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Abstract—Blind gain and phase calibration (BGPC) is a
bilinear inverse problem involving the determination of unknown
gains and phases of the sensing system, and the unknown
signal, jointly. BGPC arises in numerous applications, e.g.,
blind albedo estimation in inverse rendering, synthetic aperture
radar autofocus, and sensor array auto-calibration. In some
cases, sparse structure in the unknown signal alleviates the ill-
posedness of BGPC. Recently, there has been renewed interest
in solutions to BGPC with careful analysis of error bounds.
In this paper, we formulate BGPC as an eigenvalue/eigenvector
problem and propose to solve it via power iteration, or in the
sparsity or joint sparsity case, via truncated power iteration.
Under certain assumptions, the unknown gains, phases, and
the unknown signal can be recovered simultaneously. Numerical
experiments show that power iteration algorithms work not only
in the regime predicted by our main results, but also in regimes
where theoretical analysis is limited. We also show that our
power iteration algorithms for BGPC compare favorably with
competing algorithms in adversarial conditions, e.g., with noisy
measurement or with a bad initial estimate.

Index Terms— Auto-calibration, greedy algorithm, inverse ren-
dering, multichannel blind deconvolution, nonconvex optimiza-
tion, power method, SAR autofocus, sensor array processing,
truncated power iteration.

I. INTRODUCTION

LIND gain and phase calibration (BGPC), the joint
B recovery of the unknown gains and phases in the sensing
system and the unknown signal, is a bilinear inverse problem
that arises in many applications: the joint estimation of albedo
and lighting conditions in inverse rendering [2]; the joint
recovery of phase error and radar image in synthetic aperture
radar (SAR) autofocus [3]; and auto-calibration of sensor
gains and phases in array processing [4]. There exists a long
line of research regarding the solutions for each application.
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However, fundamental sample complexities for the uniqueness
of solutions to BGPC [5], [6], and error bounds for efficient
algorithms [7], [8] have been established only recently. A main
drawback of the guaranteed algorithms of [7] and [8] is that
the recovery error is sensitive to the choice of certain linear
constraints. We refer readers to Section I-D for a detailed
discussion of prior art.

In this paper, we overcome the drawbacks of previ-
ous algorithms by reformulating the BGPC problem as
an eigenvalue/eigenvector problem. In the subspace case,
we use algorithms that find principal eigenvectors such as the
power iteration algorithm (also known as the power method)
[9, Sec. 8.2.1], to find the concatenation of the gain and phase
vector and the vectorized signal matrix in the form of the
principal component of a structured matrix. In the sparsity
case, the problem resembles sparse principal component analy-
sis (sparse PCA) [10]. We then propose to solve the sparse
eigenvector problem using truncated power iteration [11].

The main contribution of this paper is the theoretical
analysis of the error bounds of power iteration and trun-
cated power iteration for BGPC in the subspace and joint
sparsity cases, respectively. When the measurement matrix
is random, and the signals and the noise are adversarial,
our algorithms stably recover the unknown gains and phases,
and the unknown signals with high probability under near
optimal sample complexities. Since truncated power iteration
relies on a good initial estimate, we also propose a simple
initialization algorithm, and prove that the output is sufficiently
good under certain technical conditions. The fundamental
estimates derived in this paper can be applied to other algo-
rithms for BGPC, and possibly to algorithms for similar
problems.

We complement the theoretical results with numerical
experiments, which show that the algorithms can indeed solve
BGPC in the optimal regime. We also demonstrate that the
algorithms are robust against noise and an inaccurate initial
estimate. Experiments with different initialization schemes
show that our initialization algorithm significantly outperforms
the baseline. Then we apply the power iteration algorithm to
inverse rendering, and showcase its effectiveness in real-world
applications.

The rest of the paper is organized as follows. In the
remainder of this section, we introduce the formulation of the
BGPC problem, and survey related work. We then introduce
the power iteration algorithms and our main theoretical results
in Sections II and III, respectively. Sections IV and V give
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some fundamental estimates regarding the structured matrix
in our BGPC formulation, and the proofs for our main results.
We conduct some numerical experiments in Section VI, and
conclude the paper with some discussion in Section VII.

A. Notations

We use AT, A, and A* to denote the transpose, the com-
plex conjugate, and the conjugate transpose of a matrix A,
respectively. The k-th entry of a vector A is denoted by A.
The j-th column, the k-th row (in a column vector form),
and the (k, j)-th entry of a matrix A are denoted by a.;, ai.,
and aij, respectively. Upper script ¢ in a vector 7") denotes
the iteration number in an iterative algorithm. We use I, to
denote the identity matrix of size n x n, and 1, and 0, , to
denote the matrices of all ones and all zeros of size n x m,
respectively. The i-th standard basis vector is denoted by e;,
whose ambient dimension is clear in the context. The £,
norm and £p “norm” of a vector x are denoted by ||x|[, and
|x|lo, respectively. The Frobenius norm and the spectral norm
of a matrix A are denoted by ||A|lr and ||A]|, respectively.
The support of a sparse vector x is denoted by supp(x). The
vector vec(X) denotes the concatenation of the columns of
X = [x1,x2,...,xn], ie, vec(X) = [x],x5,...,x\]T.
A diagonal matrix with the entries of vector x on the diagonal
is denoted by diag(x). The Kronecker product is denoted by
®. We use 2 to denote the relation greater than up to log
factors. We use [n] to denote the set {1,2,...,n}, and use +
to denote Minkowski addition of sets. For example, [n] + {m]}
denotes {m + 1,m +2,...,m + n}. For an index set T, the
projection operator onto T is denoted by Ilr, and the operator
that restricts onto T is denoted by Q7. We use these operator
notations for different spaces, and the ambient dimensions will
be clarified in the context.

B. Problem Formulation

In this section, we introduce the BGPC problem with a
subspace constraint or a sparsity constraint. Suppose A €
Crn>m is the known measurement matrix, and 4 € C" is the
vector of unknown gains and phases, the k-th entry of which
is A = |lk|e‘/—_l¢'*. Here, |4x] and ¢ denote the gain and
phase of the k-th sensor, respectively. The BGPC problem is
the simultaneous recovery of 4 and the unknown signal matrix
X € C™V from the following measurement:

Y = diag()AX + W, (1)

where W e is the measurement noise. The (k, j)-th
entry in the measurement yi; has the following expression:

Can

-
Vij = )l.;,;ak_ X.j + wg;j-

Clearly, BGPC is a bilinear inverse problem. The solution
(4, X) suffers from scaling ambiguity, i.e., (1/0,c X) gener-
ates the same measurements as (4, X), and therefore cannot
be distinguished from it. Despite the fact that the solution can
have other ambiguity issues, in this paper, we consider the
generic setting where the solution suffers only from scaling
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ambiguity [6]." Even in this setting, the solution is not unique,
unless we exploit the structure of the signals. In this paper,
we solve the BGPC problem under two scenarios — BGPC
with a subspace structure, and BGPC with sparsity.

1) Subspace Case: Suppose that the known matrix A is
tall (n > m) and has full column rank. Then the columns of
AX reside in the low-dimensional subspace spanned by the
columns of A. The problem is effectively unconstrained with
respect to X.

2) Sparsity Case: Suppose that A is a known dictio-
nary with m > n, while the columns of X are sp-sparse,
i.e, [[x.jllo = sp for all j € [N]. A variation of this setting
is that the columns of X are jointly sp-sparse, i.e., there are
at most sp nonzero rows in X. In this case, the subspace
constraint on AX no longer applies, and one must solve the
problem with a sparsity (or joint sparsity) constraint.

The BGPC problem arises in applications including inverse
rending, sensor array processing, multichannel blind deconvo-
lution, and SAR autofocus. We refer the reader to our previous
work [6, Sec. I1.C] for a detailed account of applications of
BGPC. For consistency, from now on, we use the convention
in sensor array processing, and refer to n and N as the numbers
of sensors and snapshots, respectively.

