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We present a six-moment multi-fluid model, which solves the governing equations for both 
ions and electrons, with pressure anisotropy along and perpendicular to the magnetic field 
direction, as well as the complete set of Maxwell equations. This set of equations includes 
the Hall effect, different temperatures for different species and pressure anisotropy. It 
is more comprehensive than the five-moment equations with isotropic pressures and 
significantly less expensive than the ten-moment equations with a full pressure tensors. 
Similarly to the five- and ten-moment equations, the wave speeds are naturally limited 
by the speed of light, which eliminates the issue of unlimited whistler wave speeds 
present in Hall magnetohydrodynamics (MHD). It is also possible to simulate multiple 
negatively charged fluids, which cannot be done in MHD models. The six-moment model 
is a reasonable description of the plasma outside magnetic reconnection regions and 
therefore well-suited to be coupled with an embedded particle-in-cell model that covers 
the reconnection region. Our numerical implementation uses a point-implicit scheme for 
the stiff source terms, and we use a second-order accurate Rusanov-type scheme with 
carefully selected wave speeds. For the plasma variables and the magnetic field the 
maximum wave speed is based on the fast magnetosonic speed of MHD with anisotropic 
pressures that we derive. For the electric field related variables the speed of light is used. 
The divergence of the magnetic field and Gauss’s law are controlled with a hyperbolic-
parabolic scheme. We present a number of numerical tests to demonstrate that this 
numerical model is robust without being excessively diffusive.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Magnetohydrodynamics (MHD) simulations have been widely carried out to understand the mechanisms behind differ-
ent phenomena in plasma physics. MHD models assume that the Larmor radius (gyro radius) is much smaller than the 
characteristic length scale and the particle distribution function can be described by the fluid equations (continuity, mo-
mentum and pressure/energy equations). Magnetic (B) and electric (E) fields are needed to solve the governing equations 
for the ions and electrons. In the MHD approximation, the mass of the electrons is neglected so that we can obtain the 
approximate electric field from the electron momentum equation. In such an approximation, the magnetic field is frozen 
into the electron fluid. Further simplifications include ignoring the velocity difference between the electrons and ions in the 
induction equation and assuming equal temperatures and Maxwellian distributions for both electrons and ions, which leads 
to the ideal MHD approximation. In ideal MHD, the magnetic field lines are frozen into the plasma consisting of co-moving 
ions and electrons. The frozen-in condition can be relaxed by taking into account resistivity, however, resistivity is negligi-

* Corresponding author.
E-mail address: zghuang@umich.edu (Z. Huang).
https://doi.org/10.1016/j.jcp.2019.02.023
0021-9991/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2019.02.023
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:zghuang@umich.edu
https://doi.org/10.1016/j.jcp.2019.02.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2019.02.023&domain=pdf


Z. Huang et al. / Journal of Computational Physics 387 (2019) 134–153 135
ble for collisionless plasmas found in space and astrophysics, for example. Another improvement is to include the velocity 
difference between ions and electrons in the magnetic induction equation. The resulting Hall MHD model includes some of 
the ion physics. A further step towards a kinetic description is to allow for different electron and ion pressures and allow 
for pressure anisotropy (for example [1,2]).

The MHD (including ideal, resistive, Hall and MHD with anisotropic pressure) description neglects electron inertia due 
to the finite mass of electrons and assumes perfect charge neutrality. The five-moment equations of Shumlak and Loverich 
[3] remove the assumption of the massless electrons and solve the full set of Maxwell equations to obtain the electric 
and magnetic fields. In addition, the full set of hydrodynamic equations with the Lorentz force on the right-hand-side are 
solved separately for the electron and ion fluids, so that the electron mass is taken into account and charge separation is 
allowed. Further development [4–6] lead to the ten-moment two-fluid plasma model that solves for full pressure tensors 
for both the electron and ion fluids. Wang et al. [5] compare their five- and ten-moment two-fluid plasma models with 
a Particle-In-Cell (PIC) kinetic model and show that their five- and ten-moment models can reproduce many important 
kinetic features observed in the PIC simulation. Alvarez-Laguna et al. [7] recently proposed a new numerical method, which 
contains implicit time integration to handle the stiffness of the system and properly scaling of the numerical dissipation 
from the electromagnetic field solver to the plasma flow solver, to simulate the multi-fluid plasma system.

In this manuscript, we propose another approach, a six-moment multi-fluid plasma model, which is in-between the five-
and ten-moment models, by introducing pressure anisotropy for both ions and electrons along and perpendicular to the 
magnetic field direction. The six-moment approximation requires only two pressure components (parallel and perpendic-
ular) per fluid instead of the six independent components of the full pressure tensors, and the six-moment equations are 
significantly simpler than the ten-moment equations. This means that the six-moment equations are less expensive to solve. 
In addition, the six-moment equations are likely to be valid in the vast majority of the plasma system where the electrons 
and ions are both magnetized, so the off-diagonal terms of the pressure tensor are negligible. Near reconnection regions 
the six-moment approximation is not valid, but even the ten-moment approximation has a difficult time to reproduce all 
aspects of kinetic reconnection, although there has been some promising progress [5]. An alternative approach, that we 
plan to employ in the future, is to use an embedded particle-in-cell (PIC) model [8,9] to cover the reconnection region. We 
expect the six-moment equations to provide a good fluid model that can be coupled effectively to the embedded PIC model 
covering the reconnection site. We expect that using the six-moment model allows reducing the size of the PIC domain 
compared to the case when the fluid model is simpler (MHD or Hall MHD). An additional feature of the six-moment (also 
true for the five- and ten-moment) equations is that one can allow for multiple electron fluids or a mixture of electrons and 
negatively charged ions. These situations cannot be handled with the usual MHD models, as the densities and velocities of 
the multiple electron fluids cannot be determined from the charge neutrality and electric current.

In the following section we present the six-moment equations, then we derive the characteristic speeds in section 3
that are used in the discretization. The numerical scheme employing a reduced numerical dissipation in combination with 
a point-implicit discretization of the stiff source terms is discussed in section 4. We present several numerical tests in 
section 5 to demonstrate the capabilities of our six-moment model, and conclude with section 6.

