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Bli n d  G ai n a n d P h as e  C ali br ati o n vi a
S p ars e S p e ctr al  M et h o ds

Ya nj u n  Li ,  Kir y u n g  L e e , M e m b e r, I E E E , a n d  Yor a m  Br e sl er, Fell o w, I E E E

A bstr a ct —  Bli n d g ai n a n d p h as e c ali b r ati o n ( B G P C) i s a
bili n e a r i n v e rs e p r o bl e m i n v ol vi n g t h e d et e r mi n ati o n of u n k n o w n
g ai n s a n d p h as es of t h e s e n si n g s yst e m, a n d t h e u n k n o w n
si g n al, j oi ntl y.  B G P C a ri s es i n n u m e r o u s a p pli c ati o n s, e. g.,
bli n d al b e d o esti m ati o n i n i n v e rs e r e n d e ri n g, s y nt h eti c a p e rt u r e
r a d a r a ut of o c u s, a n d s e n s o r a r r a y a ut o- c ali b r ati o n. I n s o m e
c as es, s p a rs e st r u ct u r e i n t h e u n k n o w n si g n al all e vi at es t h e ill-
p os e d n ess of  B G P C.  R e c e ntl y, t h e r e h as b e e n r e n e w e d i nt e r est
i n s ol uti o n s t o  B G P C  wit h c a r ef ul a n al ysi s of e r r o r b o u n d s.
I n t hi s p a p e r,  w e f o r m ul at e  B G P C as a n ei g e n v al u e/ ei g e n v e ct o r
p r o bl e m a n d p r o p os e t o s ol v e it vi a p o w e r it e r ati o n, o r i n t h e
s p a rsit y o r j oi nt s p a rsit y c as e, vi a t r u n c at e d p o w e r it e r ati o n.
U n d e r c e rt ai n ass u m pti o n s, t h e u n k n o w n g ai ns, p h as es, a n d
t h e u n k n o w n si g n al c a n b e r e c o v e r e d si m ult a n e o u sl y.  N u m e ri c al
e x p e ri m e nts s h o w t h at p o w e r it e r ati o n al g o rit h ms  w o r k n ot o nl y
i n t h e r e gi m e p r e di ct e d b y o u r  m ai n r es ults, b ut al s o i n r e gi m es
w h e r e t h e o r eti c al a n al ysi s i s li mit e d.  We al s o s h o w t h at o u r
p o w e r it e r ati o n al g o rit h ms f o r  B G P C c o m p a r e f a v o r a bl y  wit h
c o m p eti n g al g o rit h ms i n a d v e rs a ri al c o n diti o n s, e. g.,  wit h n oi s y
m e as u r e m e nt o r  wit h a b a d i niti al esti m at e.

I n d e x  Ter ms —  A ut o- c ali b r ati o n, g r e e d y al g o rit h m, i n v e rs e r e n-
d e ri n g,  m ulti c h a n n el bli n d d e c o n v ol uti o n, n o n c o n v e x o pti mi z a-
ti o n, p o w e r  m et h o d, S A R a ut of o c u s, s e n s o r a r r a y p r o c essi n g,
t r u n c at e d p o w e r it e r ati o n.

I. I N T R O D U C T I O N

B LI N D g ai n a n d p h as e c ali br ati o n ( B G P C), t h e j oi nt
r e c o v er y of t h e u n k n o w n g ai n s a n d p h a s es i n t h e s e n si n g

s y st e m a n d t h e u n k n o w n si g n al, i s a bili n e ar i n v er s e pr o bl e m
t h at aris es i n  m a n y a p pli c ati o n s: t h e j oi nt esti m ati o n of al b e d o
a n d li g hti n g c o n diti o n s i n i n v er s e r e n d eri n g [ 2]; t h e j oi nt
r e c o v er y of p h a s e err or a n d r a d ar i m a g e i n s y nt h eti c a p ert ur e
r a d ar ( S A R) a ut of o c u s [ 3]; a n d a ut o- c ali br ati o n of s e n s or
g ai n s a n d p h a s es i n arr a y pr o c e ssi n g [ 4].  T h er e e xists a l o n g
li n e of r e s e ar c h r e g ar di n g t h e s ol uti o n s f or e a c h a p pli c ati o n.
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H o w e v er, f u n d a m e nt al s a m pl e c o m pl e xiti e s f or t h e u ni q u e n e ss
of s ol uti o n s t o  B G P C [ 5], [ 6], a n d err or b o u n d s f or ef fi ci e nt
al g orit h ms [ 7], [ 8] h a v e b e e n est a blis h e d o nl y r e c e ntl y.  A  m ai n
dr a w b a c k of t h e g u ar a nt e e d al g orit h m s of [ 7] a n d [ 8] is t h at
t h e r e c o v er y err or is s e n siti v e t o t h e c h oi c e of c ert ai n li n e ar
c o n str ai nt s.  We r ef er r e a d er s t o S e cti o n I- D f or a d et ail e d
dis c u ssi o n of pri or art.
I n t his p a p er,  w e o v er c o m e t h e dr a w b a c k s of pr e vi-
o u s al g orit h m s b y r ef or m ul ati n g t h e  B G P C pr o bl e m a s
a n ei g e n v al u e/ ei g e n v e ct or pr o bl e m. I n t h e s u b s p a c e c a s e,
w e u s e al g orit h m s t h at fi n d pri n ci p al ei g e n v e ct or s s u c h as t h e
p o w er it er ati o n al g orit h m ( als o k n o w n a s t h e p o w er  m et h o d)
[ 9, S e c. 8. 2. 1], t o fi n d t h e c o n c at e n ati o n of t h e g ai n a n d p h a s e
v e ct or a n d t h e v e ct ori z e d si g n al  m atri x i n t h e f or m of t h e
pri n ci p al c o m p o n e nt of a str u ct ur e d  m atri x. I n t h e s p ar sit y
c a s e, t h e pr o bl e m r e s e m bl es s p ar s e pri n ci p al c o m p o n e nt a n al y-
sis ( s p ar s e P C A) [ 1 0].  We t h e n pr o p o s e t o s ol v e t h e s p ar s e
ei g e n v e ct or pr o bl e m u si n g tr u n c at e d p o w er it er ati o n [ 1 1].
T h e  m ai n c o ntri b uti o n of t his p a p er is t h e t h e or eti c al
a n al y sis of t h e err or b o u n d s of p o w er it er ati o n a n d tr u n-
c at e d p o w er it er ati o n f or  B G P C i n t h e s u b s p a c e a n d j oi nt
s p arsit y c as es, r es p e cti v el y.  W h e n t h e  m e as ur e m e nt  m atri x
is r a n d o m, a n d t h e si g n als a n d t h e n ois e ar e a d v er s ari al,
o ur al g orit h m s st a bl y r e c o v er t h e u n k n o w n g ai n s a n d p h a s es,
a n d t h e u n k n o w n si g n al s  wit h hi g h pr o b a bilit y u n d er n e ar
o pti m al s a m pl e c o m pl e xiti es. Si n c e tr u n c at e d p o w er it er ati o n
r eli es o n a g o o d i niti al esti m at e,  w e als o pr o p os e a si m pl e
i niti ali z ati o n al g orit h m, a n d pr o v e t h at t h e o ut p ut is s uf fi ci e ntl y
g o o d u n d er c ert ai n t e c h ni c al c o n diti o n s.  T h e f u n d a m e nt al
esti m at es d eri v e d i n t his p a p er c a n b e a p pli e d t o ot h er al g o-
rit h m s f or  B G P C, a n d p o ssi bl y t o al g orit h m s f or si mil ar
pr o bl e m s.
We c o m pl e m e nt t h e t h e or eti c al r es ults  wit h n u m eri c al
e x p eri m e nts,  w hi c h s h o w t h at t h e al g orit h m s c a n i n d e e d s ol v e
B G P C i n t h e o pti m al r e gi m e.  We als o d e m o n str at e t h at t h e
al g orit h ms ar e r o b u st a g ai n st n ois e a n d a n i n a c c ur at e i niti al
esti m at e.  E x p eri m e nts  wit h diff er e nt i niti ali z ati o n s c h e m es
s h o w t h at o ur i niti ali z ati o n al g orit h m si g ni fi c a ntl y o ut p erf or m s
t h e b as eli n e.  T h e n  w e a p pl y t h e p o w er it er ati o n al g orit h m t o
i n v ers e r e n d eri n g, a n d s h o w c as e its eff e cti v e n ess i n r e al- w orl d
a p pli c ati o n s.
T h e r e st of t h e p a p er is or g a ni z e d a s f oll o w s. I n t h e
r e m ai n d er of t his s e cti o n,  w e i ntr o d u c e t h e f or m ul ati o n of t h e
B G P C pr o bl e m, a n d s ur v e y r el at e d  w or k.  We t h e n i ntr o d u c e
t h e p o w er it er ati o n al g orit h m s a n d o ur  m ai n t h e or eti c al r es ults
i n S e cti o n s II a n d III, r e s p e cti v el y. S e cti o n s I V a n d  V gi v e
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s o m e f u n d a m e nt al e sti m at e s r e g ar di n g t h e str u ct ur e d  m atri x
i n o ur  B G P C f or m ul ati o n, a n d t h e pr o of s f or o ur  m ai n r e s ults.
We c o n d u ct s o m e n u m eri c al e x p eri m e nts i n S e cti o n  VI, a n d
c o n cl u d e t h e p a p er  wit h s o m e dis c u ssi o n i n S e cti o n  VII.

A.  N ot ati o n s

We u s e A , A , a n d A ∗ t o d e n ot e t h e tr a n s p o s e, t h e c o m-
pl e x c o nj u g at e, a n d t h e c o nj u g at e tr a n s p o s e of a  m atri x A ,
r es p e cti v el y.  T h e k -t h e ntr y of a v e ct or λ is d e n ot e d b y λ k .
T h e j-t h c ol u m n, t h e k -t h r o w (i n a c ol u m n v e ct or f or m),
a n d t h e (k , j)-t h e ntr y of a  m atri x A ar e d e n ot e d b y a · j , a k ·,
a n d a kj , r e s p e cti v el y.  U p p er s cri pt t i n a v e ct or η

(t) d e n ot e s
t h e it er ati o n n u m b er i n a n it er ati v e al g orit h m.  We u s e In t o
d e n ot e t h e i d e ntit y  m atri x of si z e n × n , a n d 1 n ,m a n d 0 n ,m t o
d e n ot e t h e  m atri c e s of all o n e s a n d all z er o s of si z e n × m ,
r es p e cti v el y.  T h e i-t h st a n d ar d b a sis v e ct or is d e n ot e d b y e i ,
w h o s e a m bi e nt di m e n si o n is cl e ar i n t h e c o nt e xt.  T h e p

n or m a n d 0 “ n or m ” of a v e ct or x ar e d e n ot e d b y x p a n d
x 0 , r e s p e cti v el y.  T h e Fr o b e ni u s n or m a n d t h e s p e ctr al n or m
of a  m atri x A ar e d e n ot e d b y A F a n d A , r e s p e cti v el y.
T h e s u p p ort of a s p ar s e v e ct or x is d e n ot e d b y s u p p( x ). T h e
v e ct or v e c ( X ) d e n ot e s t h e c o n c at e n ati o n of t h e c ol u m n s of
X = [ x ·1 , x ·2 , . . . , x ·N ], i. e., v e c( X ) = [ x ·1 , x ·2 , . . . , x ·N ] .
A di a g o n al  m atri x  wit h t h e e ntri e s of v e ct or x o n t h e di a g o n al
is d e n ot e d b y di a g( x ).  T h e  Kr o n e c k er pr o d u ct is d e n ot e d b y
⊗ . We u s e t o d e n ot e t h e r el ati o n gr e at er t h a n u p t o l o g
f a ct or s.  We u s e [n ] t o d e n ot e t h e s et {1 , 2 , . . . , n }, a n d u s e +
t o d e n ot e  Mi n k o ws ki a d diti o n of s ets. F or e x a m pl e, [n ] + {m }
d e n ot e s {m + 1 , m + 2 , . . . , m + n }. F or a n i n d e x s et T , t h e
pr oj e cti o n o p er at or o nt o T is d e n ot e d b y T , a n d t h e o p er at or
t h at r e stri cts o nt o T is d e n ot e d b y T .  We u s e t h es e o p er at or
n ot ati o n s f or diff er e nt s p a c e s, a n d t h e a m bi e nt di m e n si o n s  will
b e cl ari fi e d i n t h e c o nt e xt.

B.  P r o bl e m  F o r m ul ati o n

I n t his s e cti o n,  w e i ntr o d u c e t h e  B G P C pr o bl e m  wit h a
s u b s p a c e c o n str ai nt or a s p ar sit y c o n str ai nt. S u p p o s e A ∈
C n × m i s t h e k n o w n  m e a s ur e m e nt  m atri x, a n d λ ∈ C n is t h e
v e ct or of u n k n o w n g ai n s a n d p h a s es, t h e k -t h e ntr y of  w hi c h

is λ k = | λ k |e
√
− 1 ϕ k .  H er e, |λ k | a n d ϕ k d e n ot e t h e g ai n a n d

p h a s e of t h e k -t h s e ns or, r es p e cti v el y.  T h e  B G P C pr o bl e m is
t h e si m ult a n e o u s r e c o v er y of λ a n d t h e u n k n o w n si g n al  m atri x
X ∈ C m × N fr o m t h e f oll o wi n g  m e a s ur e m e nt:

Y = di a g ( λ) A X + W , ( 1)

w h er e W ∈ C n × N i s t h e  m e a s ur e m e nt n oi s e.  T h e (k , j)-t h
e ntr y i n t h e  m e a s ur e m e nt y kj h a s t h e f oll o wi n g e x pr e ssi o n:

y kj = λ k a k · x · j + w kj .

Cl e arl y,  B G P C is a bili n e ar i n v er s e pr o bl e m.  T h e s ol uti o n
( λ, X ) s uff er s fr o m s c ali n g a m bi g uit y, i. e., ( λ / σ, σ X ) g e n er-
at es t h e s a m e  m e as ur e m e nts as ( λ, X ), a n d t h er ef or e c a n n ot
b e disti n g uis h e d fr o m it.  D es pit e t h e f a ct t h at t h e s ol uti o n c a n
h a v e ot h er a m bi g uit y iss u e s, i n t his p a p er,  w e c o n si d er t h e
g e n eri c s etti n g  w h er e t h e s ol uti o n s uff er s o nl y fr o m s c ali n g

a m bi g uit y [ 6]. 1 E v e n i n t his s etti n g, t h e s ol uti o n is n ot u ni q u e,
u nl e ss  w e e x pl oit t h e str u ct ur e of t h e si g n als. I n t his p a p er,
w e s ol v e t h e  B G P C pr o bl e m u n d er t w o s c e n ari o s –  B G P C
wit h a s u bs p a c e str u ct ur e, a n d  B G P C  wit h s p arsit y.
1) S u b s p a c e  C a s e: S u p p o s e t h at t h e k n o w n  m atri x A is
t all (n > m ) a n d h a s f ull c ol u m n r a n k.  T h e n t h e c ol u m n s of
A X r e si d e i n t h e l o w- di m e n si o n al s u b s p a c e s p a n n e d b y t h e
c ol u m n s of A .  T h e pr o bl e m is eff e cti v el y u n c o n str ai n e d  wit h
r es p e ct t o X .
2) S p a rsit y  C a s e: S u p p o s e t h at A is a k n o w n di cti o-
n ar y  wit h m ≥ n ,  w hil e t h e c ol u m n s of X ar e s 0 - s p ar s e,
i. e., x · j 0 ≤ s 0 f or all j ∈ [ N ].  A v ari ati o n of t his s etti n g
is t h at t h e c ol u m n s of X ar e j oi ntl y s 0 - s p ar s e, i. e., t h er e ar e
at  m o st s 0 n o n z er o r o ws i n X . I n t hi s c a s e, t h e s u b s p a c e
c o n str ai nt o n A X n o l o n g er a p pli es, a n d o n e  m u st s ol v e t h e
pr o bl e m  wit h a s p ar sit y ( or j oi nt s p ar sit y) c o n str ai nt.
T h e  B G P C pr o bl e m aris e s i n a p pli c ati o n s i n cl u di n g i n v er s e
r e n di n g, s e n s or arr a y pr o c essi n g,  m ulti c h a n n el bli n d d e c o n v o-
l uti o n, a n d S A R a ut of o c u s.  We r ef er t h e r e a d er t o o ur pr e vi o u s
w or k [ 6, S e c. II. C] f or a d et ail e d a c c o u nt of a p pli c ati o n s of
B G P C. F or c o n sist e n c y, fr o m n o w o n,  w e u s e t h e c o n v e nti o n
i n s e n s or arr a y pr o c e ssi n g, a n d r ef er t o n a n d N a s t h e n u m b er s
of s e n s or s a n d s n a p s h ots, r e s p e cti v el y.

C.  O u r  C o ntri b uti o n s

We r ef or m ul at e  B G P C as t h e pr o bl e m of fi n di n g t h e pri n ci-
p al ei g e n v e ct or of a  m atri x ( or o p er at or). I n t h e s u b s p a c e c a s e,
t his c a n b e s ol v e d u si n g a n y ei g e n- s ol v er, e. g., p o w er it er ati o n
( Al g orit h m 1). I n t h e s p ar sit y c a s e,  w e pr o p o s e t o s ol v e t his
pr o bl e m u si n g tr u n c at e d p o w er it er ati o n ( Al g orit h m 2).  O ur
m ai n r es ults c a n b e s u m m ari z e d as f oll o ws.
T h e o r e m 1: U n d er c ert ai n a ss u m pti o n s o n A , λ , X , a n d W ,
o n e c a n s ol v e t h e  B G P C pr o bl e m  wit h hi g h pr o b a bilit y u si n g:

1) S u bs p a c e c a s e: al g orit h m s t h at fi n d t h e pri n ci p al ei g e n-
v e ct or of a c ert ai n  m atri x, e. g., p o w er it er ati o n, if n m
a n d N 1.

2) J oi nt s p a rsit y c a s e: tr u n c at e d p o w er it er ati o n  wit h a
g o o d i niti ali z ati o n, if n s 0 a n d N

√
s 0 .

I n  Ta bl e I,  w e c o m p ar e t h e a b o v e r es ults  wit h t h e s a m pl e
c o m pl e xiti es f or u ni q u e r e c o v er y i n  B G P C [ 6], a n d pr e vi o u s
g u ar a nt e e d al g orit h m s f or  B G P C i n t h e s u b s p a c e c a s e [ 7] a n d
t h e s p ar sit y c a s e [ 8]. I n t h e s u b s p a c e c a s e, t h e o pti m al s a m pl e
c o m pl e xiti es f or u ni q u e r e c o v er y ar e n > m a n d N ≥ 2 (f or
m ≤ n / 2).  O ur p o w er it er ati o n  m et h o d s ol v e s  B G P C u si n g
o pti m al ( u p t o l o g f a ct or s) n u m b er s of s e n s or s a n d s n a p s h ots.
T h es e s a m pl e c o m pl e xiti es ar e c o m p ar a bl e t o t h e l e ast s q u ar es
m et h o d i n [ 7].  M or e o v er,  w e s h o w t h at p o w er it er ati o n is
e m piri c all y  m or e r o b u st a g ai n st n ois e t h a n l e a st s q u ar e s.
I n t h e j oi nt s p ar sit y c as e, t h e s a m pl e c o m pl e xiti es f or u ni q u e
r e c o v er y ar e n > 2 s 0 a n d N ≥ 2 (f or s 0 < n / 4).  Tr u n c at e d
p o w er it er ati o n s ol v es  B G P C  wit h a j oi nt s p ar sit y str u ct ur e,
wit h a n o pti m al ( u p t o l o g f a ct or s) n u m b er of s e n s or s, a n d a
sli g htl y s u b o pti m al ( wit hi n a f a ct or of

√
s 0 a n d l o g f a ct or s)

n u m b er of s n a p s h ots. I n c o m p aris o n, t h e 1 mi ni mi z ati o n

1 A n e x a m pl e of a n ot h er a m bi g uit y is a s hift a m bi g uit y  w h e n A is t h e
dis cr et e F o uri er tr a nsf or m  m atri x [ 5], [ 8]. F or a g e n eri c  m atri x A , t h e s ol uti o n
t o  B G P C d o es n ot s uff er fr o m s hift a m bi g uit y.
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m et h o d f or t h e s p ar sit y c a s e of  B G P C u s es a si mil ar n u m b er
of s e n s or s, b ut a  m u c h l ar g er n u m b er of s n a p s h ots.  N u m eri c al
e x p eri m e nts s h o w t h at tr u n c at e d p o w er it er ati o n e m piri c all y
s u c c e e d, i n b ot h t h e j oi nt s p ar sit y c a s e a n d t h e  m or e g e n er al
s p ar sit y c as e, i n t h e o pti m al r e gi m e.
T h e or e m 1 gi v es a t h e or eti c al g u ar a nt e e f or p o w er it er ati o n

i n t h e s u b s p a c e c a s e, a n d a l o c al c o n v er g e n c e g u ar a nt e e f or
tr u n c at e d p o w er it er ati o n i n t h e j oi nt s p arsit y c as e.  T h e s u c c ess
of tr u n c at e d p o w er it er ati o n r eli es o n a g o o d i niti al esti m at e
of X a n d λ ,  w hi c h  m a y or  m a y n ot b e a v ail a bl e d e p e n di n g o n
t h e a p pli c ati o n.  We pr o p o s e a sim pl e i niti ali z a ti o n al g orit h m
( Al g orit h m 3)  wit h t h e f oll o wi n g g u ar a nt e e.
T h e o r e m 2: U n d er a d diti o n al ass u m pti o n s o n t h e a b s ol ut e

v al u e s of t h e n o n z er o e ntri e s i n X , o ur i niti ali z ati o n al g orit h m
pr o d u c e s a s uf fi ci e ntl y g o o d e sti m at e of λ a n d X if n s 20 .
( We d o n ot r e q uir e a n y a d diti o n al ass u m pti o n o n t h e n u m b er
N of s n a p s h ots.)
D es pit e t h e a b o v e s c ali n g l a w pr e di ct e d b y t h e or y, n u m eri c al

e x p eri m e nts s u g g est t h at o ur i niti ali z ati o n s c h e m e is eff e cti v e
w h e n n s 0 .

D.  R el at e d  W o r k

B G P C aris es i n  m a n y r e al- w orl d s c e n ari os, a n d pr e vi o us
s ol uti o n s h a v e  m o stl y b e e n t ail or e d t o s p e ci fi c a p pli c ati o n s
s u c h a s s e n s or arr a y pr o c e ssi n g [ 4], [ 1 2], [ 1 3], s e n s or n et w or k
c ali br ati o n [ 1 4], [ 1 5], s y nt h eti c a p ert ur e r a d ar a ut of o c u s [ 3],
a n d c o m p ut ati o n al r eli g hti n g [ 2].  H o w e v er, t h e pr e vi o u s  m et h-
o d s d o n ot h a v e t h e or eti c al g u ar a nt e e s i n t h e f or m s of q u a n-
tit ati v e err or b o u n d s.
T h e i d e a of s ol vi n g  B G P C b y r ef or m ul ati n g it i nt o a li n e ar

i n v er s e pr o bl e m,  w hi c h is a k e y i d e a i n t his p a p er, h as b e e n
pr o p o s e d b y  m a n y pri or  w or k s [ 2], [ 3], [ 1 4]. I n p arti c ul ar,
Bil e n et al. [ 1 6] pr o vi d e d a s ol uti o n t o  B G P C  wit h hi g h-
di m e n si o n al b ut s p ar s e si g n als u si n g 1 mi ni mi z ati o n.  H o w-
e v er, s u c h  m et h o d s h a v e n ot b e e n c ar ef ull y a n al y z e d u ntil
r e c e ntl y.