C. Our Contributions

We reformulate BGPC as the problem of finding the princi-
pal eigenvector of a matrix (or operator). In the subspace case,
this can be solved using any eigen-solver, e.g., power iteration
(Algorithm 1). In the sparsity case, we propose to solve this
problem using truncated power iteration (Algorithm 2). Our
main results can be summarized as follows.

Theorem 1: Under certain assumptions on A, 4, X, and W,
one can solve the BGPC problem with high probability using:

1) Subspace case: algorithms that find the principal eigen-
vector of a certain matrix, e.g., power iteration, if n 2 m
and N > 1.

2) Joint sparsity case: truncated power iteration with a
good initialization, if n 2 sop and N = /0.

In Table I, we compare the above results with the sample
complexities for unique recovery in BGPC [6], and previous
guaranteed algorithms for BGPC in the subspace case [7] and
the sparsity case [8]. In the subspace case, the optimal sample
complexities for unique recovery are n > m and N > 2 (for
m < n/2). Our power iteration method solves BGPC using
optimal (up to log factors) numbers of sensors and snapshots.
These sample complexities are comparable to the least squares
method in [7]. Moreover, we show that power iteration is
empirically more robust against noise than least squares.

In the joint sparsity case, the sample complexities for unique
recovery are n > 2sp and N > 2 (for 59 < n/4). Truncated
power iteration solves BGPC with a joint sparsity structure,
with an optimal (up to log factors) number of sensors, and a
slightly suboptimal (within a factor of ,/sp and log factors)
number of snapshots. In comparison, the £; minimization

1 An example of another ambiguity is a shift ambiguity when A is the
discrete Fourier transform matrix [5], [8]. For a generic matrix A, the solution
to BGPC does not suffer from shift ambiguity.
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TABLE I
COMPARISON OF SAMPLE COMPLEXITIES WITH PRIOR WORK

|| Subspace | Joint Sparsity | Sparsity |
. n>m n > 2sg
Unique Recovery [6] N> ::__,:, N> ,::_2:0 -
Least Squares [7] nxm
a N>1
e n 2 so
£1 Minimization [8 - - ~
' 5] NZz2n
. nZzm n 2 so
This Paj ~ ~
pet NZ>1 N2> Vs

Note: n, N, m and sg represent the number of sensors, the number of
snapshots, the subspace dimension, and the sparsity level, respectively.
The above sample complexities are derived for different signal models. This
paper and [7] assume that A is a random Gaussian matrix, and [8] assumes
that A is the discrete Fourier transform matrix and X is random following a
Bernoulli-Subgaussian model.

method for the sparsity case of BGPC uses a similar number
of sensors, but a much larger number of snapshots. Numerical
experiments show that truncated power iteration empirically
succeed, in both the joint sparsity case and the more general
sparsity case, in the optimal regime.

Theorem 1 gives a theoretical guarantee for power iteration
in the subspace case, and a local convergence guarantee for
truncated power iteration in the joint sparsity case. The success
of truncated power iteration relies on a good initial estimate
of X and A, which may or may not be available depending on
the application. We propose a simple initialization algorithm
(Algorithm 3) with the following guarantee.

Theorem 2: Under additional assumptions on the absolute
values of the nonzero entries in X, our initialization algorithm
produces a sufficiently good estimate of 4 and X if n 2 302.
(We do not require any additional assumption on the number
N of snapshots.)

Despite the above scaling law predicted by theory, numerical
experiments suggest that our initialization scheme is effective
when n Z sp.

D. Related Work

BGPC arises in many real-world scenarios, and previous
solutions have mostly been tailored to specific applications
such as sensor array processing [4], [12], [13], sensor network
calibration [14], [15], synthetic aperture radar autofocus [3],
and computational relighting [2]. However, the previous meth-
ods do not have theoretical guarantees in the forms of quan-
titative error bounds.

The idea of solving BGPC by reformulating it into a linear
inverse problem, which is a key idea in this paper, has been
proposed by many prior works [2], [3], [14]. In particular,
Bilen ef al. [16] provided a solution to BGPC with high-
dimensional but sparse signals using £; minimization. How-
ever, such methods have not been carefully analyzed until
recently.

3009

Ling and Strohmer [7] derived an error bound for the
least squares solution in the subspace case of BGPC (and
two similar formulations). After the conference version of
our paper was submitted to SampTA 2017 [1], and while
this extended version was in preparation, Ling and Strohmer
independently proposed, as a variation of the least squares
approach, the spectral method for the subspace case of
BGPC [17]. Their spectral method and our approach to the
subspace case are essentially identical, as one can be derived
from the other with a few matrix manipulattions.2 In addition
to bounding the error in the principal eigenvector in our
formulation, we also establish convergence rate and error
bounds for an efficient power iteration algorithm that finds
the principal eigenvector. We show that the power iteration
method has sample complexities comparable to those of the
least squares method [7], but is more robust to noise than the
latter, both in theory and in practice.

Wang and Chi [8] gave a theoretical guarantee for £
minimization that solves BGPC in the sparsity case, where
they assumed that A is the discrete Fourier transform (DFT)
matrix and X is random following a Bernoulli-Subgaussian
model. In this paper, we give a guarantee for truncated power
iteration under the assumption that A is a complex Gaussian
random matrix, and X is jointly sparse, well-conditioned,
and deterministic. In this sense, we consider an adversarial
scenario for the signal X. Our sample complexity results
require a near optimal number n of sensors, and a much
smaller number N of snapshots than [8]. Moreover, truncated
power iteration is more robust against noise and inaccurate
initial estimate of phases.

Very recently, Eldar et al. [18] proposed new methods for
BGPC with signals whose sparse components may lie off the
grid. Similar to earlier work on blind calibration of sensor
arrays [4], these methods rely on empirical covariance matrices
of the measurements and therefore need a relatively large
number of snapshots.

A problem related to BGPC is multichannel blind deconvo-
lution (MBD). Most previous works on MBD consider linear
convolution with a finite impulse response (FIR) filter model
(see [19]-[22], and a recent stabilized method [23], [24]).
In comparison, BGPC is equivalent to MBD with circular
convolution and a subspace model or a sparsity model, akin
to some recent studies [7], [8]. BGPC is more general in the
sense that: (a) linear convolution can be rewritten as circular
convolution via zero-padding the signal and the filter; (b) the
FIR filter model is a special case of the subspace model.

To position BGPC in a broader context, BGPC is a special
bilinear inverse problem [5], which in turn is a special case
of low-rank matrix recovery from incomplete measurements
[25]-[28]. A resurgence of interest in bilinear inverse problems
was pioneered by the recent studies in single-channel blind
deconvolution of signals with subspace or sparsity structures,
where both the signal and the filter are structured [29]-[33].

2The only difference between their spectral method and our formulation for
the subspace case, is that they compute the right singular vector corresponding
to the smallest singular value of a tall matrix, and we compute the principal
eigenvector of a smaller square matrix.
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Another related bilinear inverse problem is blind calibration
via repeated measurements from multiple different sensing
operators [34]-[39]. Since blind calibration with repeated
measurements is in principle an easier problem than BGPC [7],
we believe our methods for BGPC and our theoretical analysis
can be extended to this scenario.

Also related is the phase retrieval problem [40], where there
only exists uncertainty in the phases (and not the gains) of the
sensing system. An active line of work solves phase retrieval
with guaranteed algorithms (see [41]—[47] for a recent review).

The error bounds of power iteration and truncated power
iteration have been analyzed in general settings, e.g., in
[9, Sec. 8.2.1] and [11]. These previous results hinge on spec-
tral properties of matrices such as gaps between eigenvalues,
which do not translate directly to sample complexity require-
ments. This paper undertakes analysis specific to BGPC.
We relate spectral properties in BGPC to some technical
conditions on A, A, X, and W, and derive recovery error
under near optimal sample complexities. We also adapt the
analysis of sparse PCA [11] to accommodate a structured
sparsity constraint in BGPC.