2. Model equations

The six-moment equations are an extension of the five-moment equations [3,10] by introducing pressure anisotropy for 
both ions and electrons [1,2]. Under this assumption, the pressure tensor can be approximated with P = p⊥I + (p‖ − p⊥)bb, 
where I is the identity matrix, b is the unit vector along the magnetic field direction, p‖ is the pressure along the parallel 
direction of the magnetic field and p⊥ is the pressure in the perpendicular direction. For monatomic gases, the six-moment 
equations for all charged fluids (indexed by s) can be written as:

∂ρs

∂t
+ ∇ · (ρsus) = 0 (1a)

∂ρsus

∂t
+ ∇ · [ρsusus + ps⊥I + (ps‖ − ps⊥)bb

] = qs

ms
ρs(E + us × B) (1b)

∂ ps‖
∂t

+ ∇ · (ps‖us) = −2ps‖b · (b · ∇)us (1c)

∂ ps⊥
∂t

+ ∇ · (ps⊥us) = −ps⊥(∇ · us) + ps⊥b · (b · ∇)us (1d)

where ρ and u denote the mass density and the velocity vector, respectively, and q and m are the charges and masses of 
the particles. For convenience of implementation, we solve the average pressure p = 2p⊥+p‖

3 instead of the perpendicular 
pressure p⊥ because p is already a primitive variable solved by our MHD code BATS-R-US. The equation for p can be 
obtained from combining equations (1c) and (1d):

∂ ps + ∇ · (psus) = (ps − ps‖)b · (b · ∇)u −
(

ps − ps‖ )
∇ · us (2)
∂t 3
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Alternatively, we can solve for the hydrodynamic energy density e = ρu2

2 + 3
2 p for each species:

∂es

∂t
+ ∇ · [us(es + ps) + us · (ps‖ − ps⊥)bb] = qs

ms
ρsus · E (3)

which can be beneficial to get better jump conditions across shock waves. Note, however, that the parallel pressure equation 
is still solved with the adiabatic assumption, so non-adiabatic heating is not properly captured. In addition, the magnetic 
energy is not included into the energy density, so the jump conditions are only approximate. In general, there can be many 
more source terms on the right hand sides of the above equations corresponding to gravity, charge exchange, chemical 
reactions, collisions, etc.

The electric field (E) and magnetic field (B) are obtained from the Maxwell equations:

∂B

∂t
+ ∇ × E = 0 (4a)

∂E

∂t
− c2∇ × B = −c2μ0j (4b)

∇ · E = ρc

ε0
(4c)

∇ · B = 0 (4d)

where ε0 is the vacuum permittivity, μ0 is the vacuum permeability, c = 1/
√

ε0μ0 is the speed of light, ρc = ∑
s(qs/ms)ρs

is the total charge density and j = ∑
s(qs/ms)ρsus is the current density.

Equations (4c) and (4d) are constraints on the initial conditions and analytically these conditions are preserved. Numer-
ically, however, this is not guaranteed to hold. We use the hyperbolic/parabolic cleaning method [11–13] to control the 
numerical errors in these equations. We introduce the scalars ψ and φ as additional independent variables and solve the 
following modified form of the Maxwell equations:

∂B

∂t
+ ∇ × E + cB∇ψ = 0 (5a)

∂E

∂t
− c2∇ × B + cE∇φ = −c2μ0j (5b)

∂ψ

∂t
+ cB∇ · B = −dBψ (5c)

∂φ

∂t
+ cE∇ · E = cE

ε0
ρc − dEφ (5d)

where cB and cE are the hyperbolic propagation speeds, while dB and dE are the parabolic decay rates. To make the paper 
more self-contained, we provide a brief derivation in the Appendix to show how the hyperbolic/parabolic cleaning works 
for the six-moment equations. On the other hand without using a cleaning method, Balsara et al. [14] solved the magnetic 
and electric fields in plasma on a facially-collocated Yee-type mesh and proved that magnetic field is reconstructed in a 
divergence-free fashion and the electric field is reconstructed in a form that is consistent with the Gauss’ law. Balsara et al. 
[15,16] further extended their Yee-type mesh algorithm to simulate the electrodynamics in material media.

3. Characteristic wave speeds

The fastest wave speed in the six-moment (also five- and ten-moment) equations is the speed of light c. Using c in 
the numerical fluxes, however, makes the scheme rather diffusive. To reduce diffusion while maintaining stability, we use 
a point-implicit evaluation of the stiff source terms following Shumlak et al. [3], who proposed to ignore the Lorentz force 
terms and consequently the interactions between the charged fluids and the electromagnetic fields while calculating the 
characteristic wave speeds. Using this approach, the characteristic speed for each fluid will simply be its sound wave speed. 
We tried this approach, but found that it gives unsatisfactory results in several applications.

We take an alternative approach by considering the wave speeds of MHD with anisotropic electron and ion pressures in-
stead. This takes into account fast magnetosonic waves, which is the proper wave speed in the MHD limit of the six-moment 
equations. On the other hand the electron sound speed and the whistler wave speed are not included, which reduces the 
numerical diffusivity, and similarly to Shumlak et al. [3] we rely on the point-implicit scheme to provide numerical stability. 
In the following discussion, we limit our derivation to a single ion fluid and a single electron fluid, and we use the subscript 
i to denote the ion fluid while the subscript e is for the electron fluid. The proper generalization to arbitrary number of 
fluids is left for future work (we currently employ some heuristic formulas that work reasonably in most cases but may not 
be valid in general).

It is important to note that the following equations in this section are only used to derive the characteristic speeds, 
but not used in the six-moment model at all. In the MHD approximation, the electric field is obtained from the electron 
momentum equation by ignoring the electron inertial terms, which gives
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E = −ue × B − 1

ene
∇ · [pe⊥I + (pe‖ − pe⊥)bb] (6)

The electron number density ne can be obtained from charge neutrality as ne = niqi/e (or simply ni for singly charged ions). 
For the momentum equation, the electron velocity is expressed from the current density as ue = ui − j/(ene) resulting in 
the usual MHD Lorentz force j × B in the ion momentum equation. The current density is obtained from Ampere’s law (after 
dropping the displacement current) as j = ∇ × B/μ0 as usual in the MHD approximation. In all the other equations we take 
ue = ui , so the governing equations for the ions become

∂ρ

∂t
+ ∇ · (ρu) = 0 (7a)

∂ρu

∂t
+ ∇ · [ρuu + p⊥I + (p‖ − p⊥)bb] + B

μ0
× (∇ × B) = 0 (7b)

∂ p‖
∂t

+ ∇ · (p‖u) + 2p‖b · (b · ∇)u = 0 (7c)

∂ p⊥
∂t

+ ∇ · (p⊥u) + p⊥(∇ · u) − p⊥b · (b · ∇)u = 0 (7d)

where p⊥ = pi⊥ + pe⊥ , p‖ = pi‖ + pe‖ , ρ = ρi and u = ui .
The magnetic field can be obtained from the classical ideal MHD induction equation ignoring the Hall terms, which can 

be written as

∂B

∂t
= ∇ × (u × B) (8)

In a six-moment simulation, the speed of light is usually reduced to speed up the simulation, in which case the reduced 
speed of light need to be properly set to make sure that it must be larger than any of the characteristic speeds. In such a 
system, the characteristic speeds may not be much smaller than the reduced speed of light, so the semi-relativistic situation 
needs to be considered. In the semi-relativistic case, we only need to modify the momentum equation from the classical 
limit. The non-conservative form of the momentum equation (Equation (7b)) can be written as

ρ
∂u

∂t
+ γ 2

A (I + V 2
A

c2
bb) · {ρ(u · ∇)u + ∇p⊥ + ∇ · [(p‖ − p⊥)bb]}

+ γ 2
A

μ0
B × [∇ × B − 1

c2
u × (∇ × E) − 1

c2
0

u∇ · E] = 0
(9)

where

γA = 1√
1 + V 2

A
c2

(10)

is the Alfvén factor, c0 is the true value of the speed of light and c is the artificially reduced speed of light. The term 
c−2

0 u∇ · E can be dropped because u is much smaller than c0 for the semi-relativistic limit and this term is much smaller 
than ∇ × B.

