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Abstract. We study the problem of passive imaging through convolutive channels. A scene is illuminated with
an unknown, unstructured source, and the measured response is the convolution of this source with
multiple channel responses, each of which is time-limited. Spectral methods based on the commu-
tativity of convolution, first proposed and analyzed in the 1990s, provide an elegant mathematical
framework for attacking this problem. However, these now classical methods are very sensitive to
noise, especially when working from relatively small sample sizes. In this paper, we show that a linear
subspace model on the coefficients of the impulse responses of the channels can make this problem
well-posed. We derive nonasymptotic error bounds for the generic subspace model by analyzing
the spectral gap of the cross-correlation (CC) matrix of the channels relative to the perturbation
introduced by noise. Numerical results show that this modified spectral method offers significant
improvements over the classical method and outperforms other competing methods for multichannel
blind deconvolution.
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1. Introduction. We give a rigorous analysis of a passive imaging problem, which can
be cast as a multichannel blind deconvolution. A scene is illuminated by an ambient source
that we cannot control or observe. This source signal is always active, having no discernible
“on” or “off” time, and is unstructured. We observe the convolution of this source with
M unknown channel impulse response sequences over a window of time. The goal is to
estimate this ensemble of impulse responses, which in many applications reveals the structure
of the environment being sensed. Problems of this type arise in a wide variety of applications
including as opportunistic channel estimation in underwater acoustics [41, 42, 4, 43], seismic
interferometry [8], and passive synthetic aperture imaging [13].

As described fully in section 2, this is a multichannel blind deconvolution problem, where
we observe the output of a number of linear time-invariant systems all driven by a common
source. We will focus entirely on estimating the responses of these system and treat the
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(unknown) source signal as a supporting actor whose only role is to help us collect information
about these channels.

When the channel impulse responses have a finite length K, then a fundamental technique
for performing this estimation, developed in the signal processing literature in the 1990s (see,
for example, [47, 37]), is to form a cross-correlation matrix from the channel outputs and then
estimate the channel responses by estimating the null space of this matrix. This method is
reviewed in section 2.2 below. This classical theory shows that the cross-convolution (CC)
method is consistent: as the number of noisy observations we make increases, the channel
estimates asymptotically become aligned with the true underlying impulse responses.

From a finite number of samples, the stability of this process, both in theory and in
practice, depends critically on the spectral gap of this cross-correlation matrix. For even the
simplest concrete instances of this problem, this gap tends to be vanishingly small; a typical
example is shown later in Figure 2 (and described in sections 2.2 and 2.3 below).

The main contribution of this paper is to show that if an additional structural constraint
on the channel responses is imposed, then this spectral gap provably widens, stabilizing this
channel estimation procedure. In particular, we constrain the length-K channel responses
to be members of a known D dimensional subspace. Enforcing this constraint requires only
a straightforward modification to the CC method. Our results show that for a generic D
dimensional subspace (i.e., a subspace chosen at random), the principal angle between the
true channel responses and their estimates decreases as (a) the number of observations in
each channel increases, (b) the signal-to-noise ratio (SNR) of the observations increases, (c)
the number of channels increases, and (d) the model becomes more restrictive, meaning D
decreases relative to K.

Our analysis of the subspace constrained cross-convolution method (SCCC) uses as its
starting point the classical Davis—Kahan bound on the deviation of the eigenvectors com-
puted from a perturbed observation of a positive semidefinite matrix. Bounding the size of
this perturbation in terms of the observation noise involves bounding the spectral norms of
random matrices with entries given as coupled high order polynomials of sub-Gaussian ran-
dom variables. These norms are written as the suprema of second order chaos processes, for
which there are recently developed concentration results [25, 27]. Application of these con-
centration results involves computing entropy estimates for various norms. In particular, the
entropy estimate for a block norm in Appendix E is a novel result derived using the polytope
approximation and polar duality, which might be of independent interest.

The Monte Carlo simulation results in section 4 demonstrate the practical gains that
the SCCC method offers over the classical CC method. In practice, the estimator produces
accurate results when the number of samples per channel L is a relatively small multiple of
K. In this regime, the estimation error scales (as a function of L) in the same manner as
the oracle solution, where the source is known and the channels are recovered using standard
least squares. We also demonstrate that SCCC outperforms both the classical method and
the recently proposed approach in [34] for an underwater acoustics simulation with a realistic
(nonrandom) subspace model.

Related work. As mentioned above, the multichannel blind deconvolution problem was
studied with intense interest in the signal and image processing literature in the 1990s; the
methods most closely related to the work below are described in [47, 18, 37], and good
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overviews of general work on this problem can be found in [35, 44]. Many of these algo-
rithms use models on the source signal and channels and develop consistency results under
different modeling assumptions; see [19, 14, 48, 17] for representative examples from image
processing. To our knowledge, no theoretical results exist for these algorithms when there
are a finite number of noisy samples. More recently, necessary and sufficient conditions for
the generic identifiability of this problem under various geometric priors have been presented
in [32].

A different linearization for the multichannel problem was introduced in [3, 36, 38] and
recently studied thoroughly in [34]. The model presented there is different in that the channels
are not limited in time, a key piece of beneficial structure that our method exploits. These
methods also impose a structural constraint on the source signal, while we view the source
signal as unstructured.

Single-channel blind deconvolution of signals belonging to low-dimensional subspaces has
also been rigorously studied recently. Identifiability results under various models were studied
in [6, 7, 31, 33, 23]. Convex optimization algorithms based on “lifting” were analyzed in [1],
followed by a similar result for a gradient descent algorithm [30]. An alternating minimization
algorithm for blind deconvolution under sparsity models also with subsampling has been ana-
lyzed in [29]. While it is possible to extend these methods to the multichannel scenario, unlike
the context of passive imaging, one needs strong geometric priors on both the source and im-
pulse responses. This scenario is different from what we consider in this paper. Simultaneous
wavelet estimation and deconvolution of seismic reflection signals [22], autocalibrated paral-
lel imaging [16], and motion deblurring using multiple images [49] are examples of relevant
applications of multichannel blind deconvolution with geometric priors.

2. Spectral methods for blind deconvolution. In this section, we formulate the finite
impulse response (FIR) multichannel blind deconvolution and describe spectral methods based
on the cross convolution.

2.1. Problem formulation. We observe an unknown signal « € C* convolved with multi-
ple unknown channel impulse responses hi, ..., h,, € CF with the observations corrupted by
additive noise w,, € CL:

(1) Ym =hpm @ T +wy,, m=1,..., M,

where the convolution ® is circular,' i.e.,
L
YUmll] = hm[k]2[(k — £) mod L] + wy,[£].
k=1

Our goal is to recover the channel responses {h,,} from the observations {ym,}.

In our model, the source is opportunistic and “always on,” and so the observations in (1) might better
be modeled by a windowed (time-limited) linear convolution. To make a strict correspondence, the source
would need to be periodic, which is an additional structural assumption. Having access to the full circular
convolution greatly simplifies the analysis, and the discrepancy between these two models is marginal when the
number of observations L dominates the length of the impulses responses K. Spectral methods similar to the
one presented above that are explicitly based on the time-limited linear convolution are presented in [47, 37];
in practice, small gains might be realized by using these closely related methods.
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We will assume that the filters have impulse responses of length K; this simply means that
the last L — K entries of each h,, are zero. We denote these nonzero entries using h,,, € C¥,
with the relation

hm=S8*h,,, S=[Ix Oxi k.

The operator S : C¥ — C¥ restricts a given vector of length L to its subvector with the first
K elements. The adjoint §* : CK — C pads L — K zeros to a given vector of length K.

When L > 2K, the nonzero terms in the linear convolution h,, *  and the circular
convolution h,, ®x will match, so this model applies to scenarios when we have fixed channels
that are being continuously excited by an unknown input, and we observe a “snapshot” of
length L of their outputs.

2.2. Cross-convolution method. Our method is a modification of the CC method intro-
duced 20 years ago in [47]. The core idea is simple: we use the fact that multiple convolutions
commute with one another to impose a set of linear constraints that the channel responses
must obey, and then find the (unique up to scale) set of channels responses that obey these
linear constraints. To see how this is done, suppose that the measurements we make are free
of noise, y,, = * ® h,,,. Then for any pair of channels m,n

(2) Yn ®hpy = ®h,, ®h, =y, ® hy,.

Thus the pair of observations vy, vy,, can be used to construct a set of L constraints on the
2K variables in the channel coefficients h,,, h,,.

To make this more precise, let Tj, be the L x K matrix whose action T,h circularly
convolves v = [vy,...,vr]" € Cl with h after zero-padding:

T, =C,S",

where C,, € C¥*F ig a circulant matrix defined by

U1 (s V-1 -+ V2
() U1 v, et V3
C, =
v V-1 Vp-2 -+ U1

Then we can write (2) as
T,.h, — T, h,, = 0.

Ym=n

We can represent all M (M — 1)/2 such constraints in one linear system. With

Y(l) OL,K R 0L7K Tyi+1 —Tyi
Y ® , ; : : .
Y = , where YU = ' ) ’ ' )
: Ork - Ok Tyy —Ty,
y (M-1) NP . . .
(M — 1) x (i — 1) blocks (M — i) x (M — 1) block diagonal

we know that h = [h{,...,h),]" will be in the null space of Y. Indeed, under the mild
condition that the z-transforms of the h,, do not share common zeros, the null space of Y is
one-dimensional, containing only the scalar multiples of h [47].
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In any practical scenario, noise (and possibly other perturbations) will keep (2) from
holding exactly, and Y will in general not have a null space. The channel estimates, then,
are formed by finding the vector that is as close to a null vector as possible; after forming Y
from the observations, we solve

4 minimize ||[Yv|[?2 subject to ||v]s = 1.
(4) sinimize Yol sub o]l

The solution to the above is of course given by the eigenvector of Y*Y corresponding to the
smallest eigenvalue.

The matrix Y can be unwieldy for large M; its dimensions are M (M — 1)L/2 x KM.
However, we can form the smaller KM x KM matrix Y*Y in a computationally efficient way
using fast convolutions. Y*Y can be thought of as an M x M array of K x K matrices; a
quick calculation shows that K x K block By, ,,, corresponding to rows (n — 1)K + 1 to nK
and columns (m — 1)K + 1 to mK in Y'Y, is given by

By = {Zm’im e Ty =1
Ty Ty, m # n.

Thus Y*Y can be computed with M (M + 1)/2 convolutions of length L. Computing the
solution to (4) can be done with an eigenvalue decomposition in O(M3K?) time. For large
values of M K, the solution can be computed with the power method, with each application
of Y*Y computed using fast convolutions.

Under certain statistical assumptions on the noise, this estimate is consistent: as L — oo,
the smallest eigenvector of Y*Y goes to (a scalar multiple of) h. However, to date there is no
rigorous analysis of the stability of this procedure and there are no nonasymptotic accuracy
bounds that tell us what kind of performance we should expect for a certain number of channels
M, filter lengths K, and observation times L. Both of these problems will be addressed in
this paper.

The effect of noise on the accuracy of the estimate given by (4) can be understood us-
ing the spectral properties of the “noise-free” cross-correlation matrix. We write the noisy
measurements as

Ym = Sm + Wy, Wwhere s, =h,;, ® x.

The cross-correlation matrix Y is simply the sum of the cross-correlation matrix Yy for the
signals s, (i.e., create Y5 as in (3) using T, in place of the T,,) and the cross-correlation
matrix Y, for the noise signals w,,. The estimate of the channels is formed by solving

(5) minimize v* (Y;'Y; 4+ E)v subject to |lv|l2 =1,

,Ue(cl\/[K

where
E-Y'Y,+Y Y, + Y'Y,

From the discussion above, we know that in the noise-free case (E = 0), we will recover the true
channel responses. In expectation, the E matrix becomes a scalar multiple of the identity, and
the eigenvectors (and relative order of the eigenvalues) do not change. From a finite number
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of samples, how closely the solution to (5) matches the noise-free solution depends on the size
of E relative to the spectral gap of Y. Ys, which is the size of its second smallest (or smallest
nonzero) eigenvalue. This is codified in the classical Davis—Kahan sin §-theorem [10].

Theorem 2.1 (sin® theorem [15, Corollary 7.2.6]). Let A, E € C" " satisfy that A and
A + E are positive semidefinite. Let q (resp., q) denote the eigenvector of A (resp., A+ E)
corresponding to the smallest eigenvalue. Suppose that A\p—1(A) > A\, (A). If

An_1(A) — An(A)

6 El <
) B < At = Al A)
then
~ 4| E
™ inZ(q.q) < a2

T Anm1(A) = A (A)
Remark 2.1. The error bound in the Davis—Kahan theorem is known to be sharp for

general perturbations. Recent results in [46, 39] have provided refined bounds for unstructured
random perturbations but unfortunately do not apply to our perturbation matrix F.