BGPC and our proposed methods are non-convex in nature.
In particular, our truncated power iteration algorithm can be
interpreted as projected gradient descent for a non-convex
optimization problem. There have been rapid developments
in guaranteed non-convex methods [48] in a variety of
domains such as matrix completion [49]-[51], dictionary
learning [52], [53], blind deconvolution [32], [33], and phase
retrieval [42], [43], [54]. It is a common theme that carefully
crafted non-convex methods have better theoretical guarantees
in terms of sample complexity than their convex counterparts,
and often have faster implementations and better empirical
performance. This paper is a new example of such superiority
of non-convex methods.

II. POWER ITERATION ALGORITHMS FOR BGPC

Next, we describe the algorithms we use to solve BGPC.
In Section II-A, we introduce a simple trick that turns the
bilinear inverse problem in BGPC to a linear inverse problem.
In Sections II-B and II-C, we introduce the power iteration
algorithm we use to solve BGPC with a subspace structure,
and the truncated (or sparse) power iteration algorithm we use
to solve BGPC with sparsity, respectively.

A. From Bilinearity to Linearity

We use a simple trick to turn BGPC into a linear inverse
problem [14]. Without loss of generality, assume that A; # 0
for k € [n]. Indeed, if any sensor has zero gain, then the
corresponding row in Y is all zero or contains only noise, and
we can simply remove the corresponding row in (1). Let y
denote the entrywise inverse of 4, i.e., yr = 1/4x for k € [n].
We have

diag(y )Y, = AX, 6))

where ¥y = diag(A)AX is the noiseless measurement.
Equation (2) is linear in all the entries of y and X. The
bilinear inverse problem in (4, X) now becomes a linear
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inverse problem in (y, X). In practice, since only the noisy
measurement Y is available, one can solve diag(y )Y ~ AX.

This technique was widely used to solve BGPC with a
subspace structure, in applications such as sensor network
calibration [14], synthetic aperture radar autofocus [3], and
computational relighting [2]. Recently, Ling and Strohmer [7]
analyzed the least squares solution to (2). Wang and Chi [8]
considered a special case where A is the DFT matrix, and
analyzed the solution of a sparse X by minimizing the £
norm of A‘ldiag(y)Y.

We use the same trick in our algorithms. Define

Iy ® alT
D — : c CNR me, 3)
| Iv®a,.
. _|
E:= e CNmxn, 4)
i I
We can decompose E into E = E; + E,, where
P2 XTal.
E — c CNHXR
§ — k]
i X Ta,
[ w1.
E, = € CNnxn_
| Wy
Define also
_ | D*D  aD*E | \(Nmin)x(Nmin)
B= [aE"‘D a? E"‘E]LC ’ ©)
_ [ D*D  aD*E; (Nm+4n)x (Nm+4n)
Be = [aE;"D a? E;"Es] €€ :

where a is a nonzero constant specified later.
Clearly, (2) can be rewritten as

Dx — Egy =0,

where x = vec(X). Equivalently, n = [x',—y T/a]T is
a null vector of B;. When certain sufficient conditions are
satisfied, » is the unique null vector of Bs. For example,
if 4, A, and X are in general positions in C", C"*”, and
C™*N | respectively, then N > ﬁ snapshots are sufficient to
guarantee uniqueness of the solution to BGPC in the subspace
case. We refer readers to our work on the identifiability in
BGPC for more details [5], [6].

Since only the noisy matrix B is accessible in practice, one
can instead find the minor eigenvector, i.e., the eigenvector
corresponding to the smallest eigenvalue of B. The rest of this
section focuses on algorithms that find such an eigenvector of
B, with no constraint (in the subspace case), or with a sparsity
constraint (in the sparsity case).

B. Power Iteration for BGPC With a Subspace Structure

In the subspace case (n > m), we solve for the minor
eigenvector of the positive definite matrix B. In Section III,



LI et al.: BGPC VIA SPARSE SPECTRAL METHODS

Algorithm 1 Power Iteration for BGPC

Input: A € C™™, Y € C™V | initial estimate
(0) ¢ CNm+n

Output: ") ¢ CNm+n

Parameters: a, f

Compute operator G : CN™+7 — CNm+n by (3), (4), (5),

(6)

t <1

repeat
Compute 7*) = Gn=D/||G =V
t<—t+1

until convergence criterion is met

we derive an upper bound on the error between this eigenvector
and the true solution #.

The minor eigenvector of B can be computed by a variety
of methods. Here, we propose an algorithm that remains com-
putationally efficient for large scale problems. By eigenvalue
decomposition, the null vector of B is identical to the principal
eigenvector of

G :ﬁImN—l—n _Bs (6)

for a large enough constant £. This eigenvector can be com-
puted using the power iteration algorithm (see Algorithm 1).

The size of G is (Nm + n) x (Nm + n). An advantage of
Algorithm 1 over an eigen-solver that decomposes G, is that
one does not need to explicitly compute the entries of G
to iteratively apply it to a vector. Furthermore, rather than
O((Nm +n)?), by the structure of D and E, the per iteration
time complexity of applying the operator G to a vector is only
O(mnN). This can be further reduced if A and A* are linear
operators with implementations faster than O (mn).

The rule of thumb for selecting parameter a is that the £>
norms of the columns of D be close to those of a E so that G
in (6) exhibits good spectral properties for power iterations.
A safe choice for £ is ||B||, which may be conservatively
large in some cases, but works well in practice. In Section III,
we discuss our choice of parameters a, f# under certain nor-
malization assumptions (see Remark 8).

Algorithm 1 converges to the principal eigenvector of G,
as long as the initial estimate #(© is not orthogonal to that
eigenvector. This insensitivity to initialization is a privilege
not shared by the sparsity case (see Section II-C).

C. Truncated Power Iteration for BGPC With Sparsity

When 2 < n < m, [D, aE] € CNnx(Nm+n) 5 3 fat matrix,
and the null space of B has dimension at least 2. Therefore,
there exist at least two linearly independent eigenvectors
corresponding to the largest eigenvalue of G. To overcome
the ill-posedness, one can leverage the sparsity structure in X
to make the solution to the eigenvector problem unique.

Let [T (x) denote the projection of a vector x onto the set of
s-sparse vectors. It is computed by setting to zero all but the s
entries of x of the largest absolute values. Let IT_(X) denote
the projection of a matrix X onto the set of matrices whose
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columns are jointly s-sparse. This projection is computed by
setting to zero all but the s rows of X of the largest £ norms.
We define two projection operators on # = [x',—y " /a]T
that will be used repeatedly in the rest of this paper:

T, (n) = [M(x1) ", My(x2) T, ..., T Gen) T, —y T /alT,
i, (n) = [vee(1,(X)) ", =y T/al".

For the sparsity case of BGPC, we adapt the eigenvector
problem in Section II-B by adding a sparsity constraint:

max n*Gn
st lgll2 =1,
o () = 7. 0]

This nonconvex optimization is very similar to the sparse
PCA problem. The only difference lies in the structure of the
sparsity constraint. In sparse PCA, the principal component
is sp-sparse. In (7), the vector # consists of sp-sparse vectors
X.1,X.2,...,X.N, and a dense vector —y /a.

To solve (7), we adopt a sparse PCA algorithm called
truncated power iteration [11], and revise it to adapt to the
sparsity structure of BGPC (see Algorithm 2). One can choose
parameters a and f using the same rules as in Section II-B.
Note that we use a sparsity level sy > sg in this algorithm,
for two reasons: (a) in practice, it is easier to obtain an upper
bound on the sparsity level instead of the exact number of
nonzero entries in the signal; and (b) the ratio sp/s1 is an
important constant in the main results, controlling the trade-
off between the number of measurements and the rate of
convergence.