We want to obtain the characteristic wave speed of Equations (7) and (8) with the ion momentum equation re-
placed by Equation (9). First we write the one dimensional (along the x direction) equations in the form ∂U

∂t +
Mx

∂U
∂x = 0 where Mx is the characteristic matrix. In the MHD approximation the variable array reduces to U =

(ρ, u, B, p‖, p⊥) = (ρ, ux, u y, uz, Bx, B y, Bz, p‖, p⊥). In 1D Bx is a constant, so the variable array can be further reduced 
to U = (ρ, u, B y, Bz, p‖, p⊥). These variables only depend on x and t . We further simplify the problem by rotating the 
coordinate system such that the magnetic field is in the x − y plane so that Bz = 0. The characteristic matrix Mx is obtained 
by the Mathematica software:

Mx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ux ρ 0 0 0 0 0 0
0 γ 2

A ux + χ11 χ12 χ13 κ1 0 η12 η12

0 χ21 γ 2
A ux + χ22 χ23 κ2 0 η21 η22

0 χ31 χ32 γ 2
A ux + χ33 κ3 ν 0 0

0 B y −Bx 0 ux 0 0 0
0 0 0 −Bx 0 ux 0 0
0 p‖(2bx

2 + 1) 2p‖bxby 0 0 0 ux 0
0 p⊥(2 − bx

2) −p⊥bxby 0 0 0 0 ux

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where
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χ = γ 2
A

μ0ρc2

⎛
⎝ (B2

x − B2
y)ux 2Bx B yux 0

2Bx B yux (B2
y − B2

x)ux 0
−B2

yuz Bx B yuz −B2
x ux − Bx B yu y

⎞
⎠

κ = γ 2
A

μ0ρc2

⎛
⎝ (c2 − u2

x)B y + (2μ0ρc2 B−2 + 1)b2
x B y(p⊥ − p‖)ρ−1

(u2
x − c2)Bx + (b2

y + (b2
y − b2

x)μ0ρc2 B−2)Bx(p⊥ − p‖)ρ−1

−B yuxuz

⎞
⎠

ν = γ 2
A

μ0ρc2
[(u2

x − c2)Bx + B yuxu y − μ0c2 Bx B−2(p⊥ − p‖)]

η = 1

ρ

(
b2

x γ 2
A b2

y
bxby −γ 2

A bxby

)

The matrix Mx is identical to the submatrix (the upper left 8 × 8 elements) of the characteristic matrix that Meng et al. 
[2] (hereafter Paper I) obtained with pressure anisotropy in ions and isotropy in electrons. We note that here the parallel 
and perpendicular pressures are the sums of the ion and electron pressures. We also correct a typo in the second element 
of the matrix κ in Paper I, where B2

x should be Bx . We use Mathematica to solve the characteristic equation det(Mx −λI) = 0
and after some tedious algebra, the characteristic equation can be written as

(λ − ux)
2P2(λ)P4(λ) = 0 (11)

where the wave speed λ is one of the eigenvalues of Mx and P2 and P4 are second- and fourth-order polynomials, respec-
tively:

P2 =λ(λ − ux) + γ 2
A [λ(u · b)bx

V 2
A

c2
− ux(λ − ux) − (V 2

A + p⊥ − p‖
ρ

)b2
x ] (12a)

P4 =(λ − ux)
4 − (

2p⊥
ρ

+ 2p‖ − p⊥
ρ

b2
x)(λ − ux)

2 − (c2 − λ2)
V 2

A

c2
[(λ − ux)

2 − 3p‖
ρ

b2
x ]

− [ p2⊥
ρ2

(1 − b2
x) − 3p‖p⊥

ρ2
(2 − b2

x) + 3p2‖
ρ2

b2
x ]b2

x

(12b)

where V 2
A = B2/(μ0ρ) is the square of the classical Alfvén speed.

The P2 and P4 polynomials are identical to the P2 and P4 expressions in Paper I after substituting pe = 0 for the isotropic 
electron pressure in Paper I. There are, however, two typos in P4 in Paper I. The correct expression should be (with the 
corrections highlighted in red (color online)):

P4 =(λ − ux)
4 − (a2 + 2p⊥ − 3p‖

ρ
+ 2p‖ − p⊥

ρ
b2

x)(λ − ux)
2 − (c2 − λ2)

V 2
A

c2
[(λ − ux)

2 − a2b2
x ]

− [ p2⊥ − 3p⊥p‖
ρ2

(1 − b2
x) + 3p2‖

ρ2
b2

x+
5pe

3ρ
(

4p‖ − p⊥
ρ

b2
x − 3p‖

ρ
)−3p‖ p⊥

ρ2
]b2

x

(13)

We note that these typos in [2] are only in the published paper, and the equations used in Maple to derive the wave speeds 
and the wave speeds implemented into the code are all correct. There are eight eigenvalues for the characteristic equation 
and each one is associated with one characteristic wave. Two of the eigenvalues are straightforward:

λ1,2 = ux (14)

which are the two entropy waves related to p⊥ and p‖ .

3.0.1. Alfvén wave
As the P2 polynomial is the same as in Paper I, the roots corresponding to the Alfvén wave speeds are the same too:

λ4,5 =1

2
γ 2

A [ux − V 2
A

c2
(u · b)bx] + ux

2

±
√√√√γ 2

A

(
V 2

A,x + p⊥ − p‖
ρ

b2
x

)
+

[
1

2
γ 2

A (ux − V 2
A

c2
(u · b)bx) + ux

2

]2 (15)

where V A,x = V Abx =
√

B2
x/(μ0ρ) is the classical Alfvén wave speed in the x direction. It is important to point out that 

even though this formula looks the same as the solution in Paper I, the physical meaning is not the same because in our 
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case, p⊥ and p‖ are the sum of parallel and perpendicular pressures of ions and electrons, which means that in our case, 
the electron pressure does contribute to the Alfvén wave speed.