Since the eigenvectors are unit norm, having a bound on angle between them is almost
the same as having an error bound (up to a global phase), i.e.,

(8) sinZ(q,q) < min |lq —e“qllz < V2sin £(q,q).
0€[0,27)
As discussed above, when the channels are identifiable, Axas(Y.*Ys) = 0, and so we

will have guarantees for the robustness of (5) when Agpr—1(Y."Ys) is large compared to
|E||. Unfortunately, this smallest nonzero eigenvalue Agas—1(Y.*Ys) is typically very small
in magnitude. Figure 1(a) shows a typical generic example; here we create Y; from M = 4
channels of length K = 256, the channel impulse responses themselves were generated at
random, and the length of observation was L = 3K. In this example, A\ (Y;'Y;) = 1 but
Aem—1(YYs) = 3.3 x 1075, and so we only have robustness guarantees for the mildest
perturbations. The ratio Agar—1 (Y. Ys)/ M (Y."Y;) increases in L. However, as shown in Fig-
ure 1(b), even for a long observation of length L = 10°K, the improvement is not significant.
In fact, the practical performance of the estimator is poor in even a mild amount of additive
noise, as the experiments shown later in Figure 2 suggest.

2.3. Subspace-constrained cross-convolution method. In this paper, we show that the
introduction of a linear model for the channel responses can tangibly increase the size of this
spectral gap. Using a linear subspace to model the channel responses has had some empirical
success in the literature. For example, in [43] a data-driven linear model is constructed for
underwater acoustic channels for the purpose of ocean tomography.

Along with having an impulse response of limited length, we will also assume that the h,,
lie in known subspaces of dimension D < K. This means that each h,, can be expressed as

h,, = ®,,u,, where the columns of ®,, form a basis for the model subspace, and the u,, are

the expansion coefficients in this basis—recovering the w,, is now the same as recovering the
channel responses h,,,. The concatenated channels are written

P, (231
9) h=%®u, &= , u=
Py U
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Figure 1. (a), (b) The eigenvalue spectrum of an example cross-correlation matriz Y'Yy € CHM*KEM
created from the observation of length L = 3K (left column) and L = 10°K (right column), where the number
of channels is M = 4 and the channel length is K = 256. Figenvalues are normalized so that the mazimum
etgenvalue is 1. The smallest 128 eigenvalues are displayed. Note that there is almost no gap between the second
smallest eigenvalue and zero. (c), (d) The eigenvalue spectrum of ®*Y*Ys® € CKPXEP ofter introducing a
linear model of dimension D = 32. Note that the spectral gap is now pronounced.

With this model in place, the channel coefficients u will be in the null space of Y.
The estimation procedure has to be modified to account for a slight bias introduced by
the linear model. With random uncorrelated noise, E[w,,] = 0, E[w,,w},] = 021, we have

E[Y,] =0 and E[YY,]=c2(M —1)LI,
and so
E[@Y*'Y®| = Y)Y, ® + 02(M — 1)L - $*P.
To make the perturbation from the noise-free cross-correlation matrix zero mean, we will solve

(10) minimize 2*®*(Y*Y — 02 (M — 1) LIy )®2z subject to ||z]]2 = 1.
z€R

Again, the solution is the eigenvector corresponding to the smallest eigenvalue of ®*(Y*Y —
02 (M - I)LIMK)(I)

w
Remark 2.2. If ®*® = I5;p, then since adding a scalar multiple of the identity does not

perturb eigenvectors, we may ignore o2 (M — 1)LIy i in (10). Otherwise, subtracting the
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noise covariance o2 (M — 1)LI)x from Y*Y further suppresses the error in the estimated
impulse responses. In practice, the noise variance o2 needs to be estimated and the error
in this estimate will propagate to the estimate of the impulse responses. For simplicity of

analysis, we assume that o2, is known a priori.

Figure 1(c) shows the effect of the subspace constraint on the spectral gap. Here, a generic
subspace was chosen by generating ® at random. The entries of ® € C?°6*8 were generated as
independent copies of a standard complex Gaussian random variable. The size of the smallest
nonzero eigenvalue is now significantly more distinct (Apyrp—1(P*Y Y @)/ A\ (P Y Y P) =
0.4). As the numerical results in section 4 show, adding subspace constraints of this nature
does indeed lead to significant robustness of the method in the presence of noise.

Our main results, detailed in section 3, quantify this spectral gap for generic subspaces ®.

3. Main results.

3.1. Nonasymptotic analysis. Our main results give nonasymptotic performance guar-
antees for the SCCC method. We make the following two assumptions throughout:

(A1) Generic subspaces. The performance of our multichannel blind deconvolution method
depends on properties of the subspaces underlying linear channel models. We will
investigate the “generic” case, where the bases themselves are generated at random.
In particular, we will assume that ®1,...,®,; are independent copies of a K-by-D
complex Gaussian matrix whose entries are independent and identically distributed
(iid) as CN(0,1). Note that the resulting basis is not exactly orthonormal, but it is
very close to an orthonormal basis, as the singular values of a tall Gaussian matrix
are known to be well concentrated (e.g., [9]). While it may be more natural to work
with orthonormal bases here, this would make the problem more technical, as one
would lose independence. For this reason, we will stick to the Gaussian case here. An
interesting question for follow-up research will be the conditions required for uniform
guarantees; this will then also take care of this issue. Our theorems below hold with
high probability with respect to this draw of the ®,,,; we might interpret this as saying
that the results hold for “most” subspace models. In section 4 below, we empirically
confirm this performance also for choices of ®,, with additional structure as it would
appear in applications, even though they do not arise from the model analyzed in this
paper.

(A2) Random noise. The perturbations to the measurements wi,...,wy € CF are iid
sub-Gaussian vectors with E[w,,] = 0 and E[w,,w},] = 021, and are independent of
the bases {®,,}.

We present two main theorems below. In the first one, we assume that the input itself is a
white random process. In the second one, we study deterministic inputs with a mild structural
assumption on the common source signal that essentially amounts to  being spread out in
the frequency domain; the resulting error bounds are slightly weaker than for the random
model.

The theorems provide sufficient conditions on the number of samples L we need to observe
at the output of each channel in order to guarantee a certain level of accuracy in the estimate
h found by solving (10) for w and then taking h = ®4. The number of samples we need will
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depend on the length of the filter responses K, their intrinsic dimensions D, the number of
channels M, and the SNR defined as
B I @ w])

B[ et wmll3]

Under (A1) and (A2), it follows from the commutativity of convolution and Lemma B.1 that
n simplifies as

(11)

K ||| 3|13
12 _ slzialulp
(12) U] MLo?

In addition, the bounds will depend on the channel impulse responses all being roughly the
same size. We measure the disparity in impulse response energies using the flatness parameter

vM
(13) [ = max M
t<ms<M - ulfl

When a small number of the M impulse responses are significantly greater than the others,
we will have u ~ v/M. In this case, we expect to have longer observation times, as we are
only getting a small number of diverse looks at the signal. Our results are most interesting
when p is a constant on the order of 1. Qualitatively, this means that each channel is roughly
as important as the others.

We now present the first of our main results. Theorem 3.1 below assumes a random
common source signal . The bound on the number of observations L sufficient to guarantee
a certain accuracy in the channel estimates is a complicated expression involving the number
of channels M, their maximum impulse response lengths K, their intrinsic dimension D, the
SNR 7, the channel flatness 1, and the level of accuracy e. But in reasonable scenarios where
the noise is not extreme (7 is a constant), and K and M are not too different, we have

siné(ﬁ,@)ge when L 2 VKD/e,

with the inequality on the right holding to within log factors. As a point of reference, we
are estimating M D channel coefficients from M L samples at the outputs; we have the same
number of observations as unknowns when L 2 D. As D < K, our estimate scales in a mildly
unsatisfying way, though as the recovery procedure is highly nonlinear, it is unclear what form
an optimal scaling would take.

Theorem 3.1 (random source). We observe noisy channel outputs {ym} as in (1), with
SNR 1 as in (11), and form an estimate h of the channel responses by solving (10). Suppose
assumptions (A1) and (A2) above hold, and let x be a sequence of zero-mean iid sub-Gaussian
random variables with variance o2, n > 1, p = O(1), and L > 3K.? Then for any B € N,

2Without the subspace prior, L > K is necessary to claim that Y*Y has nullity 1 in the noiseless case. We
used L > 3K in the proof in order to use the identity that the circular convolutions of three vectors of length
K modulo L indeed coincide with their linear convolution.
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there exist absolute constants C > 0, € N and constants C1(8), Co(B) such that if there are
a sufficient number of channels,

(14) M = Cy()log®(MKL),
that are sufficiently long,
(15) K > C1()Dlog*(MKL),

and we have observed a sufficient number of samples at the output of each channel,

(16) L>

Ci(B)log*(MKL) 1 K
: n (W+D)’

then with probability exceeding 1 — CK~?, we can bound the approzimation error as

(17) sin Z(h, h) < Cy(8)log®(MKL) (\/}TL <\/ME +vD ) + W%) .

Remark 3.1. The SNR requirement n > 1 was introduced to simplify the expressions in
Theorem 3.1. The conditions in the low SNR regime 1 < 1 can be easily extracted from the
proof of the theorem and Proposition 3.3 below.

Theorem 3.1 is interpreted as follows. When the dimension D of the subspaces in (9)
is small (up to a fraction of the ambient dimension K), the number of channels M is large
(depending weakly on the other dimension parameters only through log), and the length of
observation is large enough (L > 3K + CvV KD for an absolute constant C'), we can apply the
Davis-Kahan theorem which provides an error bound for h. The error bound in (17) converges
to 0 if either L or n grows toward infinity. Moreover, the error bound is nonasymptotic since
it explicitly shows how the error depends on L and n when they are finite. In a heuristic
argument that counts the number of unknown parameters and the number of given equations,
a necessary condition for the unique recovery of x and {h,,, }_, from noise-free measurements
is given as L > MD/(M — 1). It is unclear whether this is also a valid necessary condition
under the finite impulse response structure. On the other hand, with some diversity in a
(not necessarily under an explicit stochastic model), it has been shown that L > 3K suffices
in this scenario. In fact, if L < K, then the circular convolution modulo L of h,, € CK
and = € CF introduces aliasing. This turns the deconvolution problem into the demixing
problem of separating a mixture of convolutions. It is not clear whether this still remains a
valid necessary condition for the unique identification of the solutions when the extra subspace
model in (9) is imposed. Nevertheless, the blind deconvolution approach in this paper does
not apply due to the aforementioned aliasing and the requirement L > K is the fundamental
limitation of any approach that linearizes the problem using cross convolution.®

3The classical CC approaches (e.g., [47, 37, 18]) formulated the problem using the linear convolution followed
by truncation. Since the source is not necessarily time-limited, L > K is also necessary in these classical results.
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To prove Theorem 3.1, we establish an intermediate result for the case where the input
signal x is deterministic. In this case, our bounds depend on the spectral norm p; of the
(appropriately restricted) autocorrelation matrix of x,

po = |ISC;CuS"]),

& |0k—10-K+1 I
18 S = ’
(18) | DY ] O2k—1,1—2K+1

Then the deterministic version of our recovery result is as follows.

Theorem 3.2 (deterministic source). Suppose that the same assumptions hold as in Theo-
rem 3.1, only with  as a fired sequence of numbers obeying

(19) pa < Csllz3.

If (15) and (14) hold, and

(20) L>

C1(B)log*(MKL) ; K?
; (W +K D),

then with probability exceeding 1 — CK~—?, we can bound the approzimation error as

P Cy(B)log®(MKL) r K
(21) sin Z(h, h) < =2 Nors (M + \/KD).

The condition (19) can be interpreted as a kind of incoherence condition on the input
signal x. Since
2 112
pz < |Cx|” = Lf|Z||,

where Z € C is the normalized discrete Fourier transform of x, it is sufficient that & is
approximately flat for (19) to hold. This is a milder assumption than imposing an explicit
stochastic model on « as in Theorem 3.1. For the price of this relaxed condition, the require-
ment on L in (20) that activates Theorem 3.2 is more stringent compared to the analogous
condition (16) in Theorem 3.1.

Theorems 3.1 and 3.2 distinguish from a recent result [34] in the following sense. Ling and
Strohmer [34] analyzed the error bound for the least squares solution to a different linearized
formulation in [3]. In their analysis, the unknown filters were assumed to follow stochastic
subspace models, which span vectors fully supported on the entire observation period. Ob-
viously, these models do not explain the FIR structures arising in applications. Unlike their
analysis, we explicitly considered the case where the unknown filters are supported on a short
interval. On the other hand, the number of observations L enabling the error bound in [34]
scales near optimally, whereas L grows faster in Theorems 3.1 and 3.2. Again, models consid-
ered in these analyses are different and it is still open to verify whether a near optimal scaling
can be achieved with limited randomness satisfying the FIR structure.
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3.2. Proof of main results. The main results in Theorems 3.1 and 3.2 are obtained by the
following proposition. Proposition 3.3 identifies a sufficient condition for (6), which enables
Theorem 2.1 and provides an error estimate of computing the most dominant eigenvector from
a noisy matrix. The sufficient condition is stated in terms of scaling of key parameters for the
sake of interpretation.