For the joint sparsity case, we use essentially the same
algorithm, with ﬁs. replaced by ﬁ;l.

Since (7) is a nonconvex optimization problem, a good
initialization #(®) is crucial to the success of Algorithm 2.
Algorithm 3 outlines one such initialization. We denote by
I17, the projection onto the support set T,, which sets to
zero all rows of D*E but the s; rows of the largest £
norms in each block. (Recall that d.((;_1ym+¢) denotes the
((j — 1)m + £)-th column of D, and the j-th block of D*E
consists of m contiguous rows {d"’iU_l)mH)E}ge[m].) Then the
normalized left and right singular vectors u and v of I1, D*E
are computed as initial estimates for x and 1. We use 1./v to
denote the entrywise inverse of v except for zero entries, which
are kept zero. In Section III, we further comment on how to
choose a proper initial estimate #(®) (see Remark 13).

D. Alternative Interpretation as Projected Gradient Descent

Algorithms 1 and 2 can be interpreted as gradient descent
and projected gradient descent, respectively. Next, we explain
such equivalence using the sparsity case as an example.

Recall that BGPC is linearized as [D aE| 5 = 0. Relaxing
the sparsity level from sp to sy, the optimization in (7) is
equivalent to:

min 2 [P aE]n;

st lgll2 =1,
I, () = 7.
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Algorithm 2 Truncated Power Iteration for BGPC With
Sparsity

Algorithm 3 Initialization for Truncated Power Iteration

Input: A e C"*™ Y € CnxN _initial estimate
7@ ¢ CNm+n

Output: () € CNm+n

Parameters: a, £, 51

Compute operator G : CN™+7 — CNm+n by (3), (4), (5),

(6)

t <1

repeat
Compute 7*) = Gp*=D/||Gy'=V|
Compute 7 = Ti;, (7®)/ 1115, GO)12
t<—t+1

until convergence criterion is met

The gradient of the objective function at q(‘_]} is

*
[(35*] [D aE]n“"V =Byt

Each iteration of projected gradient descent consists of two
steps:
(i) Gradient descent with a step size of 1/4:
~ _ 1 _ 1
,?(t) - ,},(r n_ EB,?(t ) _ E
(ii) Projection onto the constraint set, i.e., the intersection
of a cone (I, () = #) and a sphere (||5]l2 = 1):

7® = T, (7Y /1T, GO 2.

Clearly, the two steps are identical to those in each truncated
power iteration except for a different scaling in Step (i), which,
due to the normalization in Step (ii), is insignificant.

Gq(‘_l].

III. MAIN RESULTS

In this section, we give theoretical guarantees for
Algorithms 1 and 2 in the subspace case and in the joint
sparsity case, respectively. We also give a guarantee for the
initialization by Algorithm 3.

A. Main Assumptions

We start by stating the assumptions on A, 4, X and W,
which we use throughout this section.

Assumption 3: A is a complex Gaussian random matrix,
whose entries are i.i.d. following CN (0, %). Equivalently,
the vectors {ay.};_, are ii.d. following CN (0,1, %Im).

Assumption 4: The vector A has “flat” gains in the sense
that 1 — & < |4¢|? < 1 + 6 for some J € (0, 1).

Assumption 5: The matrix X € C™*¥ is normalized and
has good conditioning, i.e., | X ||[r = 1, and for some & < (0, 1)
we have:

« Subspace case:
min{[|NX*X — Iy|, [mXX* — In|} <6,
« Joint sparsity case:

min{||[NX*X — Iy ||, s0Qr, XX*QF, — Iyll} <6,

Input: A € C™", Y € C*N

Output: initial estimate (® ¢ CNm+n

Parameters: 51

Compute matrix D*E € CVN™" by (3), (4)

T, <0

for j € [N] do

Compute the row norms [|d%;_yy,,,4 Ell2 for £ € [m]
Find subset T; C [m] (|T;| = s1) s.t. for £ € T} and
e [m\T;:

||d‘)'&(j_1)m+f}E||2 = ||d.)2(j_1)m+{!)E||2

Merge support Ty < T U (Tj + {(j — 1)m})

end

Compute the principal left and right singular vectors u, v
of Il7, D*E

O <", —(1./07)/n]"

n® < 7O/1nO

where Qr denotes the operator that restricts a matrix to the
row support T, and Tp := {i € [m]|||e;'—X||g = 0} (|To| = s0)
is the row support of X.

Assumptions 3 — 5 can be relaxed in practice.

« The complex Gaussian distribution in Assumption 3 can
be relaxed to CA (0, aﬁ) for any 64 > 0. We choose the
particular scaling ag = 1/n, because then A satisfies
the restricted isometry property (RIP) [55], i.e., (1 —
)lIxI3 < IAx]3 < (1+ ) |1x|13 for some J, € (0, 1),
when n is large compared to the number s of nonzero
entries in x.

« The gains can center around any ¢ > 0, i.e., (1 —4d) <
|2%)? < o (1+6). Due to bilinearity, we may assume that
Ak’s center around 1 without loss of generality by solving
for (1/o, 0 X).

« The Frobenius norm || X ||r of matrix X can be any posi-
tive number. If | X || is known, one can scale X to have
unit Frobenius norm before solving BGPC. In practice,
the norm of X is generally unknown. However, due to
Assumptions 3 (RIP) and 4 (“flat” gains), we have

a9 < 1WA

1Xllp
< V(1 +6)(1 + ).

Hence [|Y|p is a good surrogate for ||X||r in noise-
less or low noise settings, and one can scale X by
1/]|Y||r to achieve the desired scaling. The slight devia-
tion of || X||g/[|Y|lr from 1 does not have any significant
impact on our theoretical analysis. Therefore, we assume
|X|lr =1 to simply the constants in our derivation.

« The conditioning of X can also be relaxed. When N is
large, one can choose a subset of N’ < N columns in
Y, such that the matrix formed from the corresponding
columns of X has good conditioning. When noise amplifi-
cation is not of concern (noiseless or low noise settings),
one can choose a preconditioning matrix H € CN>VN
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such that X’ = X H is well conditioned, and then solve
the BGPC with ¥ =Y H.

In summary, we can manipulate the BGPC problem and make
it approximately satisfy our assumptions. For example, (1) can
be rewritten as:

1 Iy 1
YH = diag(—)( A)(‘/EJJA XH)
Y H|r o/ \Jnoy IYH|r
1
WH
Y H|r

+

We can run Algorithms 1 and 2 with input ﬁA and

ml’ H, and solve for ai and il/lffaf‘ilr; XH. The above
manipulations do not have any significant impact on the
solution, or on our theoretical analysis. However, by making
these assumptions, we eliminate some tedious and unnecessary
discussions.

We also need an assumption on the noise level.

Assumption 6: The noise term W satisfies

« Subspace case: maxicyn], je[N] |wij| < Lo

VnN c

« Joint sparsity case: maXic(n), je[N] |Wkj| < J_T‘K,f
for an absolute constant Cw > 0.

In the subspace case, the assumption on the noise
level is very mild. Because under Assumptions 3 — 5,
ldiag(A)AX ||r < /(1 + J5)(1 + J), the noise term W, which
satisfies |W|[r < Cw, can be on the same order in terms of
Frobenius norm as the clean signal diag(1)AX.

Finally, the following assumption is required for a theoret-
ical guarantee of the initialization.

Assumption 7: For all j € [N], there exists Tj’ C
supp(x.;) C [m], such that for all £ T!,

?_ o

[xej
2 — 3
llx;ll; — so

for some absolute constant m, and
2
ZE’E[m]\Tj xej
.13
for some small absolute constant dy < (0, 1).