In the classical limit (V A � c and γA → 1), the solutions reduce to

λ3,4 = ux ±
√

B2
x

μ0ρ
+ p⊥ − p‖

ρ
b2

x (16)

3.0.2. Fast and slow magnetosonic waves
The exact solutions of P4 are too complicated to obtain. We follow the approach suggested in Paper I to obtain the 

approximate fast and slow magnetosonic wave speeds. We first obtain the solutions in the classical limit, in which case P4
simplifies to

P4 =(λ − ux)
4 −

(
V 2

A + 2p⊥
ρ

+ 2p‖ − p⊥
ρ

b2
x

)
(λ − ux)

2

−
[

p2⊥
ρ2

(1 − b2
x) − 3p‖p⊥

ρ2
(2 − b2

x) + 3p2‖
ρ2

b2
x − 3p‖

ρ
V 2

A

]
b2

x

(17)

The solutions can be easily obtained as:

λ5,6,7,8 = ux ± 1√
2ρ

{( B2

μ0
+ 2p⊥ + (2p‖ − p⊥)b2

x) ± [( B2

μ0
+ 2p⊥ + (2p‖ − p⊥)b2

x)
2

+ 4(p2⊥b2
x(1 − b2

x) − 3p‖p⊥b2
x(2 − b2

x) + 3p2‖b4
x − 3p‖

B2
x

μ0
)]1/2}1/2

(18)

The solutions look the same as the formula obtained in Paper I (when neglecting the electron pressure) and Baranov et al. 
(1970) [17]. We would like to correct another typo in λ5,6,7,8 in Paper I. The first term in the second line of the expression 
should be p2⊥b2

x(1 − b2
x). The complete correct expression is

λ5,6,7,8 = ux ± 1√
2ρ

{( B2

μ0
+ 2p⊥ + 5

3
pe + (2p‖ − p⊥)b2

x ) ± [( B2

μ0
+ 2p⊥ + 5

3
pe + (2p‖ − p⊥)b2

x )
2

+ 4(p2⊥b2
x (1 − b2

x ) − 3p‖ p⊥b2
x (2 − b2

x ) + 3p2‖b4
x + 5

3
pe(4p‖b2

x − p⊥b2
x − 3p‖)b2

x − 3(p‖ + 5

3
pe)

B2
x

μ0
)]1/2}1/2

(19)

The next step is to extend the above solutions to the semi-relativistic case by considering some special cases (for exam-
ple, u = 0 and bx = 1). The steps are the same as in Paper I (after setting the isotropic electron pressure to zero and adding 
the anisotropic electron pressure to the total pressure) so we do not repeat the procedure here. The final approximate 
formulas for the fast and slow wave speeds can be written as

λ̃5,6 =ux ± c̃x = ux ± 1√
2

√
γ 2

A (a2 + V
2
A) −

√
γ 4

A (a2 + V̄ 2
A)2 − 4γ 2

A (a2 V
2
A,x + b2) (20a)

λ̃7,8 =γ 2
A ux ± c̃ f = γ 2

A ux ± 1√
2

√
γ 2

A (a2 + V
2
A) +

√
γ 4

A (a2 + V̄ 2
A)2 − 4γ 2

A (a2 V
2
A,x + b2) (20b)

where a2 = a2(1 + V 2
A,x

c2 ) + 2p⊥−3p‖
ρ + 2p‖−p⊥

ρ b2
x , b2 = b2

x
ρ2 [3p‖ p⊥(2 − b2

x) − p2⊥(1 − b2
x) − 3p2‖b2

x ], V
2
A = V 2

A(1 − γ 2
A

u2
x

c2 ) and 

V
2
A,x = V 2

A,x(1 − γ 2
A

u2
x

c2 ). Paper I showed numerically that these approximate speeds are accurate in most of the practically 
important parameter regime.

4. Discretization

In the following subsections, we describe how we discretize the fluxes (the pure divergence terms on the left hand side) 
and the source terms on the right hand side of the six-moment equations.

The time step is limited by the Courant-Friedrichs-Lewy (CFL) condition based on the speed of light. In practice, we can 
reduce the speed of light to a value that is a factor of 2-3 faster than the fastest flow and fast wave speed obtained in the 
previous section to speed up the simulation.
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4.1. Source terms

The stiff source terms are evaluated by a new point-implicit scheme. Only the momenta and the electric field are in-
volved, so the implicit variables are

Uimpl =
(

ρsus
E

)
(21)

In the momentum equations and the Maxwell equation for the electric field we split the various terms into two groups: the 
fluxes and non-stiff source terms Rexpl and the stiff source terms Simpl containing the Lorentz force terms in the momentum 
equations and the c2μ0j term in the Maxwell equations. The stiff source terms can be written as:

Simpl(Uimpl) =
(

qs
ms

(ρsE + ρsus × B)

−c2μ0
∑ qs

ms
ρsus

)
(22)

which shows that Simpl is linear in Uimpl . The implicit variables ρsus (an independent variable and could be denoted as ms) 
and E are multiplied with explicit variables ρs and B. The point-implicit update is respective to the time level n, which is 
shown in Equation (24). With this notation the six-moment equations for the Uimpl variables can be written as

∂Uimpl

∂t
= Rexpl + Simpl (23)

We use the following steps to update the point implicit variables (the rest of the variables are updated with a simple explicit 
step):


U∗
impl = 
tRexpl (24a)


Un+1
impl = 
U∗

impl + 
tSn
impl + β


∂Simpl

∂Uimpl

Un+1

impl (24b)

Un+1
impl = Un

impl + 
Un+1
impl (24c)

where 0.5 ≤ β ≤ 1 is the time centering parameter and Rexpl = Rexpl(Uimpl) is restricted to the point implicit variables Uimpl . 
The three steps can be combined into a single update:

Un+1
impl = Un

impl +
(

I


t
− β

∂Simpl

∂Uimpl

)−1 (
Rn

expl + Sn
impl

)
(25)

where I is the identity matrix and the matrix (I/
t −β∂Simpl/∂Uimpl) is obtained analytically and inverted numerically. We 
note that Simpl is linear so it is very easy to calculate the partial derivatives. For example, for one ion and one electron fluids

∂Simpl

∂Uimpl
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 qi
mi

Bz − qi
mi

B y 0 0 0 wi 0 0

− qi
mi

Bz 0 qi
mi

Bx 0 0 0 0 wi 0
qi
mi

B y − qi
mi

Bx 0 0 0 0 0 0 wi

0 0 0 0 qe
me

Bz − qe
me

B y we 0 0

0 0 0 qe
me

Bz 0 − qe
me

Bx 0 we 0

0 0 0 qe
me

B y − qe
me

Bx 0 0 0 we

ri 0 0 re 0 0 0 0 0
0 ri 0 0 re 0 0 0 0
0 0 ri 0 0 re 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)

where ri = −c2μ0qi/mi , re = −c2μ0qe/me , wi = ρiqi/mi and we = ρeqe/me .
This particular discretization of the point-implicit scheme has a very important property: it preserves steady state in-

dependent of the time step. If Rn
expl + Sn

impl = 0, then Un+1
impl = Un

impl independent of the value of 
t . This property is crucial 
when the source terms are very stiff, as is the case here. Alternative forms of the point-implicit scheme that do not have 
this property can produce incorrect solutions.

For a second-order in time scheme, we use the point-implicit update in both the predictor and corrector steps. In the 
predictor step the time step is 
t/2 and we set β = 1, while in the corrector step we use the full time step 
t , the time 
centered value for Rn+1/2 and β = 1/2 to get second order accuracy for the point-implicit term:
expl
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Un+1/2
impl = Un

impl +
(

I


t/2
− ∂Simpl

∂Uimpl

)−1 (
Rn

expl + Simpl(Un
impl,Un+α1

expl )
)

(27a)

Un+1
impl = Un

impl +
(

I


t
− 1

2

∂Simpl

∂Uimpl

)−1 (
Rn+1/2

expl + Simpl(Un
impl,Un+α2

expl )
)

(27b)

where α1 = 0 or 1/2 and α2 = 1/2 or 1 depending on the time levels of the explicit variables being used. The α2 = 1/2
option will achieve second-order accuracy, while α2 = 1 is more robust but not perfectly second order accurate. Our current 
implementation uses α1 = 1/2 and α2 = 1, i.e. the already updated explicit variables.