Proposition 3.3. Suppose the assumptions in (Al) and (A2) hold, p, satisfies (19), L >
3K, and p < VM /2. Let py. denote the cross correlation among the input © and the noise
terms wi, ..., wy defined by

Pzaw = 1§r?na§XM 1SC%Cw,, S|,

where § € RBE=2xL jg 45 in (18). For any B € N, there exist absolute constants C > 0, € N
and constants C1(f), Co(B) that only depend on (3, for which the following holds. If

(22) K > Ci(8)p' Dlog®(MKL),
(23) M > Cy(B)plog*(MKL),
and

L Paw o/D? K D
24 > : T — D =
(24) Cr(B)log® (MEL) = nKagUHng< (Fc+am)+0) g

then

~

sin Z(h, h)

25
P s (w%ﬁuwm (“ (w,% ' “5) ’ \FD) : nw%>

holds with probability 1 — CK P,

Proof of Proposition 3.3. Recall that we first compute an estimate uw of u. Then ﬁ = du
serves as an estimate of h = ®u. Since the estimation error is measured in the principal angle,
which is invariant under scalar multiplication, without loss of generality, we may assume that
|lu|l2 = 1. Indeed, the errors in the estimates h and @ are related by

B bl - Rl (@)=l (@)

(26) sinZ(h,h) = < < < V2sin Z(u, @),
[R][2 [R][2 Omin (P)||wl|2 Omin (P)

where the last step follows from (8).
By the assumption in (Al) and (22), the standard results on singular values of sub-
Gaussian matrices (e.g., see [9, Theorem II.13]) imply that the condition number of ®,, is

“By definition, the parameter u always satisfies 1 < p < +/M. In this perspective, u < v/M/2 is a mild
condition.
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upper bounded by 3 for m = 1,..., M with high probability as we choose C1(f8) in (22) large
enough. We proceed with the proof under this event. Then the condition number of ® is also
upper bounded by 3.

Therefore, it suffices to focus on bounding the estimation error in @ in the principal angle.
Note that @ is computed as the least dominant eigenvector of A = ®*(Y*Y — o2 (M —
1) LIy g )®. Furthermore, the target vector w is the unique null vector of A = E[®*(Y*Y —
oo (M — 1) LIyrc) ®).

To see this, we decompose Y as Y = Y; + Y,,, where the noise-free portion Y; (resp., the
noise portion Y;) is obtained as we replace y,, = hy, ® € + w,, in Y by its first summand
h,, ® & (resp., by its second summand w,,) for all m =1,... M. Consequently, we have

Euw|YYn] = 02 (M — 1) LIy and Eo,[Y Y] =0
as well as
Ew|A] = Eu[®* (Y'Y — 02 (M — 1)LI 5 )®]
= @YY, P + PE, [V, Y|P + PTE,, [V Y|P
4+ B [®* (Y'Y, — 02 (M — 1) L1 ) ®]
=YY, ®.

As shown in section 2.2, by the construction of Y, the vector h = ®u with the true
filter coefficients is in the null space of Y;. Therefore, u is almost surely a null vector of the

noise-free matrix ®*Y;*Y;® and hence also of its expectation A = E[A] = E[®*Y Y;®]. The
uniqueness follows from the first part of the following lemma, which is proved in section 5.1.

Lemma 3.4. Under the hypothesis of Proposition 3.3, the following are true: (i) the nul-
lity of E[®@*Y;* Y. ®] is 1; (ii) nonzero eigenvalues of E[®*Y, Y;®] are no less than K?||z|3
[ull3/2 =: 4.

This lemma also establishes a lower bound for the gap between the two smallest eigenvalues
of A. This spectral gap allows us to distinguish the corresponding eigenspaces of A. Provided
condition (6), that is, A does not deviate too much from its expectation A in the spectral
norm (this will be the main task of the remainder of this proof ), this property also carries over
to the eigenspaces of A and it follows from Theorem 2.1 that the least dominant eigenspaces
of A and A are close to each other. Thus, up to a global phase, u is a good estimate of wu.

It remains to show that condition (6) is satisfied with high probability. To this end, we
derive a tail estimate of the spectral norm of the random perturbation E = A — A and show
that the perturbation relative to the spectral gap § satisfies

1Bl < o 1oga<MKL>< (@ w2 ) %

W D vVK v D

L=+ X2 )+ VD | + 2=

VK Loy |zl VK M nvL
with probability 1—CK~#, where C(f) is a constant depending only on 3. By choosing C1 (/)

n (22), (23), and (24) large enough, we can make the right-hand side of (27) less than 1/5.
Thus (6) is satisfied.

(27)
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The derivation of (27) is rather involved for the following reasons. The entries of the
perturbation matrix E are given as fourth order polynomials of sub-Gaussian random vari-
ables. In addition, the convolution structure in the construction of Y creates dependence
relations between the matrix entries. To analyze the perturbation, we decompose E into
three components of different polynomial order as follows:

E = &'Y'Y,® — E[®"Y,"Y,®]

E;
N——
E.
+ @YY, — 02 (M — 1) LI r)® .

E’VL

The following lemmas, the proofs of which will be presented in section 5, provide tail
estimates of the components; the tail estimate in (27) is then obtained by combining these
results via the triangle inequality.

Lemma 3.5. Suppose that (A1) holds. For any B € N, there exist a numerical constant
a € N and a constant C(B) that depends only on (B such that

| Y Y@ — E[@ Y, Y, 8] L [D\ ,
(28) < C(B)log™(MKL) (1~ + 1/ = | o
K2[[a[3[u]3 MTVE

holds with probability 1 — CK~P.

Lemma 3.6. Suppose that (Al) holds. For any B € N, there exists a constant C(5) that
depends only on B such that, conditional on the noise vector w,

(29) |2 Y Ya®| _  C(B)pow <M<D \/E>+\/5)

< +
K2|lz|3[lul3 ~ VoK Low|z|: VK M
holds with probability 1 — CK—P.

Lemma 3.7. Suppose that (A1) holds. For any € N, there is a constant C(3) that depends
only on B such that
|®* (VYo — 02(M — VILyi)®| _ C(8)log®(MKL) [D
L

(30) < .
K2||z|3]lw3 n

with probability 1 — CK 5.
Finally, under the event where (6) is satisfied, Theorem 2.1 implies that

oy o AllEull
(31) sin(u, u) < ————.
b

To estimate the right-hand side, we again decompose E as in (28), so the triangle inequality
yields

(32) [Eullz < [[Esullz + | Ecull2 + | Ecullz + | Eaulla.
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To bound the first term, recall that w is in the null space of ®*Y,*Y;®, so we obtain that
(33) Esu=0.

For the second and third summands, Lemma 3.6 yields that with probability 1 — CK 8
(34)

. C e w32 22| w3 D VK
max((| Bowlla, | Erulla) < | Bollufly < C00Ponl2lzliull (u( L YE) B ).

vnLoy, VK M

A bound for the last summand is provided by the following lemma, which is proved in sec-
tion 5.5.

Lemma 3.8. Suppose that (A1) holds. For any € N, there is a constant C(3) that depends
only on B such that
| (Y Yy — 02 (M — 1) LIy k) ®ulls  C(B)log*(MKL) D

(35) £ < :
K23 w3 n ML

with probability 1 — CK P,

Inserting the bounds for the four summands into (32) yields the error bound in (25), which
completes the proof. [ ]

In the remainder of this section, we show how Theorems 3.1 and 3.2 can be deduced from
Proposition 3.3.

Proof of Theorem 3.2. Since most assumptions of the theorem agree with the ones of
Proposition 3.3 it only remains to bound p,,,. This is achieved by the following lemma,
which is proved in Appendix C.1.

Lemma 3.9. Suppose (A2) holds and let x be a fixed sequence of numbers obeying (19).
For any B € N, there exists an absolute constant C' such that

Prw < CKowy/par/1+log M + Blog K
holds with probability 1 — K—P.

The theorem follows from a direct application of Proposition 3.3. |

Proof of Theorem 3.1. We again need to show a bound for p; ., but in addition we need
to estimate p,, as it is not part of the assumptions. The following lemma, which is proved in
Appendix C.2, provides these two bounds.

Lemma 3.10. Suppose (A2) holds and let & be a sequence of zero-mean iid sub-Gaussian
random variables with variance o>. Then

T

pr L+ CsVKLlog’(KL)
|3 — L —/2LBlog K

and

prow _ CsVKL log’(MKL)
owlzle = /L —\/2LBlog K
hold with probability 1 — 3K 5.
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Again, the theorem follows from a direct application of Proposition 3.3. |

4. Numerical results. We compare the classical CC method and our modification with
additional subspace prior, which is the SCCC method in a set of Monte Carlo simulations.

Our first tests concern the random signal model of Theorem 3.1 with additional subspace
constraints. As expected, our method SCCC, which exploits this information, significantly
outperforms the original CC, which does not; see Figure 2. Specifically, the estimation error
monotonically decreases (resp., increases) with L and M (resp., D). This is consistent with
the prediction in Theorem 3.1.

In order to make the comparison fair, we performed another experiment where CC and
SCCC estimate the impulse responses following their respective models having the same num-
ber of parameters. CC assumes that the length of channels is K = 64. On the other hand,
SCCC recovers channels of length K = 256 whose coefficients belong to generic subspaces
of dimension D = 64. In Figure 3, besides the two models involving the same number of
parameters, there is significant difference in the estimation error.

Figure 4 compares the empirical phase transition of SCCC and the least squares approach
in the nonblind case (where x is known). As in the limit when M goes to infinity, (16)
simplifies to L/K 2 \/D/K, and we provide the plot in terms of the quantities D/K and
L/K. In the case of noisy measurements, our performance measure is the 95th percentile of
the estimation error, i.e., we consider the worst case but ignore those 5% of the instances
which performed worst. In Figure 4, we compare this error to the nonblind case Our color

100 g ‘ ‘ ‘ 10° ——g ‘ ‘ 1009

—e—CC —e—CC
y ——CCC y ——CCC y
107 F NBLS | 1 107 F NBLS | 1 107 ¢
——cCC
——SCCC
NBLS
10-2 i ] 10-2 \ 10-2 \
10-3 L L | L 10-3 L L L 10-3 L L |
0.05 0.1 0.15 0.2 0.25 10 20 30 40 2 4 6 8 10
D/K L/K M

(a) (b) (c)

Figure 2. Comparison of CC and SCCC. The 95th percentile of the estimation error sin A(E h) out of
1,000 trials with iid Gaussian basis is plotted. Default parameters: K = 256, M = 4, D = 8, L = 20K,
SNR = 20dB. (a) For different dimensions. (b) For different observation lengths. (c) For different numbers
of channels.
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107 > 107
¥,

102 ‘ ‘ ‘ 1072 : : :

10 20 30 40 5 10 15 20

L/256 M

(a) (b)

Figure 3. Comparison of CC (D = K = 64) and SCCC (D = 64, K = 256) with the same number
of unknown parameters. Estimation error sin Z(E, h) corresponding to the 95th percentile out of 1,000 trials
with iid Gaussian basis is plotted. Default parameters: L = 1,280, M = 4, SNR = 20dB. (a) For different
observation lengths. (b) For different numbers of channels.

coding uses a logarithmic scale with blue denoting the smallest and red the largest estimation
error within the regime. We observe that, unlike the nonblind case, SCCC totally fails when
D/K is larger than a certain threshold determined by M. This phenomenon clearly justifies
the need to introduce a strong subspace prior that stabilizes the eigenvector estimation.

Finally we study data synthesized with a parametric channel impulse response model in
underwater acoustics and apply SCCC under a subspace model obtained by principal compo-
nent analysis (PCA) [43]. More precisely, we employed the ray-approximation model in [43],
where each channel impulse response is obtained by sampling a superposition of shifts of a
Gaussian-windowed pulse p(t) = sin(2 fot)e~(/7)* with f. = 2 kHz and the effective band-
width of 400-600 Hz. When the arrival times that amount to the shifts (not necessarily on a
uniform grid) are known up to respective uncertainty intervals, a linear approximation of the
parametric model is obtained by applying PCA to random realizations (see [43, section I1I] for
further details.) The source signal, subspace coefficients, and additive noise were generated
as iid Gaussian random variables.