Assumption 7 says that the support of x.; can be partitioned
into two subsets. The absolute values of the entries in the
first subset ij are sufficiently large. Moreover, the total
energy (sum of squares of the entries) in the second subset
is small compared to the squared norm of x.;. For example,
the assumption is satisfied with @ = 1 and dxy = 0 in the
following special case: ij = supp(x.;) (therefore x,; = 0 for

FAl= [m]\TJf), and the absolute values of the nonzero entries
are all equal, i.e., x;j = :I:llx';"oll.

We would like to emphasize that Assumption 7 is not
very demanding, and it is satisfied by commonly used signal
models. For example, if the sp nonzero entries of x.; are
i.i.d. standard Gaussian random variables, then Assumption 7
is satisfied with high probability, with @ = % and dxy =
J%' This can be shown as follows: First of all, by simple
Chernoff bounds, 2 < ||x. j ||% < 259 with probability at least
1—2 e %% Define T} = {£ : |x;| = 7). Then, invoking

< dy,
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again the Chernoff bound, the number of nonzero entries with

absolute values less than % (in support set [m]\Tj’ ) is less than
250 with probability at least 1 —e~015%_ Therefore, with high

N
proji)ability,

wel> 12 1

Ixjl3 ~ 25 450’
and
2 2s 142
Zt”e[m]\l"}f 1xg 1 _ JT% x (3) 1
llx.;113 s0/2 V2r

Before introducing our main results, we disclose the
choice of parameters a and £ for our theoretical analysis of
Algorithms 1 and 2.

Remark 8: When Assumptions 3 —
we choose @ = /n and f = 3/2.

5 are satisfied,

B. A Perturbation Bound for the Eigenvector Problem

Next, we introduce a key result, a perturbation bound for
the eigenvector problem, which is used to derive error bounds
for power iteration algorithms.

Let {Tj}?;l denote subsets of [m], such that |T;| = s and
supp(x.;) C T;. We define T, C [Nm] and T; CINm+n]as
follows:

o= |J (1j +{(G — hm}), ®)
J€[N]
T, = Tp | J(In] + {Nm}). 9)

Recall that Qp restricts a vector to the support 7', and hence
Q7 Qr is the projection operator onto the support T'. Clearly,
we have x = QF Qr,x, and 7 = Q}uﬂrm. In the subspace
case discussed in Theorem 9, we have s =m, T = [m], Ty =
[Nm], and T, = [Nm +n]. In the joint sparsity case, we have
TI'=T =---=Ty. We set |Tj| =5 = sp + 251, which we
justify later in the analysis of truncated power iteration.
Let

n

" 2

denote the normalized version of the ground truth », which is
the eigenvector of B and EB; corresponding to eigenvalue 0.
Let 5 denote the principal eigenvector of G. In the joint
sparsity case, let 77, denote the principal eigenvector of
QT,}GQ"‘&, where T = T) = --- = Ty, |T| = s, and the
support of # is a subset of 7}, defined in (9).

In Algorithms 1 and 2 and in our analysis, vectors #, #,
and r;(‘) are normalized to unit norm. However, multiplication
by a scalar of unit modulus is a remaining ambiguity, i.e., the
set {e‘/__l‘”t} : @ €[0,27)} is an equivalence class for 7. Our
main results use d(x, #') := min, ||e‘/__l‘°q — 7|2 to denote
the distance between # and #’, which is a metric on the set of
such equivalence classes.

Theorem 9 (Subspace Case): Let a = ./n, and suppose
Assumptions 3 — 6 are satisfied with d < 1/3 and a sufficiently
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small absolute constant Cw > 0. Then there exist absolute
constants ¢, C, C' > 0, such that if

log?
max[m og“(Nm —|—n), log(Nm + n), log(Nm + n)} <cC,
n N m
(10)
then with probability at least 1 —2n7° — ™",
d(@, 1) <A,
where
8cC’
=13 max{v, v}, (11)
and
v:=+nN |wy; . (12)

max
keln], je[N]

We defer the proof to Section V, and summarize the
mathematical tools we use here. By the Davis-Kahan sin@
Theorem [56], the error d(#, #) in the eigenvector is bounded
if there exists a sufficiently large spectral gap between the
two largest (in terms of absolute values) eigenvalues of G =
BI — B. We divide this task into two parts: 1) Show that there
exists a large spectral gap in S/ —EB; 2) Prove that | B — EB||
is small using concentration of measure inequalities, e.g.,
the matrix Bernstein inequality [57, Th. 1.6].

When m is large (e.g., m = n), (10) does not hold, hence
the perturbation bound of the eigenvector 5 of G in Theorem 9
is no longer true. We can, however, bound the perturbation of
the eigenvectors of submatrices of G uniformly.

Theorem 10 (Joint Sparsity Case): Let « = /n and 5 =
5o + 251, and suppose Assumptions 3 — 6 are satisfied with
d < 1/3 and a sufficiently small absolute constant Cw > 0.
Then there exist absolute constants ¢, C, C' > 0, such that if

max{ (s+N) log3 n logg(sN + m) ,/Elogz nlog(sN +m)
n ’ N ’
log* nlog?(sN +m)

So

f=c a3

then with probability at least 1 — 2n=° —
defined by (9),

m=, for every Ty

d(ft,, Qr,7) < A,

where

!
A= % max{N3/2y, v?}, (14)
and v is defined in (12).

The main challenge in the joint sparsity case is that, instead
of bounding the spectral norm of B —EB, one must bound the
“sparse” norm of B — EB, i.e., the maximum spectral norm
of all principal submatrices whose row (and column) support
is T, defined by (9). Since B —EB can be broken down into
the sum of several terms, we give a uniform bound over all
submatrices on each term. For any given term, we adopt one
of two approaches, whichever provides a tighter bound: 1) We
bound the spectral norm of an individual submatrix, and apply
a union bound over all submatrices; 2) We use a variational
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form of the sparse norm, and apply a bound on the suprema
of second-order chaos [58, Th. 2.3].

The error bounds for Algorithms 1 and 2 in the next section
rely on Theorems 9 and 10, and existing analysis of power
iteration [9] and truncated power iteration [11]. Additionally,
the perturbation bounds in this section are of independent
interest. In particular, Theorem 9 shows that if the assumptions
and the prescribed sample complexities in (10) are satisfied,
then with high probability the principal eigenvector # of G
is an accurate estimate of the vector # that concatenates the
unknown variables. It gives an error bound for any algorithm
that finds the principal eigenvector of G. On the other hand,
while Theorem 10 does not directly guarantee the success
of any particular algorithm, it can be used to analyze other
algorithms that find the sparse principal component of G,
similar to the analysis of Algorithm 2 in Theorem 12.

C. Error Bounds for the Power Iteration Algorithms

In this section, we give performance guarantees for
Algorithms 1 and 2 under the assumptions stated in
Section III-A. Under the conditions in Theorem 11 (resp.
Theorem 12), the iterates in Algorithm 1 (resp. Algorithm 2),
in the noiseless case, converge linearly to the true solution.
In the noisy case, the recovery error is proportional to the
noise level.

Theorem 11 (Subspace Case): Suppose Assumptions 3 — 6
are satisfied with 6 < 1/4 and a sufficiently small absolute
constant Cy > 0. Let a = /n, and B = 3/2. Assume that
& = |r}"‘:;(0)| > 0. Then there exist absolute constants
¢, C, C" > 0, such that if (10) is satisfied, then with probability
at least 1 —2n=° — e~“", the iterates in Algorithm 1 satisfy

d(q®, ) < p'd(©@, i) +24,
where A is defined in (11), and

N =y TR K

Theorem 11 shows that the power iteration algorithm
requires n = O(m logz(Nm + n)) sensors and N =
O(log(Nm + n)) snapshots to successfully recover X and A.
This agrees, up to log factors, with the sample complexity
required for the uniqueness of (4, X) in the subspace case,
which is n > m and N > 2=L [6].