This two-stage scheme also has the steady state conserving property. In steady state, the explicit update does not change 
the explicit variables, so Un+α1

expl = Un
expl . For the implicit variables, if Rn

expl + Simpl(Un
impl, U

n+α1
expl ) = Rn

expl + Sn
impl = 0, then 

Un+1/2
impl = Un

impl in the first stage. In the second stage the explicit update does not change the explicit variables, so Un+α2
expl =

Un
expl and Rn+1/2

expl + Simpl(Un
impl, U

n+α2
expl ) = Rn

expl + Sn
impl = 0, and consequently Un+1

impl = Un
impl .

It is worth to mention that Balsara et al. [14] applied multiple stages with their Runge-Kutta implicit-explicit (IMEX) 
methods and could achieve a more accurate implicit-source discretization than our method. Abgrall and Kumar [18] used 
a very similar implicit source treatment with ∂Simpl

∂Uimpl
taken from the time level n + 1 and showed that their point-implicit 

treatment could unconditionally preserve positivity.

4.2. Physical fluxes

The left hand sides of Equations (1)–(3) and (5) contain pure divergence terms and are obtained by the local Lax-
Friedrichs or Rusanov scheme [19]:

Un+1
i − Un

i


t
= − F n

i+1/2 − F n
i−1/2


x
+ ai+1/2(Un

R,i+1/2 − Un
L,i+1/2) − ai−1/2(Un

R,i−1/2 − Un
L,i−1/2)

2
x
(28)

where U is one of the conservative variables, Fi+1/2 = Fi+1/2(U R )+Fi+1/2(U L )

2 is the corresponding flux and a is the fastest wave 
speed. The superscripts n and n + 1 refer to the time levels, while the subscript i correspond to the spatial grid indexes. 
The subscript i + 1/2 is the cell face between the cell centers i and i + 1, while the R and L subscripts correspond to the 
right and left extrapolated face values using some standard TVD type slope limiter. The second term on the right hand side 
is the numerical diffusion providing stability. In the standard Rusanov scheme the a coefficients are set to the fastest wave 
speed (for the local state variables), which in principle should be the speed of light c. However, the use of speed of light 
to numerically diffuse all the variables greatly increases the numerical diffusion, and it requires a very fine grid and high 
computational cost to obtain an accurate solution.

As an alternate approach, we find that it is sufficient to use the fast magnetosonic speeds from Equation (20) and set 
ai+1/2 = max(|λ7|, |λ8|) for the plasma quantities ρs , us , ps and p‖,s , the magnetic field B and its hyperbolic cleaning 
variable ψ , while the electric field E and its hyperbolic cleaning variable φ need to be numerically diffused by the speed 
of light using ai+1/2 = c. These variable dependent wave speeds can substantially reduce the numerical diffusion for the 
plasma quantities and the magnetic field and improve the accuracy of the solution substantially. However, the numerical 
diffusion algorithm proposed here may not work for super thermal electrons, while their sound speeds can be very large 
compared to cold or warm electrons. In such a case, we provide an option to numerically diffuse a sub set of the variables 
with the speed of light, for example the electron density, momentum and pressure may be diffused with the speed of light, 
if necessary.

4.3. Relaxation towards isotropy

Paper I discussed three kinds of instabilities (fire hose, mirror and proton cyclotron instabilities), which will push the 
pressure tensor towards isotropy in the context of a single anisotropic ion fluid. As our model contain multiple fluids, the 
stability criteria become much more complicated. For sake of simplicity, we implemented a simple exponential decay term 
for each fluid (a right-hand-side source term in Equation (1c), similar to that suggested in Paper I:

δps‖
δt

= ps − ps‖
τs

(29)

where τs is the relaxation time which relaxes the p‖ towards p. In the extreme case when τ is extremely small the 
anisotropy will relax to isotropy immediately, in which case the six-moment simulation becomes a five-moment simulation.

The source term is applied in the same way numerically as discussed in Paper I, in a split manner at the end of the time 
step and discretized point-implicitly for the sake of numerical stability:

pn+1
s‖ = p∗

s‖ + (ps − p∗
s‖)
t


t + τ
(30)

where 
t is the stable time step, ∗ and n + 1 are the incomplete and final time levels.
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Fig. 1. Light wave propagation test. The upper panels show the evolution of B y at t = 0, 5 × 10−5 and 1 × 10−4, respectively; while the lower panels plot 
the Ez component. The size of the domain is 10−3 so it takes 10−4 for a light wave with its speed of 10 to complete a period.

5. Numerical tests

We perform a number of numerical tests to verify the robustness of the six-moment solver, including the light wave test 
to check the magnetic and electric field solver, the fast wave test to check the propagation of the fast magnetosonic wave. 
We also perform the GEM reconnection challenge [20] to test the applicability of the six-moment model to simulate the 
magnetic reconnection. All the tests are performed in normalized units.

5.1. Light wave

The light wave test is set up on a 1-D grid between x = ±5 × 10−4 with periodic boundary conditions. The ion and 
electron masses are mi = 1 and me = 0.01, respectively. The initially uniform fluid states are set to ρi = 1, ui = 0, pi,⊥ =
pi,‖ = 5 × 10−6, ρe = 0.01, ue = 0, pe,⊥ = pe,‖ = 5 × 10−6. We set the speed of light to c = 10 and the magnetic and 
electric fields are perturbed with sinusoidal waves as δB y = −0.01 cos(2000πx) and δEz = 0.01 cos(2000πx). Fig. 1 shows 
the simulation results with 800 grid cells after the wave propagating one full period showing the expected solution.

We did a grid convergence study with nx = 100, 200, 400 and 800 grid cells using the 2nd order Rusanov scheme. The 
errors are calculated as the L1 norm of the difference of the solution after 1 period relative to the initial condition. Fig. 2
shows the grid convergence rate for B y , which is very close to the 2nd order convergence rate, as expected.

5.2. Brio-Wu shock

We carry out the Brio-Wu shock [21] test with isotropic pressure for both ions and electrons (five-moment) in this ses-
sion. The five-moment equations are chosen so the solution can be compared with published results [10], and also because 
the exact solution of the Brio-Wu shock for the six-moment system is unknown and depends on the pressure anisotropy 
behind the shock, which is not determined by conservation laws. At this time we have no physics based relaxation of the 
pressure anisotropy implemented for the six-moment equations.