Figure 5 compares various methods in the case where the arrival times in the channels
are aligned on a simple line with its slope known up to a given uncertainty interval. SCCC is
compared to the classical CC method as well as to the least squares approach to a differently
linearized formulation [3], which also incorporates the same prior models on the impulse
responses. As shown in Figure 5, SCCC outperforms CC and LS in this scenario. Although
the assumptions of Theorem 3.1 are not satisfied, similarly to the previous experiment, the
estimation error for SCCC monotonically decreases with L and M. The other two methods
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Figure 4. Estimation error for SCCC (upper row) and nonblind deconvolution with known x (bottom row).
(95th percentile of the log of the estimation error for 1,000 trials). Independent and identically distributed
Gaussian basis. x-axis: D/K. y-azis: L/K. K = 256, SNR = 20dB. (a), (d) M = 2. (b), (e) M =4. (c),
(f) M =6.

did not perform satisfactorily even under a very high SNR of 80 dB. We have already explained
why the classical method fails in terms of the spectral gap. The least squares method, which
recovers both the input and filters simultaneously, was not successful because the system of
convolution with multiple channels is highly ill-conditioned. Even when the filters are known,
the corresponding system has condition number typically larger than 5,000. This happened
since the known continuous function is close to a strict band-pass filter and the unknown
signal has a white spectrum. Figure 5(c) demonstrates that even under moderate SNRs,
SCCC provides stable recovery whereas the other methods totally failed in this regime.

Our study was motivated by underwater acoustic channel estimation in a shallow-water
environment where collected measurements are severely corrupted with various sources. As
a consequence, the ray-approximation model with a known pulse shape, which is employed
in the state-of-the-art method in underwater acoustics [43], does not yet match the obtained
data sufficiently well. For this reason, we do not yet obtain convincing recovery from real
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Figure 5. Estimation error sin Z(E, h) for CC and SCCC (95th percentile for 1,000 trials). PCA basis.
Default parameters: K =64, M =64, D =6, L = 20K, SNR = 80dB. (a) For different observation lengths.
(b) For different numbers of channels. (c) For different SNR.

hydrophone measurements. We expect, however, that more advanced models to be developed
in the future can also be incorporated in our recovery method, allowing us to move steadily
toward convincing performance on real data. To illustrate that our results provide a step
toward this goal, we provide an additional set of simulations for synthesized signals where
the subspace model is constructed with the ray-approximation model by using the estimated
arrival-time intervals from real measurements [42]. While the matrix Y; in this experiment is
highly ill-conditioned with nearly half of the eigenvalues almost zero, we demonstrate that the
subspace model from the ray-approximation enables stable reconstruction, where the estimate
is as good as the result by the state of the art in the underwater acoustics literature. The
estimated arrival-time intervals are illustrated in Figure 6(a). From the subspace model
constructed from this prior information, we synthesized noisy measurements of SNR 30 dB
from a generic signal and generic impulse responses. Then we compared the reconstruction
of the impulse responses in 16 channels by the three methods: SCCC, CC, and a low-rank
recovery approach [43]. While CC failed in this scenario, both SCCC and the low-rank recovery
provided accurate estimates as shown in Figures 6(c) and 6(d). The computational cost of
SCCC is much lower than that of the low-rank recovery. Furthermore, no theoretic analysis
has been shown for the latter yet.

5. Proof of key lemmas. In this section, we prove some important lemmas required in
the proofs of our main theorems. For this it will be of particular importance to compute tail
estimates of the spectral norms of several structured random matrices with entries given as
functions of second order polynomials of Gaussian variables. In certain cases, such bounds
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Figure 6. (a) Arrival-time intervals estimated from real data. (b), (c), (d) Comparison of the synthesized
ground-truth impulse responses (blue-solid) and the reconstruction (red-dash-dot); (b) CC. (c) SCCC. (d) Low-
rank recovery.
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can be established via matrix concentration inequalities (e.g., [45, 24, 21]). These matrix
concentration inequalities, however, require an upper estimate of spectral norms of summands
and high order moments, the computation of which turns out to be rather complicated for
those matrices arising in the proofs. Moreover, there are cases where these inequalities do
not apply as the target matrix is not decomposed as a sum of independent variables. For
these reasons, we rather proceed by writing the spectral norms of these random matrices in a
variational form as suprema of corresponding chaos processes. Tail estimates for such suprema
of second order chaos processes, as given in the following theorem, have been derived using
chaining arguments [25].

Theorem 5.1 (tail estimates for suprema of chaos processes [25, Theorem 3.1]). Let £ € C"
be an L-sub-Gaussian vector with E[€€*] = 1,, A C C™*" and 0 < { < 1. There exists a
constant C(L) that only depends on L such that
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AS}UIZIHMEIE E[||ME|3]] < C(L)(Ki + K21/log(2¢~1) + Kzlog(2¢™1))
€
holds with probability 1 — (, where K1, K, and K3 are given by

K1 =41 (vz(A, 1)+ dF(A)) + dp(A)ds(A),
Ky :=ds(A)(v2(A, [ - ) + dr(A)),
K3 :=d3(A).

Using the polarization identity, this result on the suprema of second order chaos processes
has been extended from a sub-Gaussian quadratic form to a sub-Gaussian bilinear form [27].

Theorem 5.2 (a corollary of [27, Theorem 2.3]). Let & € C" be an L-sub-Gaussian vector
with E[€€*] =1, Ao, A C C"™*", 0 < ( < 1, and a > 0. There exists a constant C(L) that
only depends on L such that

sup (M€, Ma€) — E[(Mi€, Mo€)]| < O(L)(Ky + Kav/log(8¢1) + K3log(8¢™1)),

MieA,MycAs

holds with probability 1 — (, where I~(1, f(g, and f(g are given by

Ky = (a2(An 1+ 1)+ a7 52080, 1) (092080 1+ 1) + a7 32(As, - )
+ade(Ar) + a*ldF(Ag)) (adF(Al) + a*ldF(Ag)) (adS(Al) + a*ldS(AZ))

Ky = (ads(A1) + a7 ds(A2) ) (02(Ar, |- ) + a7 2(As, | - 1) + adi (A1) + 0™ dr(As) )

Ky = (adS(A ) +a~ dS(Az))Q.

A special case of Theorem 5.2 where a = 1 was shown in [27, Theorem 2.3]. Note that the
bilinear form satisfies

(M€, M€) = (aM1 €, 0" M€) Ya > 0.

Moreover, the o functional and the radii with respect to the Frobenius and spectral norms
are all 1-homogeneous functions. Therefore, Theorem 5.2 is a direct consequence of [27,
Theorem 2.3].

Since a > 0 in Theorem 5.2 is arbitrary, one can minimize the tail estimate over a > 0.

5.1. Proof of Lemma 3.4. Note that ®*Y*Y,® € CMP*MD j5 an M-by-M block matrix,
where the size of each block is D-by-D. Then it follows from the special structure of Y (with
each row consisting only of some Ty, in position j and the corresponding —T,,, in position k)
that the (m,m)th diagonal block of ®*Y*Y,® is given by

(36) Z Qm ;Oh / th / m_ Z @’TTLC; ', C*C C@ ! Uy, /E)m’
m;ém m;é
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where ®,,, = S*®,, for m = 1,..., M. Similarly, the (m, m’)th off-diagonal block of ®*Y_*Y P
for m # m/ is given by
D, Um

(37) — @, Tron , Towh,, B = —fi;;lc;m/um/ CiCoCsy . .

By Lemma B.3, the expectation of the (m,m)th diagonal block is given by

M M
I~ T 2712 2
E E @%Cgm/um/ CeCCs . | = E [ |27 || 2]]21D
=1 =1
m/#m m/#m

and a similar calculation yields that the expectation of the (m, m’)th diagonal block for m’ # m
is given by

Tk * * T 2 2 *
E[#,0; |, CiC:Cy ., ®u| = —K’||umu,y.
m m

Collecting the above expectations, we obtain that E[®*Y, Y ®] satisfies

E@ Y, Y.® |
———= = = ||u||5P,. — Y
K2||CI3||% || ||2 ul )
where
M
Y= Z eme;’b ® ||um||%Pu#La
m=1
where ® denotes the Kronecker product and ey, ..., ejs denote the standard basis vectors in
RM,

Since Yu = 0 and hence wu is in the kernel of E[®*Y*Y,®|, the gap between its two
smallest eigenvalues is given by its smallest nonzero eigenvalue, which, using that || Y] <
maxi<m<n | uml|3, is estimated from below by

2 K2l2l2llwl2
58) el (1 - msmes funl )  1CelElulf
Ujja

Here the last inequality follows from our assumption that

o VMlunle _ VA

Pl T 2
5.2. Proof of Lemma 3.5. We use the following notation in the proof. For u = [uy ,...,

uj,] ", where u,, € CP for k=1,..., M, we define a block (p,q) norm by

M 1/q
(z Humug> ise<om
m=1

il g =ce.

(39) lwllpg =
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By (36) and (37), ®*Y, Y;® — E[®*Y, Y ®] is rewritten as the sum of its diagonal block
portion (a) and the off-diagonal block portion (b), where
3,

u,,/

M
= Z eme:n X Z (I)* C(% u /C’;‘;C’mC’&,m/
— /im

E|8,C; |, CiCuCy ., ®ul |

(40)

M M N
-3 emein® (91,5, CiCiCy,, T
m=1 m /’:1
~E|#,C5 ., CiCuCs ,, Bur|).
Therefore, by the triangle inequality, we have
[27YY @ — E[@7Y Yo @]|| < [(a)] + [[(B)]]-

It remains to compute tail estimates for the spectral norms of (a) and (b).
Diagonal block portion. The (m,m)th block of (a) is written as ®, X, ®y,, where

M
Yom= >, SC;  CiCiCz . S".
m'=1 e e
m'#m
Then due to the block diagonal structure, we have

@) = max [[#5, Xom P — BB}, Tl

Since ®,,, and Y, are independent, E[®}, Y, ®,] is rewritten as

E[®},Ysmn®n] =Es,, [‘I’%E{ém/}m/¢m [Lsm]®m] = E{@,ﬂ/}m#m [tr(Xs,m)In].

Therefore, we have
(41)
D Y ®r —E[®), Yo @] = Py, Yo Py — tr(Xsm)Ip + (tr(Lsm) — Eftr(Xsm))In .
() (d)
We will compute tail estimates of the spectral norms of (c) and (d) separately and then

combine them using the triangle inequality. First, we compute a tail bound of ||(c)|| using the
following lemmas, which are proved in Appendices D.1 and D.2.

Lemma 5.3. Let W = [apy,...,%p] € CEXD satisfy that vec(¥) follows CN'(0kp1,1kp),
where vec(W) = [/ ,...,¥}L]". Then

|®*A¥ — E[U*AV]| < C||A||VEKDlog(8¢™1)
holds with probability 1 — (.
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Lemma 5.4. Suppose that (Al) holds. For any B € N, there exist a numerical constant
a € N and a constant C(B) that depends only on [ such that

(max | Yom = E[Xsm]ll < C(B)prK[ull200|u2 log™(MKL)

holds with probability 1 — K.

Lemma 5.3 is a direct consequence of the theory of suprema of second order chaos processes
[25, 27]. By Lemma 5.3, conditioned on Yy,

1) < C1l[¥s.ml|VED(log M + flog K)

holds with probability 1—M~'K 8. Then by Lemmas 5.4 and B.1 with the triangle inequality,
it follows that
()l < C(B)(pe + |2]3) K> *VD | ull3 log*(MK)
holds with probability 1 — M 1K 58,
Next we consider (d). Note that

b (SC*%m/um/ C;ch':i;m/um/ S*) - KHCwS*(Pmlum/H%

Therefore, the spectral norm of (d) is rewritten as

M

I@ll =] Y KlCeS"® w3 — E[K||CoS* @ty 3]

m/=1
m'#m

M
— K| S )y © CoS™) |3 — Elll(uhy ® CoS*) byl
1

m’;m
M 2 M 2
=K|| > (emej @up, @CS)¢|| —El|| Y (emwely @uy, ® CzS*)e ] :
m/=1 2 m/=1 2
m'#m '4m

Am

where ¢, = vec(®,,) form=1,...,M and ¢ = [¢],...,¢},]". In fact, we are computing a
tail bound of the Gaussian quadratic form || A,, |3, which can be done by the Hanson—Wright
inequality, Lemma A.2. Observing that the block diagonal matrix U with blocks w,, satisfies
|U*U || < |lull3 4, we obtain

()] = K[| And|3 — E[|| Amo|3]|
< C3K (|| AL Amlp V || A?) (21og M + 2510g K)
< C3K(VE|[ul3 4V [u]3..0)1SCLCS*||(21og M + 2531og K)
< Co K32 |l 4po(21og M + 23 1log K)
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holds with probability 1 — M~'K~#. Note that the tail bound of (c¢) dominates that of (d).
Collecting the above estimates, it follows that

I < C(B)p K>V Dl|ul3log*(MKL)

holds with probability 1 — K 5.
If we normalize with the spectral gap given in (38), then the relative perturbation due to
(a) is upper bounded by

[(@)]] D

i < C(B)log*(MKL)\[ +=
K213 13 K

(42)
with probability 1 — K 7.

