D), the interpolation function is

Ty — Te Yp — Yo 2y — Ze
Woo—xo) = b (20 Jn(Bg ) (P57) @
(e = ) "\ Az ! Ay Az (21)
The b&%) function is differentiable with respect to x, when ‘T”A—jc +#
0,+1 (see Figure.lc):
—1/Ax, if x. <y, <z.+ Az
b/l(pr_—xxc) =1 1/Az, if v, — Azx <z, <z, (22)
0, if x, <z, — Az or x, >z, + Ax.

This spatial derivative suggests that if we move a particle toward (away from)
the cell center, the interpolation weight from the particle to this cell center
will increase (decrease). If the particle is so close to the cell center that the
displacement Az, makes the particle cross the cell center, we cannot predict
the change of the interpolation weight from the b; derivative because the by
function is not differentiable at b1(0). For these particles, the linearization
of eq.(19) is not valid. In practice, only a small portion of all the particles
may encounter this problem when the displacement is generally small. This
means that the non-differentiability will have little effect in general and the
problem is getting less severe with smaller displacements.

With the spatial derivative of the b; function known, the gradient of
the interpolation function can be obtained. For example, when z. < z, <
T+ Az, y. <y, <Y+ Ay and z. < z, < z.+ Az, the interpolation function

is:
_ (et Az —xp)(ye + Ay —yp)(ze + Az — 2)
W(x, —x.) = ArAyAs (23)

11
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and its gradient is:

T x) (—W<xp —x) W, — %) —W(x,— %) ) oD

To+Ar—x, Yo+ Ay —y, z.+ Az — 2z,

From this example, we can see that the interpolation function is not linear
and the O((Az)?) term in eq.(19) will not vanish.

We substitute eq.(19) into eq.(18) and drop the O((Ax)?) term to obtain
the linearized Gauss’s law constrain for a given cell center:

Ge(8%,) = 3" VW (R 2 = x.) - Axy — S. = 0 (25)

p

where the constant term (independent of Ax,) is

S, =

1 nid _n+d
. 47TV B = (=)l 2+ W 2 —x)) | (26)
p

Both ¢.(Ax,) and S, are defined at every cell center. To find a solution for the
under-determined equations above while minimizing the displacements, we
use the Lagrange multiplier method. The function we are trying to minimize
is defined as

ESSE PSS EE (27)

p

where « is a non-negative exponent to be specified later. Our goal is to
minimize the function f(Ax,) provided that eq.(25) is satisfied for each cell
center. The Lagrange function is:

L(Ax,, \.) = f(Ax,) — Z Aege(Ax,)
o ~n+%
=3 Al = YA S eI - x) Ax, -,
p c p
(28)
where A\, are the Lagrange multiplier for all the cell centers. The function

f reaches a local extrema if the Lagrange function’s partial derivatives with
respect to the displacements Ax, and the Lagrange multipliers A, are all

12
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Zero:

oL _n+3
O = g.(Ax,) = Z qPVW(XP+2 —Xc) - Axy — 5. =0 (29)
p
OL N ~n+3
8A—xp = Ax,qp|* — ; A, VW (X, 2 —x.) = 0. (30)

Thanks to the linearization, the displacement of each particle can be easily
expressed as a function of A. by solving eq.(30):

n43
Ax, = Z )\C|qp|_aquW()~(p+2 — Xc) (31)

and substituted into eq.(29) to obtain a linear system of equations that only
contains A\, as unknowns:

oL n+3 Y _ntd
= Z q;,,VI/I/'(XpJr2 — X¢) []qp| @b Z )\C/VW(xp+ —Xu)| — S =0.(32)
C p 2y

O\

We note that this is an equation for cell center ¢ so we introduced ¢ for the
summation. After exchanging the order of the two summations for ¢ and p,
we obtain

> Mo =S, (33)

where the matrix element M, is defined as:

3 ntd
Moo =g,V (%7 = x0) - VIV (X 2 — x0). (34)
p

Once the ‘mass matrix’ M is calculated, the Lagrange multipliers A, can

be obtained by solving the linear system eq.(33), then we can calculate the
3

particle displacement Ax, from eq.(30) and add the displacements to X, °

to obtain the corrected particle positions:
n+%

n+3
Xy 2 =% % 4 Ax,. (35)

We use the GMRES iterative method to solve eq. (33).
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Since the O((Az)?) term is not zero in eq.(19), there is still an error
of O((Az)?) in Gauss’s law (see eq.(18) after the correction. To further
minimize the error, we can repeat the correction several times. The particle
displacement decreases when we repeat the correction, so it also helps to
reduce the influence of the singularity in the b; derivative (see eq.(22)). In
section 3, we show that after three corrections, the error in Gauss’s law
reduces to a very small value.

We can now determine the most sensible value for the o exponent in-
troduced in eq.(27). If two particles of the same species overlap with each
other before the correction, it is natural to correct them with the same dis-
placement, i.e., their displacements Ax, should not depend on the particle’s
charge ¢,. According to eq.(31) this will hold if we set & = 1, which is the
value used in all simulations in this paper. When ae = 1, eq.(27) implies that
the Lagrange function minimizes the sum of |g,|(Ax,)? over the particles.