The test is set up on a 1-D grid between x = ±0.5 with 104 cells and open boundary conditions. As suggested by Hakim 
et al. [10], the ion inertial length plays an important role when the electron fluid is taken into account. So we set the ion 
mass mi to 1, 0.1, and 0.001, respectively, while the ion mass to electron mass ratio is fixed (mi/me = 1836). The initial 
conditions are listed in Table 1. Fig. 3 shows the simulation results at t = 10. As expected, these results are very close to 
the results published in Hakim et al. [10], except that there is a spike in the ion density at about x = 0.1 for mi = 1 and 
mi = 0.1, and the oscillations do not start next to the shock at about x = 0.05 for mi = 0.001. The small differences may 
come from the different schemes and/or the point-implicit evaluations.
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Fig. 2. The diamond-solid line shows the convergence rate for the light wave test while the dashed line shows the 2nd order convergence rate.

Table 1
Initial conditions for the Brio-Wu Shock test.

Left Right

ρi 1 0.125
ui 0 0
pi 5 × 10−5 5 × 10−6

ρe 1 · me
mi 0.125· me

mi
ue 0 0
pe 5 × 10−5 5 × 10−6

Bx 0.75 × 10−2 0.75 × 10−2

B y 1 × 10−2 −1 × 10−2

Bz 0 0

E 0 0

5.3. Firehose instability

We perform a test of the firehose instability on a 1-D grid between x = ±6 with 104 cells and periodic boundary 
conditions. We apply similar parameters as suggested in Paper I, which is ρi = 1, ui = ue = 0, Bx = 10, B y = Bz = 0, E = 0, 
pi,‖ = pe,‖ = 52, pi,⊥ = pe,⊥ = 55/3. Due to the relatively small characteristic length, we set mi = 0.001, in which case the 
ion inertial length is much smaller than the characteristic length so that the result is close to the classical MHD limit. The 
ion mass to electron mass ratio mi/me is set to 1000 and ne = ni due to quasi-neutrality. We impose small perturbations 
on the background as δui,y = δue,y = 0.01 cos(kA x) = 0.01 cos(2πx/6), δB y = 0.1 cos(2πx/6 + π/2) and the electric field is 
perturbed with the relation E = −ue × B. Because the Alfvén speed (v A ) is 

√−1, which is obtained from Equation (16), so 
the perturbations will not propagate but start to grow exponentially with exp(|v A |kAt).

Fig. 4 plots ui,y and B y at three different times, which shows the growth patten of the firehose instability. There are 
fast growing oscillations near the local extrema and sign change, which are short wave length perturbations caused by the 
numerical errors. In the six-moment model, ion and electron kinetics as well as point-implicit source terms are involved, 
which make the six-moment model more complicated than the ideal anisotropic MHD. So it is not unexpected that the 
short wave length perturbations appear much sooner than in the ideal anisotropic MHD test presented in Paper I. Fig. 5
shows the agreement of the simulated growth rate of the average kinetic energy Ek,y = ρiu2

i,y/2 and the analytical growth 
rate (2|v A |kA , as the perturbations grow exponentially with exp(|v A |kAt)) is good until t = 0.085. After t = 0.085 the 
short wavelength perturbation becomes significant and the growth rate of the kinetic energy deviates from the theoretical 
expectation.

5.4. Fast magnetosonic wave

Daldorff et al. [8] used the initial conditions

ni = n0[1 + δ sin(kx − ωt)] (31a)

ui,x = c f δ sin(kx − ωt) (31b)

ui,y = ui,z0 (31c)
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Fig. 3. Ion and electron mass densities at t = 10 for the Brio-Wu shock test. The upper panels are for mi = 1, the middle panels are for mi = 0.1, while the 
lower panels are for mi = 0.001, respectively.

Fig. 4. ui,y and B y at different times. The solid line is at t = 0, the dotted line is at t = 0.04 and the dashed line is at t = 0.08.

pi = p0[1 + γ δ sin(kx − ωt)] (31d)

pi,‖ = p0[1 + δ sin(kx − ωt)] (31e)

Bx = Bz = 0 (31f)

B y = B0[1 + p0δ sin(kx − ωt)] (31g)

to set up a fast magnetosonic wave for the MHD equations with anisotropic ion pressure. Here c f = ω
k =

√
B2

0+2p0
ρi,0

is the 

fast wave propagation speed moving perpendicular relative to the magnetic field direction and γ = 5
3 is the adiabatic index. 

This is an exact solution for infinitesimal perturbation δ.
We follow Daldorff et al. [8] to create a test for the six-moment model. When deriving the characteristic wave speeds in 

the classical MHD limit, we showed that the ion and electron pressures can be combined when pressure anisotropy exists in 
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Fig. 5. The solid line plots the simulated kinetic energy in the y direction Ek,y while the dashed line shows the theoretical Ek,y .

both ions and electrons. This means that we can adopt the above initial conditions by simply splitting the pressure evenly 
between ions and electrons.

pi = pe = p0

2
[1 + γ δ sin(kx − ωt)] (32a)

pi,‖ = pe,‖ = p0

2
[1 + δ sin(kx − ωt)] (32b)

The simulation domain is on a 2-D grid bounded between −80/3 < x < 80/3 and −20 < y < 20. A single full wave with a 
rotation φ = tan−1(4/3) relative to the x axis is used, which means that the wavelength is λ = 32, k = 2π/λ ≈ 0.1964 and 
T (period) = λ/c f = 640. We set n0 = 1, mi = 1, me = 0.01, p0 = 4.5 × 10−4, B0 = 0.04, which gives the fast magnetosonic 
speed as c f = 0.05. The perturbation amplitude δ is set to 0.1, which is moderately non-linear, and the speed of light is c = 1
(much larger than c f so that the system is in the classical limit). Figs. 6 and 7 show the propagation of the simulated fast 
magnetosonic wave on the 2-D grid with 512 cells along the x direction and 384 cells along the y direction. The simulation 
results are consistent with Daldorff et al. [8].

We carry out a grid convergence study for the fast wave test on the 2-D grid with nx = 64, 128, 256, 512 and 1024 
cells along the x direction and ny =48, 96, 192, 384 and 768 cells along the y direction, respectively, using the 2nd order 
Rusanov scheme. As we don’t have an analytical solution for this non-linear fast wave, we use the simulation on the grid 
with nx = 1024 and ny = 768 as a reference solution and calculate the relative error of Ez . Fig. 8 shows the grid convergence 
rate, which is very close to the 2nd order, as expected. We note that this test exercises the complete set of equations and 
their discretization, including the point-implicit scheme.

5.5. GEM reconnection

The Geospace Environmental Modeling (GEM) reconnection challenge [20] has been widely applied to test a physics 
model’s capability to simulate the reconnection process. Many models, including resistive MHD [20], Hall MHD [22,20,23], 
hybrid models [20] and Particle-In-Cell (PIC) models [24,25], have been compared. The general conclusion of [20] was that 
including the Hall physics is the minimum requirement to correctly capture the fast magnetic reconnection rate.