Next, we compare Theorem 11 with a similar error
bound for the least squares approach by Ling and Strohmer
[7, Th. 3.5]. The sample complexity in Theorem 11 matches
the numbers required by the least squares approach n =
O(mlog?(Nm+n)) and N = O (log?(Nm+n)) (up to one log
factor). One caveat in the least squares approach is that, apart
from the linear equation (2), it needs an extra linear constraint
to avoid the trivial solution y = 0, X = 0. Unfortunately,
as revealed by [7, Th. 3.5], in the noisy setting, the recovery
error by the least squares approach is sensitive to this extra
linear constraint. Our numerical experiments (Section VI)
show that power iteration outperforms least squares in the
noisy setting.

Theorem 12 (Joint Sparsity Case): Suppose Assump-
tions 3 — 6 are satisfied with < 1/4 and a sufficiently small
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absolute constant Cw > 0. Let @ = /n, B = 3/2, 51 > 50
in Algorithm 2, and define s = sp + 2s1. Then there exist
absolute constants ¢, C, C’ > 0, such that if [7*7©| > & + A
for some & € (0, 1), and (13) is satisfied, then with probability
at least 1 — 2n=° — m~—**, the iterates in Algorithm 2 for the
joint sparsity case satisfy

2./5A
1—5°

d(n®, 7)< p'd(n©, )+

where A is defined in (14), and p < 1 has the following

expression:
- § 250\ 1/2
p::p-(]—l—Z .f—0+—0) ’
51 s

and p is defined in (15).

Theorem 12 is only valid when g < 1. With the choice 51 =
2sp, when J approaches 0, and ¢ approaches 1, the convergence
rate g is roughly %w/l + /2 42 = 0.62. We discuss a more
realistic scenario next.

Remark 13: A good initialization for A alone is usually
sufficient. Suppose one has a good initial estimate for the gains
and phases, i.e., 4 satisfies |Ax — e“/__]“’ﬂ < 4/1+6—1 for
known phase estimates {¢x}7_,. One can initialize Algorithm 2
with 7@ = [OI,m’l,e_\/—_liﬂ' ,...,e=V=1on]T then when A is
negligible (noiseless or low noise settings), ¢ in Theorem 12
can be set to 1/4/(1 + 9)(2 + ). For example, if § = 0.05 and
s1 > 10 sp, then p < 1. Since we do not attempt to optimize
the constants in this paper, the constants in this exemplary
scenario are conservative.

Theorem 12 states that for Algorithm 2 to recover
A and a jointly sparse X, it is sufficient to have
n = 0O(sp logsnlogz(mN + m)) sensors and N =
O(,/3010g? nlog(soN +m)) snapshots. In comparison, the (up
to a factor of 2) optimal sample complexity for unique recov-
ery in the joint sparsity case is n > 259 and N > n"__zlo [6].
Hence, the number of sensors required in Theorem 12 is (up
to log factors) optimal, but the number of snapshots required
is suboptimal. Another drawback is that these results apply
only to the joint sparsity case, and not to the more general
sparsity case. However, we believe these drawbacks are due
to artifacts of our amalysis.3 For both the joint sparsity case and
the sparsity case, we have Nn complex-valued measurements,
and Nsp +n — 1 complex-valued unknowns. One may expect
successful recovery when n and N are (up to log factors)
on the order of sp and 1, respectively. In fact, numerical
experiments in Section VI confirms that truncated power
iteration successfully recovers A and X in this regime for the
more general sparsity case.

The assumption on the noise level in Theorem 12 (the joint
sparsity case of Assumption 6) is demanding when compared
to the subspace case. This is due to the limitations of our
theoretical analysis, and the inherently maximally conservative
nature of any worst-case guarantee. In fact, our experiments in

(16)

30ur analysis of the joint sparsity case does not trivially generalize to the
sparsity case. A key result — the supremum of the second-order chaos (defined
in the proof of Lemma 20) — is bounded by a small constant for large n and N
in the joint sparsity case. However, in the general sparsity case, the supremum
must be taken over a much larger set, and grows unbounded.
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Section VI-B show that Algorithm 2 performs well at a variety
of reasonable noise levels. We think that the condition on the
noise level can be relaxed by introducing more sophisticated
concentration inequalities, but leave it as future work.

Wang and Chi [8] analyzed the performance of £i mini-
mization for BGPC in the sparsity case, where they assumed
that A is the DFT matrix, and X is a Bernoulli-Subgaussian
random matrix. Their sample complexity for £; minimization
isn = 0()and N = O(n lcug4 n). The success of their
algorithm relies on a restrictive assumption that 4; =~ 1, which
is analogous to the dependence of our algorithm on a good
initialization of A;. In the next section, we show that such
dependence can be relaxed under some additional conditions
using the initialization provided by Algorithm 3.

D. A Theoretical Guarantee of the Initialization

The next theorem shows that, under certain conditions,
Algorithm 3 recovers the locations of the large entries in
X correctly, and yields an initial estimate #© that satisfies
l7* 7@ > 1 — 26 (close to 1).

Theorem 14 (Initialization): Suppose Assumptions 3 — 7
are satisfied. Then there exist absolute constants C”,¢” > 0,
such that if

"2

n> C'sy logﬁ(nmN),

then with probability at least 1—n—<", forall J € [N] the set TJT
in Assumption 7 is a subset of T; in Algorithm 3. Additionally,
in the joint sparsity case, if sample complexity (13) is satisfied
with a sufficiently large C, Assumption 6 is satisfied with a
sufficiently small Cw, and Assumption 7 is satisfied with a
sufficiently small dy, then 5o produced by Algorithm 3 will
satisfy that |7*#©)| is arbitrarily close to

n32 1Al 1y 113

Jr2 + 1Ay 1B /n + 17 13

By Theorem 14, the constant ¢ in Theorem 12 can be set
to 1 —24 in a low noise setting. For é < 0.19, this constant
¢ is larger than the one in Remark 13, and allows p < 1 for
more choices of sy.

Our guarantee for the initialization requires that the number
n of sensors scales quadratically (up to log factors) in the spar-
sity sp, which seems suboptimal. Similar suboptimal sampling
complexities show up in sparse PCA [59] and sparse phase
retrieval [42], [44], [60].

In the joint sparsity case, instead of estimating the sup-
ports of x.1, x.2, ..., x.y separately, one can estimate the row
support of X directly by sorting > ; 1y 1474 m+f)E"% for
€ € [m] and finding the sy largest. In this case, Assumption 7
can be changed to: There exists a subset T’ of large rows (in
terms of £2 norm), such that for all £ € T,

Zje[N] |3‘£’j|2 -
IXIg s

> 1-—26.

w

and

2 jeINL.erelm\T" |3‘£”j|2
I1X 1%

55)(.
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In this case, the subset T’ can be identified and an initializa-
tion q(ﬂ} can be computed under the same conditions as in
Theorem 14, which can be proved using the same arguments.

IV. FUNDAMENTAL ESTIMATES

To prove the main results, we must first establish some
fundamental estimates specific to BGPC. Proofs of some
lemmas in this section can be found in the appendix.

A. A Gap in Eigenvalues

A key component in establishing a perturbation bound for
an eigenvector problem (e.g., Theorem 9) is bounding the gap
between eigenvalues. Lemma 15 gives us such a bound.

Lemma 15: Suppose Assumptions 3 — 5 are satisfied and
a = ./n. Then the smallest eigenvalue of IEQTHBSQ’}H is
0, and the rest of the eigenvalues reside in the interval

2
(U227, 231 + ).

B. Perturbation Due to Randomness in A

Next, we show that Qf, BSQ}H, whose randomness comes
from A, is close to its mean ]EQTHBSQ}H under certain
conditions.