We assumed that all species are corrected above, but we have the free-
dom to correct one species only. In that case only the particles that require
correction are looped through to calculate the matrix M (see eq.(34)) and
the displacement Ax, (see eq.(31)), which are the two most expensive parts
of one correction cycle. So it is better to correct only one species in terms of
computational efficiency. We find that correcting the lightest species (typi-
cally electrons) only is a reasonable choice in practice.

With the help of the linearization of the interpolation function (eq. (19)),
there is a simple linear relation between the particle displacement Ax, and
the Lagrange multiplier A\, (eq. (31)), so that the equation system eq. (34)
only contains )\, as unknowns, which are linear, and its size is only related to
the grid size. The matrix M.~ does not depend on either Ax, or A.. So we do
not need to loop through the particles during the linear iteration. Without
the linearization, the problem can also be solved by a non-linear iterative
solver, but there will be no simple relation between Ax, and ., so that
the unknowns Ax, can not be easily eliminated from the equation system,
and the size of the system will be proportional to the particle number. The
linearization is singular at the cell edges. Preventing particles from crossing
the cell edges is a natural idea to avoid the singularity, although it might
generate cell related patterns in the spatial distribution of particles. We
have not tested this idea because the repetition of the correction already
reduces the influence of the singularity, and our numerical tests do no show
any necessity to worry about the singularity so far.
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2.3.2. The approzimate global correction

The accurate correction reduces the error in Gauss’s law to the iterative
tolerance level. But it requires looping through particles to calculate the
matrix M (see eq.(34)). This step is computationally expensive. If the goal
is to suppress the growth of the error in Gauss’s law instead of eliminating
it entirely, the calculation of the matrix M can be avoided.

Boris’ electric field correction method solves the following Poisson equa-
tion of the scalar function ¢ defined at cell centers:

Vip =V . E" — dgpitt (36)

where E and p. are the uncorrected electric field and charge density at the cell
center. After ¢ is obtained, the electric field is corrected to satisfy Gauss’s
law:

En+1 _ EnJrl o v¢ (37)

Instead of correcting the electric field, we design an analogous algorithm
that corrects the particle positions. Similar to the Boris field correction, we
solve the Poisson equation (36) first with the GMRES scheme. The charge
density is interpolated as

~n n+3 ntl
pett=ape 2+ (1 =7)pe? (38)
where the tilde represents the charge density before position correction and

v = 0.51 is an interpolation coefficient as in eq.(18). If we could find dis-
placements Ax, for each particle so that

L vy, (39)

3 ~ntd 3 ~mtd
PR+ Ax) = MR ) +

electric field E*t! = E"t! satisfy Gauss’s law. By substituting V¢ from eq.

(36) into the expression of p"*! we obtain:

then the interpolated charge density p?™ = prt! + L V2¢ and the original

V- E" = dgprtt (40)

C

So, the goal is to find the displacement Ax, that satisfies eq. (39).
When we add the displacement Ax, to a particle, it is equivalent to add
a ‘virtual current’ j, for a ‘virtual time’ Atf, to change the charge density
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3 3
from "3 (X, %) to ptE(Ry 2 4 Ax,). The charge conservation equation

describes how the ‘virtual current’ changes the charge density:

B n+2 ~ 3 _n+3 . . . .
p"Jr%(f(pJr2 + Ax,) — s (Xp+2) =V - (At,j,) + discretization error. (41)

Combining eq.(41) and eq.(39), we obtain the equation for the At,j, term:
. 1 : o
At,j, = — V¢ + discretization error. (42)
4y

For the sake of simplicity, we only displace the electrons or the lightest species
to create the ‘virtual current’. For a given position x,, if we displace the
surrounding electrons by Ax,, it will generate a 'virtual current’:

(Atyju)p = pepAxy = pegAX, (43)

where p.,, pey are the electron charge densities at x, and its closest node,
respectively. Combining the two equations above and ignoring the discretiza-
tion errors, the displacement Ax, is obtained as

1

Ax, =
P Arypey

Vo. (44)

This global approximate correction method solves a Poisson’s equation
to distribute the 'virtual current’ globally. It does not eliminate the error in
Gauss’s law exactly, but it pushes the particles toward the direction to reduce
the error. To avoid potential overshoot, we can apply partial correction only:

. €
AT Pe,g

Ax, (45)

where € is a constant between 0 and 1. We use ¢ = 0.9 in practice. The
spatial discretization is described in the section 2.3.3.

2.3.3. The approximate local correction

The approximate global correction method described in the previous sec-
tion needs to solve a Poisson equation. Its computational cost is negligible
within our GL-ECSIM scheme. But the cost may not be acceptable for an
explicit PIC algorithm. To avoid solving the Poisson equation, we introduce
a local correction method.
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Figure 2: The black solid lines represent the cell edges. The black squares are the cell
centers. The red square represents the shape function S, of a macro-particle with its
position x, marked by the red circle. The two shaded squares are two complementary
volumes (node-centered volumes) V1 and V2.