Li n g a n d Str o h m er [ 7] d eri v e d a n err or b o u n d f or t h e
l e a st s q u ar e s s ol uti o n i n t h e s u b s p a c e c a s e of  B G P C ( a n d
t w o si mil ar f or m ul ati o n s).  Aft er t h e c o nf er e n c e v er si o n of
o ur p a p er  w a s s u b mitt e d t o S a m p T A 2 0 1 7 [ 1], a n d  w hil e
t his e xt e n d e d v er si o n  w as i n pr e p ar ati o n,  Li n g a n d Str o h m er
i n d e p e n d e ntl y pr o p o s e d, as a v ari ati o n of t h e l e a st s q u ar e s
a p pr o a c h, t h e s p e ctr al  m et h o d f or t h e s u b s p a c e c a s e of
B G P C [ 1 7].  T h eir s p e ctr al  m et h o d a n d o ur a p pr o a c h t o t h e
s u b s p a c e c a s e ar e e ss e nti all y i d e nti c al, as o n e c a n b e d eri v e d
fr o m t h e ot h er  wit h a f e w  m atri x  m a ni p ul ati o n s.2 I n a d diti o n
t o b o u n di n g t h e err or i n t h e pri n ci p al ei g e n v e ct or i n o ur
f or m ul ati o n,  w e al s o e st a bli s h c o n v er g e n c e r at e a n d err or
b o u n d s f or a n ef fi ci e nt p o w er it er ati o n al g orit h m t h at fi n d s
t h e pri n ci p al ei g e n v e ct or.  We s h o w t h at t h e p o w er it er ati o n
m et h o d h as s a m pl e c o m pl e xiti es c o m p ar a bl e t o t h o s e of t h e
l e a st s q u ar e s  m et h o d [ 7], b ut is  m or e r o b u st t o n ois e t h a n t h e
l att er, b ot h i n t h e or y a n d i n pr a cti c e.
Wa n g a n d  C hi [ 8] g a v e a t h e or eti c al g u ar a nt e e f or 1

mi ni mi z ati o n t h at s ol v es  B G P C i n t h e s p arsit y c as e,  w h er e
t h e y ass u m e d t h at A is t h e dis cr et e F o uri er tr a n sf or m ( D F T)
m atri x a n d X i s r a n d o m f oll o wi n g a  B er n o ulli- S u b g a u ssi a n
m o d el. I n t his p a p er,  w e gi v e a g u ar a nt e e f or tr u n c at e d p o w er
it er ati o n u n d er t h e a ss u m pti o n t h at A is a c o m pl e x  G a u ssi a n
r a n d o m  m atri x, a n d X is j oi ntl y s p ar s e,  w ell- c o n diti o n e d,
a n d d et er mi ni sti c. I n t hi s s e n s e,  w e c o n si d er a n a d v er s ari al
s c e n ari o f or t h e si g n al X .  O ur s a m pl e c o m pl e xit y r es ults
r e q uir e a n e ar o pti m al n u m b er n of s e n s or s, a n d a  m u c h
s m all er n u m b er N of s n a p s h ots t h a n [ 8].  M or e o v er, tr u n c at e d
p o w er it er ati o n is  m or e r o b u st a g ai n st n oi s e a n d i n a c c ur at e
i niti al esti m at e of p h as es.
Ver y r e c e ntl y,  El d ar et al. [ 1 8] pr o p o s e d n e w  m et h o d s f or
B G P C  wit h si g n als  w h o s e s p ar s e c o m p o n e nts  m a y li e off t h e
gri d. Si mil ar t o e arli er  w or k o n bli n d c ali br ati o n of s e n s or
arr a y s [ 4], t h e s e  m et h o d s r el y o n e m piri c al c o v ari a n c e  m atri c e s
of t h e  m e a s ur e m e nt s a n d t h er ef or e n e e d a r el ati v el y l ar g e
n u m b er of s n a p s h ots.
A pr o bl e m r el at e d t o  B G P C is  m ulti c h a n n el bli n d d e c o n v o-

l uti o n ( M B D).  M o st pr e vi o u s  w or k s o n  M B D c o n si d er li n e ar
c o n v ol uti o n  wit h a fi nit e i m p uls e r e s p o n s e ( FI R) filt er  m o d el
(s e e [ 1 9] –[ 2 2], a n d a r e c e nt st a bili z e d  m et h o d [ 2 3], [ 2 4]).
I n c o m p aris o n,  B G P C is e q ui v al e nt t o  M B D  wit h cir c ul a r
c o n v ol uti o n a n d a s u b s p a c e  m o d el or a s p ar sit y  m o d el, a ki n
t o s o m e r e c e nt st u di e s [ 7], [ 8].  B G P C i s  m or e g e n er al i n t h e
s e n s e t h at: ( a) li n e ar c o n v ol uti o n c a n b e r e writt e n as cir c ul ar
c o n v ol uti o n vi a z er o- p a d di n g t h e si g n al a n d t h e filt er; ( b) t h e
FI R filt er  m o d el is a s p e ci al c a s e of t h e s u b s p a c e  m o d el.
T o p o siti o n  B G P C i n a br o a d er c o nt e xt,  B G P C is a s p e ci al

bili n e ar i n v er s e pr o bl e m [ 5],  w hi c h i n t ur n is a s p e ci al c as e
of l o w-r a n k  m atri x r e c o v er y fr o m i n c o m pl et e  m e a s ur e m e nts
[ 2 5] –[ 2 8].  A r es ur g e n c e of i nt er est i n bili n e ar i n v er s e pr o bl e m s
w as pi o n e er e d b y t h e r e c e nt st u di e s i n si n gl e- c h a n n el bli n d
d e c o n v ol uti o n of si g n als  wit h s u b s p a c e or s p ar sit y str u ct ur e s,
w h er e b ot h t h e si g n al a n d t h e filt er ar e str u ct ur e d [ 2 9] –[ 3 3].

2 T h e o nl y diff er e n c e b et w e e n t h eir s p e ctr al  m et h o d a n d o ur f or m ul ati o n f or
t h e s u bs p a c e c as e, is t h at t h e y c o m p ut e t h e ri g ht si n g ul ar v e ct or c orr es p o n di n g
t o t h e s m all est si n g ul ar v al u e of a t all  m atri x, a n d  w e c o m p ut e t h e pri n ci p al
ei g e n v e ct or of a s m all er s q u ar e  m atri x.
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A n ot h er r el at e d bili n e ar i n v er s e pr o bl e m is bli n d c ali br ati o n
vi a r e p e at e d  m e as ur e m e nts fr o m  m ulti pl e diff er e nt s e n si n g
o p er at or s [ 3 4] –[ 3 9]. Si n c e bli n d c ali br ati o n  wit h r e p e at e d
m e as ur e m e nts is i n pri n ci pl e a n e asi er pr o bl e m t h a n  B G P C [ 7],
w e b eli e v e o ur  m et h o d s f or  B G P C a n d o ur t h e or eti c al a n al y sis
c a n b e e xt e n d e d t o t hi s s c e n ari o.
Als o r el at e d is t h e p h a s e r etri e v al pr o bl e m [ 4 0],  w h er e t h er e

o nl y e xists u n c ert ai nt y i n t h e p h a s es ( a n d n ot t h e g ai n s) of t h e
s e n si n g s y st e m.  A n a cti v e li n e of  w or k s ol v es p h a s e r etri e v al
wit h g u ar a nt e e d al g orit h m s ( s e e [ 4 1] –[ 4 7] f or a r e c e nt r e vi e w).
T h e err or b o u n d s of p o w er it er ati o n a n d tr u n c at e d p o w er

it er ati o n h a v e b e e n a n al y z e d i n g e n er al s etti n g s, e. g., i n
[ 9, S e c. 8. 2. 1] a n d [ 1 1].  T h e s e pr e vi o u s r e s ults hi n g e o n s p e c-
tr al pr o p erti es of  m atri c es s u c h as g a ps b et w e e n ei g e n v al u es,
w hi c h d o n ot tr a n sl at e dir e ctl y t o s a m pl e c o m pl e xit y r e q uir e-
m e nts.  T his p a p er u n d ert a k e s a n al y sis s p e ci fi c t o  B G P C.
We r el at e s p e ctr al pr o p erti es i n  B G P C t o s o m e t e c h ni c al
c o n diti o n s o n λ , A , X , a n d W , a n d d eri v e r e c o v er y err or
u n d er n e ar o pti m al s a m pl e c o m p l e xiti es.  We als o a d a pt t h e
a n al y si s of s p ar s e P C A [ 1 1] t o a c c o m m o d at e a str u ct ur e d
s p ar sit y c o n str ai nt i n  B G P C.
B G P C a n d o ur pr o p o s e d  m et h o d s ar e n o n- c o n v e x i n n at ur e.

I n p arti c ul ar, o ur tr u n c at e d p o w er it er ati o n al g orit h m c a n b e
i nt er pr et e d as pr oj e ct e d gr a di e nt d e s c e nt f or a n o n- c o n v e x
o pti mi z ati o n pr o bl e m.  T h er e h a v e b e e n r a pi d d e v el o p m e nts
i n g u ar a nt e e d n o n- c o n v e x  m et h o d s [ 4 8] i n a v ari et y of
d o m ai n s s u c h a s  m atri x c o m pl eti o n [ 4 9] –[ 5 1], di cti o n ar y
l e ar ni n g [ 5 2], [ 5 3], bli n d d e c o n v ol uti o n [ 3 2], [ 3 3], a n d p h a s e
r etri e v al [ 4 2], [ 4 3], [ 5 4]. It is a c o m m o n t h e m e t h at c ar ef ull y
cr aft e d n o n- c o n v e x  m et h o d s h a v e b ett er t h e or eti c al g u ar a nt e e s
i n t er m s of s a m pl e c o m pl e xit y t h a n t h eir c o n v e x c o u nt er p arts,
a n d oft e n h a v e f ast er i m pl e m e n t ati o n s a n d b ett er e m piri c al
p erf or m a n c e.  T his p a p er is a n e w e x a m pl e of s u c h s u p eri orit y
of n o n- c o n v e x  m et h o d s.

II.  P O W E R I T E R A T I O N A L G O RI T H M S  F O R B G P C

N e xt,  w e d e s cri b e t h e al g orit h m s  w e u s e t o s ol v e  B G P C.
I n S e cti o n II- A,  w e i ntr o d u c e a si m pl e tri c k t h at t ur n s t h e
bili n e ar i n v er s e pr o bl e m i n  B G P C t o a li n e ar i n v er s e pr o bl e m.
I n S e cti o n s II- B a n d II- C,  w e i ntr o d u c e t h e p o w er it er ati o n
al g orit h m  w e u s e t o s ol v e  B G P C  wit h a s u b s p a c e str u ct ur e,
a n d t h e tr u n c at e d ( or s p ar s e) p o w er it er ati o n al g orit h m  w e u s e
t o s ol v e  B G P C  wit h s p ar sit y, r es p e cti v el y.

A.  Fr o m  Bili n e a rit y t o Li n e a rit y

We u s e a si m pl e tri c k t o t ur n  B G P C i nt o a li n e ar i n v er s e
pr o bl e m [ 1 4].  Wit h o ut l o ss of g e n er alit y, ass u m e t h at λ k = 0
f or k ∈ [ n ]. I n d e e d, if a n y s e n s or h a s z er o g ai n, t h e n t h e
c orr e s p o n di n g r o w i n Y is all z er o or c o nt ai n s o nl y n ois e, a n d
w e c a n si m pl y r e m o v e t h e c orr e s p o n di n g r o w i n ( 1).  L et γ
d e n ot e t h e e ntr y wis e i n v er s e of λ , i. e., γ k = 1 / λ k f or k ∈ [ n ].
We h a v e

di a g ( γ )Y s = A X , ( 2)

w h er e Y s = di a g ( λ) A X is t h e n ois el ess  m e as ur e m e nt.
E q u ati o n ( 2) is li n e ar i n all t h e e ntri es of γ a n d X . T h e
bili n e ar i n v er s e pr o bl e m i n ( λ, X ) n o w b e c o m e s a li n e ar

i n v er s e pr o bl e m i n ( γ , X ). I n pr a cti c e, si n c e o nl y t h e n ois y
m e a s ur e m e nt Y is a v ail a bl e, o n e c a n s ol v e di a g( γ )Y ≈ A X .
T his t e c h ni q u e  w as  wi d el y u s e d t o s ol v e  B G P C  wit h a
s u b s p a c e str u ct ur e, i n a p pli c ati o n s s u c h a s s e n s or n et w or k
c ali br ati o n [ 1 4], s y nt h eti c a p ert ur e r a d ar a ut of o c u s [ 3], a n d
c o m p ut ati o n al r eli g hti n g [ 2] .  R e c e ntl y,  Li n g a n d Str o h m er [ 7]
a n al y z e d t h e l e a st s q u ar e s s ol uti o n t o ( 2).  Wa n g a n d  C hi [ 8]
c o n si d er e d a s p e ci al c a s e  w h er e A is t h e  D F T  m atri x, a n d
a n al y z e d t h e s ol uti o n of a s p ars e X b y  mi ni mi zi n g t h e 1

n or m of A − 1 di a g ( γ )Y .
We u s e t h e s a m e tri c k i n o ur al g orit h m s.  D e fi n e

D :=






I N ⊗ a 1 ·
...

I N ⊗ a n ·




 ∈ C

N n × N m , ( 3)

E :=






y 1 ·
...

y n ·




 ∈ C

N n × n . ( 4)

We c a n d e c o m p o s e E i nt o E = E s + E n , w h er e

E s :=






λ 1 X a 1 ·
...

λ n X a n ·




 ∈ C

N n × n ,

E n :=






w 1 ·
...

w n ·




 ∈ C

N n × n .

D e fi n e als o

B :=
D ∗ D α D ∗ E
α E ∗ D α 2 E ∗ E

C ( N m + n )× ( N m + n ) , ( 5)

B s :=
D ∗ D α D ∗ E s
α E ∗s D α 2 E ∗s E s

∈ C ( N m + n )× ( N m + n ) ,

w h er e α i s a n o n z er o c o nst a nt s p e ci fi e d l at er.
Cl e arl y, ( 2) c a n b e r e writt e n as

D x − E s γ = 0 ,

w h er e x = v e c ( X ).  E q ui v al e ntl y, η = [ x , − γ / α ] is
a n ull v e ct or of B s .  W h e n c ert ai n s uf fi ci e nt c o n diti o ns ar e
s atis fi e d, η is t h e u ni q u e n ull v e ct or of B s . F or e x a m pl e,
if λ , A , a n d X ar e i n g e n er al p o siti o n s i n C n , C n × m , a n d
C m × N , r e s p e cti v el y, t h e n N ≥ n − 1

n − m s n a p s h ot s ar e s uf fi ci e nt t o
g u ar a nt e e u ni q u e n e ss of t h e s ol uti o n t o  B G P C i n t h e s u b s p a c e
c as e.  We r ef er r e a d er s t o o ur  w or k o n t h e i d e nti fi a bilit y i n
B G P C f or  m or e d et ails [ 5], [ 6].
Si n c e o nl y t h e n ois y  m atri x B is a c c essi bl e i n pr a cti c e, o n e
c a n i n st e a d fi n d t h e  mi n or ei g e n v e ct or, i. e., t h e ei g e n v e ct or
c orr e s p o n di n g t o t h e s m all est ei g e n v al u e of B .  T h e r e st of t his
s e cti o n f o c u s e s o n al g orit h m s t h at fi n d s u c h a n ei g e n v e ct or of
B ,  wit h n o c o n str ai nt (i n t h e s u b s p a c e c a s e), or  wit h a s p ar sit y
c o n str ai nt (i n t h e s p ar sit y c a s e).

B.  P o w er It er ati o n f o r  B G P C  Wit h a S u b s p a c e Str u ct u r e

I n t h e s u b s p a c e c a s e (n > m ),  w e s ol v e f or t h e  mi n or
ei g e n v e ct or of t h e p o siti v e d e fi nit e  m atri x B . I n S e cti o n III,
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Al g o rit h m 1 P o w er It er ati o n f or  B G P C

I n p ut : A ∈ C n × m , Y ∈ C n × N , i niti al e sti m at e
η (0 ) ∈ C N m + n

O ut p ut : η (t) ∈ C N m + n

P a r a m et e r s : α , β
C o m p ut e o p er at or G : C N m + n → C N m + n b y ( 3), ( 4), ( 5),
( 6)
t ← 1
r e p e at
C o m p ut e η (t) = G η (t− 1 ) / G η (t− 1 ) 2
t ← t + 1

u ntil c o n v e r g e n c e crit eri o n is  m et

w e d eri v e a n u p p er b o u n d o n t h e err or b et w e e n t his ei g e n v e ct or
a n d t h e tr u e s ol uti o n η .
T h e  mi n or ei g e n v e ct or of B c a n b e c o m p ut e d b y a v ari et y

of  m et h o d s.  H er e,  w e pr o p o s e a n al g orit h m t h at r e m ai n s c o m-
p ut ati o n all y ef fi ci e nt f or l ar g e s c al e pr o bl e m s.  B y ei g e n v al u e
d e c o m p o siti o n, t h e n ull v e ct or of B is i d e nti c al t o t h e pri n ci p al
ei g e n v e ct or of

G = β Im N + n − B , ( 6)

f or a l ar g e e n o u g h c o n st a nt β .  T hi s ei g e n v e ct or c a n b e c o m-
p ut e d u si n g t h e p o w er it er ati o n al g orit h m ( s e e  Al g orit h m 1).
T h e si z e of G is ( N m + n ) × ( N m + n ).  A n a d v a nt a g e of
Al g orit h m 1 o v er a n ei g e n- s ol v er t h at d e c o m p o s e s G , is t h at
o n e d o es n ot n e e d t o e x pli citl y c o m p ut e t h e e ntri es of G
t o it er ati v el y a p pl y it t o a v e ct or. F urt h er m or e, r at h er t h a n
O (( N m + n )2 ), b y t h e str u ct ur e of D a n d E , t h e p er it er ati o n
ti m e c o m pl e xit y of a p pl yi n g t h e o p er at or G t o a v e ct or is o nl y
O (m n N ).  T his c a n b e f urt h er r e d u c e d if A a n d A ∗ ar e li n e ar
o p er at or s  wit h i m pl e m e nt ati o n s f ast er t h a n O (m n ).
T h e r ul e of t h u m b f or s el e cti n g p ar a m et er α is t h at t h e 2
n or m s of t h e c ol u m n s of D b e cl o s e t o t h o s e of α E s o t h at G
i n ( 6) e x hi bits g o o d s p e ctr al pr o p erti es f or p o w er it er ati o n s.
A s af e c h oi c e f or β is B ,  w hi c h  m a y b e c o n s er v ati v el y
l ar g e i n s o m e c a s e s, b ut  w or k s  w ell i n pr a cti c e. I n S e cti o n III,
w e dis c u ss o ur c h oi c e of p ar a m et er s α, β u n d er c ert ai n n or-
m ali z ati o n ass u m pti o n s ( s e e  R e m ar k 8).
Al g orit h m 1 c o n v er g e s t o t h e pri n ci p al ei g e n v e ct or of G ,
as l o n g as t h e i niti al esti m at e η (0 ) i s n ot ort h o g o n al t o t h at
ei g e n v e ct or.  T his i n s e n siti vit y t o i niti ali z ati o n is a pri vil e g e
n ot s h ar e d b y t h e s p ar sit y c a s e ( s e e S e cti o n II- C).

C. Tr u n c at e d  P o w er It er ati o n f o r  B G P C  Wit h S p a rsit y

W h e n 2 ≤ n ≤ m , [ D , α E ] ∈ C N n × ( N m + n ) i s a f at  m atri x,
a n d t h e n ull s p a c e of B h a s di m e n si o n at l e a st 2.  T h er ef or e,
t h er e e xist at l e a st t w o li n e arl y i n d e p e n d e nt ei g e n v e ct or s
c orr e s p o n di n g t o t h e l ar g e st ei g e n v al u e of G .  T o o v er c o m e
t h e ill- p o s e d n ess, o n e c a n l e v er a g e t h e s p ar sit y str u ct ur e i n X
t o  m a k e t h e s ol uti o n t o t h e ei g e n v e ct or pr o bl e m u ni q u e.
L et s ( x ) d e n ot e t h e pr oj e cti o n of a v e ct or x o nt o t h e s et of

s - s p ar s e v e ct or s. It is c o m p ut e d b y s etti n g t o z er o all b ut t h e s
e ntri es of x of t h e l ar g est a b s ol ut e v al u es.  L et s ( X ) d e n ot e
t h e pr oj e cti o n of a  m atri x X o nt o t h e s et of  m atri c e s  w h o s e

c ol u m n s ar e j oi ntl y s - s p ar s e.  T his pr oj e cti o n is c o m p ut e d b y
s etti n g t o z er o all b ut t h e s r o w s of X of t h e l ar g e st 2 n or m s.
We d e fi n e t w o pr oj e cti o n o p er at or s o n η = [ x , − γ / α ]
t h at  will b e us e d r e p e at e dl y i n t h e r est of t his p a p er:

s ( η ) := [ s ( x ·1 ) , s ( x ·2 ) , . . . , s ( x ·N ) , − γ / α ] ,

s ( η ) := [ v e c s ( X ) , − γ / α ] .

F or t h e s p arsit y c as e of  B G P C,  w e a d a pt t h e ei g e n v e ct or
pr o bl e m i n S e cti o n II- B b y a d di n g a s p ar sit y c o n str ai nt:

m a x
η
η ∗ G η

s.t. η 2 = 1 ,

s 0 ( η ) = η. ( 7)

T his n o n c o n v e x o pti mi z ati o n is v er y si mil ar t o t h e s p ar s e
P C A pr o bl e m.  T h e o nl y diff er e n c e li es i n t h e str u ct ur e of t h e
s p ar sit y c o n str ai nt. I n s p ar s e P C A, t h e pri n ci p al c o m p o n e nt
is s 0 - s p ar s e. I n ( 7), t h e v e ct or η c o n sists of s 0 - s p ar s e v e ct or s
x ·1 , x ·2 , . . . , x ·N , a n d a d e n s e v e ct or − γ / α .
T o s ol v e ( 7),  w e a d o pt a s p ar s e P C A al g orit h m c all e d
tr u n c at e d p o w er it er ati o n [ 1 1], a n d r e vis e it t o a d a pt t o t h e
s p ar sit y str u ct ur e of  B G P C ( s e e  Al g orit h m 2).  O n e c a n c h o o s e
p ar a m et er s α a n d β u si n g t h e s a m e r ul es as i n S e cti o n II- B.
N ot e t h at  w e u s e a s p ar sit y l e v el s 1 ≥ s 0 i n t his al g orit h m,
f or t w o r e a s o n s: ( a) i n pr a cti c e, it is e a si er t o o bt ai n a n u p p er
b o u n d o n t h e s p ar sit y l e v el i n st e a d of t h e e x a ct n u m b er of
n o n z er o e ntri es i n t h e si g n al; a n d ( b) t h e r ati o s 0 / s 1 i s a n
i m p ort a nt c o n st a nt i n t h e  m ai n r es ults, c o ntr olli n g t h e tr a d e-
off b et w e e n t h e n u m b er of  m e a s ur e m e nt s a n d t h e r at e of
c o n v er g e n c e.
F or t h e j oi nt s p ar sit y c as e,  w e u s e ess e nti all y t h e s a m e

al g orit h m,  wit h s 1 r e pl a c e d b y s 1
.

Si n c e ( 7) is a n o n c o n v e x o pti mi z ati o n pr o bl e m, a g o o d
i niti ali z ati o n η (0 ) i s cr u ci al t o t h e s u c c ess of  Al g orit h m 2.
Al g orit h m 3 o utli n es o n e s u c h i niti ali z ati o n.  We d e n ot e b y

T x t h e pr oj e cti o n o nt o t h e s u p p ort s et T x ,  w hi c h s ets t o
z er o all r o ws of D ∗ E b ut t h e s 1 r o ws of t h e l ar g e st 2

n or m s i n e a c h bl o c k. ( R e c all t h at d ·(( j − 1 )m + ) d e n ot e s t h e
(( j − 1 )m + )-t h c ol u m n of D , a n d t h e j-t h bl o c k of D ∗ E
c o n sists of m c o nti g u o u s r o ws {d ∗·(( j − 1 )m + ) E } ∈[ m ].)  T h e n t h e
n or m ali z e d l eft a n d ri g ht si n g ul ar v e ct or s u a n d v of T x D

∗ E
ar e c o m p ut e d as i niti al esti m at es f or x a n d λ . We u s e 1. / v t o
d e n ot e t h e e ntr y wis e i n v er s e of v e x c e pt f or z er o e ntri e s,  w hi c h
ar e k e pt z er o. I n S e cti o n III,  w e f urt h er c o m m e nt o n h o w t o
c h o o s e a pr o p er i niti al esti m at e η (0 ) ( s e e  R e m ar k 1 3).

D.  Alt er n ati v e I nt er p r et ati o n a s  P r oj e ct e d  Gr a di e nt  D es c e nt

Al g orit h m s 1 a n d 2 c a n b e i nt er pr et e d as gr a di e nt d e s c e nt
a n d pr oj e ct e d gr a di e nt d e s c e nt, r es p e cti v el y.  N e xt,  w e e x pl ai n
s u c h e q ui v al e n c e u si n g t h e s p ar sit y c a s e as a n e x a m pl e.
R e c all t h at  B G P C is li n e ari z e d as D α E η = 0.  R el a xi n g
t h e s p ar sit y l e v el fr o m s 0 t o s 1 , t h e o pti mi z ati o n i n ( 7) is
e q ui v al e nt t o:

mi n
η

1

2
D α E η

2
2

s.t. η 2 = 1 ,

s 1 ( η ) = η.
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Al g o rit h m 2 Tr u n c at e d P o w er It er ati o n f or  B G P C  Wit h
S p ar sit y

I n p ut : A ∈ C n × m , Y ∈ C n × N , i niti al e sti m at e
η (0 ) ∈ C N m + n

O ut p ut : η (t) ∈ C N m + n

P a r a m et e r s : α , β , s 1
C o m p ut e o p er at or G : C N m + n → C N m + n b y ( 3), ( 4), ( 5),
( 6)
t ← 1
r e p e at
C o m p ut e η̃ (t) = G η (t− 1 ) / G η (t− 1 ) 2
C o m p ut e η (t) = s 1 ( η̃

(t) ) / s 1 ( η̃
(t) ) 2

t ← t + 1
u ntil c o n v e r g e n c e crit eri o n is  m et

T h e gr a di e nt of t h e o bj e cti v e f u n cti o n at η (t− 1 ) i s

D ∗

α E ∗
D α E η (t− 1 ) = B η (t− 1 ).

E a c h it er ati o n of pr oj e ct e d gr a di e nt d es c e nt c o n sists of t w o
st e p s:

(i) G r a di e nt d es c e nt wit h a st e p si z e of 1 / β :

η̃ (t) = η (t− 1 ) −
1

β
B η (t− 1 ) =

1

β
G η (t− 1 ) .

(ii) P r oj e cti o n o nt o t h e c o n str ai nt s et, i. e., t h e i nt er s e cti o n
of a c o n e ( s 1 ( η ) = η ) a n d a s p h er e ( η 2 = 1):

η (t) = s 1 ( η̃
(t) ) / s 1 ( η̃

(t) ) 2 .

Cl e arl y, t h e t w o st e ps ar e i d e nti c al t o t h os e i n e a c h tr u n c at e d
p o w er it er ati o n e x c e pt f or a diff er e nt s c ali n g i n St e p (i),  w hi c h,
d u e t o t h e n or m ali z ati o n i n St e p (ii), is i n si g ni fi c a nt.

III.  M AI N R E S U L T S

I n t his s e cti o n,  w e gi v e t h e or eti c al g u ar a nt e es f or
Al g orit h m s 1 a n d 2 i n t h e s u b s p a c e c a s e a n d i n t h e j oi nt
s p arsit y c as e, r es p e cti v el y.  We als o gi v e a g u ar a nt e e f or t h e
i niti ali z ati o n b y  Al g orit h m 3.