Off-diagonal block portion. Unlike the diagonal block portion (a), the off-diagonal block
portion (b) does not have a block diagonal structure and computing its tail bound is more
involved.

To restrict the convolution of two short vectors of length K to its support, we introduce
S € RCE-DXL defined by

g Oxk-10-xk+1 Ik

Ik Ok r-K|"
Then we have
(43) S5*S =8
and
(44) c: &,=8SC: &, Vm=1,...,M.

P um P um

Due to the commutativity of product of two circulant matrices, (43), and (44), we can
rewrite (b) as

M M
B ==Y enely @ ((Cmé*zm)*cfgé*zm, - E[(CwS‘*Zm)*CwS'*Zm/]),

m=1 m’'=1
'4m

where

Zm = SCx

@mum‘i’m’ m=1,..., M.

Note that the summation in (b) runs over all distinct pairs (m, m’) with m # m/. Our main
trick here is to add and subtract the terms corresponding to pairs (m,m) for m =1,..., M.
This ends up with a diagonal sum and a full summation over all pairs (m,m’). The resulting
full summation term now provides a nice factorization, which leads to an analysis using the
techniques for the second order chaos processes.

Indeed, since the ®,,’s are independent, we have

E[C2S* Z ] E[CS* Z,y] — B[(C2S* Z1)*CuS* Zy] = O0p.p  Ym #m'.
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Therefore, (b) is decomposed as (b) = (e) — (f), where

M
(€)=Y emep ®(CuS*Zy)* CyS* Z — E[CoS* Z,|"E[CaS* Z1)),
m=1
M
()= > eme @ (CaS*Zy)* CaS* Zyy — B[CoS* 2] E[C2 8" Z ).
m,m’=1
Note that (C’wS'*Zm)*CmS'*Zm/ — E[ng*Zm]*E[ng*Zm/] is decomposed as
(CxS*Zy, — E[CyS* Z,))* (CuS* Zyy — E[Cp8* Z,i))
(45) +E[Cr8*Z})(CrS* Z,y — E[CS* Z,])
+ (Cx8*Z,, — E[CyS* Z,,)) E[CyS* Z,].

Therefore, the spectral norm of (e), which corresponds to the extra diagonal term, is upper
bounded by

2
I(e)] < < max ||Cm5**Zm—IE[CwS**Zm]||>
1<m<M

+2( max ||Cw5'*Zm—IE[CwS'*ZmH> < max ]E[Cws**Zm]H>.
1<m<M <M

1<m

By Lemma B.2, we have
IE[Co 8" Zyn]|| = K[ Creruy, | < Klz|allumllz < Kl2a]|w2,00-
We again use bounds for suprema of second order chaos processes [25, 27] to get a tail
bound for || Z,, — E[Z,,]||, as given in the following lemma, which is proved in Appendix D.3.

Lemma 5.5. Suppose that (Al) holds. For any B € N, there exist a numerical constant
a € N and a constant C(B) that depends only on (B such that

sup [ Zm — E[Z]|| < C(B)]w

1<m<M
holds with probability 1 — K—P.
By Lemma 5.5, it follows that the relative perturbation due to (e) is upper bounded by

) C(8)log™ (MEL)u”
K2|[3llul3 = M

2,00 K log®(M K L)

(46)

with probability 1 — K.
Similarly, (f), which corresponds to the full two-dimensional summation, is rewritten as

M * M
(f) = (Z e, ® ng*Zm> (Z €y ® Cacs'*Zm’>
m=1

m/=1

M * M
- (Z €m ®E[Cw5'*Zm]) (Z e ®E[Cw§*Zm/]>

m=1 m/=1
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M * M
— (Z e @ (CypS*Zy, — E[ng*zm])) ( D eny @ (CoS* Zyy — E[CzS'*Zm/])>
m=1

m/=1

M * M
+ <Z el ®E[Cm§*Zm]> (Z e @ (CypS* Zpy — E[CmS'*Zm/])>

m=1 m/=1

M M
m=1

m/=1
Therefore, by the triangle inequality, we have

M 2
D < |3 en ® (Co8 2 — BICE 2,
m=1

M
+2|| > €1, @ (CaS"Z ~ EIC,5"Z HHZe @ E[Co8" Zn |
m=1
Let vy,...,vp € CP and v = [v],...,v],]". Then, by Lemma B.2, we have
M M
H Sene E[C’mS*Zm]H — sup H Z ]E[CmS*vam]H
m=1 veB)'P 2
= sup KH ZC eiu,; va sup K||:13H2‘ Zu 'vm’
veBMD
M
< sup Kllz|s > lumlallvmllz < Klza|lul-.
veB)'P m=1

On the other hand,
M

H S e, ® (CoS* 2, — E[Co5°Z H - Hc S*(Ze ® (Zm — E[Zn, ]))H
m=1

< I8CC 12| Y. €5, (2, E12,) |
m=1

-~

#)

As implied by (19), the first factor is bounded by /Cs|lx||2. Hence it remains to show an
upper bound on the last term (). This is established in Lemma 5.6 using the results on
suprema of second order chaos processes [25, 27] together with an entropy bound by polytope
approximation of a unit ball [20], polar duality, and entropy duality [2]; see Appendix D.4 for
the proof.

Lemma 5.6. Suppose that (Al) holds. For any B € N, there exist a numerical constant
a € N and a constant C(3) that depends only on (B such that

M
| > enn @ (Zn ~ElZu))|| < CB)lullono(K + VMED)log® (MKL)
m=1

holds with probability 1 — K—P.
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Collecting the above estimates and noting that, up to log factors both factors are bounded
by uK||x||2||w|/2, we obtain that the relative perturbation due to (f) is upper bounded by

ml
1) Kealglug = €108 KD (3 \f

potentially for an increased value of «, with probability 1 — CK .
Finally, (28) follows by combining (42), (46), and (47).

5.3. Proof of Lemma 3.6. The proof of Lemma 3.6 is similar to (and easier than) that of
Lemma 3.5. We will reuse some of tail estimates obtained in section 5.2. On the other hand,
we also need to derive tail estimates of the suprema of certain Gaussian processes, which did
not arise in section 5.2. We use a moment-version of Dudley’s inequality [12] to compute these
tail estimates.

Similarly to the previous section, we use the following decomposition into the diagonal
block portion and the off-diagonal block portion:

Y'Y, ® = (g) + (b),

where
M ~
= emen® Z ®;,Cx ru,CaCu,, @ |
71 m
(48) '
M M _
=D D emen ©2,C5 | CiCu, By
m=1 m/=1
m’ m

We derive upper bounds on the spectral norms of (g) and (h) respectively in the following.
Diagonal block portion. Note that (g) is a block diagonal matrix and its expectation is 0.
Define

M
(49) = > sc ' u,CaCu,, 5"

:1
m

Then it follows from the block diagonal structure that
< . .
Il < | max {127, cm®m|

Since ®,, and Y, are independent, ®7 Y, P, is rewritten as
S Yem®n =2, Y ®n —tr(Xem)Ip+tr(Yem)In.
(i) %)
First, we compute a tail estimate of ||(i)||. Similarly to the previous section, we use

Lemma 5.3 conditioned on Y,,. Then we apply the tail estimate of || X | given in the
following lemma, whose proof is in Appendix D.5.

(50)
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Lemma 5.7. Suppose that (Al) holds. For any B € N, there exist a numerical constant
a € N and a constant C(B) that depends only on B such that, conditional on the noise vector
w?

max ||Tc,m|| < C(ﬁ)ﬂm,wﬁ”uHQlOga(MKL)
1<m<M

holds with probability 1 — K—P.
By Lemmas 5.3 and 5.7, we obtain that
1) < C(B)puwEVDlull2log™ (MK L)
holds with probability 1 — M 1K 7.
On the other hand, a direct calculation shows that (j) is expressed as

M
tr(Yem) = Z (u,), @ Kw,CyS*)vec(®,),
m/=1
m'#m
where m denotes the complex conjugate of tr(Yc,,). The above expression implies
that m is a linear function of the independent Gaussian matrix entries and hence is a
zero-mean Gaussian random variable. The variance of tr(Y ) is given by

M
> Klllunl3llw;, CaS™ |13 < K2||ul3p -

m'=1
m’'#£m

Therefore, by a tail estimate of a Gaussian variable,
I < CpowkK ull2v/1 +log M + flog K

with probability 1 — M~'K—#. Hence ||(i)| dominates ||(j)]|.
By collecting the above estimates, we obtain that the relative perturbation due to (g) is
upper bounded by

Il _ C(B)pawlog™(MKL) VD _ C(8)log*(MKL)  paw _ [D
K2|||[3] i3 — 2[13]]eel]2 K vinL VEoy|z|z VM
with probability 1 — CK %, where in the last step we used (12).

Off-diagonal portion. Similarly to the analogous part of the proof of Lemma 3.5, we add
and subtract the diagonal sum and obtain

(h) = (k) + (D),

(51)

where
M
(k)= emel, ® 95,SC3Cu, 8" Zin,
m=1
(52) M
== > emepy ©®},SC;Cw, S Z.
m,m/=1
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By the triangle inequality,

M
1091 < || D emein @ 91,5C2Cu,, 5" (Zn — ElZ0]) |
m=1

~~

(m)

M
+[| Y emern @ #;,5C;Cu, 5°E(Z,] |
m=1

(n)

We use the result by Davidson and Szarek [9, Theorem II.13] to get a tail estimate of
||®m||. Specifically, it follows from (A1) that

(63)  max [|®n] < [|[V2Re(®y), V2Im(P)]|| < VE + V2D + /2log M +25log K

holds with probability 1 — K 5.
By Lemma 5.5 and (53),

lm)[ = max ||, SC;Cw, 5™ (Zm — E[Zn])]

< (,max [SC;Cu, S1)( | max @) (| max |12, —EZ,]]))

1<m<M

< prawC(B) K |[u2,00 log (MK)

holds with probability 1 — K7, where || - [l2,00 is defined in (39). On the other hand, by
Lemmas B.2 and A.3,

|l = & max. (@}, SCiwu

ml
m

< K|u

2o max |95, 5C;w,

= K|u

2oe max [|(0},CaS" @ Ip)vec(®]))

< Kllu

200 WA [w;, CaS™ @ Ipllrr/1+ log M + Blog K

= K|Ju|j200 max VD|w,CrS*||21/1+ log M + flog K
1<m<M

< 2K ||ul|2,00 020V D1+ log M + Blog K

holds with probability 1—K ~#, where the last inequality follows from the fact that ||w,CqS*||2
< ||Sw},C.S*||. Note that ||(m)|| dominates ||(n)].
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The spectral norm of (1) is upper bounded through a factorization by

M M
1 < H S ek, ®8C;, CuS @, H H S el @ (Zys — E[Z)) H
m=1 m/=1

-~

(0) (®)

M
+H S emely ® 85,SC:Clu,, S'EZ,]

m,m’=1

N~

(a)

The spectral norm of (0) is written as the supremum of a Gaussian process and is bounded
by the following lemma, which is proved in Appendix D.6.

Lemma 5.8. Suppose that (A1) holds. For any B € N, there exists a constant C(3) that
depends only on B such that, conditional on the noise vector w,

|3 €60 83, Cu | < C/TT BpaaVATD + VE) g
m=1

holds with probability 1 — K—°.
By Lemma 5.6,
1) < C(B)[[ull2.00(K + VMED)log®(MKL)

with probability 1 — K%, where || - ||2,00 is defined in (39). Note that ||(0)]|||(p)|| dominates
|(m)]||. Therefore, we may ignore |[|(m)]|.
By Lemma B.2, the spectral norm of (q) is upper bounded by

M
2
l@I? =] 3 emel ® K®;,8Cwnu;,

m,m’=1

M 2
= H Z en® K®, SCrw,u”
m=1

M
= IC|lul3 ) 19}, SChwnml3

m=1

M
= IJlul3 ) I(Ip ® w},CaS™vec(®m)|?

m=1
M 2
= KQHUH%H (Z e) @Ip® w;CmS*> [vec(®,,) ", ... ,Vec(ém)T]TH i
m=1

Therefore, by Lemma A.3,

()]l < C(ﬁ)KHU|’2\/MDpz7w\/IogK
holds with probability 1 — K 5.
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By collecting the estimates with the fact that © < +/ M, we obtain that with probability
1 — K8, the relative perturbation due to (h) is upper bounded by

|0 _ CBpawlog®MEL) (e (1 VD) VMD
Ke3lul} =l (Wi* VMK | K2) TR

C'(B)log*(MKL)  prw vK D
=T i v%mm@b<“<M'+¢K>+¢5>'

Note that the tail estimate in (54) dominates that in (51). It therefore follows that (29)
holds with probability 1 — C K. This completes the proof.