17



382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

Again, we only correct the electrons for simplicity. We calculate the
relative error at each cell center first:

~n+1 N v En+1 4
L Jam) "
Y Pe,c
where 7! is obtained from eq.(38). The displacement Ax,, for a particle at
x, is calculated from

(Az,/Ax, Ay,/Ay, Az,]Az) = —

A A
(_x or. Ayor, Az 8rc) (47)

2 9r’ 2 9y’ 2 02

where the right-hand side is the difference of the relative error r. in the three
directions, Az, Ay and Az are the cell sizes, and € is the correction ratio
between 0 and 1. The difference of the relative error r. indicates the direction
to move particles. As an example, let us consider a uniform 1D simulation
with a pair of electron and ion at each node at time stage n + % Assume
the cell size is 1, each ion macro-particle has charge ¢; and each electron has
charge g. = —¢;, so the cell center electron charge density is p.. = g. and
the net charge at n + % stage is zero. We assume the electric field at n 41 is
also zero. If an electron macro-particle at the cell center x; is misplaced at
r;+0.1Az at n+% stage and other particles do not move, the electron charge
at cell centers w;_y/, and x;41/2 will become 0. 9qe and 1.1q., respectively.
The relative errors 7. at z;_1/; and x;1,/, are 09 ~ —0.11 and 0 1 ~ 0.091,
respectively. Based on the correction formula above, the correctlon for thls
electron particle is Az,/Az = —82%< ~ —(0.091 + 0.11)/2 ~ —0.1 when
€ = 1, which means the electron at z; + 0.1Axz will be moved back to x;. For
this simple example, e = 1 cancels the error almost perfectly.

Figure 2 shows a two-dimensional example. Among the 4 cell centers
around the particle in the figure, the smallest index cell center is (i+ %, J+ %)
Based on the relative errors at these 4 cell centers, this particle will move
toward or away from the cell center (i + 3, j + 3). However, the information
in the complementary volume V2 has no influence on this particle although
particles inside V2 also contribute to cell center (i + 3,7 + 3). Due to the
locality of this correction method, it is impossible to find a correction ratio €
to eliminate the error accurately in general. A large € can lead to overshoots
easily, while a small ¢ may not be sufficient to suppress the growth of the
error. Our tests suggest that ¢ = 0.5 reaches a reasonable balance between
the effectiveness and robustness, and it is used in the following numerical
tests.
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We use Figure 2 to illustrate the calculation of the spatial derivatives
in eq. (47) and eq. (45). Assume the particle is at (x,,y,) and we need

to calculate %=. We interpolate gy vy (Tappsjoup) 1O 7o oy, and

T jowissss (Toivsjowisnje A0 Ty o0y, ) first. Then the spatial derivative is
: ore __ o

Obtalned by or (rxi+3/2ayp rﬂ?i+1/2,yp)/Ax'

2.83.4. Limiting the displacement

All the three correction methods described above assume that if a par-
ticle moves toward (away from) a cell center, its charge contribution to this
center would increase (decrease). This assumption is true only when the
particle center does not cross the complementary volume boundaries. When
the displacement is small, there are not too many particles violating this
assumption and the correction methods work well. However, in the region
where the plasma is rarefied or the numerical error in Gauss’s law is large,
the displacement can be large compared to the cell size. To fix this problem,
we limit the displacement with the following simple algorithm:

Ax
AX™ =min [ 1,co—— | Ax 48
p (Farme) & )
where Ax, the particle displacement calculated by one of the correction meth-
ods, Az is the cell size in the x-direction, and c¢q is the maximum allowed
relative displacement. We use ¢y = 0.1 for the simulations.

2.4. Spatial discretization

The spatial discretization of the semi-discretized equations eq.(16) and
eq.(5) on a uniform Cartesian grid can be done following the iPIC3D con-
vention. Since E and B are staggered in space, we need first-order derivatives
from cell centers to nodes and from nodes to cell centers, and second-order
derivatives from nodes to nodes. The node-to-node second-order derivatives
can be obtained in two steps: first calculate the node-to-center first-order
derivatives and then calculate the center-to-node derivatives of these first-
order derivatives. Each cell center (node) first-order derivative is calculated
by averaging the 4 nodes (centers) in the transverse directions and then tak-
ing the difference between the two averaged values along the direction of the
derivative. For example, the cell centered first-order derivative of E, in the
x direction is calculated as

l,m=1
OF, 1 1
ox - E Z Z(Ez,i+1,j+l,k+m - Ex,i,j+lvk+m) (49>
i+, j+1 k+1 1,m=0

19
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[ | |
i1 . .i+1, i+1 i-1/2, j+3/2 i+3/2, j+3/2
[ | | [ | |
i+1/2, j+1/2 i-1/2, j+1/2 | i+1/2, j+1/2] i+3/2, j+1/2
i,j i+1,
| |
i-1/2, j-1/2 i+3/2, j-1/2

Figure 3: 2D examples of the cell centered first order spatial derivatives in the x-direction.
Black circles are the nodes and the squares are the cell centers. Figure (a) shows the
traditional compact discretization: the derivative at the red square is calculated from the
surrounding nodes. Figure (b) shows the extended stencil discretization: the derivative
at the red square is calculate from the surrounding cell center values that are obtained as
averages of the surrounding nodes, respectively.
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where the integer indices i, j and k represent the cell nodes while the half
indices represent the cell centers. All the spatial derivatives in eq.(16) can
be calculated based on this rule. An 2D example is shown in the left panel
of Figure 3. We note that not all spatial discretizations satisty the iden-
tities needed for energy conservation [5] but, fortunately, the discretization
described above does. Tt also satisfies the identity V x Vx = (VV:) — V?
used in deriving eq.(9).