The five-, six- and ten-moment multi-fluid models all include the Hall effect automatically by solving the exact Maxwell 
equations and allowing for different electron and ion velocities. Hakim et al. [10] carried out the GEM reconnection chal-
lenge and obtained some complex flow features in the electron fluid. Wang et al. [5] compared their five-moment and 
ten-moment two-fluid plasma model with a Particle-In-Cell (PIC) model and showed that their five- and ten-moment mod-
els can reasonably reproduce some of the important electron kinetic features observed in the PIC simulation during magnetic 
reconnections. In this section, we perform six-moment simulations for the GEM reconnection challenge.

The classical GEM reconnection challenge is based on the Harris current sheet equilibrium model, and such equilibrium 
only occurs when the inertial terms from the electrons are neglected. The classical Harris current sheet is not in equilibrium 
state for multi-fluid with electron fluid and particle-in-cell models. Even though we can obtain similar results as Hakim et 
al. with our five-moment model, their initial conditions are obtained from the classical MHD limit and it is not applicable 
to the multi-fluid model because their initial conditions without perturbations are not in equilibrium state.

We obtain the initial conditions starting from the oppositely directed magnetic fields

Bx = B0 tanh
y

λ
(33)

where B0 is the background magnetic field and λ is the width of current sheet. The current density is then given by
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Fig. 6. Fast magnetosonic wave test on a 2-D grid at t = 512. The left column shows the ion number density, velocity components, the scalar and parallel 
pressures. The middle column shows the same variables for the electrons. The right column displays the magnetic and electric field components. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

J z = −∂ Bx

∂ y
= − B0

λ
sech2 y

λ
(34)

Multiple equilibrium states can exist with different plasma conditions. We choose a uniform ion fluid background (ni

and pi are uniform) with ui = 0. There is no charge separation initially, so ne = ni and E = 0. The ion fluid is in equilibrium 
in the unperturbed system. The current is carried by the electrons with the velocity

ue,z = − J z

nee
= 1

nee

B0

λ
sech2 y

λ
(35)

Substituting ne , ue , E and B into the electron momentum equation, the electron fluid is in equilibrium when pe,‖ = pe,⊥ =
pe,0 + 0.5 · (B2 − B2

x), where pe,0 is the background electron pressure.
0
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Fig. 7. Fast magnetosonic wave test on a 2-D grid at t = 0 (solid line) and t = 640 (dashed line) after the fast magnetosonic wave just finished one period. 
Each panel shows the same variables as Fig. 6 along the x axis. The steepening of the fast magnetosonic wave is well captured and it is similar as described 
by Daldorff et al. [8].

We set the background plasma parameters as B0 = 0.07, λ = 0.5, mi = 1, me = 1/25, ni = ne = 1.225, ui = 0 pi,⊥ =
pi,‖ = 2.45 × 10−3 and pe,0 = 4.9 × 10−3. The speed of light is set to c = 1. The simulation domain is a 2-D grid between 
±Lx = ±25.6 in the x direction with 512 cells and ±L y = ±12.8 in the y direction with 256 cells giving the grid resolution 

x = 
y = 0.05. Both the ion inertial length di = 1

e

√
mi

μ0ni
≈ 0.90 and the electron skin depth de = 1

e

√
me

μ0ne
≈ 0.18 are 

reasonably well resolved. A periodic boundary condition is applied in the x direction, while a reflecting boundary condition 
is applied in the y direction. We apply the same form of perturbation to the magnetic field δB = ez × ∇χ as suggested by 
Birn et al. [20], which is χ = χ0 cos(2πx/Lx) cos(πx/L y) and χ0 = 0.1B0.

In order to understand how pressure anisotropy affects the magnetic reconnection, we investigate four different sce-
narios: 1. the relaxation time τ = 1 × 10−5 for both ions and electrons, which is an approximate five-moment simulation; 
2. τ = 1 × 10−5 for ions and no relaxation constrains for electrons, which is isotropic ions and anisotropic electrons; 3. 
τ = 1 × 10−5 for electrons and no relaxation constrains for ions, which is anisotropic ions and isotropic electrons; and 4. no 
relaxation for either ions or electrons, which is a six-moment simulation.
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Fig. 8. The diamond-solid line shows the convergence rate for the fast wave test while the dashed line shows the 2nd order convergence rate.

Figs. 9, 11 and 10 show the magnetic field, ion velocity and electron velocity magnitudes at t = 495.01 for the four 
cases, respectively. The approximate five-moment simulation shows the same features as previous five-moment simulations 
performed in the literature [10,4,5]. The most surprising finding is that a pure six-moment simulation provides a completely 
different solution than the five-moment simulation, despite the fact that the pressure anisotropy remains within 10% of 
being isotropic for both ions and electrons during the whole simulation. Wang et al. [5] showed that with the full pressure 
tensor, their ten-moment simulation can represent the magnetic reconnection process reasonably well compared to a PIC 
simulation. This suggests that both the isotropic (five-moment) and full pressure tensor (ten-moment) equations give fast 
reconnection, but the anisotropic pressure (six-moment) does not. From these four cases, we also find that the isotropic 
electrons case is closer to the approximate five-moment case, which implies that the ion pressure anisotropy has more 
impact than the electron anisotropy.

The reconnected magnetic flux F = ∫ Lx/2
0 |B y|dx is typically used to measure how fast the magnetic reconnection occurs. 

In the approximate five-moment simulation, a magnetic island exists in the middle of the domain, so simply using this 
formula would provide a larger magnetic flux than the simulations that do not have a magnetic island. The reconnected 
magnetic flux formula is modified to F = ∫ Lx/2

0 max(0, B y)dx, where only B y > 0 is taken into account, so that the magnetic 
island does not contribute to the reconnected flux.

Fig. 12 shows the reconnected flux for all cases. We find that the original reconnected flux formula provides a faster 
reconnection rate for the approximate five-moment simulation than the PIC simulation while the revised formula suggests 
a different result, which can be explained by the fact that the magnetic island in the five-moment simulation contributes to 
the reconnected flux in the original formula while it would not in the revised formula and no magnetic islands exist in the 
PIC simulation. We arrive at the conclusion that the revised formula provides a better description of the reconnected flux 
if magnetic islands exist. Fig. 12 also shows that the pure six-moment simulation provides a very low reconnection rate, 
as expected from Figs. 9–10. Overall, the approximate five-moment simulation has the closest reconnection rate to the PIC 
simulation. The isotropic electrons with anisotropic ions case has a faster reconnection rate than the anisotropic electrons 
with isotropic electrons case, but they are both slower than the approximate five-moment simulation. We also checked 
that if we start from the approximate five-moment simulation, then turn off the relaxation towards isotropy for both ions 
and electrons, then the already ongoing reconnection gets suppressed due to the developing pressure anisotropies. This 
suggests that the six-moment equations produce slow reconnection even if the simulation is started from a fast reconnection 
scenario.

6. Conclusions

In this manuscript, we have developed a new model, the six-moment multi-fluid plasma model, to simulate both ions 
and electrons with pressure anisotropy in a system when they can be described by the fluid equations. The new six-moment 
model solves for the full set of the electron continuity, momentum and pressure equations, as well as the exact Maxwell 
equations. The six-moment model can simulate the light wave, Langmuir wave and MHD waves accurately if the grid is fine 
enough to resolve the corresponding wave length.