Lemma 16: Suppose Assumptions 3 — 5 are satisfied, and
a = ./n. For any constant g > 0, there exist absolute
constants C, ¢ > 0, such that:

« Subspace case: If (10) is satisfied with C, then
|Bs — EBs|| < dp

with probability at least 1 —n=¢ — e=“".
« Joint sparsity case: If (13) is satisfied with C, then

|Qr, B, — EQr, B, || < o5

foral Ty = --- = Ty and T, defined in (9), with
probability at least 1 —n=¢ —m~—.
Proof of Lemma 16: Recall that
Qr, D* DQ}I

. J/nQr, D*Eq
Qr, B:Qr, = I:JEE:DQ}I '

nE*E;
It follows that

"Q-T,, BSQ;’H - ]E-QT,,BSQ}H "

< |Q7, D*DQ}, — EQ7, D* DO}, | (17
+n||EJE, — EEE(| (18)
+2/7|Qr, D*E; — EQr, D*Ey]. (19)

Lemma 16 follows from the bounds on the spectral norms
in (17)~(19) in Lemmas 17-20, respectively. [ |

Lemma 17: Suppose Assumption 3 is satisfied, then there
exist absolute constants Cy, c; > 0, such that:

« Subspace case:

ID*D —ED*D| < €1,/ 7,
n

with probability at least 1 —e—¢! ™.
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« Joint sparsity case: For any {Tj}i‘\;l and T, defined
in (8),

Q7 D* DO — EQr, D*DQ% || < C1. /> logm,
x X n

with probability at least 1 —m ™! ¥,
Lemma 18: Suppose Assumptions 3 — 5 are satisfied, then
there exist absolute constants C,, ¢z > 0, such that

« Subspace case:

C: 1 1
|E2E, —BELE | < — max{\/ =55, [ =27,
n N m

logn logn
N ' m ]

« Joint sparsity case:

Cy logn [logn
||E:‘ES—EE;"ES||5?max{1/ N

logn logn}
N~ s

with probability at least 1 —n 2.

Lemma 19 (Subspace Case): Suppose Assumptions 3 — 5
are satisfied, and min{N, m} > logn, then there exist absolute
constants C3, c3 > 0, such that

1D E, ~ ED*Ey| < Cymax],[EL D)
nN
[log(Nm +n) /mlog(Nm + n)}
nm i n

with probability at least 1 —n=3.

Lemma 20 (Joint Sparsity Case): Suppose Assumptions 3
— 5 are satisfied, then there exist absolute constants C3, ¢3 > 0,
such that forall 1 = --- = Ty,

IQr, D*Es — EQr, D*Eq|
B A R N R e
- nmin{,/50, v/N}
X log3 nlog(sN + m),

with probability at least 1 —n=3.

C. Perturbation Due to Noise

We established some fundamental estimates regarding By in
Sections I'V-A and I'V-B. In this section, we turn to perturbation
caused by noise. By the definitions of B, Bs, E, E;, and E,,
we have

B = Bs + an
where
B 0 aD*E,
"7 |aE*D a*(E*E,+ EXEs+ E*E,) |
Therefore,

O B.OF — 0 aQr, D*E,
I3 = | aE;DQY,  a?(EYEn+ E}Es+ E}Ey) ||
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Lemma 21 gives an upper bound on the spectral norm of
the perturbation from noise.

Lemma 21: Suppose Assumptions 3 — 5 are satisfied. Let
a = /n and let v be defined by (12). Then there exist absolute
constants ¢, C, C" > 0 such that:

« Subspace case: If (10) is satisfied, then with probability

at least 1 —n—°

| Ball < €' max{v, v?}.

Additionally, for any constant dw > 0, there exists an
absolute constant Cw > 0, if Assumption 6 is satisfied
with Cw, then the above bound becomes

I Ball < dw.

« Joint sparsity case: If (13) is satisfied, then with prob-
ability at least 1 —n~°

1Q7, B}, || < €' max{N*?v, v?}

forall Ty = --- = Ty and T; defined in (9). Additionally,
for any constant s > 0, there exists an absolute constant
Cw > 0, if Assumption 6 is satisfied with Cy, then the
above bound becomes

197, Ba2;, | < b

Proof: To complete the proof, we bound the spectral
norms of Qr, D*E,, EXE,, and E}E, in Lemmas 22, 24,
and 25, respectively. |

Lemma 22 (Subspace Case): Suppose Assumption 3 is sat-
isfied, and m > logn, then there exist absolute constants
C4, cq4 > 0, such that

| D*Eq|| < Ca max[Jlog(Nm Tn),

V2 tog(Nm +m) |
— 10 m n
PR kemgervy O

with probability at least 1 — n =,

Lemma 23 (Joint Sparsity Case): Suppose Assumption 3 is
satisfied, then there exist absolute constants C4, c4 > 0, such
that forall T1 = --- = Ty,

1Qr, D*E,|| < Ca(\/sN + /sNlogm + /N log3 n)
x,/logn

kjls
keim)je [N]I i

with probability at least 1 —n—
Lemma 24: Suppose Assumptions 3 — 5 are satisfied, then
there exist absolute constants Cs, c5 > 0, such that

« Subspace case:
logn [lo n
12 Eall < Cs\~ maxf1, /25" /<

max |wy;l,
kE[n],JE[N]
« Joint sparsity case:
N 1 1
|EZ Eall < G5\~ max{1, <22, 222
n N 80
|lwij,

X max
keln], je[N]

with probability at least 1 —n =%,
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Lemma 25:

|EX*Eq| < N max

2
|wi; |
keln], j€[N] '

D. Scalar Concentration

We now introduce a few scalar concentration bounds that
are useful in the proof of Theorem 14.

Lemma 26: Suppose Assumptions 3 — 6 is satisfied, then
there exist absolute constants Cg,cg > 0, such that for all
Jj €[N] and £ € [m], we have

> (Iuamzalx;1? - Bluareal x ;12)
keln)]

< Gelix.j I3 log® (nmN)
= n3/2 ’

(20)

— T
Z AkQreQreag. X. g
keln]

Cellx.:ll2 log2(nmN
- 6llx.;ll2 log“( ) max |wy|
n keln],j[N]
_ CsCwlix; I3 log?(nmN)

=T e

(2D

and

Z (|ﬂ_k£’wkj * — Elarews; |z)
keln]

Cglog2(nmN) max |ogi |
= W2 kemljeny' Y
- C6ClIx.j 113 log*(nmN)
- (1 —n3/2 ’

with probability at least 1 —n—°6

(22)

V. PROOFS OF THE MAIN RESULTS

A. Proof of the Perturbation Bound for the
Eigenvector Problem

In this section, we prove Theorem 9. The proof centers
around the Davis-Kahan sin @ Theorem [56], which bounds the
error in the principal eigenvector 7 of G using the perturbation
of G. The spectral norm of the perturbed matrix is in turn
bounded by the lemmas in Section IV. Theorem 10 can be
proved similarly.

Proof of Theorem 9: First,

G :ﬁINm—I—n —B :(ﬂINm—I—n

Lemma 15 establishes a gap in the eigenvalues of the matrix
EBs — the smallest and the second-smallest eigenvalues of E B
are separated by a gap of at least

(1 -9
146
Therefore, the gap between the largest and the second-largest

eigenvalues of fInm+n —EBs is at least 1 —34. By Lemmas 16
and 21, there exist absolute constants ¢, C, C’, Cy > 0 such

_EBS) - (Bs _EBS) —By. (23)

=1—-36>0.
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that if all the assumptions are satisfied, then with probability

at least 1 — 2n=° — ¢~

I1(Bs

1—-36
—EBy) + Bull = [1Bs — EBs|| + || Bull = i @

IBall < €’ max{v, v?}. (25)
Recall that # is the principal eigenvector of Slymyn —
EBs. By the Davis-Kahan sin@ Theorem ( [56]; see also
[9, Th. 8.1.12]), (24) and (25) imply

sin £(3, 7)) < T35/ (Bs —EBs + Bu)ill2
-
< 7= 1Bl
ac’
< T35 max(y, v?)

where the second inequality is due to Bssp = EBsip = 0.
Theorem 9 follows from the above bound, and the fact that

d(n,n) = /2 —2cos (5, ) = 2sin

< 2sin Z(x, 7). ]

£, 7)
2

One can prove Theorem 10 using the same steps as in
the proof of Theorem 9, by restricting rows and columns of
matrices to the support T, and applying the corresponding
uniform bounds on submatrices.