This finite difference algorithm uses as few neighbors as possible while
maintaining symmetric discrete formulas that satisfy the various identities.
It is quite optimal and it behaves well for most of our simulations. But
spurious short-wavelength oscillations with wavelength of ~ 2 cells may occur
with this compact discretization for some simulations. We found that using
an extended stencil for part of the the spatial discretization of V - E"*? in
eq.(9) helps to suppress these oscillations. We take 0F, /0z at the cell center
as an example to define the difference formula with an extended stencil:

I,m=1

0F, 1 1 15 15
O L ied e = E E §( Tt 3 g+ s +Lk+5+m T x,i—%,j—&-%—i—l,k—‘r%—i—m)
g Tkt l

m=—1

(50)

where the cell center electric field values, such as £, ;, s ;.1 1, are averaged
form the nearby 8 nodes. An 2D example is shown in the right panel of Fig-
ure 3. We denote the divergence calculated on the extended stencil shown by
eq.(50) as V' - E"*? while V - E"? represents the usual compact discretiza-
tion of eq.(49). The difference of these two divergence operators can be used
to diffuse the oscillatory errors related to the VV - E term. Using a linear
combination of V' - E"*? and V - E"*?, the electric field equation becomes:

B 467 [V(cnV - E™ 4 (1= cqu)V' - E")) = V’E™] = (51)

47 —
E”+(5(V><B"—%J),

where the coefficient c.,; is the fraction of the divergence calculated with the
compact derivative.

We illustrate the smoothing effect of using the extended stencil for the
divergence operator with a 1D example. Let us assume that there is charge
separation in a 1D simulation along the x-direction that generates a variation
in the £, component with a short wavelength. Since V x E = 0 for this case,
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the V(V - E"") and VZE"*? terms cancel each other both analytically and
numerically when the compact derivatives are applied. However, if ¢, is less
than 1 so that the extended stencil derivative V’- is also used, then in effect
we add

§*(1 = cq)V(V = V) EH (52)
to the right hand side of the original equation (9). The leading term in the
Taylor expansion will be a fourth derivative —6%(1 — ccpt)%ﬁ% since the

third derivative has zero coefficient due to the symmetry of the discrete di-
vergence and gradient operators. This operator has a net effect of smoothing
the short-wavelength oscillations in F,.

We remark that when ¢, is not 1, i.e., the extended stencil divergence of
the electric field is used, the total energy is not exactly conserved any more.
In section 3, we are going to show that simulations with c.,; = 0.9 suppress
the oscillations while still conserve energy reasonably well.

3. Numerical tests

This section presents three numerical tests to demonstrate the perfor-
mance of the GL-ECSIM algorithm. The two-dimensional (2D) magneto-
sphere simulation and the 2D reconnection test show the improvement of
the GL-ECSIM scheme compared to iPIC3D and the original ECSIM algo-
rithm. The 1D Weibel instability test demonstrates that the particle position
correction step does not change the physics.

In this test section, we set the electric field solver tolerance to be 107°.
In all the simulations shown below, the electric field solver converges within
20 iterations, and the solver only consumes about 5% of the total computa-
tional time. A preconditioner is not in urgent demand for these simulations.
However, in some of our more challenging applications, the field solver can
take more than 50% of the simulation time. A good preconditioner will ben-
efit these applications a lot. We are going to design a preconditioner in the
future. We have tried a smaller tolerance 10~'? for most tests of this session,
and the reduced tolerance makes little difference.

For the accurate correction method, the correction procedure is repeated
three times per computational cycle. A iteration tolerance of 0.01 and a
maximum iteration number of 20 are used for the linear equation systems of
the correction methods. We have not implemented any preconditioner for the
iterative solver, so the linear equations may not be able to converge within 20
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iterations. But the correction methods still work well as the following tests
demonstrate. Further improving the accuracy of the linear solver leads to
smaller errors in Gauss’s law, but it improves the overall simulation quality
little.

Table 1 shows 9 different parameter combinations for the tests. We per-
formed simulations with iPIC3D, which uses # = 1, the original ECSIM and
GL-ECSIM. For the original ECSIM, the role of 6 is studied (ECSIM-1 and
ECSIM-2), and we show that Marder’s pseudo-current method [9] does no
work well (ECSIM-3). For GL-ECSIM, we show that the extended stencil
spatial discretization helps to suppress the short-wavelength oscillations by
comparing GL-ECSIM-1 and GL-ECSIM-2, and we also compare different
particle position correction methods (GL-ECSIM-2 to GL-ECSIM-5).

Table 1: Simulation parameters and the normalized wall time for the 2D reconnection
simulations. In the particle correction method column, ‘accurate’, ‘approximate-global’
and ‘approximate-local’ represent three methods described in section 2.3, and ‘all’ indicates
that the correction method is applied to all species, otherwise the correction is applied
to electrons only. ccp: is the coefficient of the compact V - E discretization. ¢, is the
coefficient of the pseudo-current term. The 2D magnetic reconnection (MR) simulation
wall time is normalized by the iPIC3D wall time.