A.  M ai n  Ass u m pti o n s

We st art b y st ati n g t h e ass u m pti o n s o n A , λ , X a n d W ,
w hi c h  w e u s e t hr o u g h o ut t his s e cti o n.
A ss u m pti o n 3:  A is a c o m pl e x  G a u ssi a n r a n d o m  m atri x,

w h o s e e ntri e s ar e i.i. d. f oll o wi n g C N (0 , 1n ).  E q ui v al e ntl y,

t h e v e ct ors {a k ·}
n
k = 1 ar e i.i. d. f oll o wi n g C N (0 m ,1 ,

1
n Im ).

A ss u m pti o n 4: T h e v e ct or λ h a s “ fl at ” g ai n s i n t h e s e n s e
t h at 1 − δ ≤ | λ k |

2 ≤ 1 + δ f or s o m e δ ∈ (0 , 1 ).
A ss u m pti o n 5: T h e  m atri x X ∈ C m × N i s n or m ali z e d a n d

h a s g o o d c o n diti o ni n g, i. e., X F = 1, a n d f or s o m e θ ∈ (0 , 1 )
w e h a v e:

• S u bs p a c e c a s e:

mi n { N X ∗ X − I N , m X X
∗ − Im }  ≤ θ ,

• J oi nt s p a rsit y c a s e:

mi n { N X ∗ X − I N , s 0 T 0 X X
∗ ∗
T 0
− Is 0 }  ≤ θ ,

Al g o rit h m 3 I niti ali z ati o n f or  Tr u n c at e d P o w er It er ati o n

I n p ut : A ∈ C n × m , Y ∈ C n × N

O ut p ut : i niti al esti m at e η (0 ) ∈ C N m + n

P a r a m et e r s : s 1
C o m p ut e  m atri x D ∗ E ∈ C N m × n b y ( 3), ( 4)
T x ← ∅
f o r j ∈ [ N ] d o
C o m p ut e t h e r o w n or m s d ∗·(( j − 1 )m + ) E 2 f or ∈ [ m ]
Fi n d s u b s et T j ⊂ [ m ] (|T j | = s 1 ) s.t. f or ∈ T j a n d
∈ [ m ] \T j :

d ∗·(( j − 1 )m + ) E 2 ≥ d ∗·(( j − 1 )m + ) E 2

M er g e s u p p ort T x ← T x T j + { ( j − 1 )m }
e n d
C o m p ut e t h e pri n ci p al l eft a n d ri g ht si n g ul ar v e ct or s u , v
of T x D

∗ E

η (0 ) ← [ u , − (1 . / v ) / n ]
η (0 ) ← η (0 ) / η (0 ) 2

w h er e T d e n ot e s t h e o p er at or t h at r e stri cts a  m atri x t o t h e
r o w s u p p ort T , a n d T 0 := { i ∈ [ m ]| e i X 2 > 0 } (|T 0 | = s 0 )
is t h e r o w s u p p ort of X .
Ass u m pti o ns 3 – 5 c a n b e r el a x e d i n pr a cti c e.

• T h e c o m pl e x  G a u ssi a n distri b uti o n i n  Ass u m pti o n 3 c a n
b e r el a x e d t o C N (0 , σ 2A ) f or a n y σ A > 0.  We c h o o s e t h e
p arti c ul ar s c ali n g σ 2A = 1 / n , b e c a u s e t h e n A s atis fi es
t h e r estri ct e d is o m etr y pr o p ert y ( RI P) [ 5 5], i. e., (1 −
δ s ) x

2
2 ≤ A x 22 ≤ (1 + δ s ) x

2
2 f or s o m e δ s ∈ (0 , 1 ),

w h e n n is l ar g e c o m p ar e d t o t h e n u m b er s of n o n z er o
e ntri es i n x .

• T h e g ai n s c a n c e nt er ar o u n d a n y σ > 0, i. e., σ ( 1 − δ ) ≤
|λ k |

2 ≤ σ ( 1 + δ ) .  D u e t o bili n e arit y,  w e  m a y ass u m e t h at
λ k ’s c e nt er ar o u n d 1  wit h o ut l o ss of g e n er alit y b y s ol vi n g
f or ( λ / σ, σ X ).

• T h e Fr o b e ni u s n or m X F of  m atri x X c a n b e a n y p o si-
ti v e n u m b er. If X F is k n o w n, o n e c a n s c al e X t o h a v e
u nit Fr o b e ni u s n or m b ef or e s ol vi n g  B G P C. I n pr a cti c e,
t h e n or m of X is g e n er all y u n k n o w n.  H o w e v er, d u e t o
Ass u m pti o ns 3 ( RI P) a n d 4 ( “ fl at ” g ai ns),  w e h a v e

(1 − δ s )(1 − δ ) ≤
di a g ( λ) A X F

X F

≤ (1 + δ s )(1 + δ ).

H e n c e Y F is a g o o d s urr o g at e f or X F i n n ois e-
l e ss or l o w n ois e s etti n g s, a n d o n e c a n s c al e X b y
1 / Y F t o a c hi e v e t h e d esir e d s c ali n g.  T h e sli g ht d e vi a-
ti o n of X F / Y F fr o m 1 d o e s n ot h a v e a n y si g ni fi c a nt
i m p a ct o n o ur t h e or eti c al a n al y si s.  T h er ef or e,  w e ass u m e
X F = 1 t o si m pl y t h e c o n st a nts i n o ur d eri v ati o n.

• T h e c o n diti o ni n g of X c a n al s o b e r el a x e d.  W h e n N is
l ar g e, o n e c a n c h o o s e a s u b s et of N < N c ol u m n s i n
Y , s u c h t h at t h e  m atri x f or m e d fr o m t h e c orr e s p o n di n g
c ol u m n s of X h a s g o o d c o n diti o ni n g. W h e n n ois e a m pli fi-
c ati o n is n ot of c o n c er n ( n ois el ess or l o w n ois e s etti n g s),
o n e c a n c h o o s e a pr e c o n diti o ni n g  m atri x H ∈ C N × N



LI et al. :  B G P C  VI A S P A R S E S P E C T R A L  M E T H O D S 3 1 0 3

s u c h t h at X = X H is  w ell c o n diti o n e d, a n d t h e n s ol v e
t h e  B G P C  wit h Y = Y H .

I n s u m m ar y,  w e c a n  m a ni p ul at e t h e  B G P C pr o bl e m a n d  m a k e
it a p pr o xi m at el y s atisf y o ur a ss u m pti o n s. F or e x a m pl e, ( 1) c a n
b e r e writt e n as:

1

Y H F
Y H = di a g

λ

σ

1
√
n σ A
A

√
n σ σ A

Y H F
X H

+
1

Y H F
W H .

We c a n r u n  Al g orit h m s 1 a n d 2  wit h i n p ut 1√
n σ A
A a n d

1
Y H F

Y H , a n d s ol v e f or λσ a n d
√
n σ σ A
Y H F

X H . T h e a b o v e
m a ni p ul ati o n s d o n ot h a v e a n y si g ni fi c a nt i m p a ct o n t h e
s ol uti o n, or o n o ur t h e or eti c al a n al y si s.  H o w e v er, b y  m a ki n g
t h e s e ass u m pti o n s,  w e eli mi n at e s o m e t e di o u s a n d u n n e c e ss ar y
dis c u ssi o n s.
We als o n e e d a n ass u m pti o n o n t h e n ois e l e v el.
A ss u m pti o n 6: T h e n ois e t er m W s atis fi es

• S u bs p a c e c a s e: m a x k ∈[ n ], j ∈[ N ] |w kj | ≤
C W√
n N

• J oi nt s p a rsit y c a s e: m a x k ∈[ n ], j ∈[ N ] |w kj | ≤
C W√
n N 2

f or a n a b s ol ut e c o n st a nt C W > 0.
I n t h e s u b s p a c e c a s e, t h e ass u m pti o n o n t h e n ois e

l e v el is v er y  mil d.  B e c a u s e u n d er  Ass u m pti o n s 3 – 5,
di a g ( λ) A X F ≤

√
(1 + δ s )(1 + δ ) , t h e n ois e t er m W , w hi c h

s atis fi es W F ≤ C W , c a n b e o n t h e s a m e or d er i n t er m s of
Fr o b e ni u s n or m as t h e cl e a n si g n al di a g ( λ) A X .
Fi n all y, t h e f oll o wi n g a ss u m pti o n is r e q uir e d f or a t h e or et-

i c al g u ar a nt e e of t h e i niti ali z ati o n.
A ss u m pti o n 7: F or all j ∈ [ N ], t h er e e xists T j ⊂

s u p p( x · j ) ⊂ [ m ], s u c h t h at f or all ∈ T j ,

|x j |
2

x · j
2
2

≥
ω

s 0
,

f or s o m e a b s ol ut e c o n st a nt ω , a n d

∈[ m ] \T j
|x j |

2

x · j
2
2

≤ δ X ,

f or s o m e s m all a b s ol ut e c o n st a nt δ X ∈ (0 , 1 ).
Ass u m pti o n 7 s a y s t h at t h e s u p p ort of x · j c a n b e p artiti o n e d
i nt o t w o s u b s ets.  T h e a b s ol ut e v al u e s of t h e e ntri es i n t h e
fir st s u b s et T j ar e s uf fi ci e ntl y l ar g e.  M or e o v er, t h e t ot al
e n er g y ( s u m of s q u ar e s of t h e e ntri es) i n t h e s e c o n d s u b s et
is s m all c o m p ar e d t o t h e s q u ar e d n or m of x · j . F or e x a m pl e,
t h e a ss u m pti o n is s atis fi e d  wit h ω = 1 a n d δ X = 0 i n t h e
f oll o wi n g s p e ci al c as e: T j = s u p p( x · j ) (t h er ef or e x j = 0 f or

∈ [ m ] \T j ), a n d t h e a b s ol ut e v al u e s of t h e n o n z er o e ntri e s

ar e all e q u al, i. e., x j = ±
x · j√
s 0
.

We  w o ul d li k e t o e m p h asi z e t h at  Ass u m pti o n 7 is n ot
v er y d e m a n di n g, a n d it is s atis fi e d b y c o m m o nl y u s e d si g n al
m o d els. F or e x a m pl e, if t h e s 0 n o n z er o e ntri e s of x · j ar e
i.i. d. st a n d ar d  G a u ssi a n r a n d o m v ari a bl es, t h e n  Ass u m pti o n 7
is s atis fi e d  wit h hi g h pr o b a bilit y,  wit h ω = 1

4 a n d δ X =
1√
2 π
.  T his c a n b e s h o w n as f oll o ws: Fir st of all, b y si m pl e

C h er n off b o u n d s, s 02 ≤ x · j
2
2 ≤ 2 s 0 wit h pr o b a bilit y at l e ast

1 − 2 e − 0 .0 9 s 0 . D e fi n e T j := { : |x j | ≥
1
2 }.  T h e n, i n v o ki n g

a g ai n t h e  C h er n off b o u n d, t h e n u m b er of n o n z er o e ntri e s  wit h
a b s ol ut e v al u es l ess t h a n 12 (i n s u p p ort s et [m ] \T j ) is l e ss t h a n
2 s 0√
2 π
wit h pr o b a bilit y at l e ast 1 − e − 0 .1 5 s 0 .  T h er ef or e,  wit h hi g h

pr o b a bilit y,

|x j |
2

x · j
2
2

≥
1 / 2

2 s 0
=
1

4 s 0
,

a n d

∈[ m ] \T j
|x j |

2

x · j
2
2

≤

2 s 0√
2 π
× ( 12 )

2

s 0 / 2
=
1
√
2 π
.

B ef or e i ntr o d u ci n g o ur  m ai n r e s ults,  w e dis cl o s e t h e
c h oi c e of p ar a m et er s α a n d β f or o ur t h e or eti c al a n al y si s of
Al g orit h m s 1 a n d 2.
R e m a r k 8: W h e n  Ass u m pti o n s 3 – 5 ar e s atis fi e d,
w e c h o o s e α =

√
n a n d β = 3 / 2.

B.  A  Pe rt u r b ati o n  B o u n d f o r t h e  Ei g e n v e ct o r  P r o bl e m

N e xt,  w e i ntr o d u c e a k e y r e s ult, a p ert ur b ati o n b o u n d f or
t h e ei g e n v e ct or pr o bl e m,  w hi c h is u s e d t o d eri v e err or b o u n d s
f or p o w er it er ati o n al g orit h m s.
L et { T j }

N
j = 1 d e n ot e s u b s ets of [m ], s u c h t h at |T j | = s a n d

s u p p( x · j ) ⊂ T j . We d e fi n e T x ⊂ [ N m ] a n d T η ⊂ [ N m + n ] a s
f oll o ws:

T x :=
j∈[ N ]

T j + { ( j − 1 )m } , ( 8)

T η := T x [n ] + { N m } . ( 9)

R e c all t h at T r e stri cts a v e ct or t o t h e s u p p ort T , a n d h e n c e
∗
T T i s t h e pr oj e cti o n o p er at or o nt o t h e s u p p ort T .  Cl e arl y,
w e h a v e x = ∗

T x T x x , a n d η =
∗
T η T η η . I n t h e s u b s p a c e

c a s e dis c u ss e d i n  T h e or e m 9,  w e h a v e s = m , T j = [ m ], T x =
[ N m ], a n d T η = [ N m + n ]. I n t h e j oi nt s p arsit y c as e,  w e h a v e
T 1 = T 2 = · · ·  = T N . We s et |T j | = s = s 0 + 2 s 1 , w hi c h w e
j u stif y l at er i n t h e a n al y sis of tr u n c at e d p o w er it er ati o n.
L et

η̇ :=
η

η 2

d e n ot e t h e n or m ali z e d v er si o n of t h e gr o u n d tr ut h η , w hi c h is
t h e ei g e n v e ct or of B s a n d E B s c orr e s p o n di n g t o ei g e n v al u e 0.
L et η̂ d e n ot e t h e pri n ci p al ei g e n v e ct or of G . I n t h e j oi nt
s p arsit y c as e, l et η̂ T η d e n ot e t h e pri n ci p al ei g e n v e ct or of

T η G
∗
T η
, w h er e T = T 1 = · · ·  = T N , |T | = s , a n d t h e

s u p p ort of η is a s u b s et of T η d e fi n e d i n ( 9).
I n  Al g orit h m s 1 a n d 2 a n d i n o ur a n al y sis, v e ct or s η̇ , η̂ ,
a n d η (t) ar e n or m ali z e d t o u nit n or m.  H o w e v er,  m ulti pli c ati o n
b y a s c al ar of u nit  m o d ul u s is a r e m ai ni n g a m bi g uit y, i. e., t h e

s et {e
√
− 1 ϕ η̇ : ϕ ∈ [ 0 , 2 π ) } is a n e q ui v al e n c e cl ass f or η̇ . O ur

m ai n r e s ults u s e d ( η, η ) := mi n ϕ e
√
− 1 ϕ η − η 2 t o d e n ot e

t h e dist a n c e b et w e e n η a n d η ,  w hi c h is a  m etri c o n t h e s et of
s u c h e q ui v al e n c e cl ass es.
T h e o r e m 9 ( S u b s p a c e  C a s e): L et α =

√
n , a n d s u p p o s e

Ass u m pti o n s 3 – 6 ar e s atis fi e d  wit h δ < 1 / 3 a n d a s uf fi ci e ntl y



3 1 0 4 I E E E  T R A N S A C TI O N S  O N I N F O R M A TI O N  T H E O R Y,  V O L. 6 5,  N O. 5,  M A Y 2 0 1 9

s m all a b s ol ut e c o n st a nt C W > 0.  T h e n t h er e e xi st a b s ol ut e
c o n st a nts c , C , C > 0, s u c h t h at if

m a x
m l o g2 ( N m + n )

n
,
l o g( N m + n )

N
,
l o g( N m + n )

m
≤ C ,

( 1 0)

t h e n  wit h pr o b a bilit y at l e ast 1 − 2 n − c − e − c m ,

d ( η̂, η̇ ) ≤ ,

w h er e

:=
8 C

1 − 3 δ
m a x {ν, ν 2 }, ( 1 1)

a n d

ν :=
√
n N m a x

k ∈[ n ], j ∈[ N ]
|w kj |. ( 1 2)

We d ef er t h e pr o of t o S e cti o n  V, a n d s u m m ari z e t h e
m at h e m ati c al t o ols  w e u s e h er e.  B y t h e  D a vis- K a h a n si n θ
T h e or e m [ 5 6], t h e err or d ( η̂, η̇ ) i n t h e ei g e n v e ct or is b o u n d e d
if t h er e e xists a s uf fi ci e ntl y l ar g e s p e ctr al g a p b et w e e n t h e
t w o l ar g est (i n t er m s of a b s ol ut e v al u es) ei g e n v al u es of G =
β I − B .  We di vi d e t his t a s k i nt o t w o p arts: 1) S h o w t h at t h er e
e xists a l ar g e s p e ctr al g a p i n β I − E B ; 2) Pr o v e t h at B − E B
is s m all u si n g c o n c e ntr ati o n of  m e as ur e i n e q u aliti es, e. g.,
t h e  m atri x  B er n st ei n i n e q u alit y [ 5 7,  T h. 1. 6].
W h e n m is l ar g e ( e. g., m ≥ n ), ( 1 0) d o e s n ot h ol d, h e n c e

t h e p ert ur b ati o n b o u n d of t h e ei g e n v e ct or η̂ of G i n  T h e or e m 9
is n o l o n g er tr u e.  We c a n, h o w e v er, b o u n d t h e p ert ur b ati o n of
t h e ei g e n v e ct or s of s u b m atri c e s of G u nif o r ml y .
T h e o r e m 1 0 ( J oi nt S p a rsit y  C a s e): L et α =

√
n a n d s =

s 0 + 2 s 1 , a n d s u p p o s e  Ass u m pti o n s 3 – 6 ar e s atis fi e d  wit h
δ < 1 / 3 a n d a s uf fi ci e ntl y s m all a b s ol ut e c o n st a nt C W > 0.
T h e n t h er e e xist a b s ol ut e c o n st a nts c , C , C > 0, s u c h t h at if

m a x
(s + N ) l o g8 n l o g2 (s N + m )

n
,

√
s l o g2 n l o g(s N + m )

N
,

l o g4 n l o g2 (s N + m )

s 0
≤ C , ( 1 3)

t h e n  wit h pr o b a bilit y at l e ast 1 − 2 n − c − m − c s , f or e v er y T η
d e fi n e d b y ( 9),

d ( η̂ T η , T η η̇ ) ≤ ,

w h er e

:=
8 C

1 − 3 δ
m a x { N 3 / 2 ν, ν 2 }, ( 1 4)

a n d ν is d e fi n e d i n ( 1 2).
T h e  m ai n c h all e n g e i n t h e j oi nt s p ar sit y c as e is t h at, i n st e a d

of b o u n di n g t h e s p e ctr al n or m of B − E B , o n e  m u st b o u n d t h e
“ s p ar s e ” n or m of B − E B , i. e., t h e  m a xi m u m s p e ctr al n or m
of all pri n ci p al s u b m atri c e s  w h o s e r o w ( a n d c ol u m n) s u p p ort
is T η d e fi n e d b y ( 9). Si n c e B − E B c a n b e br o k e n d o w n i nt o
t h e s u m of s e v er al t er m s,  w e gi v e a u nif or m b o u n d o v er all
s u b m atri c e s o n e a c h t er m. F or a n y gi v e n t er m,  w e a d o pt o n e
of t w o a p pr o a c h e s,  w hi c h e v er pr o vi d e s a ti g ht er b o u n d: 1)  We
b o u n d t h e s p e ctr al n or m of a n i n di vi d u al s u b m atri x, a n d a p pl y
a u ni o n b o u n d o v er all s u b m atri c e s; 2)  We u s e a v ari ati o n al

f or m of t h e s p ar s e n or m, a n d a p pl y a b o u n d o n t h e s u pr e m a
of s e c o n d- or d er c h a o s [ 5 8,  T h. 2. 3].
T h e err or b o u n d s f or  Al g orit h m s 1 a n d 2 i n t h e n e xt s e cti o n
r el y o n  T h e or e m s 9 a n d 1 0, a n d e xisti n g a n al y sis of p o w er
it er ati o n [ 9] a n d tr u n c at e d p o w er it er ati o n [ 1 1].  A d diti o n all y,
t h e p ert ur b ati o n b o u n d s i n t his s e cti o n ar e of i n d e p e n d e nt
i nt er est. I n p arti c ul ar,  T h e or e m 9 s h o ws t h at if t h e ass u m pti o n s
a n d t h e pr es cri b e d s a m pl e c o m pl e xiti es i n ( 1 0) ar e s atis fi e d,
t h e n  wit h hi g h pr o b a bilit y t h e pri n ci p al ei g e n v e ct or η̂ of G
i s a n a c c ur at e esti m at e of t h e v e ct or η̇ t h at c o n c at e n at es t h e
u n k n o w n v ari a bl es. It gi v es a n err or b o u n d f or a n y al g orit h m
t h at fi n d s t h e pri n ci p al ei g e n v e ct or of G .  O n t h e ot h er h a n d,
w hil e  T h e or e m 1 0 d o e s n ot dir e ctl y g u ar a nt e e t h e s u c c e ss
of a n y p arti c ul ar al g orit h m, it c a n b e us e d t o a n al y z e ot h er
al g orit h m s t h at fi n d t h e s p ar s e pri n ci p al c o m p o n e nt of G ,
si mil ar t o t h e a n al y sis of  Al g orit h m 2 i n  T h e or e m 1 2.

C.  E rr o r  B o u n d s f o r t h e  P o w er It er ati o n  Al g o rit h ms

I n t his s e cti o n,  w e gi v e p erf or m a n c e g u ar a nt e e s f or
Al g orit h m s 1 a n d 2 u n d er t h e a ss u m pti o n s st at e d i n
S e cti o n III- A.  U n d er t h e c o n diti o n s i n  T h e or e m 1 1 (r e s p.
T h e or e m 1 2), t h e it er at es i n  Al g orit h m 1 (r es p.  Al g orit h m 2),
i n t h e n ois el ess c as e, c o n v er g e li n e arl y t o t h e tr u e s ol uti o n.
I n t h e n ois y c a s e, t h e r e c o v er y err or is pr o p orti o n al t o t h e
n ois e l e v el.
T h e o r e m 1 1 ( S u b s p a c e  C a s e): S u p p o s e  Ass u m pti o n s 3 – 6
ar e s atis fi e d  wit h δ < 1 / 4 a n d a s uf fi ci e ntl y s m all a b s ol ut e
c o n st a nt C W > 0.  L et α =

√
n , a n d β = 3 / 2.  Ass u m e t h at

ξ := | ˆη ∗ η (0 ) | > 0.  T h e n t h er e e xist a b s ol ut e c o n st a nts
c , C , C > 0, s u c h t h at if ( 1 0) is s atis fi e d, t h e n  wit h pr o b a bilit y
at l e ast 1 − 2 n − c − e − c m , t h e it er at es i n  Al g orit h m 1 s atisf y

d ( η (t) , η̇ ) ≤ ρ t d ( η (0 ) , η̇ ) + 2 ,

w h er e is d e fi n e d i n ( 1 1), a n d

ρ := 1 −
1

2
1 −

1 + 6 δ

3 − 2 δ

2
ξ ( 1 + ξ )

1 / 2
. ( 1 5)

T h e or e m 1 1 s h o ws t h at t h e p o w er it er ati o n al g orit h m
r e q uir e s n = O (m l o g2 ( N m + n )) s e n s or s a n d N =
O (l o g( N m + n )) s n a ps h ots t o s u c c essf ull y r e c o v er X a n d λ .
T hi s a gr e e s, u p t o l o g f a ct or s,  wit h t h e s a m pl e c o m pl e xit y
r e q uir e d f or t h e u ni q u e n e ss of ( λ, X ) i n t h e s u bs p a c e c as e,
w hi c h is n > m a n d N ≥ n − 1

n − m [ 6].
N e xt,  w e c o m p ar e  T h e or e m 1 1  wit h a si mil ar err or

b o u n d f or t h e l e a st s q u ar e s a p pr o a c h b y  Li n g a n d Str o h m er
[ 7,  T h. 3. 5].  T h e s a m pl e c o m pl e xit y i n  T h e or e m 1 1  m at c h es
t h e n u m b er s r e q uir e d b y t h e l e a st s q u ar e s a p pr o a c h n =
O (m l o g2 ( N m + n )) a n d N = O (l o g2 ( N m + n )) ( u p t o o n e l o g
f a ct or).  O n e c a v e at i n t h e l e a st s q u ar e s a p pr o a c h i s t h at, a p art
fr o m t h e li n e ar e q u ati o n ( 2), it n e e d s a n e xtr a li n e ar c o n str ai nt
t o a v oi d t h e tri vi al s ol uti o n γ = 0, X = 0.  U nf ort u n at el y,
a s r e v e al e d b y [ 7,  T h. 3. 5], i n t h e n ois y s etti n g, t h e r e c o v er y
err or b y t h e l e ast s q u ar es a p pr o a c h is s e n siti v e t o t his e xtr a
li n e ar c o n str ai nt.  O ur n u m eri c al e x p eri m e nts ( S e cti o n  VI)
s h o w t h at p o w er it er ati o n o ut p erf or m s l e a st s q u ar e s i n t h e
n ois y s etti n g.
T h e o r e m 1 2 ( J oi nt S p a rsit y  C a s e): S u p p o s e  Ass u m p-
ti o n s 3 – 6 ar e s atis fi e d  wit h δ < 1 / 4 a n d a s uf fi ci e ntl y s m all
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a b s ol ut e c o n st a nt C W > 0.  L et α =
√
n , β = 3 / 2, s 1 ≥ s 0

i n  Al g orit h m 2, a n d d e fi n e s = s 0 + 2 s 1 .  T h e n t h er e e xist
a b s ol ut e c o n st a nts c , C , C > 0, s u c h t h at if |η̇ ∗ η (0 ) | ≥ ξ +
f or s o m e ξ ∈ (0 , 1 ), a n d ( 1 3) is s atis fi e d, t h e n  wit h pr o b a bilit y
at l e ast 1 − 2 n − c − m − c s , t h e it er at es i n  Al g orit h m 2 f or t h e
j oi nt s p arsit y c as e s atisf y

d ( η (t) , η̇ ) ≤ ρ̃ t d ( η (0 ) , η̇ ) +
2
√
5

1 − ρ̃
,

w h er e is d e fi n e d i n ( 1 4), a n d ρ̃ < 1 h as t h e f oll o wi n g
e x pr e ssi o n:

ρ̃ := ρ · 1 + 2
s 0

s 1
+
2 s 0

s 1

1 / 2
, ( 1 6)

a n d ρ is d e fi n e d i n ( 1 5).
T h e or e m 1 2 is o nl y v ali d  w h e n ρ̃ < 1.  Wit h t h e c h oi c e s 1 =
2 s 0 , w h e n δ a p pr o a c h e s 0, a n d ξ a p pr o a c h e s 1, t h e c o n v er g e n c e

r at e ρ̃ i s r o u g hl y 13 1 +
√
2 + 2 ≈ 0 .6 2.  We dis c u ss a  m or e

r e alisti c s c e n ari o n e xt.
R e m a r k 1 3: A g o o d i niti ali z ati o n f or λ al o n e is u s u all y
s uf fi ci e nt. S u p p o s e o n e h a s a g o o d i niti al esti m at e f or t h e g ai n s

a n d p h as es, i. e., λ s atis fi es |λ k − e
√
− 1 ϕ k | <

√
1 + δ − 1 f or

k n o w n p h a s e e sti m at e s {ϕ k }
n
k = 1 .  O n e c a n i niti ali z e  Al g orit h m 2

wit h η (0 ) = [ 0 N m ,1 , e
−
√
− 1 ϕ 1 , . . . , e −

√
− 1 ϕ n ] , t h e n  w h e n is

n e gli gi bl e ( n ois el ess or l o w n ois e s etti n g s), ξ i n  T h e or e m 1 2
c a n b e s et t o 1 /

√
(1 + δ )( 2 + δ ) . F or e x a m pl e, if δ = 0 .0 5 a n d

s 1 ≥ 1 0 s 0 , t h e n ρ̃ < 1. Si n c e  w e d o n ot att e m pt t o o pti mi z e
t h e c o n st a nts i n t his p a p er, t h e c o n st a nts i n t his e x e m pl ar y
s c e n ari o ar e c o n s er v ati v e.
T h e or e m 1 2 st at es t h at f or  Al g orit h m 2 t o r e c o v er

λ a n d a j oi ntl y s p ar s e X , it is s uf fi ci e nt t o h a v e
n = O (s 0 l o g

8 n l o g2 (s 0 N + m )) s e n s or s a n d N =
O (
√
s 0 l o g

2 n l o g(s 0 N + m )) s n a p s h ots. I n c o m p aris o n, t h e ( u p
t o a f a ct or of 2) o pti m al s a m pl e c o m pl e xit y f or u ni q u e r e c o v-
er y i n t h e j oi nt s p ar sit y c as e is n > 2 s 0 a n d N ≥

n − 1
n − 2 s 0

[ 6].