5.4. Proof of Lemma 3.7. The analysis of the noise term E,, only involves second order
chaos processes and can be reduced to bounds for suprema of such processes as they are
established in [25, 27].

The first lemma used in the proof bounds the maximum cross-correlation deviation of the
noise terms, which is given by

pw = _max  [|S(Cy,, Cu,, —E[Cy,, Cuw,,)S"].

1<m,m’<M
See Appendix D.7 for the proof of the lemma.

Lemma 5.9. Suppose that (A2) holds. For any € N, there is a constant C(3) that depends
only on B such that

(55) pw < C(B)o2 VK Llog®(MKL)
holds with probability 1 — K—P.

The second proof ingredient is a bound for the average autocorrelation deviation of the
noise terms, which is given by

M
u = H@;smmcw ~E[C;,, Cu, )5

The bound is provided by the following lemma; see Appendix D.8 for its proof.

Lemma 5.10. Suppose that (A2) holds. For any € N, there is a constant C(f) that
depends only on B such that

(56) pw < C(B)og, M~ >VEKLlog"(MKL)
holds with probability 1 — K—P.

For the remainder of the proof of Lemma 3.7, we condition on the event that (55) and
(56) hold.
Define A € CMEXMEK 1y

M M
A= llwnl3eme;, ® Ik

m=1 m/=1
'#£m
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Under the assumption in (A2), we have
E[||wy||3] = 02 L VYm' =1,..., M.
Then it follows that E[A] is a scalar multiple of the identity given by
E[A] = 02(M — 1) LIy k.

Here we assume that o, is known a priori or can be estimated from the data.
We decompose ®*(Y*Y; — 02 (M — 1) LIk )® into two parts as follows:

(Y'Y, — 02(M — 1) LIy g)® = & (Y'Y, — A)® + &*(A —E[A])® .
) (®)

Then we estimate the summands in the right-hand side of (57). The following lemma, which
is proved in Appendix D.9, provides a tail estimate of ||(r)]|.

(57)

Lemma 5.11. Suppose that (Al) holds. For any € N, there exist a numerical constant
a € N and a constant C(B) that depends only on B such that, conditional on the noise vector
w,
[2*(YYn — A)@| < C(B)MVEKD(pw + 2pw) log™ (M D)
holds with probability 1 — K—P.

Next, due to the block diagonal structure, the spectral norm of the second term (s) is
upper bounded by

lgﬁﬁﬁj§j (e 3 = Bl ]13) 7, %,
/;ém
P P .
max Xymmm |WmM’<é%&“mvﬂ>
m 7771

The first factor divided by o2 is a x? random variable with LM degrees of freedom. By
Lemma A.1,

max Z w13 — Elllwny 3] < C1(1+ B)og, VLM log(M K)

1<m<M
/;ém
holds with probability 1 — K ~#. On the other hand, by (53),

* <
max ([ €7,8, ] < Co(1+ H)K log(MK)

holds with probability 1 — K 3. Therefore,
(s)|] < C(B)o2 VMKV Llog*(MK)

with probability 1 — 2K 5.
Finally, (30) follows by collecting the above estimates. This completes the proof.
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5.5. Proof of Lemma 3.8. Similarly to the proof of Lemma 3.7, through the triangle
inequality, the left-hand side of (35) is upper bounded by

12" (¥ 'Ys — A)Pull; | [|27(A — E[A]) ul.

(58)
[l [l

For the first term in the right-hand side of (58), we modify Lemma 5.11 as follows; see
Appendix D.10 for the proof.

Lemma 5.12. Suppose that (A1) holds. For any § € N, there exist a numerical constant
a € N and a constant C(B) that depends only on 8 such that, conditional on the noise vector w,
" (Y, Y — A)Pul

[l

< C(B)WMED(VMp, + pu) log” (MD)

holds with probability 1 — K.

Combining Lemmas 5.9, 5.10, and 5.12 implies that the first term in the right-hand side
of (58) is smaller than ||®*(Y;'Y; — A)®|| by a factor of v/M.

For the second term in the right-hand side of (58), we use the fact that it is no larger than
|®@*(A — E[A])®||. Then we may use the tail estimate derived in the proof of Lemma 3.7.

By collecting the estimates, we obtain that (35) holds with probability 1 — CK 3. This
completes the proof.

6. Conclusion. We studied a passive imaging problem with multiple channels, which is
formulated as multichannel blind deconvolution with noise-like source and time-limited im-
pulse responses. Additionally, motivated by several real-world applications, we impose that the
FIR coefficients of impulse responses belong to corresponding low-dimensional subspaces. For
such a scenario, we proposed a spectral method called subspace-constrained cross-convolution
(SCCC) that modifies and improves upon a classical method developed in the 1990s by over-
coming the noise sensitivity. SCCC provides stable estimates of the impulse responses from
finitely many samples and its performance is backed by theoretical error bounds under generic
subspace models. In this scenario, SCCC also empirically outperforms competing approaches.
The fundamental estimates in the analysis of this paper extend to the sparsity or low-rank
cases with minor changes. Corresponding recovery results on these extended models will be
left for follow-up work.

Appendix A. Toolbox.

A.1. Concentration of x? random variables.

Lemma A.1 (complexification of [26, Lemma 1]). Let g1,...,gn be independent copies of a
standard complex Gaussian variable. Let ay,...,a, be nonnegative and a = [ay, . .. ,an]T. Let
Z=%7%_1ar(lgk|* —1). Then, for any t > 0,

P(Z > V2l|al2Vi + [|a]lst) < exp(—t),
P(Z < —V2||a]2V?) < exp(—t).
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A.2. Hanson—Wright inequality.

Lemma A.2 (complexification of [40, Theorem 1.1]). Let A € C™*™. Let g € C" be a
standard complex Gaussian vector. For any 0 < ( < 1, there exists an absolute constant C
such that

IlAgl3 — E[| Agll3]] < C(|A* Allpv/log(2¢~1) V [|A]* log(2¢ ™))

holds with probability 1 — (.

Lemma A.3 (complexification of [40, Theorem 2.1]). Let A € C™*™. Let g € C" be a
standard complex Gaussian vector. For any 0 < ( < 1, there exists an absolute constant C
such that

1 Agll2 — [|Alle| < C||A[[\/log(2¢~1)
holds with probability 1 — (.
A.3. Complexification of Maurey’s lemma. The following lemma is a direct consequence

of Maurey’s empirical method [5]. Define a block norm on R™¢ by

T ™T
H[ql PR 7qm] HZQ%(Z%) = lg}cagxm quHQ

Let 7 (¢4(R)) denote the corresponding Banach space. Similarly, £7(¢4(C)) is defined over
the complex scalar field.

Lemma A.4 (Maurey's empirical method [20, Lemma 3.1]). Letk,m,n € NandT : £¥(R) —
(M ((4(R)) be a linear operator. Then

| 08 N B ).l g Ot < €/ T+ Tog R)T +Togm)(1-+log m+10g d) [ Tllep

where || - ||op denotes the operator norm.
Lemma A.4 extends to the complex field case, which is shown in the following corollary.

Corollary A.5. Let k,m,n € N and T : £§(C) — £ (¢4(C)) be a linear operator. Then

| lor N T By Tt Dt < OV 0B R+ Tog m)(1-+ o -+ 105 ) 7o
Proof of Corollary A.5. Let v : C — R? be a natural map defined by
() = [Re(z),Im(z)]" Vz e C.
By a slight abuse of notation, we apply ¢ elementwise to C¥, i.e.,
W([z1,. .. 21 ") = [Re(x1), Im(z1), . .., Re(ay), Im(zp)] .

Then we have
tByy(c) C V2B w)
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and
B eg(0)) = Beme3m))-
Moreover, ¢ is bijective. Therefore,

/0 \/IOgN(T(BZ’f((C))v I Nlem (eg(cy)> )t < /0 \/10g N(T(\/iB@k(R))a 1 llem (24w t)dt-

Then the assertion follows from Lemma A.4 with a change of variable in the integral. |

A.4. Suprema of Gaussian processes. We use the following lemma that provides tail
estimates of suprema of first order chaos processes.

Lemma A.6. Let & € C" be a standard Gaussian vector with E[¢€*] = 1,, A C C", and
0<(< e Y2, There is an absolute constant C such that

sup |£°€| < C/log(C D) / Viog N(A T~ o, D)t
fea 0

holds with probability 1 — (.

Proof. Lemma A.6 is a direct consequence of the moment-version of Dudley’s inequality
[12, p. 263] and a version of Markov’s inequality [12, Proposition 7.11]. [ ]

Appendix B. Expectations.
Lemma B.1. Under the assumption in (Al),

E[C%

@ um ;I;mum] = KH“WH%IL-

Proof of Lemma B.1.
E[C%

P, Um P um

] = |uml3E[Cs-¢Cs-g],

where g € CK is a standard complex Gaussian vector. Let g denote the kth entry of g. Since
Elgrgi] = 0 for all k # [, we have

K
E[C%.yCsgl = >  C5 Ce, = KIJ.
k=1

This completes the proof. |
Lemma B.2. Under the assumption in (Al),

E[CL = &,]=Kejul,.

P um

Proof of Lemma B.2. By (A1), it follows that ®,,u,, and 'imq are independent for any
g € C¥ such that g*u,, = 0. Therefore,

E[C: @]

EC: &, =E|Cx% Ut | _ 1 S, ul
Spum Tt " ||um||% HumH% "
H‘E[Cji Cx 61]
P, u Pnum * *
= mm u, = Keju
[wmll3 " "
where the last step follows from Lemma B.1. |
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Lemma B.3. Under the assumption in (Al),

K2||z 3]l 131, m #m/,

T B K2l 3w 13T + vy, ), o=,

E[®;,Cy . CiCaCq . ®un]= {
Proof of Lemma B.3. Suppose that m # m/. Then, by the independence of ®,, and ®,,,
it follows that

E[$;,C; . CiCiCy . ®ul=Fa,[®Fae ,[C; | CiCuCy

D ru,, m’um’:| Qm:|
= K[ty |[5Ea,, [}, P1n]
= K||up |3Es,, [®;,S5" @]

= K || |5tr(SS*)Ip = K|y |31,
where the second identity holds by Lemma B.1. This proves the first case.

Next we assume that m’ = m. For notational simplicity, let P € CP*P denote the
orthogonal projection onto the span of w,,, i.e.,

Uy U,

[ 3

Then by (A1) it follows that ®,,u,, and ®,,(Ip — P) are independent. Therefore

E[®;,C; . CiCuCg . By

D, Um
=E[(P+1p— P)i:;‘ncgm%c;cmc@mum ®,,(P+1p— P)]
= E[P®;,C; . CiC:Ch , ®uP)

(*)
+E[(Ip — P)®;,C5 | CiCsCg . &,(Ip— P)].

m=®um
V

(%)

The first term (%) is rewritten as
E[g*SCg:;CrCxCs+gS*gupuy,],

where g € CX is a standard complex Gaussian vector. On the other hand, we have

K
E[Q*SCE*QC;CmCS*QS*g] = Z E[gjlgj29j3gj4]e;1 C;z C;CzCEjS €ja
J1,32,J3,J4=1
= 2K ||||3 + 2K (K - 1)||l=|3 = 2K7|3.

Therefore,
(%) = 2K° ||| [Sumus,.
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By the independence of ®,,u,, and ®,,(Ip — P) together with the commutativity of
convolution, the second term (xx) is computed as

(x%) = E[(Ip — P)®}E[C}  Cg . 1C;C:®n(Ip — P)
= K |[un|3E[(Ip — P)®;,C;Ca®(Ip — P)
— KJun|§tr(SC1CaS")(Ip — P)
= K?||3(|wml3Ip — umuy,).
Collecting these results proves the second case and the proof is done. |

Appendix C. Proof of lemmas in section 3.

C.1. Proof of Lemma 3.9. By the homogeneity of p; ., we may assume that o, = 1.
Let
Az q = Cg*szS*qa

where § is defined in (18). Then

ISC;Cw, S| = sup |a qwpnl.
z,gEB3

We use Lemma A.6 to get a tail estimate.
Since

lazq —azgll2 <llazqg —azqglz+llazy —azx gl
< IC5. lIC=S"|llg — q'll2 + |Cg. 4 1 CZS™[llz — 2|2
<VEp(llg—d'll2+ |z = 2'2),

it follows that the ~, functional of the set {a, 4 | 2,9 € B3%} is upper bounded by

o0
CvVEps [ \flos NBE| - | tit < Cak v,
0

where we used a standard volume argument. The assertion follows from Lemma A.6 and a
union bound argument.