Simulation ID 60 Correction method ¢ ¢, MR wall time

iPIC3D 1.0 N/A N/A 1.0 1.0
ECSIM-1 0.5 N/A 1 0 1.8
ECSIM-2 0.51 N/A 1 0 1.8
ECSIM-3  0.51 N/A 1 01 N/A

GL-ECSIM-1 0.51 accurate 1 0 2.6
GL-ECSIM-2  0.51 accurate 0.9 0 2.6
GL-ECSIM-3  0.51 accurate-all 0.9 0 2.9
GL-ECSIM-4 0.51 approximate-global 0.9 0 2.1
GL-ECSIM-5  0.51 approximate-local 0.9 0 2.0

3.1. Two-dimensional magnetosphere simulation

The numerical modeling of the 3D magnetosphere has been the original
motivation for us to develop the GL-ECSIM method. Here we use a 2D
magnetosphere simulation to show the problems we encountered with iPIC3D
and ECSIM, and also to demonstrate that GL-ECSIM cures these issues.
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In the 2D Earth’s magnetosphere simulation, we solve the ideal MHD
equations with a separate electron equation to capture the global structure
of the 2D magnetosphere. After a steady solution is obtained, we use the
embedded PIC model to cover Earth’s dayside magnetopause. The MHD
code and the PIC code are two-way coupled. More details about the MHD-
EPIC algorithm can be found in [22, 24]

The 2D simulation domain extends from x = —480 Rg to z = 32 Rg and
y = —128 Rg to y = 128 Rg, where R = 6380km is Earth’s radius. The
intrinsic magnetic field is represented by a 2D line dipole with magnetic field
strength -3110 nT' at the magnetic equator. The dipole is aligned with the Y
axis. The field strength of the 2D dipole is chosen so that the magnetopause
forms at about the same distance (= 10 Rg) as in reality. The inner boundary
condition is set at 7 = 2.5 R with a fixed plasma density 10 amu/cc and zero
plasma velocity. The external magnetic field (total field minus the intrinsic
dipole) and the ion and electron pressures have zero gradient inner boundary
conditions. The solar wind enters the simulation domain from the +x direc-
tion with mass density py.ss = 5amu/ce, electron pressure p, = 0.0124nP,
ion pressure p; = 0.0062 nP, plasma velocity u = [—400, 0, 0] km/s, and mag-
netic field B = [-0.1,—-0.5,0] nT. Figure 4 shows the ion pressure in part of
the simulation domain. After the MHD code reaches a steady state, the em-
bedded PIC model is used to simulate the dayside reconnection region. The
PIC region covers 6 Rp < * < 12Rp and —6 Rg < y < 6 Rg shown by the
black box in Figure 4. The ion mass-charge ratio m;/g; is set to be 32 times
larger than the ratio of a proton so that the ion inertial length d; is about
0.27 Rp in the magnetosheath (see [25] for more detail on the scaling). A
reduced ion-electron mass ratio m;/m, = 100 is used so that the electron skin
depth d, is about d;/10 =~ 0.027 Rg. The PIC code resolution is 1/32 R,
so that there are about 10 cells per ion inertial length or 1 cell per electron
skin depth. 400 macro-particles per cell per species are used. The time step
is fixed to be At = 0.05s unless otherwise specified, and the corresponding
CFL number CFL = max(v}'¢s, / Az, v)'e%, /Ay, v'eg, /Az) At is about 0.25,
where v"}" is the maximum electron thermal velocity component. A reduced
speed of light ¢ = 3000 km/s is used. These parameters are comparable to
what we are using for realistic 3D magnetospheric simulations.

Figure 5 compares the electric field component E, inside the PIC domain
at t = 400s for iPIC3D, ECSIM with ¢ = 0.5 (ECSIM-1), ECSIM with
6 = 0.51 (ECSIM-2), and ECSIM with § = 0.51 and the pseudo-current term
(ECSIM-3). iPIC3D produces short-wavelength oscillations in the magneto-
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sphere (black arrow in Figure 5 (a)). Our numerical tests show its wavelength
is proportional to the cell size, so the oscillations can not be physical. The
oscillations can be reduced by smoothing the electric field after each update
25]. ECSIM-1 and ECSIM-2 successfully suppress the magnetosphere oscil-
lations, but there are some spurious small scale oscillations (red arrows in
Figure 5 (b) (c)), whose wavelengths are proportional to the cell size in a
grid convergence study, around the magnetopause. We do not know the cause
of the oscillations, but these oscillations disappear in simulations satisfying
Gauss’s law as we will see later. ECSIM-2 improves significantly relative to
ECSIM-1 in terms of the behavior in the magnetosheath. ECSIM-1 generates
wave-like structures, which are marked by the red boxes in Figure 5, while
the result of ECSIM-2 is still clean. Because of the tremendous improvement
from 6 = 0.5 to § = 0.51, we use 8 = 0.51 as our default value in practice.
We have also tried to used 6 = 1.0 for ECSIM, and the result also shows
short-wavelength oscillations along the magnetopause just as ECSIM-1 and
ECSIM-2. ECSIM-3 tries to satisfy Gauss’s law better by incorporating the
pseudo-current term, however, it creates oscillations in the magnetosphere
(black arrow in Figure 5 (d)) just as iPIC3D does.