We use a steady-state conserving point-implicit time discretization for the stiff source terms associated with the Lorentz 
force terms in the momentum equations and the c2μ0j term in the Maxwell equations. The point-implicit time integration 
is combined with a spatial discretization based on a Lax-Friedrichs type numerical flux employing the fast magnetosonic 
speed for the plasma and magnetic field variables and the light speed to the electric field related variables. Using the 
magnetosonic speed instead of the light speed for the majority of the variables greatly reduces the numerical dissipation. 
Our numerical tests show that this approach is sufficient to maintain stability in most circumstances. Our implementation 
provides an option to use the speed of light for the Lax-Friedrichs flux for an arbitrary subset of variables if needed.
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Fig. 9. The magnetic field magnitude for the four cases at t = 495.01.

A surprising discovery is that the six-moment model cannot provide a good description of the magnetic reconnection 
process. However, our goal is not to use the six-moment model to study the reconnection process. We plan to couple the 
six-moment model with an embedded PIC code [26,9], similar as Daldorff et al. [8]. In such an approach, the magnetic 
reconnection region will be simulated with the PIC code and other regions will be simulated with the six-moment model. 
We expect that the six-moment equations are able to describe the vast majority of the plasma system outside magnetic 
reconnection regions where off-diagonal elements of the pressure tensor are negligible and with such an approach, the size 
of the PIC domain can be reduced.

An additional feature of the six-moment (also five- and ten-moment) equations is that it allows the use of multiple elec-
tron populations. The densities and velocities of multiple electron fluids cannot be approximated from charge neutrality and 
the current density, so an MHD approximation is not possible. This means that the six-moment equations can be applied to 
plasmas with thermal and super-thermal populations, or counter streaming populations, or populations of different origins 
(for example solar wind and ionospheric).

Finally, the six-moment equations provide a reasonable description of typical collisionless plasma conditions where the 
random motions along the field lines and the gyration perpendicular to the field naturally result in independent parallel 
and perpendicular pressures, but the off-diagonal terms are usually negligible in the vast majority of the simulation domain. 
The six-moment equations are only moderately more complicated than the 5-moment equations, but much simpler than 
the ten-moment equations, which results in lower computational cost and simpler implementation in comparison with the 
latter.
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Fig. 10. The ion velocity magnitude for the four cases at t = 495.01.
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Appendix A. Hyperbolic/parabolic cleaning for the Maxwell equations

In this appendix, we briefly derive how the hyperbolic/parabolic cleaning works for the Maxwell equations. We start 
from the modified Maxwell equations:

∂B + ∇ × E + cB∇ψ = 0 (A.1a)

∂t

https://doi.org/10.5065/D6RX99HX
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Fig. 11. The electron velocity magnitude for the four cases at t = 495.01.

∂E

∂t
− c2∇ × B + cE∇φ = −c2μ0j (A.1b)

∂ψ

∂t
+ cB∇ · B = −dBψ (A.1c)

∂φ

∂t
+ cE∇ · E = cE

ε0
ρc − dEφ (A.1d)

Taking (∇·) of Equation (A.1a) gives

∂(∇ · B)

∂t
= −cB∇2ψ (A.2)

With the expression ∇ · B = − 1
cB

∂ψ
∂t − dB

cB
ψ obtained from Equation (A.1c), Equation (A.2) can be written as

∂2ψ

∂t2
+ dB

∂ψ

∂t
= c2

B∇2ψ (A.3)

which is the damped wave equation, so the hyperbolic/parabolic cleaning variable ψ propagates isotropically with speed cB

and decays at a rate dB .
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Fig. 12. The reconnected magnetic flux versus time. The simulation time is normalized to �ci so that the reconnected flux can be compared with Birn et al. 
[20]. The yellow solid line shows the original reconnected flux obtained from the approximate five-moment simulation while the black solid line shows the 
new reconnected flux from the same simulation. The black dashed line is obtained from the pure six-moment simulation while the blue dashed/solid lines 
are from the isotropic ions/electrons cases, respectively. The red solid line shows the reconnected flux from a PIC simulation from Chen et al. [9]. The black 
dashed dotted line shows a simulation starting with τ = 1 × 10−5 for both ions and electrons initially then turn off the relaxation constrains at t = 400
(28.0 when normalized to �ci ).

Taking ( 1
cB

∂
∂t + dB

cB
) of Equation (A.2) gives(

1

cB

∂

∂t
+ dB

cB

)
∂

∂t
(∇ · B) = −cB

(
1

cB

∂

∂t
+ dB

cB

)
∇2ψ (A.4)

Taking the Laplace operator of the relationship ∇ · B = − 1
cB

∂ψ
∂t − dB

cB
ψ from Equation (A.1c) gives

∇2(∇ · B) = −
(

1

cB

∂

∂t
+ dB

cB

)
∇2ψ (A.5)

so that Equation (A.4) becomes:

∂2(∇ · B)

∂t2
+ dB

∂(∇ · B)

∂t
= c2

B∇2(∇ · B) (A.6)

which is the same damped wave equation as was obtained for ψ showing that (∇ · B) will also propagate with speed cB

and decay at a rate dB .
In a similar fashion, we take ∇· of Equation (A.1b) and obtain

∂(∇ · E)

∂t
= −c2μ0∇ · j − cE∇2φ = − 1

ε0
∇ · j − cE∇2φ (A.7)

With the expression ∇ · E = 1
ε0

ρc − dE
cE

φ − 1
cE

∂φ
∂t obtained from Equation (A.1d) and ∂ρc

∂t + ∇ · j = 0 from the ion and 
electron continuity equations, Equation (A.7) can be written as

∂2φ

∂t2
+ dE

∂φ

∂t
= c2

E∇2φ (A.8)

which shows that the hyperbolic/parabolic cleaning variable φ for the electric field E propagates with cE and has a decay 
rate of dE .

Taking ( 1
cE

∂
∂t + dE

cE
) of Equation (A.7) gives

(
1

cE

∂

∂t
+ dE

cE
)

∂

∂t
(∇ · E) = −cE(

1

cE

∂

∂t
+ dE

cE
)∇2φ − 1

ε0
(

1

cE

∂

∂t
+ dE

cE
)∇ · j (A.9)

Taking the Laplace operator of ∇ · E = − 1
cE

∂φ
∂t − dE

cE
φ + 1

ε0
ρc from Equation (A.1d) gives ∇2(∇ · E) = −( 1

cE

∂
∂t + dE

cE
)∇2φ +

1
ε0

∇2ρc , which can be substituted into Equation (A.9) and arrive at

∂2

∂t2
(∇ · E − ρc

ε0
) + dE

∂

∂t
(∇ · E − ρc

ε0
) = c2

E∇2(∇ · E − ρc

ε0
) (A.10)

which shows that (∇ · E − ρc ) satisfies the damped wave equation and has the same behavior as φ.
ε0
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