H e n c e, t h e n u m b er of s e n s or s r e q uir e d i n  T h e or e m 1 2 is ( u p
t o l o g f a ct or s) o pti m al, b ut t h e n u m b er of s n a p s h ots r e q uir e d
is s u b o pti m al.  A n ot h er dr a w b a c k is t h at t h e s e r e s ults a p pl y
o nl y t o t h e j oi nt s p ar sit y c a s e, a n d n ot t o t h e  m or e g e n er al
s p arsit y c as e.  H o w e v er,  w e b eli e v e t h es e dr a w b a c ks ar e d u e
t o artif a cts of o ur a n al ysis.3 F or b ot h t h e j oi nt s p ar sit y c a s e a n d
t h e s p ar sit y c as e,  w e h a v e N n c o m pl e x- v al u e d  m e a s ur e m e nt s,
a n d N s 0 + n − 1 c o m pl e x- v al u e d u n k n o w n s.  O n e  m a y e x p e ct
s u c c e ssf ul r e c o v er y  w h e n n a n d N ar e ( u p t o l o g f a ct or s)
o n t h e or d er of s 0 a n d 1, r e s p e cti v el y. I n f a ct, n u m eri c al
e x p eri m e nts i n S e cti o n  VI c o n fir m s t h at tr u n c at e d p o w er
it er ati o n s u c c essf ull y r e c o v er s λ a n d X i n t his r e gi m e f or t h e
m or e g e n er al s p ar sit y c a s e.
T h e ass u m pti o n o n t h e n ois e l e v el i n  T h e or e m 1 2 (t h e j oi nt
s p ar sit y c as e of  Ass u m pti o n 6) i s d e m a n di n g  w h e n c o m p ar e d
t o t h e s u b s p a c e c as e.  T his is d u e t o t h e li mit ati o n s of o ur
t h e or eti c al a n al y sis, a n d t h e i n h er e ntl y  m a xi m all y c o n s er v ati v e
n at ur e of a n y  w or st- c a s e g u ar a nt e e. I n f a ct, o ur e x p eri m e nts i n

3 O ur a n al ysis of t h e j oi nt s p arsit y c as e d o es n ot tri vi all y g e n er ali z e t o t h e
s p arsit y c as e.  A k e y r es ult – t h e s u pr e m u m of t h e s e c o n d- or d er c h a os ( d e fi n e d
i n t h e pr o of of  L e m m a 2 0) – is b o u n d e d b y a s m all c o nst a nt f or l ar g e n a n d N
i n t h e j oi nt s p arsit y c as e.  H o w e v er, i n t h e g e n er al s p arsit y c as e, t h e s u pr e m u m
m ust b e t a k e n o v er a  m u c h l ar g er s et, a n d gr o ws u n b o u n d e d.

S e cti o n  VI- B s h o w t h at  Al g orit h m 2 p erf or m s  w ell at a v ari et y
of r e as o n a bl e n ois e l e v els.  We t hi n k t h at t h e c o n diti o n o n t h e
n ois e l e v el c a n b e r el a x e d b y i ntr o d u ci n g  m or e s o p histi c at e d
c o n c e ntr ati o n i n e q u aliti es, b ut l e a v e it as f ut ur e  w or k.
Wa n g a n d  C hi [ 8] a n al y z e d t h e p erf or m a n c e of 1 mi ni-
mi z ati o n f or  B G P C i n t h e s p ar sit y c as e,  w h er e t h e y ass u m e d
t h at A is t h e  D F T  m atri x, a n d X i s a  B er n o ulli- S u b g a u ssi a n
r a n d o m  m atri x.  T h eir s a m pl e c o m pl e xit y f or 1 mi ni mi z ati o n
is n = O (s ) a n d N = O (n l o g4 n ).  T h e s u c c ess of t h eir
al g orit h m r eli es o n a r estri cti v e ass u m pti o n t h at λ k ≈ 1,  w hi c h
is a n al o g o u s t o t h e d e p e n d e n c e of o ur al g orit h m o n a g o o d
i niti ali z ati o n of λ k . I n t h e n e xt s e cti o n,  w e s h o w t h at s u c h
d e p e n d e n c e c a n b e r el a x e d u n d er s o m e a d diti o n al c o n diti o n s
u si n g t h e i niti ali z ati o n pr o vi d e d b y  Al g orit h m 3.

D.  A T h e o r eti c al  G u a r a nt e e of t h e I niti aliz ati o n

T h e n e xt t h e or e m s h o ws t h at, u n d er c ert ai n c o n diti o n s,
Al g orit h m 3 r e c o v er s t h e l o c ati o n s of t h e l ar g e e ntri es i n
X c orr e ctl y, a n d yi el d s a n i niti al esti m at e η (0 ) t h at s atis fi es
|η̇ ∗ η (0 ) | > 1 − 2 δ ( cl o s e t o 1).
T h e o r e m 1 4 (I niti aliz ati o n): S u p p o s e  Ass u m pti o n s 3 – 7
ar e s atis fi e d.  T h e n t h er e e xist a b s ol ut e c o n st a nts C , c > 0,
s u c h t h at if

n > C s 20 l o g
6 (n m N ),

t h e n  wit h pr o b a bilit y at l e ast 1− n − c , f or all j ∈ [ N ] t h e s et T j
i n  Ass u m pti o n 7 is a s u b s et of T j i n  Al g orit h m 3.  A d diti o n all y,
i n t h e j oi nt s p ar sit y c as e, if s a m pl e c o m pl e xit y ( 1 3) is s atis fi e d
wit h a s uf fi ci e ntl y l ar g e C ,  Ass u m pti o n 6 is s atis fi e d  wit h a
s uf fi ci e ntl y s m all C W , a n d  Ass u m pti o n 7 is s atis fi e d  wit h a
s uf fi ci e ntl y s m all δ X , t h e n η 0 pr o d u c e d b y  Al g orit h m 3  will
s atisf y t h at |η̇ ∗ η (0 ) | i s ar bitr aril y cl o s e t o

n 3 / 2 + λ 2 γ
2
2

n 2 + λ 22 γ
2
2 n + γ

2
2

> 1 − 2 δ.

B y  T h e or e m 1 4, t h e c o n st a nt ξ i n  T h e or e m 1 2 c a n b e s et
t o 1 − 2 δ i n a l o w n ois e s etti n g. F or δ < 0 .1 9, t his c o n st a nt
ξ is l ar g er t h a n t h e o n e i n  R e m ar k 1 3, a n d all o ws ρ̃ < 1 f or
m or e c h oi c e s of s 1 .
O ur g u ar a nt e e f or t h e i niti ali z ati o n r e q uir es t h at t h e n u m b er
n of s e n s or s s c al e s q u a dr ati c all y ( u p t o l o g f a ct or s) i n t h e s p ar-
sit y s 0 ,  w hi c h s e e m s s u b o pti m al. Si mil ar s u b o pti m al s a m pli n g
c o m pl e xiti es s h o w u p i n s p ar s e P C A [ 5 9] a n d s p ar s e p h as e
r etri e v al [ 4 2], [ 4 4], [ 6 0].
I n t h e j oi nt s p ar sit y c a s e, i n st e a d of e sti m ati n g t h e s u p-

p orts of x ·1 , x ·2 , . . . , x ·N s e p ar at el y, o n e c a n esti m at e t h e r o w
s u p p ort of X dir e ctl y b y s orti n g j∈[ N ] d

∗
·(( j − 1 )m + ) E

2
2 f or

∈ [ m ] a n d fi n di n g t h e s 1 l ar g est. I n t his c as e,  Ass u m pti o n 7
c a n b e c h a n g e d t o:  T h er e e xists a s u b s et T of l ar g e r o ws (i n
t er m s of 2 n or m), s u c h t h at f or all ∈ T ,

j∈[ N ] |x j |
2

X 2
F

≥
ω

s 0
,

a n d

j∈[ N ], ∈[ m ] \T |x j |
2

X 2
F

≤ δ X .
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I n t hi s c a s e, t h e s u b s et T c a n b e i d e nti fi e d a n d a n i niti ali z a-
ti o n η (0 ) c a n b e c o m p ut e d u n d er t h e s a m e c o n diti o n s a s i n
T h e or e m 1 4,  w hi c h c a n b e pr o v e d u si n g t h e s a m e ar g u m e nts.

I V.  F U N D A M E N T A L E S T I M A T E S

T o pr o v e t h e  m ai n r es ults,  w e  m u st fir st est a blis h s o m e
f u n d a m e nt al e sti m at e s s p e ci fi c t o  B G P C. Pr o of s of s o m e
l e m m a s i n t his s e cti o n c a n b e f o u n d i n t h e a p p e n di x.

A.  A  G a p i n  Ei g e n v al u e s

A k e y c o m p o n e nt i n e st a blis hi n g a p ert ur b ati o n b o u n d f or
a n ei g e n v e ct or pr o bl e m ( e. g.,  T h e or e m 9) is b o u n di n g t h e g a p
b et w e e n ei g e n v al u e s.  L e m m a 1 5 gi v es u s s u c h a b o u n d.
L e m m a 1 5: S u p p o s e  Ass u m pti o n s 3 – 5 ar e s atis fi e d a n d

α =
√
n .  T h e n t h e s m all est ei g e n v al u e of E T η B s

∗
T η
i s

0, a n d t h e r e st of t h e ei g e n v al u es r esi d e i n t h e i nt er v al

[ (1 − δ )
2

1 + δ , 2 (1 + δ ) ].

B.  Pe rt u r b ati o n  D u e t o  R a n d o m n e ss i n  A

N e xt,  w e s h o w t h at T η B s
∗
T η
,  w h o s e r a n d o m n e ss c o m e s

fr o m A , is cl o s e t o its  m e a n E T η B s
∗
T η
u n d er c ert ai n

c o n diti o n s.
L e m m a 1 6: S u p p o s e  Ass u m pti o n s 3 – 5 ar e s atis fi e d, a n d

α =
√
n . F or a n y c o n st a nt δ B > 0, t h er e e xist a b s ol ut e

c o n st a nts C , c > 0, s u c h t h at:

• S u bs p a c e c a s e: If ( 1 0) is s atis fi e d  wit h C , t h e n

B s − E B s ≤ δ B

wit h pr o b a bilit y at l e ast 1 − n − c − e − c m .
• J oi nt s p a rsit y c a s e: If ( 1 3) is s atis fi e d  wit h C , t h e n

T η B s
∗
T η
− E T η B s

∗
T η
≤ δ B

f or all T 1 = · · ·  = T N a n d T η d e fi n e d i n ( 9),  wit h
pr o b a bilit y at l e ast 1 − n − c − m − c s .

P r o of of L e m m a 1 6: R e c all t h at

T η B s
∗
T η
=

T x D
∗ D ∗

T x

√
n T x D

∗ E s√
n E ∗s D

∗
T x

n E ∗s E s
.

It f oll o ws t h at

T η B s
∗
T η
− E T η B s

∗
T η

≤ T x D
∗ D ∗

T x
− E T x D

∗ D ∗
T x

( 1 7)

+ n E ∗s E s − E E
∗
s E s ( 1 8)

+ 2
√
n T x D

∗ E s − E T x D
∗ E s . ( 1 9)

L e m m a 1 6 f oll o ws fr o m t h e b o u n d s o n t h e s p e ctr al n or m s
i n ( 1 7) –( 1 9) i n  L e m m a s 1 7 – 2 0, r e s p e cti v el y.
L e m m a 1 7: S u p p o s e  Ass u m pti o n 3 is s atis fi e d, t h e n t h er e

e xist a b s ol ut e c o n st a nts C 1 , c 1 > 0, s u c h t h at:

• S u bs p a c e c a s e:

D ∗ D − E D ∗ D ≤ C 1
m

n
,

wit h pr o b a bilit y at l e ast 1 − e − c 1 m .

• J oi nt s p a rsit y c a s e: F or a n y { T j }
N
j = 1 a n d T x d e fi n e d

i n ( 8),

T x D
∗ D ∗

T x
− E T x D

∗ D ∗
T x
≤ C 1

s

n
l o g m ,

wit h pr o b a bilit y at l e ast 1 − m − c 1 s .

L e m m a 1 8: S u p p o s e  Ass u m pti o n s 3 – 5 ar e s atis fi e d, t h e n
t h er e e xist a b s ol ut e c o n st a nts C 2 , c 2 > 0, s u c h t h at

• S u bs p a c e c a s e:

E ∗s E s − E E
∗
s E s ≤

C 2

n
m a x

l o g n

N
,
l o g n

m
,

l o g n

N
,
l o g n

m

• J oi nt s p a rsit y c a s e:

E ∗s E s − E E
∗
s E s ≤

C 2

n
m a x

l o g n

N
,
l o g n

s 0
,

l o g n

N
,
l o g n

s 0

wit h pr o b a bilit y at l e ast 1 − n − c 2 .
L e m m a 1 9 ( S u b s p a c e  C a s e): S u p p o s e  Ass u m pti o n s 3 – 5
ar e s atis fi e d, a n d  mi n { N , m } > l o g n , t h e n t h er e e xist a b s ol ut e
c o n st a nts C 3 , c 3 > 0, s u c h t h at

D ∗ E s − E D
∗ E s ≤ C 3 m a x

l o g( N m + n )

n N
,

l o g( N m + n )

n m
,

√
m l o g( N m + n )

n

wit h pr o b a bilit y at l e ast 1 − n − c 3 .
L e m m a 2 0 ( J oi nt S p a rsit y  C a s e): S u p p o s e  Ass u m pti o n s 3
– 5 ar e s atis fi e d, t h e n t h er e e xist a b s ol ut e c o n st a nts C 3 , c 3 > 0,
s u c h t h at f or all T 1 = · · ·  = T N ,

T x D
∗ E s − E T x D

∗ E s

≤
C 3 s

1 / 4
0 (s + N )

1 / 4 (
√
n +
√
s + N )1 / 2

n mi n {
√
s 0 ,
√
N }

× l o g3 n l o g(s N + m ),

wit h pr o b a bilit y at l e ast 1 − n − c 3 .

C.  Pe rt u r b ati o n  D u e t o  N ois e

We e st a blis h e d s o m e f u n d a m e nt al e sti m at e s r e g ar di n g B s i n
S e cti o n s I V- A a n d I V- B. I n t his s e cti o n,  w e t ur n t o p ert ur b ati o n
c a u s e d b y n ois e.  B y t h e d e fi niti o n s of B , B s , E , E s , a n d E n ,
w e h a v e

B = B s + B n ,

w h er e

B n :=
0 α D ∗ E n

α E ∗n D α 2 ( E ∗s E n + E
∗
n E s + E

∗
n E n )

.

T h er ef or e,

T η B n
∗
T η
=

0 α T x D
∗ E n

α E ∗n D
∗
T x
α 2 ( E ∗s E n + E

∗
n E s + E

∗
n E n )

.
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L e m m a 2 1 gi v e s a n u p p er b o u n d o n t h e s p e ctr al n or m of
t h e p ert ur b ati o n fr o m n ois e.
L e m m a 2 1: S u p p o s e  Ass u m pti o n s 3 – 5 ar e s atis fi e d.  L et

α =
√
n a n d l et ν b e d e fi n e d b y ( 1 2).  T h e n t h er e e xist a b s ol ut e

c o n st a nts c , C , C > 0 s u c h t h at:

• S u bs p a c e c a s e: If ( 1 0) is s atis fi e d, t h e n  wit h pr o b a bilit y
at l e ast 1 − n − c

B n ≤ C m a x {ν, ν
2 }.

A d diti o n all y, f or a n y c o n st a nt δ W > 0, t h er e e xists a n
a b s ol ut e c o n st a nt C W > 0, if  Ass u m pti o n 6 is s atis fi e d
wit h C W , t h e n t h e a b o v e b o u n d b e c o m e s

B n ≤ δ W .

• J oi nt s p a rsit y c a s e: If ( 1 3) is s atis fi e d, t h e n  wit h pr o b-
a bilit y at l e ast 1 − n − c

T η B n
∗
T η
≤ C m a x { N 3 / 2 ν, ν 2 }

f or all T 1 = · · ·  = T N a n d T η d e fi n e d i n ( 9).  A d diti o n all y,
f or a n y c o n st a nt δ W > 0, t h er e e xists a n a b s ol ut e c o n st a nt
C W > 0, if  Ass u m pti o n 6 is s atis fi e d  wit h C W , t h e n t h e
a b o v e b o u n d b e c o m e s

T η B n
∗
T η
≤ δ W .

P r o of: T o c o m pl et e t h e pr o of,  w e b o u n d t h e s p e ctr al
n or m s of T x D

∗ E n , E
∗
s E n , a n d E

∗
n E n i n  L e m m a s 2 2, 2 4,

a n d 2 5, r e s p e cti v el y.
L e m m a 2 2 ( S u b s p a c e  C a s e): S u p p o s e  Ass u m pti o n 3 is s at-

is fi e d, a n d m > l o g n , t h e n t h er e e xist a b s ol ut e c o n st a nts
C 4 , c 4 > 0, s u c h t h at

D ∗ E n ≤ C 4 m a x l o g( N m + n ),

N m

n
l o g( N m + n ) m a x

k ∈[ n ], j ∈[ N ]
|w kj |,

wit h pr o b a bilit y at l e ast 1 − n − c 4 .
L e m m a 2 3 ( J oi nt S p a rsit y  C a s e): S u p p o s e  Ass u m pti o n 3 is

s atis fi e d, t h e n t h er e e xist a b s ol ut e c o n st a nts C 4 , c 4 > 0, s u c h
t h at f or all T 1 = · · ·  = T N ,

T x D
∗ E n ≤ C 4 (

√
s N + s N l o g m + N l o g3 n )

× l o g n m a x
k ∈[ n ], j ∈[ N ]

|w kj |,

wit h pr o b a bilit y at l e ast 1 − n − c 4 .
L e m m a 2 4: S u p p o s e  Ass u m pti o n s 3 – 5 ar e s atis fi e d, t h e n

t h er e e xist a b s ol ut e c o n st a nts C 5 , c 5 > 0, s u c h t h at
• S u bs p a c e c a s e:

E ∗s E n ≤ C 5
N

n
m a x 1 ,

l o g n

N
,
l o g n

m
× m a x
k ∈[ n ], j ∈[ N ]

|w kj |,

• J oi nt s p a rsit y c a s e:

E ∗s E n ≤ C 5
N

n
m a x 1 ,

l o g n

N
,
l o g n

s 0
× m a x
k ∈[ n ], j ∈[ N ]

|w kj |,

wit h pr o b a bilit y at l e ast 1 − n − c 5 .

L e m m a 2 5:

E ∗n E n ≤ N m a x
k ∈[ n ], j ∈[ N ]

|w kj |
2 ,

D. S c al a r  C o n c e ntr ati o n

We n o w i ntr o d u c e a f e w s c al ar c o n c e ntr ati o n b o u n d s t h at
ar e u s ef ul i n t h e pr o of of  T h e or e m 1 4.
L e m m a 2 6: S u p p o s e  Ass u m pti o n s 3 – 6 is s atis fi e d, t h e n

t h er e e xist a b s ol ut e c o n st a nts C 6 , c 6 > 0, s u c h t h at f or all
j ∈ [ N ] a n d ∈ [ m ], w e h a v e

k ∈[ n ]

|λ k a k a k · x · j |
2 − E |λ k a k a k · x · j |

2

≤
C 6 x · j

2
2 l o g

3 (n m N )

n 3 / 2
, ( 2 0)

k ∈[ n ]

λ k a k a k a k · x · j w kj

≤
C 6 x · j 2 l o g

2 (n m N )

n
m a x

k ∈[ n ], j ∈[ N ]
|w kj |

≤
C 6 C W x · j

2
2 l o g

2 (n m N )
√
1 − θ n 3 / 2

, ( 2 1)

a n d

k ∈[ n ]

|a k w kj |
2 − E |a k w kj |

2

≤
C 6 l o g

2 (n m N )

n 1 / 2
m a x

k ∈[ n ], j ∈[ N ]
|w kj |

2

≤
C 6 C

2
W x · j

2
2 l o g

2 (n m N )

(1 − θ ) n 3 / 2
, ( 2 2)

wit h pr o b a bilit y at l e ast 1 − n − c 6 .

V. P R O O F S  O F  T H E M AI N R E S U L T S

A.  P r o of of t h e  Pe rt u r b ati o n  B o u n d f o r t h e
Ei g e n v e ct o r  P r o bl e m

I n t his s e cti o n,  w e pr o v e  T h e or e m 9.  T h e pr o of c e nt er s
ar o u n d t h e  D a vis- K a h a n si n θ T h e or e m [ 5 6],  w hi c h b o u n d s t h e
err or i n t h e pri n ci p al ei g e n v e ct or η̇ of G u si n g t h e p ert ur b ati o n
of G .  T h e s p e ctr al n or m of t h e p ert ur b e d  m atri x is i n t ur n
b o u n d e d b y t h e l e m m a s i n S e cti o n I V.  T h e or e m 1 0 c a n b e
pr o v e d si mil arl y.
P r o of of T h e o r e m 9: Fir st,

G = β I N m + n − B = ( β I N m + n − E B s ) − ( B s − E B s ) − B n . ( 2 3)

L e m m a 1 5 e st a blis h e s a g a p i n t h e ei g e n v al u e s of t h e  m atri x
E B s – t h e s m all e st a n d t h e s e c o n d- s m all est ei g e n v al u e s of E B s
ar e s e p ar at e d b y a g a p of at l e a st

(1 − δ ) 2

1 + δ
≥ 1 − 3 δ > 0 .

T h er ef or e, t h e g a p b et w e e n t h e l ar g e st a n d t h e s e c o n d-l ar g e st
ei g e n v al u es of β I N m + n − E B s i s at l e ast 1− 3 δ .  B y  L e m m a s 1 6
a n d 2 1, t h er e e xist a b s ol ut e c o n st a nts c , C , C , C W > 0 s u c h
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t h at if all t h e ass u m pti o n s ar e s atis fi e d, t h e n  wit h pr o b a bilit y
at l e ast 1 − 2 n − c − e − c m ,

( B s − E B s ) + B n ≤ B s − E B s + B n ≤
1 − 3 δ

4
, ( 2 4)

B n ≤ C m a x {ν, ν
2 }. ( 2 5)

R e c all t h at η̇ i s t h e pri n ci p al ei g e n v e ct or of β I N m + n −
E B s .  B y t h e  D a vis- K a h a n si n θ T h e or e m ( [ 5 6]; s e e al s o
[ 9,  T h. 8. 1. 1 2]), ( 2 4) a n d ( 2 5) i m pl y

si n ( η̇, η̂ ) ≤
4

1 − 3 δ
( B s − E B s + B n ) η̇ 2

≤
4

1 − 3 δ
B n

≤
4 C

1 − 3 δ
m a x {ν, ν 2 },

w h er e t h e s e c o n d i n e q u alit y is d u e t o B s η̇ = E B s η̇ = 0.
T h e or e m 9 f oll o ws fr o m t h e a b o v e b o u n d, a n d t h e f a ct t h at

d ( η̇, η̂ ) = 2 − 2 c o s ( η̇, η̂ ) = 2 si n
( η̇, η̂ )

2
≤ 2 si n ( η̇, η̂ ).