Figure 6 and Figure 7 show the importance of satisfying Gauss’s law and
compare different particle position correction methods. We define the er-
ror in Gauss’s law as V - E"™!/(47r) — prtl. For ECSIM-2, the net charge
density and the error are the same order, which suggests Gauss’s law is al-
ready dramatically violated. After the accurate correction method is applied
to electrons to fix the Gauss’s law error (GL-ECSIM-1), the error reduces
to about 107! [nT/s], which is about 5 orders smaller than the net charge
density. GL-ECSIM-1 also eliminates most of the small scale structures in
ECSIM-2, such as the E, oscillations near the edge of the magnetopause,
but GL-ECSIM-1 produces significant short-wavelength oscillations at the
magnetosphere side in the E, and net charge density p. profiles. By using
the extended stencil V - E spatial discretization (GL-ECSIM-2), these spuri-
ous oscillations are suppressed. Applying the accurate correction to all the
species (GL-ECSIM-3) also obtain small error and smooth solution. The ap-
proximate global correction (GL-ECSIM-4) and approximate local correction
(GL-ECSIM-5) can not perfectly eliminate the error in Gauss’s law, and the
errors are about 103 [n'T/s], which is 10 times smaller than the net charge p..
Although the errors in GL-ECSIM-4 and GL-ECSIM-5 with the approximate
correction are much larger than the errors in GL-ECSIM-2 and GL-ECSIM-3
employing the accurate correction, these four simulations produce results of
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similar quality. The linear problem for the correction is slow to converge,
and the residual can not reach the tolerance 0.01 within 20 steps most of the
time. However, Gauss’s law errors are still significantly reduced in the GL-
ECSIM simulations. We performed a test with tolerance 0.001 and unlimited
iteration number for GL-ECSIM-2, and the error in Gauss’s law further re-
duces to about 1072 [n'T/s|, but there is little improvement in other variables
compared to the one with tolerance 0.01 and 20 steps limit.

Since the extended stencil spatial discretization smooths the electric field,
this discretization alone may be able to smooth out the short-wavelength
oscillations near the magnetopause in the ECSIM simulations (red arrows in
Figure 5 (b) (c)). To verify this hypothesis, we performed a simulation for
ECSIM with ¢ = 0.51 and the extended stencil spatial discretization. This
test eliminates almost all spurious structures in the electric field, but it has no
improvement in terms of Gauss’s law satisfaction, and some variables, such
as the net charge, are still incorrect just like in the ECSIM-2 simulation.

For this 2D magnetosphere test with the numerical parameters described
above, the typical maximum particle displacement for GL-ECSIM-2 that
corrects the electron particle positions only is about 4.0% of the cell size after
the first linear solve, 0.2% after the second, and 0.03% after the final third
solve which is the end of the non-linear correction. When both electron and
proton particle positions are corrected (GL-ECSIM-3), the corrections are
half of these values. For the approximate correction methods (GL-ECSIM-4
and GL-ECSIM-5) the typical correction is about 2% of the cell size.

The PIC simulation domain of this 2D magnetopause test is not a closed
system. The particles and waves can enter and leave the PIC domain, so
the total energy of the PIC system is not conserved and we do no show the
energy variation here.

This 2D magnetopause test is similar to our realistic 3D magnetospheric
applications. It helps us to identify numerical issues and verify the perfor-
mance of new algorithms. It demonstrates that the GL-ECSIM method is
more robust and accurate than iPIC3D and also the original ECSIM for a
challenging problem. Since the pseudo-current method does not work well
in general, # = 0.51 is more robust than 6 = 0.5, and the extended stencil
discretization of the V - E helps to suppress spurious oscillations, we will
ignore the pseudo-current method, use # = 0.51 and the extended stencil
discretization with c.,; = 0.9 as default in the following tests.
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3.2. Two-dimensional double-current-sheet magnetic reconnection

The two-dimensional magnetic reconnection problem is widely used to
test plasma simulation codes. The double-current-sheet setup allows periodic
boundary conditions for both directions. Here we use a setup based on the
GEM-challenge [30].

The initial condition is set to satisfy the fluid force balance for both
electrons and ions [31]. The simulation domain is —12.8 < z < 12.8 and
—6.4 < y < 6.4 in normalized CGS unit. The speed of light is set to be ¢ = 1.
The ion density is uniform and n; = 0.0975. The ion plasma frequency is

Wpi = M = 1.107 and the ion inertial length d; = ¢/w,; = 0.903 since
p m g P

m; =1 and ¢; = —¢. = 1. A reduced ion-electron mass ratio m;/m, = 25 is
used, so the electron skin depth is about d. = d;/5 = 0.18. Initially, there is
no charge separation, n., = n;, and the electric field is E = 0.

The background magnetic filed is

B, = B, (-1 + tanh 2 _(SyB + tanh yT(S_ y) (53)

where By = 0.07, the positions of the two current sheets are yg = —3.2 and
yr = 3.2, respectively, and the width of the currents sheets are controlled by
0 = 0.5. The electrons have a velocity in the z-direction to generate current
equal to the curl of the magnetic field, i.e, J, = neqeu. . = —0B,/Jdy. The
ion pressure p; is uniform in the whole domain. Far away from the current
sheets, the ion plasma beta is 1, and the electron pressure is 1/5 of the
ion pressure. Near the current sheet, the electrons are heated to balance
the magnetic field gradient force, which is the same as the Lorentz force
—Neqetie B, This unperturbed initial condition is in fluid force balance [31].

A perturbation is added to excite the reconnection [32]. The magnetic
field perturbation vector potential is A, =0, A, = 0 and:

(@—zp)?  w-yp)?