C.2. Proof of Lemma 3.10. By the homogeneity, we may assume that o, = o, = 1.
Then

ISC;C.S*|| = sup |a*CE._Cg. x|

zeB3K
and

18CiCu, &= swp ["Cy, Cs.
z,qeB3K
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are suprema of second order chaos processes. We estimate their tail decay using Theorems 5.1
and 5.2. (For more details, see the proof of Lemma 5.9.) By Theorem 5.1 and a union bound
argument, it follows that

b < Co?V/KLlog’ (K L)
holds with probability 1 — K 5. Similarly, by Theorem 5.2,
prw < Cp0yoVKLlog?(MKL)

holds with probability 1 — K 5.
Moreover, by Lemma A.1, we also have that

l]|3 > o3 (L — v/2LB log K)
holds with probability 1 — K —#. The assertions follow by assembling the above estimates.
Appendix D. Proof of Lemmas in section 5.

D.1. Proof of Lemma 5.3. First note that | ¥* AW —E[¥* AW]|| is written as a variational
form given by

(59) max _|g*(P*AY — E[T*AP])q|.
9.9'€BY

For all g € CP, we have
Vg =(q ®Ig)vec(P).
Let ¥ = vec(¥). Then
¢V AYG = (q" ©1x) A((d) @ Ix)y = ¢ (@(d) @ A)p.
Then (59) becomes the supremum of the second order chaos process
¥ (ala)" © Ay —E[p* ()" @ Ay
over q € BQD . We obtain its tail estimate by applying Theorem 5.2 with
Ar={q" @Ik |ge By}
and
A={(d)" ®A|q €By}.
By direct calculation, we obtain

ds(Ay) <1, dp(Ar) < VK,

and
ds(Ag) < A, dr(A2) < VE]A].

Moreover

o) 1 9
(bl <0 [ NBE < o [ \/2Dlog(1+t)dtscg¢5.
0 0

Similarly, we also have

2 (82| - [|) < C2VD| A
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The assertion follows from Theorem 5.2 with

(60) ‘e \/w(AQ, |- l)e(B2)

Y2(A1, [ - )dr (A1)

2149

D.2. Proof of Lemma 5.4. Note that || X, — E[X;,]|| is written as a variational form

given by
sup 2" (Xsm — E[YXsm])z|.
zer
By the commutativity of convolution, we have

M
* * * * *
z Tsvmz = Z z SCS*‘Pm/um/ CEC:DCS*@m/um/S z

m/=1
m'#m

M
= > up®5,8C5. .CiCrCs+2 8" Pty
m/=1

m’;zm
M

ml
m'#m
M
= > vec(Pp)* (Wnpthyy ® SCs+2CCuCn . S™)vee(®py),

m'=1
m'#m

where the third identity follows from

(61) @m/um/ = (u;/ & IK)VGC(‘I’m/),
Let
M
Q(Z) — Z em/e:n/ &® u,r—)l;l [ C:BC;*ZS*
m/=1
m'#m
and

¢ = [vec(®1) ", ..., vec(®y)"]".
Then ¢ follows the distribution CN'(0pxp 1, Inkp) and
Z*Ts,mz = ¢*Q(Z)*Q(Z)¢
Therefore,

sup |2"(Ysm — E[Xsm])z| = sup [¢7°Q(2)Q(2)9|.

zeBK zeBK

= vec(® o )* (U @ I )SCh.,CiCrCs-,S*(u, @ Iy )vec(®,,)
=1

We get a tail bound of the supremum of the second order chaos process ¢*Q(2)*Q(z)p —

E[¢*Q(2)*Q(2)¢)] by applying Theorem 5.1 with M = Q(z) and A = {Q(z)|z € BX}.
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Recall that in section 5.2 we defined S by

g Ok 10-kv1 Ik
I Ok 1K

Then the radius of A with respect to the Frobenius norm is upper bounded by

dp(A) < sup ||ul2]|CaS™||[SCs-x ¥

zEBf
< sup [ul|2]|SCCoS™[|*VE | 212 < [|ull2/p= K,
z€B;

where the first inequality follows from the identity Cg., 8" = S*S Cs., 5™
Let || - |[2,00 be defined in (39). Then the radius of A with respect to the spectral norm is
upper bounded by

ds(A) < sup |ullz,0|C2S*|||SCs-s|

z€B§
(62) < sup ||Jull2,00v/paVL|FS* 2|00
z€B§
< sup [ufz00v/Pell 2]t < llufl200v P2 K
z€B;

where the second inequality follows from the identity Cg«, = v LF*diag(FS*z)F and the
third inequality follow from ||F : ¢ — ¢L || = %
By (62) and Dudley’s inequality, the 7, functional of A is upper bounded by

A1) < CulllaoerVE [ log N(PS BE, |- o)t
< Collul|2,00 /P2 VE /log K log*? L,

where the last step follows from Corollary A.5. The assertion follows by applying these
estimates to Theorem 5.1 together with a union bound argument over m =1,..., M.

D.3. Proof of Lemma 5.5. Note that ||Z,, — E[Z,,]| is written as a variational form
given by

(63) sup 2" Z;q — E[z"Z4]|.

2Bt~ qeBP
Let ¢, = vec(®,,). Then
2" Znq = z*ch*@mumS*émq = @8 (TUmq' ® SC%. S )bm.
Then (63) becomes the supremum of the second order chaos process

by (w, ® SCE, S (q" @ Ix)m — Elgy, (u,, ® SCE, S*)*(a" @ Ix)dpm]
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over z € B22K “Land q € BL. We obtain its tail estimate by applying Theorem 5.2 with
Ay ={u,,®SC;. _S*|ze B}

and
AQZ{qT®IK|q€B2D}.

The radii of A1 and Ay are upper bounded by
ds(A1) < dp(A1) < |luf2,0VE

and
ds(Ag) <1, dp(Ag) < VK.

Moreover, since

luy ® SCE.S*|| < l[ufl2,00 VLI FS* 2],

we have

Ya(Ar |- ) < Cllufoe VI /O VNES B |- [l t)dt

< Cg||uug,oo\/LK/ \/N(FS**BfK—l,H oo, t)dt
0
< Cslul|2,00 VK /1og(2K — 1) log*? L,

where the last step follows from Corollary A.5.
On the other hand, we also have

00 1 9
o(Ba, |- ]) < €1 / VNBP -2, t)dt < Oy / \/w tog (142 )dt < C4/D.
0 0

By applying the estimates to Theorem 5.2 with a given in (60), we obtain that the supre-
mum is upper bounded by

C(|u]|2.00 K3/>VD/log K 10g>? L + ||u||2,00 K /log K log/? L
+ ||utll2,00 VK D) log(log M + Blog K')
with probability 1 — M 1K,
The assertion follows by applying a union bound argument over m =1,..., M.

D.4. Proof of Lemma 5.6. Note that the spectral norm of Y°M_ e* ® (Z,, — E[Z)])
admits a variational form given by

M
(64) sup ‘ Z 2" Z oy — E[2" Z,, 00|,
zeBF T weBMP T T
where v, € CP form =1,...,M and v = [v],...,v},]".
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Let ¢, = vec(®,,) for m=1,...,M and ¢ = [¢] , ..., (bL]T Then as before

M M
Z 2* 2o, = Z 2"8Cgp, 4, S ®Pmvn
m=1

m=1

M
> O (v, © SCE, S*)bm
1

m

M * M
= ¢* (Z emel, @u) SC’E*ZS*> (Z emes, @ v, @ IK> é.

m=1 m=1

Then (64) becomes the supremum of a second order chaos process. We obtain its tail
estimate by applying Theorem 5.2 with

M
Ay = { Z emel, @ u,, ® SCL. S|z € B%K_l}
m=1

and

M
AQ:{Zem6%®vL®IK|UGB¥D}
=1

Let || - ||2,00 be defined in (39). Then the radii of A; and Ay are upper bounded by
ds(A1) < ullzeoVE,  dr(A1) < |lull2VE < Jull2,00VME,

and
ds(Ag) <1, dp(Ag) < VK.

Moreover, since

< ull200 VL] FS* 2|0,

M
H Z emel, @ u,, ® 5C%. .S
m=1

we have

MMMWSQMMMEAVWW§%KWWWWt

o0
< Callufl2,00v LK/ \/N(FS*B%KA, | lloos t)dt
0
< Cg|]uH2’OO\/?\/log(2K — 1)10g3/2 L,

where the last step follows from Corollary A.5.
On the other hand, since

M
|> emen @ vl o1k < olame.
m=1
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we also have
Y2(A2, [+ ]) < Cl/ \/N(Bé\“), | l2,00, )t < C4v/D+/log Dlog(MD).
0

By applying these estimates to Theorem 5.2 with a given in (60), we obtain that the
supremum is upper bounded by

C'(B)1og* (MK L)||w|l2,00(MY*K3/4DY* + K + VMKD)

with probability 1 — K 4. Finally, by the inequality of arithmetic and geometric means, we

have
M1/4K3/4D1/4 < K+ v MKD
—_— 2 .
This completes the proof.

D.5. Proof of Lemma 5.7. Similar to the proof of Lemma 5.4, we rewrite | X¢ .| as a
variational form given by
sup |5 Temzal.
zl,zQEBQK

By the commutativity of convolution and (61), 27X 22 is written as follows:

M M

Y 2{8Ch-5, 4 ,CiCu,,Sz=Y_ vec(®p) (W ® SCsez,CyChu,, 8" 22),
m/=1 m/=1
m'#£m m/#m

which, conditional on w, is a centered Gaussian process indexed by (21, z2) € Bé( X Bé( . We
compute a tail estimate of the supremum by applying Lemma A.6 with

A ={f(z1,22) | z1,22 € By},
where

M
flz1,22) = Y e @Upy @ SC3Cy, ,Csez, S 2s.

m/=1
m'#m

Since HCS*(zj—zg.)H =VL|FS*(z; — 2j)|loc for j = 1,2 and hence
£ (21, 22) — F(21, 29)ll2 < [[f (21, 22) = (21, 22)ll2 + | £ (21, 22) — £(21, 25) 2
< Null2pewVI(IFS* (21 = 21)llc + [|FS* (22 — 25)l|o0)
it follows that

| VI NTAT Tttt < CrllulapanVE | \log N(PS*BE, | -, )
0 0

< CillullapaaVEL | \flog N(ES B [ocs )t
0
< C'QHuHQpﬂW\/E\/logKlog:g/2 L,

where the last step follows from Corollary A.5 together with the observation that || F|| hosel, <

L~12. Then the assertion follows from Lemma A.6 with a union bound argument over m =
1,..., M.
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D.6. Proof of Lemma 5.8. Let ¢, = vec(®,,) form =1,...,M and ¢ = [¢] , ..., (b]T/[]T.
Let vy,...,vp € CP and v = [v],...,v,,] € BMP. Then the spectral norm of Z%:l e, ®
ngvm C.S*®,, is rewritten as

M M
H Z e, ® ngvamS*@mH = sup sup Z z*S’CZ,mCmS*‘I)mvm’
m=1 Z€B§K71 UeBéwD m=1

NE

= sup sup
zeB Kt veB)P

(v ® z*éc;mcms*)%]

m=1
M

= sup  sup Z el @ (v, ® z*SCfUmCmS*)¢‘.
m=1

Z€B§K71 ,veBé\/ID

Let

f(z,0) =) en® (Um @ SCLCy,, S 2).

1=

Then we obtain
M
H S e SCLmaS*@mH — sup  suwp |f(z,0)9|.
me1 veBMP zep2K-!

Note that f(z,v)*¢, conditioned on w, is a centered Gaussian process. We compute a tail
estimate of this supremum by applying Lemma A.6 with

A={f(z,v) |z B* veBMP}.
Then we need to compute the entropy integral for A. Recall

pruw = max [|SC3Cw 8| = 8C;, CoS"|| Ym=1.....M.

By the triangle inequality, we obtain
1f(z,0) = F(Z, V)2 < | f(z.0) = (2,02 + [ f(2,7) = (2, V)2

< paa(12ll2llv = 0ll2 + 12 = Z'[l2[10']]2)
< paaw(v =Vl + |2 = 2'l|2).

The integral of the log-entropy number is computed as

sup  sup [f(z,0)"9|

veBMP ze 2K

sa/ Vg N(A, T 1z )t
0

< Cupn ([ NBIP - Lt + [ log MBI oty
0 0
< C2Pr,w(V MD + VK),

where the last step follows from a standard volume argument. Then the assertion follows from
Lemma A.6.
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D.7. Proof of Lemma 5.9. By the homogeneity of p,,, we may assume that o,, = 1. We
first consider the case that m/ = m. Let z € CX. Then by the commutativity of convolution,
we have

Cuw, S"z =w, ® Sz = Cg-ywy,.