O n e c a n pr o v e  T h e or e m 1 0 u si n g t h e s a m e st e p s a s i n
t h e pr o of of  T h e or e m 9, b y r estri cti n g r o ws a n d c ol u m n s of
m atri c e s t o t h e s u p p ort T η a n d a p pl yi n g t h e c orr e s p o n di n g
u nif or m b o u n d s o n s u b m atri c e s.

B.  P r o of of t h e  E rr o r  B o u n d f o r  Al g o rit h m 1

We pr o v e  T h e or e m 1 1 b y f oll o wi n g a st a n d ar d a n al y sis
of p o w er it er ati o n.  T h e s p e ci fi c c o n v er g e n c e r at e s a n d err or
b o u n d s f or t h e  B G P C pr o bl e m f oll o w fr o m t h e l e m m a s i n
S e cti o n I V a n d  T h e or e m 9.
P r o of of T h e o r e m 1 1: R e c all t h at t h e l ar g est ei g e n v al u e of

β I N m + n − E B s i s β − 0 =
3
2 , a n d all ot h er ei g e n v al u es r esi d e

i n t h e i nt er v al [ 32 − 2 (1 + δ ),
3
2 −

(1 − δ ) 2

1 + δ ].  B y  L e m m a s 1 6 a n d
2 1, t h er e e xist c o n st a nts c , C , C W > 0 s u c h t h at

( B s − E B s ) + B n ≤ B s − E B s + B n

≤ mi n δ,
(1 − δ ) 2

1 + δ
+ 3 δ − 1 ,

wit h pr o b a bilit y at l e ast 1 − 2 n − c − e − c m .  B y ( 2 3), t h e l ar g e st
ei g e n v al u e of G is G ≥ 32 − δ , t h e c orr e s p o n di n g ei g e n v e ct or
is η̂ , a n d all t h e ot h er ei g e n v al u e s of G r esi d e i n t h e i nt er v al
[ − 12 − 3 δ,

1
2 + 3 δ ].

N e xt,  w e e st a blis h t h e c o n v er g e n c e r at e of p o w er it er ati o n s
f or  B G P C.  B y t h e ei g e n v al u e d e c o m p o siti o n of G a n d t h e
P yt h a g or e a n t h e or e m,

G η̂ = G η̂,

G η (t− 1 ) ≤ G 2 |η̂ ∗ η (t− 1 ) |2 +
1

2
+ 3 δ

2
(1 −| ˆη ∗ η (t− 1 ) |2 ).

T h er ef or e,

η̂ ∗ η (t) | =
|η̂ ∗ G η (t− 1 ) |

G η (t− 1 ) 2

≥
G | ̂η ∗ η (t− 1 ) |

G 2 |η̂ ∗ η (t− 1 ) |2 + ( 12 + 3 δ )
2 (1 − | ˆη ∗ η (t− 1 ) |2 )

≥ | ˆη ∗ η (t− 1 ) |
1

|η̂ ∗ η (t− 1 ) |2 + ( 1 + 6 δ3 − 2 δ )
2 (1 − | ˆη ∗ η (t− 1 ) |2 )

= | ˆη ∗ η (t− 1 ) |
1

1 − 1 − ( 1 + 6 δ3 − 2 δ )
2 (1 − | ˆη ∗ η (t− 1 ) |2 )

≥ | ˆη ∗ η (t− 1 ) | 1 +
1

2
1 − (

1 + 6 δ

3 − 2 δ
)2 (1 −| ˆη ∗ η (t− 1 ) |2 ) ,

w h er e t h e l ast i n e q u alit y is d u e t o 1√
1 − z
≥ 1 + 12 z f or z ∈ (0 , 1 ).

It f oll o ws t h at

[1 − | ˆη ∗ η (t) |]

≤ [ 1 − | ˆη ∗ η (t− 1 ) |]

× 1 −
1

2
1 − (
1 + 6 δ

3 − 2 δ
)2 |η̂ ∗ η (t− 1 ) |(1 +| ˆη ∗ η (t− 1 ) |) . ( 2 6)

Cl e arl y, {| ̂η ∗ η ( τ ) |}tτ = 0 i s  m o n ot o ni c all y i n cr e a si n g u nl e ss
|η̂ ∗ η (0 ) | = 0.  B y t h e d e fi niti o n ξ := | ˆη ∗ η (0 ) |, t h e c o n v er g e n c e
r at e i n ( 2 6) is b o u n d e d b y ρ 2 < 1. It f oll o ws t h at

[1 − | ˆη ∗ η (t) |]  ≤ ρ 2 [1 − | ˆη ∗ η (t− 1 ) |]

≤ ρ 2 t [1 − | ˆη ∗ η (0 ) |].

H e n c e

d ( η̂, η (t) ) ≤ ρ t d ( η̂, η (0 ) ).

B y  T h e or e m 9, f or τ = 0 , . . . , t

d ( η̇, η̂ ) ≤ .

It f oll o ws fr o m t h e tri a n gl e i n e q u alit y t h at

d ( η̇, η (t) ) ≤ ρ t d ( η̇, η (0 ) ) + 2 .

C.  P r o of of t h e  E rr o r  B o u n d f o r  Al g o rit h m 2

We pr o v e  T h e or e m 1 2 u si n g t h e p ert ur b ati o n b o u n d i n
T h e or e m 1 0, a n d b y f oll o wi n g st e p s si mil ar t o t h e t h e or eti c al
a n al ysis of tr u n c at e d p o w er it er ati o n f or a g e n eri c s p ars e
ei g e n v e ct or pr o bl e m [ 1 1].  T h e pr o of c o n sists of t w o st e p s:
( 1) t h e esti m at e aft er t h e p o w er it er ati o n st e p η̃ (t) i s cl os er t o
t h e gr o u n d tr ut h η̇ t h a n t h e l ast s p ar s e esti m at e η (t− 1 ) , b y a
f a ct or of ρ ; ( 2) t h e tr u n c ati o n st e p a m pli fi es t h e esti m ati o n

err or b y a f a ct or n o l ar g er t h a n (1 + 2 s 0
s 1
+ 2 s 0s 1 )

1 / 2 .  T h er ef or e,

t h e esti m ati o n err or of t h e it er at e s i n  Al g orit h m 2 d e c a y s at
t h e r at e s p e ci fi e d i n  T h e or e m 1 2.
P r o of of T h e o r e m 1 2: I n t h e j oi nt s p ar sit y c as e, a n y it er at e
η ( τ ) = [ x ( τ ) , − γ ( τ ) / α ] s atis fi es t h at x ( τ ) i s t h e c o n c at e n a-
ti o n of j oi ntl y s p ar s e { x ( τ )· j }

N
j = 1 . I n t h e t-t h it er ati o n,  w e d e fi n e

a s u p p ort s et T (t) t h at h a s c ar di n alit y s = s 0 + 2 s 1 , a n d s atis fi es

s u p p( x · j ) s u p p( x (t− 1 )· j ) s u p p( x (t)· j ) ⊂ T
(t) ,
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f or all j ∈ [ N ]. D e fi n e T (t)η u si n g ( 8) a n d ( 9)  wit h T 1 = · · ·  =
T N = T

(t) .  N e xt,  w e f o c u s o n t h e s u b m atri x
T
(t)
η
G ∗

T
(t)
η

a n d s u b v e ct or s
T
(t)
η
η̇ a n d

T
(t)
η
η (t) , et c. Si n c e t h e s u p p orts

of η (t) a n d η̇ ar e s u b s et s of T
(t)
η , w e h a v e |η̇

∗ ∗

T (t)η T
(t)
η
η (t) | =

|η̇ ∗ η (t) |.
We pr o v e b y i n d u cti o n t h at {| ̇η ∗ η ( τ ) |}tτ = 0 i s  m o n ot o ni c all y
i n cr e asi n g ( u ntil it cr o ss es a t hr es h ol d s p e ci fi e d l at er i n t h e
pr o of). S u p p o s e {| ̇η ∗ η ( τ ) |}t− 1τ = 0 i s  m o n ot o ni c all y i n cr e a si n g.
N e xt,  w e pr o v e

|η̇ ∗ η (t) | > |η̇ ∗ η (t− 1 ) |.

B y t h e a ss u m pti o n t h at |η̇ ∗ η (0 ) | ≥ ξ + a n d  T h e or e m 1 0
( w hi c h a p pli es t o all T η d e fi n e d b y ( 9), i n cl u di n g T

(t)
η f or all t),

w e h a v e

|η̂ ∗
T (t)η T

(t)
η
η (t− 1 ) | ≥ |η̇ ∗ η (t− 1 ) | − d (

T
(t)
η
η̇, η̂

T
(t)
η
)

≥ ξ + −

= ξ.

F oll o wi n g t h e s a m e st e p s i n t h e pr o of of  T h e or e m 1 1,
w e o bt ai n a b o u n d f or η̃ (t) si mil ar t o ( 2 6):

[1 − | ˆη ∗
T (t)η T

(t)
η
η̃ (t) |]

≤ [ 1 − | ˆη ∗
T
(t)
η T

(t)
η
η (t− 1 ) |] 1 −

1

2
1 − (

1 + 6 δ

3 − 2 δ
)2

× | ˆη ∗
T
(t)
η T

(t)
η
η (t− 1 ) |(1 + | ˆη ∗

T
(t)
η T

(t)
η
η (t− 1 ) |)

≤ [ 1 − | ˆη ∗
T
(t)
η T

(t)
η
η (t− 1 ) |] 1 −

1

2
1 − (

1 + 6 δ

3 − 2 δ
)2 ξ ( 1 + ξ )

= ρ 2 [1 − | ˆη ∗
T
(t)
η T (t)η

η (t− 1 ) |],

w h er e ρ is d e fi n e d i n ( 1 5). It f oll o ws t h at

d ( η̂
T
(t)
η
,

T
(t)
η
η̃ (t) ) ≤ ρ · d ( η̂

T
(t)
η
,

T
(t)
η
η (t− 1 ) ).

We u s e t h e p ert ur b ati o n b o u n d i n  T h e or e m 1 0 o n e  m or e ti m e:

d (
T
(t)
η
η̇,  

T
(t)
η
η̃ (t) ) ≤ ρ · d (

T
(t)
η
η̇,  

T
(t)
η
η (t− 1 ) ) + 2 .

E q ui v al e ntl y,

1 − | ˙η ∗ η̃ (t) | ≤ ρ 1 − | ˙η ∗ η (t− 1 ) | +
√
2 . ( 2 7)

N e xt,  w e s h o w t h at t h e tr u n c ati o n st e p a m pli fi es t h e err or
o nl y b y a s m all f a ct or.  T h e v e ct or s 1 ( η̃

(t) ) is t h e pr oj e cti o n
of η̃ (t) o nt o t h e s et of str u ct ur e d s p ar s e v e ct or s, a n d η (t) i s t h e
n or m ali z e d v er si o n.  We d e fi n e t hr e e i n d e x s ets

T a = s u p p( η̇ ) \ s u p p( η
(t) ),

T b = s u p p( η̇ ) s u p p( η (t) ),

T c = s u p p( η
(t) )\ s u p p( η̇ ).

B y t h e  C a u c h y- S c h w ar z i n e q u alit y,

|η̇ ∗ η̃ (t) |2 ≤ T a η̃
(t) 2
2 + T b η̃

(t) 2
2

≤ 1 − T c η̃
(t) 2
2

≤ 1 −
|T c |

|T a |
T a η̃
(t) 2
2 ,

w h er e t h e l ast i n e q u alit y is d u e t o pr oj e cti o n r ul e,
i. e., s 1 ( η̃

(t) ) k e e p s t h e l ar g e st e ntri e s of η̃ (t) (i n t h e p art
c orr e s p o n di n g t o x ). Si n c e |T c |/ |T a | ≥ s 1 / s 0 , w e h a v e

T a η̃
(t)
2 ≤

s 0

s 1
(1 − | ˙η ∗ η̃ (t) |2 ). ( 2 8)

Als o b y t h e  C a u c h y- S c h w ar z i n e q u alit y,

|η̇ ∗ η̃ (t) |2 ≤ ( T a η̃
(t)
2 T a η̇ 2 + T b η̃

(t)
2 T b η̇ 2 )

2

≤ T a η̃
(t)
2 T a η̇ 2

+ 1 − T a η̃
(t) 2
2 1 − T a η̇

2
2

2

≤ 1 − ( T a η̃
(t)
2 − T a η̇ 2 )

2 .

It f oll o ws t h at

T a η̇ 2 ≤ T a η̃
(t)
2 + 1 − | ˙η ∗ η̃ (t) |2 . ( 2 9)

B y ( 2 8) a n d ( 2 9),

|η̇ ∗ η̃ (t) | − |η̇ ∗ s 1 ( η̃
(t) )| ≤ |η̇ ∗ η̃ (t) − s 1 ( η̃

(t) ) |

= T a η̃
(t)
2 T a η̇ 2

≤
s 0

s 1
+
s 0

s 1
(1 −| ˙η ∗ η̃ (t) |2 ). ( 3 0)

B y ( 2 7) a n d ( 3 0),

1 − | ˙η ∗ η (t) |

≤ 1 − | ˙η ∗ s 1 ( η̃
(t) )|

≤ 1 − | ˙η ∗ η̃ (t) | 1 +
s 0

s 1
+
s 0

s 1
(1 + | ˙η ∗ η̃ (t) |)

≤ 1 − | ˙η ∗ η̃ (t) | 1 + 2
s 0

s 1
+
s 0

s 1

≤ ρ 1 + 2
s 0

s 1
+
2 s 0

s 1
1 − | ˙η ∗ η (t− 1 ) | +

√
1 0

≤ ρ̃ 1 − | ˙η ∗ η (t− 1 ) | +
√
1 0 .

T h er ef or e, {| ̇η ∗ η ( τ ) |}tτ = 0 i n d e e d  m o n ot o ni c all y i n cr e a s e s

u nl e ss 1 − | ˙η ∗ η ( τ ) | r e a c h e s
√
1 0 /( 1 − ρ̃ ) f or s o m e τ . T h e

pr o of b y i n d u cti o n is c o m pl et e.
It f oll o ws t h at

1 − | ˙η ∗ η (t) | ≤  ˜ρ t 1 − | ˙η ∗ η (0 ) | +

√
1 0

1 − ρ̃
,

or e q ui v al e ntl y

d ( η̇, η (t) ) ≤ ρ̃ t d ( η̇, η (0 ) ) +
2
√
5

1 − ρ̃
.

D.  P r o of of t h e  G u a r a nt e e f o r  Al g o rit h m 3

P r o of of T h e o r e m 1 4: We fir st s h o w t h at, u n d er t h e c o n di-
ti o n s i n  T h e or e m 1 4, t h e s u p p ort T j i n  Al g orit h m 3 c o nt ai n s
T j ⊂ s u p p( x · j ) i n  Ass u m pti o n 7.  T o t his e n d,  w e pr o v e t h at

t h e n or m s of t h e r o ws of D ∗ E i n d e x e d b y T j ar e l ar g er t h a n
t h o s e o utsi d e s u p p( x · j ). F or a fi x e d j ∈ [ N ], t h e j-t h bl o c k of



3 1 1 0 I E E E  T R A N S A C TI O N S  O N I N F O R M A TI O N  T H E O R Y,  V O L. 6 5,  N O. 5,  M A Y 2 0 1 9

D ∗ E is i n d e x e d b y t h e s et ( j − 1 )m + [ m ].  T h er ef or e, t h e g o al
is t o s h o w t h at

mi n
∈ T j

d ∗·(( j − 1 )m + ) E
2
2 > m a x

∈[ m ] \s u p p( x · j )
d ∗·(( j − 1 )m + ) E

2
2 ,

or e q ui v al e ntl y,

mi n
∈ T j k ∈[ n ]

|a k y kj |
2 > m a x

∈[ m ] \s u p p( x · j )
k ∈[ n ]

|a k y kj |
2 .

Si n c e

E |a k y kj |
2 =

1

n 2
|λ k |

2 ( x · j
2
2 + | x j |

2 ) +
1

n
|w kj |

2 ,

it s uf fi c es t o s h o w t h at f or all ∈ T j a n d ∈ [ m ],

1

n 2
k ∈[ n ]

|λ k |
2 |x j |

2 > 2
k ∈[ n ]

|a k y kj |
2 − E |a k y kj |

2 .

( 3 1)

R e c all t h at

y kj = λ k a k · x · j + w kj .

B y t h e tri a n gl e i n e q u alit y a n d  L e m m a 2 6, f or all j ∈ [ N ] a n d
∈ [ m ],

k ∈[ n ]

|a k y kj |
2 − E ||a k y kj |

2

≤
k ∈[ n ]

|λ k a k a k · x · j |
2 − E |λ k a k a k · x · j |

2

+ 2
k ∈[ n ]

R e λ k a k a k a k · x · j w kj

+
k ∈[ n ]

|a k w kj |
2 − E |a k w kj |

2

≤ C 6 1 +
C W
√
1 − θ

2 x · j
2
2 l o g

3 (n m N )

n 3 / 2
,

wit h pr o b a bilit y at l e ast 1 − n − c 6 .
B y  Ass u m pti o n s 4 a n d 7, if  w e pl u g t h e a b o v e r e s ult

i nt o ( 3 1), t h e n t h e f oll o wi n g s a m pl e c o m pl e xit y is s uf fi ci e nt
f or  Al g orit h m 3 t o c orr e ctl y i d e ntif y t h e s u b s ets T j ( j ∈ [ N ])

wit h pr o b a bilit y at l e ast 1 − n − c 6 :

n 1 / 2 >
2 C 6

ω ( 1 − δ )
1 +

C W
√
1 − θ

2

s 0 l o g
3 (n m N ).

T h u s t h e fir st h alf of  T h e or e m 1 4 is pr o v e d.
Gi v e n t h at t h e s u p p ort T j c o v er s t h e l ar g e e ntri es i n d e x e d

b y T j ,

E T x D
∗ E −

1

n
x λ =

1

n
T x x λ −

1

n
x λ

≤
1 + δ

n
j∈[ N ], ∈[ m ] \T j

|x j |2

≤
(1 + δ ) δ X

n
. ( 3 2)

We als o h a v e

T x D
∗ E − E T x D

∗ E

≤ T x D
∗ E s − E T x D

∗ E s + T x D
∗ E n

≤
1

α
( T η B s

∗
T η
− T η E B s

∗
T η
+ T η B n

∗
T η
)

≤
1
√
n
( δ B + δ W ), ( 3 3)

w h er e t h e l ast i n e q u alit y f oll o ws fr o m  L e m m as 1 6 a n d 2 1,
gi v e n t h at t h e c o n diti o n s of  T h e or e m 1 2 ar e s atis fi e d.  B y t h e
tri a n gl e i n e q u alit y, a n d ( 3 2) a n d ( 3 3),

T x D
∗ E −

1

n
x λ ≤

1
√
n
( δ B + δ W + (1 + δ ) δ X ),

w h er e δ B c a n b e  m a d e ar bitr aril y s m all b y a s uf fi ci e ntl y
l ar g e C i n ( 1 3), δ W c a n b e  m a d e ar bitr aril y s m all b y a
s uf fi ci e ntl y s m all C W i n  Ass u m pti o n 6, a n d t h e l ast t er m
c a n b e  m a d e ar bitr aril y s m all b y a s uf fi ci e ntl y s m all δ X i n
Ass u m pti o n 7.  T h er ef or e, t h e fir st l eft a n d ri g ht si n g ul ar
v e ct ors u a n d v c a n b e c o m e ar bitr aril y cl os e t o x a n d t o
λ / λ 2 ( u p t o a gl o b al p h a s e f a ct or, i. e., a c o n st a nt of u nit
m o d ul u s), r e s p e cti v el y, a n d |η̇ ∗ η (0 ) | a p pr o a c h e s

n 3 / 2 + λ 2 γ
2
2

n 2 + λ 22 γ
2
2 n + γ

2
2

> 1 − 2 δ.

T h e i n e q u alit y f oll o ws fr o m  Ass u m pti o n 4, i. e.,
√
1 − δ ≤

|λ k | ≤
√
1 + δ , a n d 1/

√
1 + δ ≤ | γ k | = 1 / |λ k | ≤ 1 /

√
1 − δ .

VI.  N U M E RI C A L E X P E RI M E N T S

I n t his s e cti o n,  w e t est t h e e m piri c al p erf or m a n c e of  Al g o-
rit h m 1 a n d  Al g orit h m 2.

A. S u b s p a c e  C a s e:  P o w er It er ati o n vs. L e a st S q u a r e s

I n  Al g orit h m 1,  w e c h o o s e α =
√
n , a n d β = B

( c o m p ut e d u si n g a n ot h er p o w er it er ati o n o n B ).  We c o m p ar e
Al g orit h m 1  wit h t h e l e a st s q u ar e s a p pr o a c h i n [ 7, S e c. 3. 3],
w h er e γ 1 = 1 is u s e d t o a v oi d t h e tri vi al s ol uti o n.
We g e n er at e A ∈ C n × m a s a c o m pl e x  G a u ssi a n r a n-

d o m  m atri x,  w h o s e e ntri e s ar e dr a w n i n d e p e n d e ntl y fr o m
C N (0 , 1n ), i. e., t h e r e al a n d i m a gi n ar y p art ar e dr a w n i n d e-

p e n d e ntl y fr o m N (0 , 12 n ).  T h e u n k n o w n g ai n s a n d p h a s es λ k
ar e g e n er at e d as f oll o ws:

λ k = e
√
− 1 ϕ k 1 + (

√
1 + δ − 1 )e

√
− 1 ϕ k , ∀ k ∈ [ n ], ( 3 4)

s u c h t h at λ k is o n a s m all cir cl e of r a di u s
√
1 + δ − 1 c e nt er e d

at a p oi nt o n t h e u nit cir cl e, a n d ϕ k a n d ϕ k ar e dr a w n
i n d e p e n d e ntl y fr o m a u nif or m distri b uti o n o n [0 , 2 π ) . Fi g ur e 1
vis u ali z e s o n e s u c h s y nt h e si z e d λ k i n t h e c o m pl e x pl a n e.  We
s et δ = 0 .1 i n all t h e n u m eri c al e x p eri m e nts.  T h e e ntri e s
of X ∈ C m × N ar e dr a w n i n d e p e n d e ntl y fr o m C N (0 , 1N m ),
s o t h at t h e Fr o b e ni u s n or m of X is a p pr o xi m at el y 1. I n t h e
n ois y s etti n g,  w e g e n er at e c o m pl e x  w hit e  G a u ssi a n n ois e

W ∈ C n × N ,  w h o s e e ntri e s ar e dr a w n fr o m C N (0 ,
σ 2W
N n ).
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Fi g. 1. Ill ustr ati o n of λ k i n t h e c o m pl e x pl a n e.

Fi g. 2. S u bs p a c e c as e:  T h e e m piri c al s u c c ess r at es of p o w er it er ati o n
( bl u e s oli d li n e) a n d l e ast s q u ar es (r e d d as h e d li n e).  T h e x - a xis r e pr es e nts
m , a n d t h e y - a xis r e pr es e nts t h e e m piri c al s u c c ess r at e. ( a) – ( d) ar e t h e
r es ults  wit h σ W = 0, 0 .1, 0 .2, a n d 0 .5, r es p e cti v el y.

We d e fi n e  m e a s ur e m e nt si g n al-t o- n ois e r ati o ( M S N R) a n d
r e c o v er y si g n al-t o- n ois e r ati o ( R S N R) a s:

M S N R := 2 0 l o g 1 0
di a g ( λ) A X F

W F
,

R S N R := − 1 0 l o g 1 0 (2 − 2 |η̇
∗ η (t) |).

We t e st t h e t w o a p pr o a c h e s at f o ur n ois e l e v els: σ W = 0,
0 .1, 0 .2, a n d 0 .5,  w hi c h r o u g hl y c orr e s p o n d t o  M S N R of ∞ ,
2 0 d B, 1 4 d B, a n d 6 d B.  At t h es e n ois e l e v els,  w e s a y t h e
r e c o v er y i s s u c c e ssf ul if t h e  R S N R e x c e e d s 3 0 d B, 2 0 d B,
1 4 d B, 6 d B, r e s p e cti v el y.  T h e s u c c e ss r at e s d o n ot c h a n g e
dr a m ati c all y a s f u n cti o n s of t h e s e t hr e s h ol d s. I n t h e e x p eri-
m e nts,  w e s et n = 1 2 8, N = 1 6, a n d m = 8 , 1 6 , 2 4 , . . . , 6 4.
F or e a c h m ,  w e r e p e at t h e e x p eri m e nts 1 0 0 ti m e s a n d c o m p ut e
t h e e m piri c al s u c c ess r at es,  w hi c h ar e s h o w n i n Fi g ur e 2.
As s e e n i n Fi g ur e 2( a), b ot h p o w er it er ati o n a n d l e ast

s q u ar es a c hi e v e p erf e ct r e c o v er y i n t h e n ois el ess s etti n g.
H o w e v er, a s s e e n i n Fi g ur e s 2( b) – 2( d), p o w er it er ati o n is
cl e arl y  m or e r o b u st a g ai n st n oi s e t h a n l e a st s q u ar e s,  w h o s e
p erf or m a n c e d e gr a d e s  m or e s e v er el y i n t h e n ois y s etti n g s.
T h e e m piri c al p h as e tr a n siti o n s of p o w er it er ati o n ar e s h o w n

i n Fi g ur e 3.  We fi x N = 1 6 a n d pl ot t h e p h as e tr a n siti o n  wit h
r es p e ct t o n a n d m ( Fi g ur e 3( a));  w e t h e n fi x n = 2 m a n d pl ot
t h e p h as e tr a n siti o n  wit h r es p e ct t o N a n d m ( Fi g ur e 3( b)).
Cl e arl y, t o a c hi e v e s u c c essf ul r e c o v er y, n m ust s c al e li n e arl y
wit h m , b ut N c a n b e s m all c o m p ar e d t o m a n d n . T his
c o n fir m s t h e s a m pl e c o m pl e xit y i n  T h e or e m 1 1, of n m

Fi g. 3.  T h e e m piri c al p h as e tr a nsiti o n of p o w er it er ati o n.  Gr a ys c al e r e pr es e nts
s u c c ess r at es,  w h er e  w hit e e q u als 1, a n d bl a c k e q u als 0. ( a)  T h e x - a xis
r e pr es e nts m , a n d t h e y - a xis r e pr es e nts n . ( b) T h e x - a xis r e pr es e nts m , a n d
t h e y - a xis r e pr es e nts N .

a n d N 1.  C ar ef ul r e a d er s  m a y n oti c e i n Fi g ur e 3( b) t h at f or
N = 5 t h e s u c c ess r at es at m < 1 6 ar e  w or s e t h a n t h o s e at
m ≥ 1 6.  T his s e e mi n gl y p e c uli ar p h e n o m e n o n is c a u s e d b y
a s m all n = 2 m ,  w hi c h d o e s n ot b el o n g t o t h e l ar g e n u m b er
r e gi m e ass o ci at e d  wit h a hi g h pr o b a bilit y.