A, = AOBO{ —e Gi 9% cos [ky(x — 27)] cos ky(y — yr)]
(54)

_(e-zp)?  (y—yp)?

+e Ci % cos[ky(z — xp)] cos [k, (y — yB)] }
where the perturbation amplitude is set by Ay = 0.1, the locations along the
top and bottom current sheets are xr = 6.4 and rp = —6.4, respectively,

the width of Gaussian profiles are G, = G, = 0.5, and the wave vectors are
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k, = 2m/25.6 and k, = 27w /12.8. Since these two reconnection sites, i.e., the
bottom left one at (xp,yp) and the top right one at (z7,yr), produce the
same signatures, we only plot and discuss the bottom left reconnection site
for simplicity.

For the simulations shown in Figures 8, 9 and 10, the grid resolution is
Ax = 0.05 and the time step is At = 0.1. There are 900 macro-particles
per cell per species. The simulation results at ¢ = 400 are shown. Figure 8
shows the net charge p., electric field F, and the error in Gauss’s law for
iPIC3D and ECSIM. iPIC3D produces good quality results for this test.
Near the reconnection site, the divergent field-aligned electric field E, is well
resolved, a double-sandwich structure of the net charge in the center of the
reconnection site is captured, and the error is small and dominated by the
random particle noise. However, p. and E, of ECSIM are dominated by the
unphysical oscillations along the separatrices, and the huge error indicates
that Gauss’s law is dramatically violated. The ECSIM simulation shown here
uses # = 0.5, and the simulation with 8 = 0.51 does not alleviate the issue.
The double-sandwich net charge structure is physical and more details can
be found in [33].

Comparing the GL-ECSIM-1 and GL-ECSIM-2 results in Figure 9 demon-
strates that the extended stencil discretization of V - E helps to reduce the
noise. All the position correction methods produce essentially the same net
charge structure (GL-ECSIM-2 to GL-ECSIM-5). The error in Gauss’s law is
about 5 orders smaller than the net charge density in the simulations employ-
ing the accurate correction method (GL-ECSIM-1 to GL-ECSIM-3), and it
is about 1 order smaller for the approximate corrections (GL-ECSIM-4 and
GL-ECSIM-5). When the accurate correction is only applied to electrons
(GL-ECSIM-1 and GL-ECSIM-2), the typical maximum particle displace-
ment is 4.5%, 0.12% and 0.002% of the cell size for the three linearized cor-
rections. These values reduce by a factor of 2 when both electrons and ions
are corrected (GL-ECSIM-3). For the approximate corrections GL-ECSIM-4
and GL-ECSIM-5, the typical maximum displacement is about 3% of the cell
size.

Figure 10 shows the total energy variation. For ECSIM with 6 = 0.5
(ECSIM-1), the energy is conserved, the small error corresponds to the ac-
curacy of the iterative implicit electric field solver. ECSIM with 6 = 0.51
(ECSIM-2) dissipates 0.5% of the total energy after 4000 iterations. The
plots of GL-ECSIM-1 and ECSIM-2 are overlapped with each other because
the particle position correction does not change the energy. The extended
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stencil discretization of V - E (GL-ECSIM-2) dissipates 3% of the energy,
which is still a relatively small value. The energy variation for other cor-
rection methods (GL-ECSIM-3 to GL-ECSIM-5) are essentially the same as
GL-ECSIM-2. As a comparison, the total energy of the iPIC3D simulation
reduces about 3.5%

The normalized wall time for each simulation is presented in Table 1.
From the timing results, we conclude:

e In our implementation, ECSIM is about twice slower than iPIC3D.

e For the accurate correction method (GL-ECSIM-1 to GL-ECSIM-3),
the correction takes 30% to 40% of the total simulation time.

e Correcting all species (GL-ECSIM-3) is about 10% slower than correct-
ing one species only (GL-ECSIM-1 and GL-ECSIM-2).

e The approximate correction methods only take about 10% or less of
the total wall time.

In practice, we prefer the approximate global correction method since it
reaches a balance between robustness and efficiency. The approximate local
correction method is even faster, but it is less robust and accurate for some
challenging problems.

Figure 11 shows the results with the approximate global correction for
grid resolution 0.2, 0.1, 0.05 and 0.025. The CFL number is fixed and the
corresponding time steps are 0.4, 0.2, 0.1 and 0.05, respectively. All the
simulations capture the Hall magnetic field B., even the electron flows, such
as Ue 5, very well. Once the grid resolution is close to or higher than half of the
electron skin depth d, = 0.18, the details of the off-diagonal electron pressure
terms are also well resolved, while the simulation with Az = 0.2 is too
diffusive to capture these details. The pressure components presented here is
similar to other high-resolution PIC simulations, such as the Figure 9 in [34].
The double-sandwich structure of the net charge is even harder to capture.
Even the simulation with Az = 0.1 does not resolve this structure well. The
normalized reconnection rate is shown in Figure 12. The four simulations
with different grid resolution have the same normalized reconnection rate of
0.07. The algorithm to calculate the reconnection rate can be found in [31].
These four simulations demonstrate that the GL-ECSIM method converges
well with increasing grid resolution, and a variety of reconnection related
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structures can be captured once the grid resolution is close to or higher than
half of the electron skin depth.