Therefore, the spectral norm of S(Cy, Cu,, —E[C}, C.,]|)S* is rewritten as
1S(C,, Crw,,, — E[Cy,,, Cw,, |)S7|| = sup |2"S(Cy,,, Cw,, — E[C,, Cw,,])S 2|
zeBK
= sup |w;,Cg-,Cs-wy — Elw,,Cg.,Cs-wnp]|,

zEBé(

where the last term is the supremum of a second order chaos. We use Theorem 5.1 to get its
tail estimate. Define
A, = {Cs*z ‘ FALS Bf}

Then the radii of A, with respect to the spectral and Frobenius norms are given by

ds(Az) = sup ||Cgz|]| = sup \/ZHFS*zHOO = sup |z|1 = VK,

zGBQK z€B2K zEBQK
dp(Az) = sup ||Csez|p = sup VIL|z|2 = VL.
zeBE zeBEK

Moreover, the 7o functional of A, is bounded by

2(Bar 1) £ CVE [\ log NES BE |- st
0

< clx/ﬁ/ooo \1og N(FS*BE, || - ||, t)dt
< C1\/E\/lmﬁlog3/2 L,
where the last step follows from Lemma A.4. By Theorem 5.1,
1S(C;, Chw,, —E[C}, Cuw,,))S*|| < CoZK(1+log K)log® L(1 + 2log M + Blog K)
holds with probability 1 — M 2K 7.

Next we consider the case where m’ # m. In this case, we have E[C}, Cy ,| = Of L.
Similarly to the previous case, the spectral norm of SCY, C4 ,S* is rewritten as

|SCs,, Cw ,S*|| = sup |w:nC§*qCS*z’wm/’ = sup ’@jn’m,L:;Rzzﬂmﬂﬂ/‘,
z,qeBK z,qeBK
where
R L I — 0L Opr R. — 0.1 Cs
m,m’ = = z — .
Wy |’ 1 Csq 01|’ 0. OpLr
Define

ALq:{Lq|q€B§}
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and

AR, ={R.|z€BJ}.
Then, the radii and o functional of Ap, and Ag, are identical to those of A,. Therefore, by
Theorem 5.2,

1S(C;, Cw. , —E[C}, Cuw, 1)S*|| < ColK(1+logK)log® L(1+ 2log M + Blog K)

Wm w,,,/
holds with probability 1 — M 2K P, The assertion follows by applying a union bound argu-

ment.

D.8. Proof of Lemma 5.10. Without loss of generality, we assume that o,, = 1. Similarly
to the proof of Lemma 5.9 in Appendix D.7, we can rewrite M p,, as the supremum of a second
order chaos process as follows:

Mpy = sup Z w;, Cg.,Cs-wp, — E[w;knC};*zCs*zwm]‘
ZJEBéK m=1

— sup ‘w*(IM ® Ch,Csen)w — Elw* (I ® cg*zcs*z)w]‘,

z€B§
where w = [w?, e w&]T is a standard complex Gaussian vector of length M L.

Define _
A, ={I;®Cg-, | z € B¥}.

Then the radii of A, with respect to the spectral and Frobenius norms are upper bounded
respectively by

ds(A,) = sup VL||[FS*z|s < VK,

z€BX
dr(Az) = sup VM||Cg-.|r < VML.
zeBK
Moreover, since ||[Iy; ® Cg+z|| = ||Cs«z|, the 72 functional of A, is upper bounded by

Yo (Bzs || ) = 1Az, [ - 1) € C1VElog K log?* I,
where the last step has been shown in Appendix D.7. By Theorem 5.1,
pw < CBo2 M~Y2/KL(1 +log K) log® Llog K

holds with probability 1 — K 5.

D.9. Proof of Lemma 5.11. First we rewrite ®v as
@U::‘V;¢’

where
¢ = [vec(®1)",...,vec(®1)]"
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and

M
W, = Z emeﬁl@v;@IK.

m=1

Then it follows that
v (Y Y, — AN)Pv =W, (Y, Yy — AWy,

where the latter, conditional on w, is a quadratic Gaussian form. Furthermore, by direct
calculation, we have

Epl¢" Wy (Y Yo — M)Wy @] = Eg[ @7 (Y, Ya — A)®] = tr(Y,Ys — A)Iarp = Onp up-
Then ||®*(Y,Y, — A)®|| is written as

sup [@" Wy (Y Yo — M)Wy — Eg[op"W, (Y Yy — M)W,

veBMP

which is the supremum of a second order Gaussian chaos process. We compute its tail estimate
by applying Theorem 5.2 with

Alz{W'U|’U€BéV[D}
and
Ay = {(Y'Y, — AW, | v e BMPY,

Let || - ||p,q be defined in (39). Then the radii of Ay with respect to the Frobenius and
spectral norms are upper bounded respectively by

ds(A1) < sup |lvfl2,00 <1,
veBMP
dp(A)) < sup VEK|v|2 < VK.

'uEBéVID

By Lemma E.1, the o functional is bounded by

(Al ) < € / VI8 N(BYP, | - |20, t)dt < Cov/D/log D log(MD).
0

We repeat the calculation for Ag. Note that (Y'Y, — A)W,, is expressed as

M M
(VYo — AW = 3 enel @00 3 S(Cu,, C , — lwn|311)S"

m=1 m'=1
m'#m

M M
-3 Y emely ®v,, ®8Cy,C;, | S*.
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Noting that all the summands in this decomposition are K x K matrices and orthogonal
with respect to the Frobenius inner product, we obtain that the Frobenius norm of (YY; —
A)W, is upper bounded by

M M
2
1Y Yo = AWl < Y Jonl3K| > S(Cu, Ci, — 1w 310)S"
m=1 m'=1

m'#m

M M
+3° Y lvwl3K(1SCw,. C,,, S*I1?
m=1

m'=1
< 2||v|3K(M?py, + py,) + [0|3E M P,
which implies that
1Y Ya — M)Wollp < Cllv][2VE(Mpy + VMpu).
On the other hand, it follows from the block Gershgorin disk theorem [11] that

(Y Y, — M)W,

M M
< | Jnax, vaHaH Zl S(Cw,,C;, , — llwa |31L)S™|| + Zl 1|12 SCu,, Cy S|
nT"rLL’;Zm m’;zm
< Jll2,00(Mpw + puw) + [V]l21pw < [[V]|2,00M (Pw + 2puw)-

Therefore, the radii of Ay with respect to the Frobenius and spectral norms are upper
bounded respectively by

Moreover, by Lemma E.1, the v functional is bounded by

a1 < CM (o +200) [ o NBYP I

< CoMVD(py + 2pw)/log D log(MD).

2,00 t)dt

Consequently, Theorem 5.2 yields that

19" (¥ Y — )| < C(8)MVED(pu + 2p) log Dlog>(MD)

holds with probability at least 1 — K 7.
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D.10. Proof of Lemma 5.12. We modify the proof of Lemma 5.11 in Appendix D.9 as
follows.
First note that

|2 (Y Ya — MBuly ¢ WiQuQuWad

[l weBIP [l2

We only need to replace Ar by the following singleton set:
Aru = {(YY, — AW, }.
Indeed, the radii of AR,H and AR are the same for both the Frobenius and spectral norms.

However, the o functional of AR@ is 0. The assertion follows by applying the modified
estimates to Theorem 5.2.

Appendix E. Entropy estimates.

Lemma E.1.
(o]
(65) / \/log N(BéWD, |- 2,00, t)dt < C\/ﬁx/longog(MD).
0

Proof of Lemma BE.1. Let us recall that the (2, c0)-block norm of v € CMP is defined by

[V][2,00 = max |Jvpl|2,
me([M]

where vy, € CP for k =1,..., M denotes the blocks of v such that v = [v],...,v},].
Since
[0]|2,00 < [J0]|2,
the interval in the integral in (65) can be restricted to the unit interval [0, 1).
Indeed, the (2, 00)-block norm of v is rewritten as

vll2,00 = ax ggg;(vm,ﬁ-

To compute an estimate of the entropy integral in (65), we adopt the strategy [20] that
estimates a unit ball using a polytope. The original strategy [20] was developed for the
restricted isometry property analysis for low-rank tensors and applied to the tensor nuclear
norm. The same strategy applies to the block norm in this section too.

Lemma E.2. There exist 1,...,¢n € SP~1 such that
BY 2 conv{(y,...,¢n}
and log N < (2D + 1) log(4D + 3).

Proof of Lemma B.2. Let {¢1,...,¢n} € SP~! be an e-net of SP~!. Then by the standard
volume argument, we have N < (1 + 2/¢)?P. Furthermore, it follows that

1
sP=1 ¢ T—%" absconv{(i,...,¢n}-
—€
Indeed, for any w € SP~!, we construct a sequence (Wy, ag)ren C {C1,- - .,¢n} x C as follows.
Let a; = 1 and w; be the closest vector to w in {(1,...,¢{n}. If w = ayw;, then o = 0
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and wy = 0 for all £ > 2. Otherwise, let ag = ||lw — aywi||2 and ws be the closest vector to
a;l(w —oqw) in {¢1,...,¢n}. If w = 1w + apwy, then ap = 0 and wy, = 0 for all k > 3.
Otherwise, let a3 = ||w—aq w1 —awsl|2 and w3 be the closest vector to agl(w—alﬁg—al'@z)
in {¢1,...,¢{n}. By continuing in this way, we have

w = 5 apWy,

where |ag| < €71 and ||@Wg||2 = 1 for all k € N. Therefore,

keN

and the assertion follows. By including +¢; instead of , we can replace the absolute convex
hull by convex hull and the cardinality increases only by factor 2. Choosing ¢ = 1/(2D + 1)
completes the proof. ]

By Lemma E.2, we approximate the (2, c0)-block norm of v as a polytope norm as follows:
v = max max (v
ol = max, max (v,.C)

<2 max . max (vm,()
(66) ¢€conv{¢1,....¢n } meE[M]

=2 m> Gn
mmax max [(Vm), Cn)|

=:2|[[v]l],

where log N < (D + 1) log(2D + 3).
Define

SCn = {’U = [UF,...,UJ—\I—J]T n?é?]\}/{[] |<Um7Cn>| < 1}

Then its polar set is given by
S¢ ={z®lz € BM} = conv{ey ® ¢u|d € [D]}.

Note that the unit ball with respect to [[|-[|| is given as (,¢n) S¢,- To compute the
unit ball with respect to the dual norm, we will use a well-known polar duality result in
the following lemma. Note that S¢, is not bounded. As the lemma is typically stated for
bounded sets, we provide the proof for completeness, verifying that boundedness is not a
crucial assumption.

Lemma E.3. Let A and B be convex sets. The polar set of the intersection of A and B is
given by
(AN B)° = conv(A° U B°).

Proof of Lemma E.3. We first show

(67) (conv(A°UB°))° C ANB.
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Suppose that z € AN B. Since A and B are convex, we have A = A°° and B = B°°.
Without loss of generality, we may assume that x ¢ A°°. Then there exists w € A° such that

(68) |(z,w)| > 1.

Since A° C A° U B° C conv(A° U B°), w also satisfies

(69) w € conv(A° U B°).

The existence of w satisfying both (68) and (69) implies that
x & (conv(A° U B?))°.

Then (67) follows by contraposition.
Next, we show the other inclusion, which is

(70) AN B C (conv(A° U B?))°.

Suppose that x € AN B = A°° N B°°. Then for all wq € A°, wp € B°, and t € [0,1], it
follows that
[z, twa + (1 — wp)| < t{{lw,wa)| + (1 — ) |{w, wp)| < 1.

Therefore
x € conv(A° U B°)°.

We have shown that
AN B = conv(A°UB°)°.

The assertion follows from the definition of polar sets. |
By the polar duality in Lemma E.3, the unit ball with respect to the dual of |||-]|| is
given as

conv U S¢. | = conv U conv{eq ® {,|d € [D]}
ne[N] ne(N]

= conv{ey ® {p|n € [N], d € [D]}.
Collecting the above estimates, we bound the log entropy number in (65) as follows:

log N(BY"™, || 200, 1) S log N(B™Z, ]I ||, 1/2)

SlogN (conv | ) SE Il 2,t/2
ne[N]
S log N (conv{eq ® Guln € [N], d € [D]}, || - [2,¢/2),

where the first inequality follows from (66) and the second inequality holds by the entropy
duality by Artstein, Milman, and Szarek [2].
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Next we define a linear map Q : /NP — ¢31P 5o that the standard basis vectors in {7
are mapped to distinct elements in {e; ® {,, | n € [N], d € [D]}. In this construction, we
only care about the one-to-one correspondence and we do not care how we enumerate the
elements of {eq ® {, | n € [N], d € [D]}. Although @ is not uniquely determined and there
is ambiguity up to a permutation in /P every map @ constructed as above satisfies that
1Q : P — )P = 1. Fix Q and we get

1 1
[ Vs NI ottt < [ flog 3 (QBNP | - /2)
< Vlog(ND) log(M D) < vDy/log Dlog(MD),

where the second inequality follows from Corollary A.5. |
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