B. S p a rsit y  C a s e: Tr u n c at e d  P o w er It er ati o n vs. 1

Mi ni miz ati o n

I n t h e s p arsit y c as e,  w e us e t h e s a m e s et u p d es cri b e d i n
t h e pr e vi o u s s e cti o n, e x c e pt f or t h e si g n al X .  T h e s u p p orts of
t h e s 0 - s p ar s e c ol u m n s of X ar e c h o s e n u nif or ml y at r a n d o m,
a n d t h e n o n z er o e ntri e s f oll o w C N (0 , 1N s 0 ).  T his u n str u ct ur e d
s p ar sit y c a s e is  m or e c h all e n gi n g t h a n t h e j oi nt s p ar sit y c a s e
i n  T h e or e m 1 2.
I n  Al g orit h m 2,  w e c h o o s e α =

√
n , a n d β = B . I n all t h e

e x p eri m e nts,  w e ass u m e t h at t h e s p ar sit y l e v el s 0 is k n o w n, a n d
s et s 1 = 2 s 0 f or c o n v e ni e n c e.  A  m or e s o p histi c at e d s c h e m e
t h at d e cr e as es s 1 a s t h e it er ati o n n u m b er i n cr e as es  m a y l e a d
t o b ett er e m piri c al p erf or m a n c e [ 1 1].
F or t h e e x p eri m e nt  w e s u p p o s e t h at t h e p h a s es {ϕ k }

n
k = 1 i n

( 3 4) ar e a v ail a bl e, a n d l et

γ (0 ) := [ e −
√
− 1 ϕ 1 , . . . , e −

√
− 1 ϕ n ] ( 3 5)

d e n ot e t h e i niti al esti m at e of γ ,  w hi c h is cl o s e t o b ut diff er e nt
fr o m t h e tr u e γ , i. e., t h e e ntr y wis e i n v ers e of λ i n ( 3 4). S e e
Fi g ur e 1 f or a n ill u str ati o n of λ k , γ k , a n d γ

(0 )
k . T h e n w e

i niti ali z e  Al g orit h m 2  wit h η (0 ) = [ 0 N m ,1 , γ
(0 ) ] .

We c o m p ar e  Al g orit h m 2  wit h a n 1 mi ni mi z ati o n
a p pr o a c h.  Wa n g a n d  C hi [ 8] a d o pt e d a n a p pr o a c h t ail or e d f or
t h e c a s e  w h er e A is t h e  D F T  m atri x a n d λ k ≈ 1.  T h e y u s e
a li n e ar c o n str ai nt k ∈[ n ] γ k = n t o a v oi d t h e tri vi al s ol uti o n
of all z er o s. F or f air c o m p aris o n,  w e r e vis e t h eir a p pr o a c h t o
a c c o m m o d at e ar bitr ar y A a n d λ .  T h e r e vis e d a p pr o a c h u s e s
t h e alt er n ati n g dir e cti o n  m et h o d of  m ulti pli er s ( A D M M) [ 6 1]
t o s ol v e t h e f oll o wi n g c o n v e x o pti mi z ati o n pr o bl e m4 :

mi n
γ , X

v e c ( X ) 1

s.t. di a g( γ )Y = A X ,

γ (0 )∗ γ = n .

4 I n t h e n ois y s etti n g, o n e c o ul d r e pl a c e t h e li n e ar c o nstr ai nt di a g( γ )Y = A X
wit h a n elli ps oi d c o nstr ai nt di a g ( γ )Y − A X F ≤ .  H o w e v er, t h e p ar a m et er
n e e ds t o b e a dj ust e d  wit h n ois e l e v els. F or f air c o m p aris o n of r o b ust n ess
t o n ois e,  w e us e t h e li n e ar c o nstr ai n e d 1 mi ni mi z ati o n i n t h e n ois y s etti n g
(si mil ar t o [ 8]).
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Fi g. 4. S p arsit y c as e:  T h e e m piri c al s u c c ess r at es of tr u n c at e d p o w er it er ati o n
( bl u e s oli d li n e) a n d 1 mi ni mi z ati o n (r e d d as h e d li n e).  T h e x - a xis r e pr es e nts
s 0 , a n d t h e y - a xis r e pr es e nts t h e e m piri c al s u c c ess r at e. ( a) – ( d) ar e t h e r es ults
wit h σ W = 0, 0 .1, 0 .2, a n d 0 .5, r es p e cti v el y.

H er e, γ (0 ) i s t h e i niti al esti m at e of γ d e fi n e d i n ( 3 5), a n d u s e d
as i niti ali z ati o n i n o ur  Al g orit h m 2 i n t his c o m p aris o n.
We c o n d u ct n u m eri c al e x p eri m e nts  wit h t h e s a m e f o ur n ois e
l e v els a n d crit eri o n f or s u c c essf ul r e c o v er y as i n S e cti o n  VI- A.
I n t h e e x p eri m e nts,  w e s et n = 1 2 8, m = 2 5 6, N = 1 6, a n d
s 0 = 8 , 1 6 , 2 4 , . . . , 6 4. F or e a c h s 0 ,  w e r e p e at t h e e x p eri m e nt s
1 0 0 ti m e s a n d c o m p ut e t h e e m piri c al s u c c e ss r at e s,  w hi c h ar e
s h o w n i n Fi g ur e 4. I n t h e n ois el ess c a s e ( Fi g ur e 4( a)), 1

mi ni mi z ati o n a c hi e v es a sli g htl y hi g h er s u c c ess r at e n e ar t h e
p h as e tr a n siti o n.  H o w e v er, tr u n c at e d p o w er it er ati o n is  m or e
r o b u st a g ai n st n oi s e t h a n 1 mi ni mi z ati o n,  w hi c h br e a k s d o w n
c o m pl et el y at t h e hi g h er n ois e l e v els ( Fi g ur es. 4( b) – 4( d)).
Fi g ur e 4( a) cl e arl y s h o ws t h at tr u n c at e d p o w er it er ati o n

r e c o v er s η s u c c essf ull y  w h e n n = 1 2 8, N = 1 6, a n d s 0 = 3 2.
T hi s s u g g e sts t h at tr u n c at e d p o w er it er ati o n  m a y s u c c e e d  w h e n
n a n d N ar e ( u p t o l o g f a ct or s) o n t h e or d er of s 0 a n d 1,
r e s p e cti v el y.  H o w e v er,  w hil e t h e s c ali n g  wit h t h e n u m b er of
s e n s or s n a gr e es  wit h  T h e or e m 1 2, s u c c ess  wit h s u c h s m all
n u m b er of s n a p s h ots N is n ot g u ar a nt e e d b y o ur c urr e nt
t h e or eti c al a n al ysis.
N e xt,  w e ass u m e t h at o nl y a s u b s et of t h e p h a s es {ϕ k }

n
k = 1

ar e a v ail a bl e, a n d e x a mi n e t o  w h at e xt e nt  Al g orit h m 2 a n d

1 mi ni mi z ati o n d e p e n d o n a g o o d i niti al esti m at e of γ .
I n t h e n u m eri c al r e s ults s h o w n i n Fi g ur e 5,  w e c o n si d er
o nl y t h e n ois el ess s etti n g of  B G P C  wit h s p ar sit y, a n d s et
s 0 = 4 , 8 , 1 2 , . . . , 3 2. I n Fi g ur e s 5( a) a n d 5( b),  w e r e pl a c e
1 / 2 a n d 3 / 4 of {ϕ k }

n
k = 1 wit h r a n d o m p h a s es, r e s p e cti v el y, a n d

u s e t h e r es ulti n g b a d esti m at e γ (0 ) i n  Al g orit h m 2 a n d 1

mi ni mi z ati o n.  As s e e n i n Fi g ur e 5, tr u n c at e d p o w er it er ati o n
is l ess d e p e n d e nt o n a c c ur at e i niti al esti m at e of γ .
We r e p e at t h e a b o v e e x p eri m e nts f or t h e j oi nt s p ar sit y c a s e,

w h er e  w e r e pl a c e s 1 i n  Al g orit h m 2  wit h s 1
. We als o

r e pl a c e t h e 1 n or m v e c ( X ) 1 i n t h e c o m p eti n g a p pr o a c h
wit h a  mi x e d n or m:

X 2 ,1 =
∈[ m ] j ∈[ N ]

|x j |
2
1 / 2
,

Fi g. 5. S p arsit y c as e:  T h e e m piri c al s u c c ess r at es of tr u n c at e d p o w er it er ati o n
( bl u e s oli d li n e) a n d 1 mi ni mi z ati o n (r e d d as h e d li n e),  wit h b a d i niti al
esti m at e of t h e p h as es.  T h e x - a xis r e pr es e nts s 0 , a n d t h e y - a xis r e pr es e nts
t h e e m piri c al s u c c ess r at e. ( a) a n d ( b) ar e t h e r es ults f or  w hi c h 1/ 2 a n d 3 / 4
of {ϕ k }

n
k = 1 ar e i niti ali z e d  wit h r a n d o m p h as es.

Fi g. 6. J oi nt s p arsit y c as e:  T h e e m piri c al s u c c ess r at es of tr u n c at e d p o w er
it er ati o n ( bl u e s oli d li n e) a n d  mi x e d  mi ni mi z ati o n (r e d d as h e d li n e).  T h e
x - a xis r e pr es e nts s 0 , a n d t h e y - a xis r e pr es e nts t h e e m piri c al s u c c ess r at e.
( a) – ( d) ar e t h e r es ults  wit h σ W = 0, 0 .1, 0 .2, a n d 0 .5, r es p e cti v el y.

w hi c h is a  w ell- k n o w n c o n v e x  m et h o d f or t h e r e c o v er y of
j oi ntl y s p ar s e si g n als.  T h e r es ults f or diff er e nt n ois e l e v els a n d
f or i n a c c ur at e γ (0 ) ar e s h o w n i n Fi g ur e s 6 a n d 7, r e s p e cti v el y.
I n t h e j oi nt s p ar sit y c as e, tr u n c at e d p o w er it er ati o n is r o b u st
a g ai n st n ois e, b ut s e e m s l ess r o b u st a g ai n st err or s i n t h e i niti al
p h a s e e sti m at e.  We c o nj e ct ur e t h at t h e f ail ur e of  Al g orit h m 2
i n t h e j oi nt s p ar sit y c as e is d u e t o t h e r estri cti o n of s 1

.
B y pr oj e cti n g o nt o j oi ntl y s p ar s e s u p p orts, t h e al g orit h m is
li k el y t o c o n v er g e pr e m at ur el y t o a n i n c orr e ct s u p p ort.  W h e n
c o m p ar e d t o t h e r es ults i n Fi g ur e s 7( a) a n d 7( b), Fi g ur e s 7( c)
a n d 7( d) s h o w t h at u si n g s 1 i n st e a d of s 1

i n t h e fir st h alf of
t h e it er ati o n s i n d e e d i m pr o v es t h e p erf or m a n c e of  Al g orit h m 2
i n t h e j oi nt s p ar sit y c a s e. I n t h e r e st of t h e e x p eri m e nts,  w e u s e

s 1 d uri n g t h e fir st h alf of t h e it er ati o n s i n  Al g orit h m 2 f or
t h e j oi nt s p arsit y c as e.
N e xt,  w e pl ot t h e p h a s e tr a n siti o n s f or tr u n c at e d p o w er
it er ati o n.  We fi x N = 1 6 a n d m = 2 n a n d pl ot t h e e m piri c al
p h as e tr a n siti o n  wit h r es p e ct t o n a n d s 0 ( s p ar sit y c as e i n Fi g-
ur e 8( a), a n d j oi nt s p ar sit y c a s e i n Fi g ur e 8( c));  w e t h e n fi x
n = 4 s 0 a n d m = 2 n a n d pl ot t h e e m piri c al p h as e tr a n siti o n
wit h r es p e ct t o N a n d s 0 ( s p ar sit y c a s e i n Fi g ur e 8( b), a n d
j oi nt s p ar sit y c as e i n Fi g ur e 8( d)). It is s e e n t h at, t o a c hi e v e
s u c c essf ul r e c o v er y, n m u st s c al e li n e arl y  wit h s 0 , b ut N c a n
b e s m all c o m p ar e d t o s 0 a n d n .  O n t h e o n e h a n d, t h e s c ali n g
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Fi g. 7. J oi nt s p arsit y c as e:  T h e e m piri c al s u c c ess r at es of tr u n c at e d p o w er
it er ati o n  wit h s 1

( bl u e s oli d li n e) a n d  mi x e d  mi ni mi z ati o n (r e d d as h e d li n e),
wit h b a d i niti al esti m at e of t h e p h as es.  T h e x - a xis r e pr es e nts s 0 , a n d t h e y -
a xis r e pr es e nts t h e e m piri c al s u c c ess r at e. ( a) a n d ( b) ar e t h e r es ults f or  w hi c h
1 / 2 a n d 3 / 4 of {ϕ k }

n
k = 1 ar e i niti ali z e d  wit h r a n d o m p h as es. I n ( c) a n d ( d),

w e r e p e at t h e e x p eri m e nts, b ut us e s 1 i nst e a d of s 1
i n t h e first h alf of t h e

it er ati o ns.

Fi g. 8.  T h e e m piri c al p h as e tr a nsiti o n of tr u n c at e d p o w er it er ati o n.  Gr a ys c al e
r e pr es e nts s u c c ess r at es,  w h er e  w hit e e q u als 1, a n d bl a c k e q u als 0. ( a) S p arsit y
c as e:  T h e x - a xis r e pr es e nts s 0 , a n d t h e y - a xis r e pr es e nts n . ( b) S p arsit y c as e:
T h e x - a xis r e pr es e nts s 0 , a n d t h e y - a xis r e pr es e nts N . ( c) J oi nt s p arsit y
c as e:  T h e x - a xis r e pr es e nts s 0 , a n d t h e y - a xis r e pr es e nts n . ( d) J oi nt s p arsit y
c as e:  T h e x - a xis r e pr es e nts s 0 , a n d t h e y - a xis r e pr es e nts N .

l a w n s 0 i n  T h e or e m 1 2 is c o n fir m e d b y Fi g ur e 8; o n t h e
ot h er h a n d, N

√
s 0 s e e m s c o n s er v ati v e a n d  mi g ht b e a n

artif a ct of o ur pr o of t e c h ni q u e s.  We h a v e y et t o c o m e u p  wit h
a t h e or eti c al g u ar a nt e e t h at c o v ers t h e  m or e g e n er al s p arsit y
c a s e, or r e q uir e s a l ess d e m a n di n g s a m pl e c o m pl e xit y N 1.
I n Fi g ur e s 8( b) a n d 8( d), t h e s u c c e ss r at e s at s m all er s 0 ar e
l o w er t h a n t h o s e at a l ar g er s 0 , b e c a u s e t h e n u m b er of s e n s or s
n = 4 s 0 is t o o s m all t o yi el d a hi g h pr o b a bilit y.

C. S p arsit y  C a s e: I niti aliz ati o n

I n t his s e cti o n,  w e e x a mi n e t h e q u alit y of t h e i ni-
ti ali z ati o n pr o d u c e d b y  Al g orit h m 3 b y c o m p ari n g it
wit h t w o diff er e nt i niti ali z ati o ns: (i) t h e g o o d i niti ali z ati o n

Fi g. 9.  T h e e m piri c al s u c c ess r at es of tr u n c at e d p o w er it er ati o n  wit h t h e
i niti ali z ati o n i n  Al g orit h m 3 ( bl u e s oli d li n e),  wit h a b as eli n e i niti ali z ati o n
η (0 ) = [ 0 N m ,1 , 1 n ,1 ] (r e d d as h e d li n e), a n d  wit h t h e a c c ur at e i niti ali z ati o n

η (0 ) = [ 0 N m ,1 , γ
(0 ) ] wit h si d e i nf or m ati o n i n S e cti o n  VI- B ( bl a c k d as h-

d ot li n e).  T h e x - a xis r e pr es e nts s 0 , a n d t h e y - a xis r e pr es e nts t h e e m piri c al
s u c c ess r at e. ( a) is t h e r es ult f or t h e s p arsit y c as e, a n d ( b) is t h e r es ult f or t h e
j oi nt s p arsit y c as e.

Fi g. 1 0.  T h e e m piri c al p h as e tr a nsiti o n of tr u n c at e d p o w er it er ati o n  wit h
t h e i niti ali z ati o n i n  Al g orit h m 3.  T h e x - a xis r e pr es e nts s 0 , a n d t h e y - a xis
r e pr es e nts n . ( a) is t h e r es ult f or t h e s p arsit y c as e, a n d ( b) is t h e r es ult f or
t h e j oi nt s p arsit y c as e.

η (0 ) = [ 0 N m ,1 , γ
(0 ) ] ai d e d b y si d e i nf or m ati o n o n t h e

p h as e i n S e cti o n  VI- B; a n d (ii) a b as eli n e i niti ali z ati o n η (0 ) =
[0 N m ,1 , 1 n ,1 ] .  We u s e t h e s a m e s etti n g as i n S e cti o n  VI- B,
e x c e pt t h at N = 3 2.  We l et σ W = 0 .1, a n d cl ai m t h e
r e c o v er y is s u c c essf ul if t h e  R S N R e x c e e ds 2 0 d B. I n t h e
e x p eri m e nt f or t h e j oi nt s p ar sit y c a s e, f or t h e r e a s o n  m e nti o n e d
i n S e cti o n  VI- B,  w e i g n or e t h e j oi nt s p ar sit y str u ct ur e a n d
e sti m at e t h e s u p p ort of diff er e nt c ol u m n s of X i n d e p e n d e ntl y
i n t h e i niti ali z ati o n a n d d uri n g t h e fir st h alf of t h e it er ati o n s.
O nl y i n t h e s e c o n d h alf of t h e it er ati o n s,  w e u s e t h e pr oj e cti o n

s 1
o nt o j oi ntl y s p ar s e s u p p orts.
Fi g ur e 9 s h o ws t h at, alt h o u g h t h e i niti ali z ati o n pr o vi d e d b y

Al g orit h m 3 i s n ot a s g o o d a s t h e a c c ur at e i niti ali z ati o n  wit h
si d e i nf or m ati o n, it is f ar b ett er t h a n t h e b as eli n e. Fi g ur e 1 0
s h o ws t h e e m piri c al p h as e tr a n siti o n  wit h r es p e ct t o n a n d
s 0 ,  w h e n  Al g orit h m 3 is u s e d t o i niti ali z e tr u n c at e d p o w er
it er ati o n ( s p ar sit y c as e i n Fi g ur e 1 0( a), a n d j oi nt s p ar sit y
c a s e i n Fi g ur e 1 0( b)).  T h e r e s ults s u g g e st t h at  w h e n n s c al es
li n e arl y  wit h s 0 ,  Al g orit h m 3 c a n pr o vi d e a s uf fi ci e ntl y
g o o d i niti ali z ati o n f or tr u n c at e d p o w er it er ati o n. F or e x a m pl e,
i n 1 0( a), t h e s u c c e ss r at e is 1  w h e n n = 2 5 6 a n d s 0 = 2 0.
T h er ef or e, t h e s a m pl e c o m pl e xit y n s 20 i n  T h e or e m 1 4 c o ul d
b e o v erl y c o n s er v ati v e a n d a n artif a ct of o ur a n al y si s.

D.  D e p e n d e n c e o n  A ss u m pti o n s

I n t his s e cti o n,  w e st u d y h o w  m u c h t h e p erf or m a n c e of
Al g orit h m s 1 – 3 d e p e n d o n t h e  Ass u m pti o n s 3 – 7.
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We fir st e x a mi n e t h e i m p ort a n c e of  Ass u m pti o n 3 b y c o m-
p ari n g t h e r e c o v er y s u c c e ss r at e u n d er f o ur diff er e nt  m o d el s
of A ∈ C n × m :

• G a ussi a n : t h e e ntri es ar e dr a w n i n d e p e n d e ntl y fr o m
C N (0 , 1n ).

• R a d e m a c h e r : t h e e ntri es ar e dr a w n i n d e p e n d e ntl y fr o m
a t w o- p oi nt distri b uti o n o n ± 1√

n
, e a c h  wit h pr o b a bilit y 12

( a s c al e d v er si o n of t h e  R a d e m a c h er di stri b uti o n).
• R a n d o m r ot ati o n : W h e n n ≥ m , t h e c ol u m n s of A
ar e r a n d o m ort h o n or m al v e ct or s (f or m e d b y c o m p uti n g
t h e l eft si n g ul ar v e ct or s of a c o m pl e x r a n d o m  G a u ssi a n
m atri x).  W h e n n < m , t h e r o ws of A ar e r a n d o m

ort h o g o n al v e ct or s of 2 n or m
m
n .

• P a rti al  F o u ri e r : A is a r a n d o ml y s u b s a m pl e d  D F T
m atri x.  W h e n n ≥ m , t h e c ol u m n s of A ar e a r a n d o m
s u b s et of c ol u m n s of t h e n or m ali z e d n × n D F T  m atri x.
W h e n n < m , t h e r o ws of A ar e a r a n d o m s u b s et of r o w

of t h e n or m ali z e d m × m D F T  m atri x, s c al e d b y m
n .