3.3. Weibel instability

Finally, we perform the 1D Weibel instability test to quantitatively prove
that the particle correction methods do not interfere with properly capturing
the growth and evolution of this instability.

The simulation is performed on a 1D domain of size L, = 27d,, resolved
by cells of size Az = L, /64 and time step At = 0.05/w,.. 400 particles per
cell per species are used. Each of the two counter-streaming electron beams
has a speed of 0.8c along the positive or negative y-direction. The thermal
velocity of the electrons is u. ¢, = 0.01c. The ions are uniformly distributed
to satisfy the charge neutrality requirement, but the ions are much colder
and heavier than the electrons (m;/m,. = 10* and u; , = 1073¢), so that the
ions do not move essentially. The linear theory [35] predicts the growth rate
of the mode with wavelength 7d, is v = 0.716w,.. Figure 13 shows that the
growth rates are essentially the same for all the simulations, and the rate is
close to the analytic value during the linear growth stage.

4. Conclusion

In this paper, we introduce the novel GL-ECSIM algorithm, which can
satisfy both the total energy conservation and Gauss’s law to the accuracy of
the iterative solvers. In practice, we need to sacrifice the energy conservation
a little bit and introduce a small amount of diffusion to reduce noise and
suppress numerical oscillations by using a time centering parameter 6 = 0.51
instead of 0.5 of the original ECSIM algorithm. In addition, we introduce
a linear combination of the original compact stencil (with a 0.9 weight) and
a new extended stencil (with 0.1 weight) for the discretization of the V - E
term in the electric field equation. In effect, this adds a dissipation term
proportional to the 4th derivative of the electric field, which helps to remove
spurious oscillations.

Our 2D reconnection and magnetosphere simulations suggest that the
original ECSIM scheme may produce numerical artifacts due to the violation
of Gauss’s law. In order to solve this problem without changing the energy,
we design a class of new algorithms to correct the particle positions after
each ECSIM update to satisfy Gauss’s law. The accurate correction method
carefully calculates the displacement of each particle to eliminate the error in
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Gauss’s law accurately while minimizing the norm of the total displacements.
This accurate correction method requires a non-linear iterative solver and
takes 30% to 40% of the total wall time to do the correction. In order to speed
up the simulation, we introduce another two approximate methods. The
approximate global correction method solves a Poisson’s equation to estimate
the particle displacement, and the approximate local correction estimates the
displacement based on the surrounding errors. The local correction method
is faster than the global correction. But the global correction calculate the
displacement based on global information, which makes the global correction
more robust for challenging problems.

Using the approximate global GL-ECSIM method with its optimal pa-
rameter settings, we performed a grid convergence study for the magnetic
reconnection problem. We found that the solution converges well with di-
minishing grid resolution, and it is converged in most variables if the grid
resolution is about one half of the electron skin depth.

Our tests demonstrate that the GL-ECSIM is robust and accurate. It has
been successfully applied to our ongoing 3D global magnetospheric simula-
tions.
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lon pressure [nPa]

Figure 4: The ion pressure of the 2D magnetosphere simulation. The region inside the
black rectangle is simulated by the PIC code.
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Figure 5: The electric field E,[nT km/s] of the 2D magnetosphere simulations inside the
PIC domain at t = 400s with four different simulation parameters described in Table 1.
iPIC3D produces short-wavelength oscillations (black arrow in (a)) inside the magneto-
sphere. ECSIM with 6§ = 0.5 (ECSIM-1) generates more noise in the magnetosheath than
ECSIM with 6 = 0.51 (ECSIM-2). The noise is marked by the red boxes. There are some
spurious small scale oscillations (red arrows) near the magnetopause for both ECSIM-1
and ECSIM-2. If the pseudo-current is used to fix the error in Gauss’s law (ECSIM-3), it
generates oscillations (black arrow in (d)) that are similar to the iPIC3D code.
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Figure 7: The same variables as in Figure 6. From left to right: the accurate correction
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Figure 8: The bottom left reconnection site of the double-current-sheets reconnection
simulations at t = 400. The left panels show the iPIC3D simulation results, and the right
panels show the results of ECSIM with 8 = 0.5. From top to bottom: the net charge ¢,
the electric field E, and the error in Gauss’s law, defined as V - E"!/(47) — pnt1. All
these variables are in normalized units. ¢ and FE, have the same units. The cell size is
Ax = 0.05, and the time step is At = 0.1. The results of ECSIM with 8 = 0.51 are not
presented here, but they are very similar to the right panels above.
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Figure 11: The grid convergence study of the double-current-sheet simulation with the
approximate global correction method (GL-ECSIM-4 in Table 1). From top to bottom:
the out-of-plane Hall magnetic field B, the electron jet velocity e, the three electron
off-diagonal pressure tensor elements pe 4y, Pe,x- and pe ., and the net charge density p.
at t = 400 are shown in normalized units. From left to right, the cell sizes are Az = 0.2,
Az = 0.1, Az = 0.05 and Az = 0.025, and the corresponding time steps are At = 0.4,
At = 0.2, At = 0.1 and At = 0.05, respectively.
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Figure 12: The reconnection rate for the simulations shown in Figure 11. All simulations
have a reconnection rate of ~ 0.07.
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The particle correction methods do not change the growth rate at all.
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