I n t h e s u b s p a c e c a s e,  w e c o m p ar e t h e s u c c e ss r at e s of  Al g o-
rit h m 1 f or t h e a b o v e f o ur  m o d els,  wit h n = 1 2 8, m = 1 6, a n d
N = 4. I n t h e j oi nt s pr asit y c as e,  w e t est  Al g orit h m 2  wit h
n = 1 2 8, m = 2 5 6, s 0 = 1 6, a n d N = 4.  We g e n er at e λ a n d X
f oll o wi n g t h e s a m e  m o d el as i n S e cti o n  VI- A, a n d f or t h e j oi nt
s p ar sit y c a s e, a ss u m e t h at  w e h a v e a c c e ss t o t h e s a m e g o o d
i niti al esti m at e γ (0 ) a s i n S e cti o n  VI- B.  T h e  m e a s ur e m e nt Y
c o nt ai n s n ois e  wit h σ = 0 .1 (t h e M S N R ≈ 2 0 d B), a n d  w e
d e cl ar e s u c c e ssf ul r e c o v er y if t h e  R S N R e x c e e ds 2 0 d B.  T h e
s u c c ess r at es i n t h e s u bs p a c e c as e a n d t h e j oi nt s p arsit y c as e
ar e s h o w n i n Fi g ur e s 1 1( a) a n d 1 1( b), r e s p e cti v el y.
T h e e m piri c al s u c c e ss r at e s i n b ot h t h e s u b s p a c e a n d t h e

j oi nt s p ar sit y c a s e s s h o w t h at, alt h o u g h  w e n e e d t h e c o m pl e x
G a u ssi a n r a n d o m  m atri x  m o d el i n  Ass u m pti o n 3 f or t h e pr o of
of o ur  m ai n r es ults, i n pr a cti c e  Al g orit h m s 1 a n d 2 ar e j u st as
s u c c e ssf ul f or ot h er  m o d els of A a s t h e y ar e f or t h e  G a u ssi a n
m o d el. I n ot h er  w or d s, o n e d o e s n ot n e e d A t o b e a c o m pl e x
G a u ssi a n r a n d o m  m atri x f or o ur al g orit h m s t o c o n v er g e, a n d
t o b e eff e cti v e.
H o w e v er, o ur i niti ali z ati o n al g orit h m is n ot e q u all y s u c-

c e ssf ul f or all  m o d els of A .  T o d e m o n str at e t his,  w e t est
o ur al g orit h m s f or t h e j oi nt s p ar sit y c as e  wit h n = 1 2 8,
m = 2 5 6, s 0 = 4, a n d N = 3 2, a n d f e e d t h e i niti al esti m at es
pr o d u c e d b y  Al g orit h m 3 t o  Al g orit h m 2.  T h e s u c c e ss r at e s
i n Fi g ur e 1 1( c) cl e arl y s h o w t h at  Al g orit h m 3 c a n n ot pr o d u c e
s uf fi ci e ntl y a c c ur at e esti m at es u n d er t h e “ R a d e m a c h er ”  m o d el
a n d t h e “ p arti al F o uri er ”  m o d el of A .  T h e c o n diti o n o n A
u n d er  w hi c h  Al g orit h m 3 i s e m pi ri c all y s u c c essf ul r e q uir es
f urt h er i n v e sti g ati o n, a n d is b e y o n d t h e s c o p e of t his p a p er.
N e xt,  w e s h o w t h at  Ass u m pti o n s 4 a n d 5 ar e i m p ort a nt

i n t er m s of c o n v er g e n c e r at e a n d n ois e r o b u st n e ss of o ur
al g orit h m s.  D es pit e t h e f a ct t h at, i n t h e s u b s p a c e c a s e, t h e
pri n ci p al ei g e n v e ct or of G c orr e s p o n d s t o t h e gr o u n d tr ut h
r e g ar dl ess of t h e d y n a mi c r a n g e i n λ or t h e c o n diti o ni n g of
X a s l o n g a s t h e s ol uti o n is u ni q u e i n t h e s u b s p a c e c a s e,
o n e c a n o nl y e x p e ct t h e f a st c o n v er g e n c e a n d r o b u st r e c o v er y
i n  T h e or e m 1 1 u n d er c ert ai n r e g ul arit y c o n diti o n s o n λ a n d
X . I n t h e j oi nt s p ar sit y c a s e, t h e s u c c e ss of tr u n c at e d p o w er
it er ati o n d e p e n d s e v e n  m or e o n t h e fl at n e ss of λ a n d t h e

Fi g. 1 1.  T h e e m piri c al s u c c ess r at es of o ur al g orit h m s u n d er f o ur  m o d els of
A . ( a) is t h e r es ult f or t h e s u bs p a c e c as e, ( b) is t h e r es ult f or t h e j oi nt s p arsit y
c as e  wit h a g o o d a p pr o xi m at e i niti al esti m at e, a n d ( c) is t h e r es ult f or t h e
j oi nt s p arsit y c as e  wit h i niti ali z ati o n pr o d u c e d usi n g  Al g orit h m 3.

g o o d c o n diti o ni n g of X .  We d e m o n str at e t h e i m p ort a n c e of
Ass u m pti o n s 4 a n d 5 b y r el a xi n g t h e m gr a d u all y, a n d o b s er v e
t h e d e gr a d ati o n i n s u c c ess r at es.
I n p arti c ul ar, t o c o m p ar e  wit h t h e s u c c ess r at es  wit h a n

a p pr o xi m at el y fl at λ t h at s atis fi es  Ass u m pti o n 4 (f oll o wi n g t h e
s a m e  m o d el i n S e cti o n  VI- A),  w e  m ulti pl y diff er e nt e ntri es of
λ b y a d diti o n al g ai n s – i.i. d. r a n d o m v ari a bl es f oll o wi n g a
u nif or m distri b uti o n o n [0 .5 , 1 ] –  w hi c h r o u g hl y i n cr e a s e s t h e
d y n a mi c r a n g e of λ b y a f a ct or of 2.  We als o a p pl y a d diti o n al
g ai n s dr a w n fr o m u nif or m distri b uti o n s o n [0 .2 , 1 ], [0 .1 , 1 ],
or [0 , 1 ], w hi c h m a k es λ pr o gr e ssi v el y l ess fl at b y r o u g hl y
i n cr e a si n g its d y n a mi c r a n g e b y a f a ct or of 5, 1 0, or ∞ .
Si mil arl y,  w e i n cr e as e t h e c o n diti o n n u m b er of X b y a f a ct or of
a b o ut 2, 5, 1 0, or ∞ , b y  m ulti pl yi n g t h e c ol u m n s of X b y i.i. d.
r a n d o m v ari a bl es dr a w n fr o m u nif or m distri b uti o n s o n [0 .5 , 1 ],
[0 .2 , 1 ], [0 .1 , 1 ], or [0 , 1 ].  A c c or di n g t o Fi g ur e 1 2, t h e s u c c e ss
r at es, i n b ot h t h e s u b s p a c e c a s e a n d t h e j oi nt s p ar sit y c a s e,
d e cr e a s e as t h e fl at n e ss of λ or t h e c o n diti o ni n g of X b e c o m e s
w or s e. S u c h n e g ati v e i m p a ct is  m or e pr o n o u n c e d i n t h e j oi nt
s p arsit y c as e.
T h e e xt e n si v e n u m eri c al e x p eri m e nts i n
S e cti o n s  VI- A a n d  VI- B d e m o n str at e t h at  Al g orit h m s 1 a n d 2
ar e s u c c e ssf ul u n d er r e a s o n a bl e n ois e l e v els ( M S N R = 2 0 d B,
1 4 d B, a n d 6 d B).  T h e r e q uir e m e nt o n t h e n ois e l e v el i n
t h e j oi nt s p ar sit y c as e of  Ass u m pti o n 6 is p essi misti c  w h e n
c o m p ar e d t o e m piri c al r es ults, d u e t o li mit ati o n s of o ur
t h e or eti c al a n al ysis.
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Fi g. 1 2.  T h e e m piri c al s u c c ess r at es of o ur al g orit h m s u n d er diff er e nt fl at n ess
of λ , a n d diff er e nt c o n diti o ni n g of X . ( a) a n d ( b) ar e t h e r es ults f or t h e
s u bs p a c e c as e, ( c) a n d ( d) ar e t h e r es ults f or t h e j oi nt s p arsit y c as e.

Fi g. 1 3.  T h e e m piri c al s u c c ess r at es u n d er t w o  m o d els of r o w s p ars e X : t h e
G a ussi a n  m o d el a n d t h e  R a d e m a c h er  m o d el.

I n or d er t o i n v esti g at e h o w criti c al  Ass u m pti o n 7 is t o
t h e e m piri c al p erf or m a n c e of o ur i niti ali z ati o n al g orit h m,  w e
c o m p ar e t w o  m o d els f or t h e n o n z er o e ntri e s of X (i n t h e j oi nt
s p arsit y c as e,  wit h n = 1 2 8, m = 2 5 6, s 0 = 4, a n d N = 3 2):

• G a ussi a n : t h e n o n z er o e ntri e s f oll o w C N (0 , 1N s 0 ).
• R a d e m a c h e r : t h e n o n z er o e ntri e s f oll o w a t w o- p oi nt
distri b uti o n o n ± 1√

N s 0
, e a c h  wit h pr o b a bilit y 12 ( a s c al e d

v er si o n of t h e  R a d e m a c h er distri b uti o n).

B y o ur dis c u ssi o n i n S e cti o n III- A, t h e  G a u ssi a n  m o d el
s atis fi es  Ass u m pti o n 7  wit h ω = 14 a n d δ X =

1√
2 π
,  w hil e t h e

R a d e m a c h er  m o d el is t h e i d e al c a s e  wit h ω = 1 a n d δ X = 0.
H o w e v er, Fi g ur e 1 3 s h o ws t h at  Al g orit h m s 2 a n d 3 h a v e
hi g h er s u c c e ss r at e u n d er t h e  G a u ssi a n  m o d el.  T hi s s u g g e sts
t h at, alt h o u g h  Ass u m pti o n 7 is i m p ort a nt f or o ur t h e or eti c al
a n al y sis of  Al g orit h m 3, it c a n n ot b e u s e d t o pr e di ct t h e
e m piri c al p erf or m a n c e of o ur al g orit h m s, as b ett er c o n st a nts
i n  A ss u m pti o n 7 d o n ot n e c e ss aril y  m e a n hi g h er s u c c e ss r at e s.

E.  A p pli c ati o n: I n v e rs e  R e n d e ri n g

I n t his s e cti o n,  w e a p pl y t h e p o w er it er ati o n al g orit h m t o
t h e i n v er s e r e n d eri n g pr o bl e m i n c o m p ut ati o n al r eli g hti n g –
gi v e n i m a g e s of a n o bj e ct u n d er diff er e nt b ut u n k n o w n li g hti n g
c o n diti o n s ( Fi g ur e 1 4( a)), a n d t h e s urf a c e n or m als of t h e

Fi g. 1 4. I n v ers e r e n d eri n g a n d r eli g hti n g. ( a)  We us e 1 2 i m a g es of t h e
o bj e ct u n d er diff er e nt li g hti n g c o n diti o ns. ( b)  T h e s urf a c e n or m als.  T h e t hr e e
di m e nsi o ns of t h e n or m al v e ct ors ar e r e pr es e nt e d b y t h e  R G B c h a n n els of
t h e c ol or i m a g e. ( c)  T h e r e c o v er e d al b e d o  m a p. ( d)  C o m p ut e d i m a g es of t h e
o bj e ct u n d er n e w li g hti n g c o n diti o ns.

o bj e ct ( Fi g ur e 1 4( b)), t h e g o al is t o r e c o v er b ot h t h e al b e d o
( als o k n o w n as r e fl e cti o n c o ef fi ci e nts) of t h e o bj e ct s urf a c e
a n d t h e li g hti n g c o n diti o n s. I n t his pr o bl e m, t h e c ol u m n s of
Y = di a g ( λ) A X ∈ R n × N r e pr e s e nt i m a g e s u n d er diff er e nt
li g hti n g c o n diti o n s,  w hi c h ar e t h e pr o d u cts of t h e u n k n o w n
al b e d o  m a p λ ∈ R n a n d t h e i nt e n sit y  m a p s of i n ci d e nt li g ht
u n d er diff er e nt c o n diti o n s A X . F or  L a m b erti a n s urf a c e s, it
is r e a s o n a bl e t o ass u m e t h at t h e i nt e n sit y of i n ci d e nt li g ht
r e si d e s i n a s u b s p a c e s p a n n e d b y t h e fir st ni n e s p h eri c al
h ar m o ni c s c o m p ut e d fr o m t h e s urf a c e n or m als [ 2],  w hi c h  w e
d e n ot e b y t h e c ol u m n s of A ∈ R n × 9 .  T h e n t h e c ol u m n s of
X ar e t h e c o or di n at es of t h e s p h eri c al h ar m o ni c e x p a n si o n,
w hi c h p ar a m et eri z e t h e li g hti n g c o n diti o n s.  We c a n s ol v e f or
λ a n d X u si n g  Al g orit h m 1.  O ur a p pr o a c h is si mil ar t o t h at
of  N g u y e n et al. [ 2],  w hi c h als o f or m ul at es i n v er s e r e n d eri n g
as a n ei g e n v e ct or pr o bl e m.  D es pit e t h e f a ct t h at t h e t w o
a p pr o a c h e s s ol v e f or t h e ei g e n v e ct or s of diff er e nt  m atri c e s,
t h e y yi el d i d e nti c al s ol uti o n s i n t h e i d e al s c e n ari o  w h er e t h e
m o d el is e x a ct a n d t h e s ol uti o n is u ni q u e.
I n o ur e x p eri m e nt,  w e o bt ai n N = 1 2 c ol or i m a g e s a n d t h e

s urf a c e n or m als of a n o bj e ct u n d er diff er e nt li g hti n g c o n di-
ti o n s,5 a n d  w e c o m p ut e t h e fir st m = 9 s p h eri c al h ar m o ni c s.

5 T h e i m a g es ar e d o w nl o a d e d fr o m htt ps:// c o urs es. cs. w as hi n gt o n.
e d u/ c o urs es/ cs e p 5 7 6/ 0 5 wi/ pr oj e ct s/ pr oj e ct 3/ pr oj e ct 3. ht m o n S e pt e m b er 1 6,
2 0 1 7.  T h e s urf a c e n or m als ar e c o m p ut e d usi n g t h e  m et h o d d es cri b e d i n t h e
s a m e  w e b p a g e.
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We a p pl y  Al g orit h m 1 t o e a c h of t h e t hr e e c ol or c h a n n el s, a n d
t h e al b e d o  m a p r e c o v er e d u si n g 2 0 0 p o w er it er ati o n s is s h o w n
i n Fi g ur e 1 4( c).  We als o c o m p ut e n e w i m a g e s of t h e o bj e ct
u n d er n e w li g hti n g c o n diti o n s ( Fi g ur e 1 4( d)).

VII.  C O N C L U S I O N

We f or m ul at e t h e  B G P C pr o bl e m a s a n ei g e n v e ct or pr o bl e m,
a n d pr o p o s e t o s ol v e  B G P C  wit h p o w er it er ati o n, a n d s ol v e
B G P C  wit h a s p ar sit y str u ct ur e  wit h tr u n c at e d p o w er it er ati o n.
We gi v e t h e or eti c al g u ar a nt e e s f or t h e s u b s p a c e c a s e  wit h a
n e ar o pti m al s a m pl e c o m pl e xit y, a n d f or t h e j oi nt s p ar sit y c as e
wit h a s u b o pti m al s a m pl e c o m pl e xit y.  N u m eri c al e x p eri m e nts
s h o w t h at b ot h p o w er it er ati o n a n d tr u n c at e d p o w er it er ati o n
c a n r e c o v er t h e u n k n o w n g ai n a n d p h a s e, a n d t h e u n k n o w n
si g n al, u si n g a n e ar o pti m al n u m b er of s a m pl e s. It is a n o p e n
pr o bl e m t o o bt ai n t h e or eti c al g u ar a nt e e s  wit h o pti m al s a m pl e
c o m pl e xiti es, f or tr u n c at e d p o w er it er ati o n t h at s ol v es  B G P C
wit h j oi nt s p ar sit y or s p ar sit y c o n str ai nts.

A P P E N D I X

P r o of of L e m m a 1 5: We h a v e

D ∗ D = I N ⊗ ( A
∗ A ), ( 3 6)

D ∗ E s =






λ 1 a 1 ·a 1 · x ·1 · · · λ n a n ·a n ·x ·1
...

...
...

λ 1 a 1 ·a 1 · x ·N · · · λ n a n ·a n ·x ·N




 , ( 3 7)

E ∗s E s =






|λ 1 |
2 a 1 · X X

∗ a 1 ·
...

|λ n |
2 a n · X X

∗ a n ·




 . ( 3 8)

U n d er  Ass u m pti o n s 3 a n d 5,  w e h a v e

E D ∗ D = I N m , ( 3 9)

E D ∗ E s =
1

n
x λ , ( 4 0)

E E ∗s E s =
1

n
X 2
F di a g ([|λ 1 |

2 , . . . , |λ n |
2 ])

=
1

n
di a g ([|λ 1 |

2 , . . . , |λ n |
2 ]). ( 4 1)

S et α =
√
n , w e h a v e

E B s =
I N m

1√
n
x λ

1√
n
λ x ∗ di a g ([|λ 1 |

2 , . . . , |λ n |
2 ])
,

a n d

E T η B s
∗
T η

=
I N s

1√
n T x x λ

1√
n
λ x ∗ ∗

T x
di a g ([|λ 1 |

2 , . . . , |λ n |
2 ])

= P ∗ Q P ,

w h er e

P = di a g ([1 1 , N s , λ ]),

Q =
I N s

1√
n T x x 1 n ,1

1√
n
1 n ,1 x

∗ ∗
T x

In
.

T h e  m atri x Q h as ei g e n v al u es 0 , 1 , 1 , . . . , 1 , 2.  T h e
ei g e n v e ct or s c orr e s p o n di n g t o 0 a n d 2 ar e µ =
[( T x x ) , − 1 n ,1 /

√
n ] /
√
2 a n d [( T x x ) , 1 n ,1 /

√
n ] /
√
2,

r e s p e cti v el y.  A n y v e ct or ort h o g o n al t o t h e s e t w o v e ct or s
is a n ei g e n v e ct or of Q c orr e s p o n di n g t o 1. It f oll o ws t h at
Q + µ µ ∗ − I N s + n i s p o siti v e s e mi d e fi nit e.
Si n c e µ is a n ull v e ct or of Q , w e h a v e P − 1 µ is a n ull

v e ct or of P ∗ Q P ( n ot e t h at T η η =
√
2 P − 1 µ ).  T h er ef or e,

t h e s m all est ei g e n v al u e of t h e p o siti v e s e mi d e fi nit e  m atri x
P ∗ Q P is 0.
N e xt,  w e b o u n d t h e l ar g e st ei g e n v al u e of P ∗ Q P , w hi c h
s atis fi es

m a x
z 2 ≤ 1

P ∗ Q P z 2 ≤
√
1 + δ m a x

P z 2 ≤
√
1 + δ

Q P z 2

= (1 + δ ) m a x
z 2 ≤ 1

Q z 2

≤ 2 (1 + δ ), ( 4 2)

w h er e t h e fir st i n e q u alit y f oll o ws fr o m  Ass u m pti o n 4, a n d
t h e s e c o n d i n e q u alit y f oll o ws fr o m t h e l ar g est ei g e n v al u e
of Q .
N e xt,  w e b o u n d t h e s e c o n d s m all est ei g e n v al u e of P ∗ Q P ,
w hi c h s atis fi es

mi n
z ⊥ P − 1 µ, z 2 ≥ 1

P ∗ Q P z 2

≥
√
1 − δ mi n

P z ⊥ ( P P ∗ ) − 1 µ, P z 2 ≥
√
1 − δ

Q P z 2

= (1 − δ ) mi n
z ⊥ ( P P ∗ ) − 1 µ, z 2 ≥ 1

Q z 2

≥ (1 − δ ) mi n
z ⊥ ( P P ∗ ) − 1 µ, z 2 = 1

( I N s + n − µ µ
∗ )z 2

= (1 − δ ) mi n
z ⊥ ( P P ∗ ) − 1 µ, z 2 = 1

1 − | µ ∗ z |2

= (1 − δ )
|µ ∗ ( P P ∗ )− 1 µ |

( P P ∗ )− 1 µ 2

≥
(1 − δ ) 2

1 + δ
, ( 4 3)

w h er e t h e fir st a n d t hir d i n e q u aliti es f oll o w fr o m  Ass u m p-
ti o n 4, a n d t h e s e c o n d i n e q u alit y is d u e t o t h e f a ct t h at
Q + µ µ ∗ − I N s + n i s p o siti v e s e mi d e fi nit e.
B y ( 4 2) a n d ( 4 3), all n o n z er o ei g e n v al u e s of E T η B s

∗
T η

r e si d e i n t h e i nt er v al [ (1 − δ )
2

1 + δ , 2 (1 + δ ) ].
P r o of of L e m m a 1 7: We pr o v e o nl y t h e j oi nt s p ar sit y c a s e.
O n e c a n pr o v e t h e s u b s p a c e c a s e b y r e pl a ci n g s wit h m a n d
g etti n g ri d of t h e u ni o n b o u n d.
It is  w ell- k n o w n t h at, f or s uf fi ci e ntl y l ar g e n , a  G a u ssi a n
r a n d o m  m atri x s atis fi es  RI P [ 5 5].  H er e,  w e u s e a b o u n d f or
r e al  G a u ssi a n r a n d o m  m atri c e s [ 6 2], a n d pr e s e nt its e xt e n si o n
t o c o m pl e x  G a u ssi a n r a n d o m  m atri c e s.  L et T ⊂ [ m ] d e n ot e
a n i n d e x s et of c ar di n alit y s , i. e., |T | = s < n . L et A :=
[R e ( A ) ∗T , I m( A )

∗
T ].  B y [ 6 2,  T h. 2. 1 3],

P 2 A ∗ A − I2 s ≤ 3
2 s

n
+ ε ≥ 1 − 2 e x p −

n ε 2

2
.
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N ot e als o t h at

T A
∗ A ∗

T = T R e ( A ) R e ( A )
∗
T

+
√
− 1 T R e ( A ) I m( A )

∗
T

−
√
− 1 T I m( A ) R e ( A )

∗
T

+ T I m( A ) I m( A )
∗
T .

T A
∗ A ∗

T − Is ≤ T R e ( A ) R e ( A )
∗
T − Is / 2

+ T R e ( A ) I m( A )
∗
T

+ T I m( A ) R e ( A )
∗
T

+ T I m( A ) I m( A )
∗
T − Is / 2

≤ 4 A ∗ A − I2 s / 2 .

It f oll o ws t h at

P T A
∗ A ∗

T − Is ≤ 6
s

n
+ ε

≥ 1 − 2 e x p −
n ε 2

2
.

T h er ef or e, t h er e e xi st c o n st a nt s C 1 , c 1 > 0, s u c h t h at

P T A
∗ A ∗

T − Is ≤ C 1
s

n
l o g m , ∀ T s.t. |T | = s

≥ 1 − 2
m

s
e x p −

C 1

6
− 1

2 s

2
l o g m

≥ 1 − m − c 1 s ,

w h er e t h e fir st i n e q u alit y f oll o w s fr o m a u ni o n b o u n d, a n d

s etti n g ε = ( C 16 − 1 )
s
n l o g m ; t h e s e c o n d i n e q u alit y f oll o ws

fr o m Stirli n g’s a p pr o xi m ati o n ms ≤
e m
s
s
.

We o bt ai n  L e m m a 1 7 b y a p pl yi n g t h e a b o v e b o u n d t o e v er y
di a g o n al bl o c k of t h e bl o c k di a g o n al  m atri x T x D

∗ D ∗
T x
.

P r o of of L e m m a 1 8: B y a c o n s e q u e n c e of t h e  H a n s o n-
Wri g ht i n e q u alit y ( s e e [ 6 3,  T h. 2. 1], a n d its c o m pl e xi fi c ati o n
i n [ 6 3, S e c. 3. 1]), t h er e e xists a n a b s ol ut e c o n st a nt c 2 s u c h
t h at

P
√
n X a k · 2 − 1 ≤ ε ≥ 1 − 2 e x p −

c 2 ε
2

X 2
. ( 4 4)

S et ε = C 2 X
√
l o g n f or s o m e C 2 > 0, t h e n b y a u ni o n

b o u n d, t h er e e xists a n a b s ol ut e c o n st a nt c 2 > 0 s u c h t h at

P
√
n X a k · 2 − 1 ≤ C 2 X l o g n , ∀ k ∈ [ n ] ≥ 1 − n − c 2 .

( 4 5)

B y  Ass u m pti o n 4,

P |λ k |
2 a k · X X

∗ a k · −
1

n
≤
(2 C 2 + C

2
2 )(1 + δ )

n

· m a x X l o g n , X 2 l o g n , ∀ k ∈ [ n ]

≥ 1 − n − c 2 . ( 4 6)

T h e s p e ctr al n or m X is b o u n d e d i n  Ass u m pti o n 5:

S u bs p a c e c a s e: X 2 ≤ (1 + θ ) m a x {
1

N
,
1

m
},

J oi nt s p a rsit y c a s e: X 2 ≤ (1 + θ ) m a x {
1

N
,
1

s 0
}.

T h er ef or e,  L e m m a 1 8 f oll o ws fr o m ( 3 8), ( 4 1), a n d ( 4 6).

P r o of of L e m m a 1 9: B y ( 3 7), t h e c ol u m n s of D ∗ E s ar e
i n d e p e n d e nt r a n d o m v e ct or s.  D e fi n e

φ k :=








a k ·a k · x ·1

a k ·a k · x ·2
...

a k ·a k · x ·N







.

T h e n D ∗ E s = [ φ 1 , φ2 , . . . , φn ]di a g ( λ).  N e xt,  w e b o u n d
t h e s p e ctr al n or m of t h e r a n d o m  m atri x − E , w h er e
: = [φ 1 , φ2 , . . . , φn ], u si n g  m atri x  B er n st ei n i n e q u alit y

[ 5 7,  T h. 1. 6].  We n e e d t h e f oll o wi n g b o u n d s t o pr o c e e d:

1) A b o u n d o n φ k − E φ k 2 .
Fir st, b y [ 6 3, S e c. 3. 1,  T h. 2. 1], t h er e e xists a c o n st a nt
c 3

P
√
n a k · 2 −

√
m ≤ ε ≥ 1 − 2 e x p (− c 3 ε

2 ).

B y a u ni o n b o u n d o v er all k ∈ [ n ], t h er e e xists a c o n st a nt
C 3 s u c h t h at

P
√
n a k · 2 −

√
m ≤ C 3 l o g n , ∀ k ∈ [ n ]

≥ 1 − 2 n e x p − c 3 C
2
3 l o g n

≥ 1 − n − c 2 . ( 4 7)

N ot e t h at

E φ k 2 = 7
1

n
X F =

1

n
, φ k 2 ≤ a k · 2 X a k · 2 .

B y ( 4 5) a n d ( 4 7), t h er e e xists a c o n st a nt C 3 , s u c h t h at
wit h pr o b a bilit y at l e ast 1 − 2 n − c 2 ,

φ k − E φ k 2

≤
C 3
n
m a x

√
m , l o g n m a x 1 ,

l o g n

N
,
l o g n

m

≤
C 3
√
m

n
,

f or all k ∈ [ n ],  w h er e t h e s e c o n d i n e q u alit y u s es t h e
ass u m pti o n t h at  mi n { N , m } > l o g n .

2) A b o u n d o n E [( − E )∗ ( − E )] .
O n e s h o ul d o b s er v e t h at

E [( φk − E φ k )
∗ ( φk − E φ k )] =

m

n 2
,

E [( φk − E φ k )
∗ ( φk − E φ k )] = 0 ,

f or k = k .  T h er ef or e,

E [( − E )∗ ( − E )] =
m

n 2
In ,

E [( − E )∗ ( − E )] =
m

n 2
.

3) A b o u n d o n E [( − E )( − E )∗ ] .
Si n c e {φ k }

n
k = 1 ar e i.i. d. r a n d o m v e ct or s,

E [( − E )( − E )∗ ]

=

n

k = 1

E [( φk − E φ k )( φk − E φ k )
∗ ]

= n E [( φ1 − E φ 1 )( φ1 − E φ 1 )
∗ ]

= n [E ( φ1 φ
∗
1 ) − (E φ 1 )(E φ 1 )

∗ ]

=
1

n
( X X ⊗ Im ).
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B y  A ss u m pti o n 5, i n t h e s u b s p a c e c a s e,

E [( − E )( − E )∗ ] =
1

n
X X

≤
1 + θ

n
m a x {

1

N
,
1

m
}.

Gi v e n t h e a b o v e b o u n d s,  w e a p pl y t h e  m atri x  B er n st ei n
i n e q u alit y [ 5 7,  T h. 1. 6] as f oll o ws:

P − E ≤ ε φ k − E φ k 2 ≤ R , ∀ k ∈ [ n ]

≥ 1 − ( N m + n ) e x p −
ε 2 / 2

σ 2 + R ε / 3
,

w h er e

σ 2 = m a x
m

n 2
,
1 + θ

n N
,
1 + θ

n m
,

R =
C 3
√
m

n
.

It f oll o ws t h at

P − E ≤ ε

≥ 1 − ( N m + n ) e x p −
ε 2 / 2

σ 2 + R ε / 3
− 2 n − c 2 ,

w h er e t h e l ast t er m 2 n − c 2 b o u n d s t h e pr o b a bilit y t h at
φ k − E φ k 2 > R f or s o m e k .  H e n c e t h er e e xi st
c o n st a nts C 3 , c 3 > 0 s u c h t h at

P − E ≤
C 3
√
1 + δ

m a x
l o g( N m + n )

n N
,

l o g( N m + n )

n m
,

√
m l o g( N m + n )

n
≥ 1 − n − c 3 .

L e m m a 1 8 f oll o ws fr o m t h e a b o v e b o u n d, a n d

T x D
∗ E s − E T x D

∗ E s = − E di a g ( λ)

≤
√
1 + δ − E .

P r o of of L e m m a 2 0: We i ntr o d u c e s o m e n ot ati o n s f or t his
pr o of.  We u s e B np a n d B S m ,np t o d e n ot e u nit b alls i n C

n wit h p

n or m, a n d i n C m × n wit h S c h att e n p n or m, r e s p e cti v el y.  T h e
pr oj e cti o n o n t h e s u p p ort s et T is d e n ot e d b y T . F or a s et
A of  m atri c es, d F (A ) a n d d o p (A ) d e n ot e t h e r a dii of A i n t h e
Fr o b e ni u s n or m a n d i n t h e s p e ctr al n or m, r e s p e cti v el y.  We u s e
γ 2 (A , · ) t h e γ 2 f u n cti o n al of A ,  w hi c h is a n ot h er  w a y t o
q u a ntif y t h e si z e of A [ 5 8, S e c. 2. 2].  T h es e ar e k e y q u a ntiti es
i n t h e u p p er b o u n d of t h e s u pr e m u m of a n a s y m m etri c s e c o n d-
or d er pr o c e ss [ 5 8,  T h. 2. 3],  w hi c h  w e u s e t o pr o v e  L e m m a 2 0.
N ot e t h at

m a x
T ⊂[ m ]
|T | =s

T x D
∗ E s − E T x D

∗ E s

= m a x
T ⊂[ m ]
|T | =s

m a x
v ∈ B m N2

( I N ⊗ T ) v = v

m a x
u ∈ B n2

|v ∗ u − E v ∗ u |, ( 4 8)

w h er e = D ∗ E s . L et z =
√
n [a ∗1 ·, . . . , a

∗
n ·] . T h e n z f oll o ws

C N (0 m n ,1 , Im n ) a n d v
∗ u is  writt e n a s a q u a dr ati c f or m i n z

as f oll o ws:

v ∗ u =

n

k = 1

N

j = 1

u k a k · x · j v
∗
· j a k ·

= z ∗ (di a g (u ) ⊗ T 0 )
1

n
In ⊗ X V

∗ z , ( 4 9)

w h er e u = [ u 1 , . . . , u n ] , v = [ v ·1 , . . . , v·N ] , V =
[v ·1 , . . . , v·N ], a n d T 0 = { i ∈ [ m ]| e i X 2 > 0 } d e n ot e s t h e
r o w s u p p ort of X = [ x ·1 , . . . , x ·N ].
L et

A = { A u |u ∈ B
n
2 },

a n d

B = { B v |v ∈ B
m N
2 , ( I N ⊗ T ) v = v },

w h er e A u a n d B v ar e l eft a n d ri g ht f a ct or s i n t h e q u a dr ati c
f or m i n ( 4 9), i. e.,

A u = di a g (u ) ⊗ T 0 ,

a n d

B v =
1

n
In ⊗ X V

∗ .

T h e n ( 4 8) is e q ui v al e nt t o

s u p
A u ∈ A

s u p
B v ∈ B

|z ∗ A u B v z − E z
∗ A u B v z |,

w hi c h is a s u pr e m u m of a n a s y m m etri c s e c o n d- or d er pr o c e ss.
We u s e t h e r e s ult o n s u pr e m a of as y m m etri c s e c o n d- or d er
c h a o s pr o c e ss es b y  L e e a n d J u n g e [ 5 8,  T h. 2. 3],  w hi c h e xt e n d s
t h e ori gi n al r e s ult b y  Kr a h m er et al. [ 6 4] t o as y m m etri c c as es.
N e xt,  w e c o m p ut e t h e k e y q u a ntiti es, gi v e n as f u n cti o n s of
A a n d B ,  w hi c h  w e n e e d t o a p pl y [ 5 8,  T h. 2. 3].  L et A u ∈ A .
Si n c e |T 0 | ≤ s 0 , w e h a v e

A u F =
√
s 0 u 2 ≤

√
s 0

a n d t h e r a di u s of A i n t h e Fr o b e ni u s n or m s atis fi es

d F (A ) ≤
√
s 0 .

O n t h e ot h er h a n d,

A u = u ∞ ≤ 1 ,

w hi c h i m pli es t h at t h e r a di u s of A i n t h e s p e ctr al n or m s atis fi es

d o p (A ) ≤ 1 .

M or e o v er, f or A u , A u ∈ A , w e h a v e

A u − A u = u − u ∞ .

T h er ef or e, b y t h e  D u dl e y’s i n e q u alit y [ 6 5],

γ 2 (A , · )
∞

0
l o g N (A , · ; t)dt

≤
∞

0
l o g N ( B n2 , · ∞ ; t)dt

∞

0
l o g N ( B n1 , · 2 ; t)dt

l o g3 / 2 n ,
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w h er e t h e t hir d st e p f oll o ws fr o m t h e e ntr o p y d u alit y r es ult
b y  Artst ei n et al. [ 6 6] a n d t h e l ast st e p f oll o w s fr o m  M a ur e y’s
e m piri c al  m et h o d [ 6 7] ( als o s e e [ 6 8,  L e m m a 3. 1]).  C oll e cti n g
t h e a b o v e esti m at es s h o ws t h at t h e r el e v a nt q u a ntiti es ar e
gi v e n b y

γ 2 (A , · )(d F (A ) + γ 2 (A , · )) + d F (A )d o p (A )

m a x {
√
s 0 l o g

3 / 2 n , l o g3 n },

d o p (A )( γ 2 (A , · ) + d F (A ))

m a x {
√
s 0 , l o g

3 / 2 n },

d o p (A )
2 ≤ 1 .

N e xt  w e c o n si d er t h e ot h er s et B . L et B v ∈ B . T h e n

B v F =
1
√
n
X V ∗ F ≤

1
√
n
X V F =

1
√
n
X .

T h er ef or e

d F (B ) ≤
1
√
n
X .

O n t h e ot h er h a n d,

B v =
1

n
X V ∗ ≤

1

n
X V ,

w hi c h i m pli es

d o p (B ) ≤
1

n
X .

M or e o v er, f or B v , B v ∈ B , w e h a v e

B v − B v ≤
1

n
X V − V ,

w h er e V = [ v ·1 , . . . , v·N ] a n d v = [ v ·1 , . . . , v·N ] . T h er e-
f or e,

γ 2 (B , · )
1

n
X

∞

0
l o g N (∪ |T | =s T B S m ,N2

, ·
S m ,N∞
; t)dt

≤
1

n
X

1

0
l o g N (∪ |T | =s T B S m ,N2

, ·
S m ,N∞
; t)dt

≤
1

n
X

1

0
l o g
|T | =s

N ( T B S m ,N2
, ·

S m ,N∞
; t)dt

≤
1

n
X

1

0
s l o g m + l o g N ( B

S s ,N2
, ·

S s ,N∞
; t)dt

≤
1

n
X s l o g m

+
1

0
l o g N ( B

S s ,N2
, ·

S s ,N∞
; t)dt

1

n
X
√
s + N l o g(s N + m ),

w h er e t h e l a st st e p f oll o w s fr o m  L e m m a 2 7.  T h er ef or e,
t h e p ar a m et er s f or B ar e esti m at e d as

γ 2 (B , · )(d F (B ) + γ 2 (B , · )) + d F (B )d o p (B )

1

n 2
X 2 ((s + N ) l o g2 (s N + m )

+
√
s + N

√
n l o g(s N + m )),

d o p (B )( γ 2 (B , · ) + d F (B ))

1

n 2
X 2 (

√
s + N l o g(s N + m ) +

√
n ),

d o p (B )
2 ≤

1

n 2
X 2 .

A c c or di n g t o [ 5 8,  T h. 2. 3], t h e o pti m al u p p er b o u n d is
o bt ai n e d as t h e g e o m etri c  m e a n of t h e d o mi n a nt p ar a m et er s
f or t h e t w o s ets.  M or e pr e cis el y, t h e s u pr e m a is ( u p t o a n
a b s ol ut e c o n st a nt) n o l ar g er t h a n

s
1 / 4
0 (s + N )

1 / 4 (
√
n +
√
s + N )1 / 2

n
· X l o g3 n l o g(s N + m )

wit h pr o b a bilit y 1 − n − c 3 .  B y  Ass u m pti o n s 4 a n d 5,

|λ k | ≤
√
1 + δ,

X ≤ m a x
1 + θ

N
,
1 + θ

s 0
,

w hi c h c o m pl et e s t h e pr o of.
L e m m a 2 7:
∞

0
l o g N ( B

S m ,N2
, t B

S m ,N∞
)dt

√
m + N l o g(m N ).

P r o of of L e m m a 2 7: Fir st, b y t h e d u al e ntr o p y r e s ult b y
Artst ei n et al. [ 6 6],  w e h a v e

l o g N ( B
S m ,N2
, t B

S m ,N∞
) l o g N ( B

S m ,N1
, t B

S m ,N2
).

T h e n  w e a p pr o xi m at e t h e S 1 b all a s a p ol yt o p e u si n g a
tri c k pr o p o s e d b y J u n g e a n d  L e e [ 6 8].  L et R b e t h e s et of all
r a n k- 1  m atri c e s i n t h e u nit s p h er e of S m , N2 . T h e n B

S m ,N1
i s t h e

a b s ol ut e c o n v e x h ull of R .  We c o n str u ct a n - n et m of t h e
s p h er e S m − 1 . T h e n

| m | ≤ 1 +
2 m
.

F or a n ar bitr ar y f ∈ S m − 1 ,  w e h a v e a s e q u e n c e { fl }
∞
l= 1 ⊂ m

s u c h t h at

f =

∞

l= 1

α l fl ,

a n d

∞

l= 1

|α l | ≤
1

1 −
.

T h e e xist e n c e of s u c h a s e q u e n c e f oll o ws fr o m t h e o pti m alit y
of t h e c o n str u cti o n of t h e n et. Si mil arl y  w e c o n str u ct a n - n et

N ⊂ S
N − 1 of S N − 1 . T h e n

| N | ≤ 1 +
2 N
.
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F or a n ar bitr ar y g ∈ S N − 1 ,  w e h a v e a s e q u e n c e { g k }
∞
k = 1 ⊂ N

s u c h t h at

g =

∞

k = 1

β k g k

a n d
∞

k = 1

|β k | ≤
1

1 −
.

T h er ef or e,

f g∗ =

∞

l,k = 1

α l β k fl g
∗
k

a n d
∞

l,k = 1

|α l ||β k | ≤
1

1 −

2
.

We c a n c h o o s e s o t h at
1

1 −

2
≤ 2

a n d

1 +
2
≤ 8 .

L et m , N = m × N . T h e n

l o g(| m , N |) ≤ (m + N ) l o g 8

a n d

B
S m ,N1
⊂ 2 a b s c o n v ( m , N ).

N o w, it s uf fi c e s t o c o m p ut e
∞

0
l o g N (2 a b s c o n v ( m , N ), t BS m ,N2

)dt .

T h e n u s e a c h a n g e of v ari a bl e a n d g et
∞

0
l o g N (2 a b s c o n v ( m , N ), t BS m ,N2

)dt

= 2
∞

0
l o g N (a b s c o n v ( m , N ), t BS m ,N2

)dt .

L et m , N = { q 1 , . . . , q M }, w h er e M = | m , N |. D e fi n e
li n e ar  m a p pi n g Q : M

1 →
m N
2 b y Q (e i ) = v e c (q i ) f or

i = 1 , . . . , M . Si n c e v e c (q i ) 2 = q i S 2 = 1 f or all i,
w e h a v e

Q : M1 →
m N
2 = 1 .

N ot e
∞

0
l o g N (a b s c o n v ( m , N ), t BS m ,N2

)dt

=
∞

0
l o g N ( Q ( B M1 ), t B m N2

)dt .

B y a v er si o n of  M a ur e y’s e m piri c al  m et h o d ( s e e f or e x a m pl e
[ 6 8, Pr o p o siti o n 3. 2]),  w e h a v e

∞

0
l o g N ( Q ( B M1 ), t B m N2

)dt l o g M l o g(m N )

√
m + N l o g(m N ).

T his c o m pl et es t h e pr o of.

P r o of of L e m m a 2 2: B e ar i n  mi n d t h at t h e c ol u m n s of :=
D ∗ E n ,  w hi c h  w e d e n ot e b y {ψ k }

n
k = 1 , ar e i n d e p e n d e nt r a n d o m

v e ct ors  wit h z er o  m e a n:

ψ k :=








a k ·w k 1
a k ·w k 2
...

a k ·w k N







.

We b o u n d D ∗ E n u si n g t h e  m atri x  B er n st ei n i n e q u alit y
[ 5 7,  T h. 1. 6].  We n e e d t h e f oll o wi n g b o u n d s:

1) A b o u n d o n ψ k 2 .
Si n c e

ψ k 2 ≤ a k · 2 w k · 2

B y ( 4 7), a n d m > l o g n ,

ψ k 2 ≤ (C 3 + 1 )
m

n
×
√
N m a x
k ∈[ n ], j ∈[ N ]

|w kj |,

wit h pr o b a bilit y at l e ast 1 − n − c 2 .
2) A b o u n d o n E ∗ .
Si n c e

E ∗ =
m

n
di a g ([ w 1 ·

2
2 , w 2 ·

2
2 , . . . , w k ·

2
2 ]),

w e h a v e

E ∗ =
m

n
m a x
k ∈[ n ]

w k ·
2
2 ≤
m N

n
m a x

k ∈[ n ], j ∈[ N ]
|w kj |

2 .

3) A b o u n d o n E ∗ .
Si n c e

E ∗ =
k ∈[ n ]

1

n
di a g ([|w k 1 |

2 , |w k 2 |
2 , . . . , |w k N |

2 ]) ⊗ Im ,

w e h a v e

E ∗ =
1

n
m a x
j∈[ N ]

k ∈[ n ]

|w kj |
2 ≤ m a x

k ∈[ n ], j ∈[ N ]
|w kj |

2 .

Gi v e n t h e a b o v e b o u n d s,  w e c o m pl et e s t h e pr o of u si n g
t h e  m atri x  B er n st ei n i n e q u alit y ( si mil ar t o t h e pr o of of
L e m m a 1 9).  T h er e e xist c o n st a nts C 4 , c 4 > 0 s u c h t h at

D ∗ E n = ≤ C 4 m a x l o g( N m + n ),

N m

n
l o g( N m + n ) m a x

k ∈[ n ], j ∈[ N ]
|w kj |,

wit h pr o b a bilit y at l e ast 1 − n − c 4 .

P r o of of L e m m a 2 3: N ot e t h at

m a x
T ⊂[ m ]
|T | =s

T x D
∗ E n = m a x

T ⊂[ m ]
|T | =s

m a x
v ∈ B m N2

( I N ⊗ T ) v = v

m a x
u ∈ B n2

|v ∗ u |,

w h er e

= D ∗ E n

= I N ⊗ a 1 · . . . I N ⊗ a n ·






w 1 ·
...

w n ·




 .
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L et z =
√
n [a ∗1 ·, . . . , a

∗
n ·] . T h e n z is a st a n d ar d  G a u ssi a n

v e ct or, a n d

v ∗ u =
1
√
n
(1 1 ,n ⊗ v

∗ )( E n ⊗ Im )(di a g (u ) ⊗ Im )z .

L et

q u , v :=
1
√
n
(di a g (u )∗ ⊗ Im )( E

∗
n ⊗ Im )(1 n ,1 ⊗ v ).

T h e L 2 m etri c is gi v e n b y

d ((u , v ), (u , v )) = E (q ∗u , v z − q
∗
u , v z )

2

= q u , v − q u , v 2 .

I n d e e d,

d ((u , v ), (u , v )) ≤ d ((u , v ), (u , v )) + d ((u , v ), (u , v ))

≤ di a g (u − u ) ∞ E n v 2

+ di a g (u ) ∞ E n v − v 2

≤ di a g (u − u ) ∞ E n

+ E n v − v 2 .

L et s = { v ∈ B
m N
2 : T ⊂ [ m ], |T | = s , ( I N ⊗ T ) v =

v }.  B y  D u dl e y’s t h e or e m ( s e e e. g., [ 6 5,  T h. 1 1. 1 7]),  w e h a v e

E s u p
T ⊂[ m ]
|T | =s

s u p
v ∈ B m N2

( I N ⊗ T ) v = v

s u p
u ∈ B n2

v ∗ u

≤ 2 4
∞

0
l o g N ( s × B

n
2 , d (·); )d

≤ 2 4 E n
∞

0
l o g N ( s , · 2 ; )d

+
∞

0
l o g N ( B n2 , · ∞ ; )d

≤ 2 4 E n
∞

0
l o g N ( s , · 2 ; )d

+
∞

0
l o g N ( B n1 , · 2 ; )d

E n ( s l o g m +
√
N s + l o g3 / 2 n ).

B y a n e xt e n si o n of  D u dl e y’s i n e q u alit y t o  m o m e nts
[ 6 9, p. 2 6 3, S e c. 8. 9],

E s u p
T ⊂[ m ]
|T | =s

s u p
v ∈ B m N2

( I N ⊗ T ) v = v

s u p
u ∈ B n2

|v ∗ u |p
1 / p

E n ( s l o g m +
√
N s + l o g3 / 2 n )

√
p .

B y a v ari ati o n of  M ar k o v’s i n e q u alit y [ 6 9, Pr o p o siti o n 7. 1 1],
t h er e e xist a b s ol ut e c o n st a nts C 4 , c 4 > 0 s u c h t h at

s u p
T ⊂[ m ]
|T | =s

s u p
v ∈ B m N2

( I N ⊗ T ) v = v

s u p
u ∈ B n2

|v ∗ u |

≤ C 4 E n ( s l o g m +
√
N s + l o g3 / 2 n ) l o g n ,

wit h pr o b a bilit y at l e ast 1 − n − c 4 .
T h er ef or e,  L e m m a 2 3 f oll o w s fr o m

E n = m a x
k ∈[ n ]

w k · 2 ≤
√
N m a x
k ∈[ n ], j ∈[ N ]

|w kj |.

P r o of of L e m m a 2 4: If ass u m pti o n s 3 – 5 ar e s atis fi e d, t h e n
b y ( 4 5),

y k · 2 ≤
(C 2 + 1 )

√
1 + δ

√
n

m a x 1 , X l o g n

f or all k ∈ [ n ],  wit h pr o b a bilit y at l e ast 1 − n − c 2 .
Si n c e

E ∗s E n = di a g ([ y
∗
1 ·w 1 ·, y

∗
2 ·w 2 ·, . . . , y

∗
n ·w n ·]),

t h er e e xist c o n st a nts C 5 = (C 2 + 1 )
√
(1 + δ )( 1 + θ )  > 0 s u c h

t h at

E ∗s E n ≤ m a x
k
y k · 2 ×

√
N m a x
k ∈[ n ], j ∈[ N ]

|w kj |

≤
C 5

√
1 + θ

N

n
m a x 1 , X l o g n m a x

k ∈[ n ], j ∈[ N ]
|w kj |,

wit h pr o b a bilit y at l e ast 1 − n − c 2 .  T h er ef or e,  L e m m a 2 4 f oll o w s
fr o m  Ass u m pti o n 5.
P r o of of L e m m a 2 5: L e m m a 2 5 f oll o w s fr o m

E ∗n E n = di a g ([ w 1 ·
2
2 , w 2 ·

2
2 , . . . , w n ·

2
2 ]).

P r o of of L e m m a 2 6: We pr o v e t h es e i n e q u aliti es u si n g t h e
H o eff di n g’s i n e q u alit y.
F or all j ∈ [ N ], ∈ [ m ], a n d k ∈ [ n ],

|a k a k · x · j |
2 − E |a k a k · x · j |

2

≤ | a k |
2 |a k · x · j |

2 +
1

n 2
( x · j

2
2 + | x j |

2 )

≤ C 6
l o g(n m )

n
·
x · j

2
2 l o g(n N )

n
+
2 x · j

2
2

n 2

≤
(C 6 + 2 ) x · j

2
2 l o g

2 (n m N )

n 2
,

w h er e t h e t hir d li n e is tr u e  wit h pr o b a bilit y at l e ast 1 − n − c 6

f or s o m e a b s ol ut e c o n st a nt c 6 .  We s h o w t his b y a p pl yi n g a
C h er n off b o u n d a n d a u ni o n b o u n d t o |a k |

2 , a n d a p pl yi n g t h e
H a n s o n- Wri g ht i n e q u alit y ( 4 4) a n d a u ni o n b o u n d t o |a k · x · j |

2 .
T h e n it f oll o ws fr o m t h e  H o eff di n g’s i n e q u alit y a n d a u ni o n
b o u n d, t h at t h er e e xist a b s ol ut e c o n st a nts C 6 , c 6 > 0 s u c h t h at
f or all j ∈ [ N ] a n d ∈ [ m ] w e h a v e ( 2 0).
Si mil arl y, f or all j ∈ [ N ], ∈ [ m ], a n d k ∈ [ n ],

|a k |
2 |a k · x · j | ≤ C 6

l o g(n m )

n
·
x · j 2 l o g(n N )

√
n

,

wit h pr o b a bilit y at l e ast 1 − n − c 6 .  B y t h e  H o eff di n g’s i n e q u alit y
a n d a u ni o n b o u n d,  w e h a v e ( 2 1).  H er e  w e u s e t h e f oll o wi n g

f a cts:  B y  Ass u m pti o n 5, x · j ≥
1 − θ
N .  B y  Ass u m pti o n 6,

m a x k ∈[ n ], j ∈[ N ] |w kj | ≤
C W√
n N
.

F or ∈ [ m ] a n d k ∈ [ n ],

|a k |
2 − E |a k |

2 ≤ C 6
l o g(n m )

n
,

wit h pr o b a bilit y at l e ast 1 − n − c 6 .  B y t h e  H o eff di n g’s i n e q u alit y
a n d a u ni o n b o u n d,  w e h a v e ( 2 2).
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a n d  Bi o e n gi n e eri n g, a n d t h e  C o or di n at e d S ci e n c e  L a b or at or y.  H e is als o
Pr esi d e nt a n d  C hi ef  Te c h n ol o g y  Of fi c er at I nst a R e c o n, I n c., a st art u p c o m p a n y
h e c of o u n d e d t o c o m m er ci ali z e br e a k t hr o u g h t e c h n ol o g y f or t o m o gr a p hi c
r e c o nstr u cti o n d e v el o p e d i n his a c a d e mi c r es e ar c h.  His c urr e nt r es e ar c h
i nt er ests i n cl u d e  m a c hi n e l e ar ni n g a n d st atisti c al si g n al pr o c essi n g a n d t h eir
a p pli c ati o ns t o i n v ers e pr o bl e m s i n i m a gi n g, a n d i n p arti c ul ar c o m pr ess e d
s e nsi n g, c o m p ut e d t o m o gr a p h y, a n d  m a g n eti c r es o n a n c e i m a gi n g.
Dr.  Br esl er is a n I E E E F ell o w, a n d F ell o w of t h e  AI M B E.  H e r e c ei v e d t w o

S e ni or P a p er  A w ar ds fr o m t h e I E E E Si g n a l Pr o c essi n g s o ci et y, a n d t w o p a p ers
h e c o a ut h or e d  wit h his st u d e nts r e c ei v e d t h e  Y o u n g  A ut h or  A w ar d fr o m t h e
Si g n al Pr o c essi n g s o ci et y i n 2 0 0 2 a n d 2 0 1 6, r es p e cti v el y.  H e is t h e r e ci pi e nt of
a 1 9 9 1  N S F Pr esi d e nti al  Y o u n g I n v esti g at or  A w ar d, t h e  Te c h ni o n F ell o ws hi p
i n 1 9 9 5, a n d t h e  X er o x S e ni or  A w ar d f or F a c ult y  R es e ar c h i n 1 9 9 8.  H e  w as
n a m e d a  U ni v ersit y of Illi n ois S c h ol ar i n 1 9 9 9, a p p oi nt e d as a n  Ass o ci at e at
t h e  C e nt er f or  A d v a n c e d St u d y of t h e  U ni v ersit y i n 2 0 0 1- 2 0 0 2, a n d F a c ult y
F ell o w at t h e  N ati o n al  C e nt er f or S u p er  C o m p uti n g  A p pli c ati o ns i n 2 0 0 6.
I n 2 0 1 6 h e  w as a p p oi nt e d a n I E E E Si g n al Pr o c essi n g S o ci et y  Disti n g uis h e d
L e ct ur er.  H e h as s er v e d o n t h e e dit ori al b o ar d of a n u m b er of j o ur n als
i n cl u di n g t h e I E E E  TR A N S A C T I O N S  O N S I G N A L P R O C E S S I N G , t h e I E E E
J O U R N A L  O N S E L E C T E D T O P I C S I N S I G N A L P R O C E S S I N G , M a c hi n e  Visi o n
a n d  A p pli c ati o ns , a n d t h e SI A M J o ur n al o n I m a gi n g S ci e n c e , a n d o n v ari o us
c o m mitt e es of t h e I E E E.
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