B. Proof of the Error Bound for Algorithm 1

We prove Theorem 11 by following a standard analysis
of power iteration. The specific convergence rates and error
bounds for the BGPC problem follow from the lemmas in
Section IV and Theorem 9.

Proof of Theorem 11: Recall that the largest eigenvalue of
BInmin —EBsis f—0= %, and all other eigenvalues reside

in the interval [ —2(1 —|—5), 5 — %ﬁ]. By Lemmas 16 and
21, there exist constants c, C, Cw > 0 such that

I(Bs — EBs) + Bull < [[Bs — EBs|| + || Bull

< min[.a, A= a5 1},

146

with probability at least 1 —2n~° —e~“". By (23), the largest
eigenvalue of G is |G| = %—5, the corresponding eigenvector
is #, and all the other eigenvalues of G reside in the interval
[—3 — 33, 1 + 36

Next, we establish the convergence rate of power iterations
for BGPC. By the eigenvalue decomposition of G and the
Pythagorean theorem,

Gi=|Gl7,

_ . 1 2 A
I ”Ils\/ IGIP1* 0=V P+(5+38) (—li*n=DP).
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Therefore,

’}*ﬂ(t)| _ |'}*G'f(1_l)|
IGHt=D],
IGII7* 7]

JIGIR1i D2 + (& +38)2(1 — | @-DP)
1

%

> 1%
JIirnt=DP + 82 — 17#¢-DP)
= |i* V)| :
V1= (1= &) —lirge-dp)
1 1+66 , ko (1—
> 7 DI[14+ 5 (1 - G0N A=l R

where the last inequality is due to \/_ > l—l—zz forz € (0, 1).
It follows that

— 7*n®1]
4[1—| el
1 1466,
1__ l_ * (f l] 1 A (f l] 26
x| 1= (=G it @6

Clearly, {|q"‘q(‘)|}’ is monotonically increasing unless
|7*7©@| = 0. By the deﬁmtlon & := |7*n®)|, the convergence
rate in (26) is bounded by p? < 1. It follows that

1 — #7011 < p?01 — 770D
< P11 — |7 7O

Hence

d(i,n") < p'd (i, n).
By Theorem 9, for r =0,...,¢

d@, n) < A.
It follows from the triangle inequality that

dG, 1) < p'd (7, 1) +2A. =

C. Proof of the Error Bound for Algorithm 2

We prove Theorem 12 using the perturbation bound in
Theorem 10, and by following steps similar to the theoretical
analysis of truncated power iteration for a generic sparse
eigenvector problem [11]. The proof consists of two steps:
(1) the estimate after the power iteration step #(*) is closer to
the ground truth # than the last sparse estimate q(‘_”, by a
factor of p; (2) the truncation step amplifies the estimation
error by a factor no larger than (1+2 ‘/;OP + 25%)]/ 2, Therefore,
the estimation error of the iterates in Algorithm 2 decays at
the rate specified in Theorem 12.

Proof of Theorem 12: In the joint sparsity case, any iterate

(‘) =[x'* )T — (’}Tfa]T satisfies that x(*) is the concatena-
tlon of _|01ntly sparse {x(’)} . In the ¢-th iteration, we define
a support set T® that has cardmallty § = §o+2s51, and satisfies

supp(x.j) | J supp(x =) | J supp(x ) T,
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for all j e [N]. Define T," using (8) and (9) with Tj = - - =
Ty = T, Next, we focus on the submatrix Q.T(:)GQ m

and subvectors .QT(;;:; and Q (;m(‘) etc. Since the supports

of r;(‘) and 7 are subsets of T ), we have [7*Q* “)QT(;; r;( )| =

| 1.

We prove by induction that {|7*5()|}._, is monotonically
increasing (until it crosses a threshold specified later in the
proof). Suppose {|r}*q(’)|}i_=lo is monotonically increasing.
Next, we prove

175 7O > 177D

By the assumption that |t}"‘:;(0)| > & + A and Theorem 10
(which applies to all T, defined by (9), including T,gt) forall 1),
we have
D= @D = d@pon, i)

>¢+A—A

— é_

Following the same steps in the proof of Theorem 11,
we obtain a bound for q(‘) similar to (26):

MT“J T(fJ'?

[1 = 17y Q707

1466,
( -G
< i R0 D10 + i o Rp0n D)

~GERPea +o)]

< 11— I Qpon =N 1 -

< [1 = I} Qpon ™ )n[l S
= P’ =i Qpon“ll,
where p is defined in (15). It follows that
A0, QoiD) <p-d@,o, Qog').
(’?TJU’ T]g‘)'? ) < P (”TJU: qu‘)q )
We use the perturbation bound in Theorem 10 one more time:
. =(t) ) . (t—1 s
dQoi, Qi) < p-dQpoi, Qon )) +2A.
Equivalently,
J1U= 1701 < pJ1 = lipn=D) + V2E.

Next, we show that the truncation step amplifies the error
only by a small factor. The vector ﬁs. (ﬁ(‘)) is the projection
of #*) onto the set of structured sparse vectors, and #*) is the
normalized version. We define three index sets

(27)

Ta = supp(7)\supp( ")),

T, = supp() [ | supp(n ),

T, = supp(y“))\supp(#).
By the Cauchy-Schwarz inequality,

17701 < 1Q7 7913 + 197, 77113
<1- Q7913
| |
< ‘ o, 7913,
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where the last inequality is due to projection rule,
ie., I, (7") keeps the largest entries of #) (in the part
corresponding to x). Since |T;|/|T;| = s1/80, we have

- 50 ey~
17,7902 </ ;(1 — 7 2).

Also by the Cauchy-Schwarz inequality,
17701 < (1957712197, 412 + 197,712197, 7112)*
< (19,7 1219z il
2
+y/1-105,7013y1 - 107,713 )
< 1— (197,712 — 197, 712)>

It follows that

(28)

IQz,7ll2 < 197, 7Pl2 + /1 — 17702, (29)
By (28) and (29),
17701 — 13T, GO < 17* (7O — T, GD)))
= 127,77 2197, 7ll2
S0 ()2
1— 30
< ({5 + ) a1iiP). G0

By (27) and (30),

V1= 17*n®]
< /1 — |7*TL5, (7O)|

< J1- Ir}"‘?r(‘]l‘/l +
<|1- Iﬁ*ﬁ(‘)lJl +2(,/2+2)
51 51

S 28 -
<pf1+2 /ﬁ + S—l“,/l — |i*p¢D] + V104

< pyJ1 = lif5t=D] + V10A.

Therefore, {|7*7(?)|}’_, indeed monotonically increases

unless /1 — |57*5(7)| reaches +/ 10A/(1 — p) for some t. The

proof by induction is complete.
It follows that

0 S0 =
=+ 2) A+ 170D
1

0A
J1—1imn®) < 51— J_
—p’
or equivalently
~/_A
(i, ") < p'd(i,n — u

D. Proof of the Guarantee for Algorithm 3

Proof of Theorem 14: We first show that, under the condi-
tions in Theorem 14, the support T; in Algorithm 3 contains
Tj’ C supp(x.;) in Assumption 7. To this end, we prove that
the norms of the rows of D*E indexed by T/ are larger than
those outside supp(x.;). For a fixed j € [N], the j-th block of
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D*E is indexed by the set (j — 1)m + [m]. Therefore, the goal

is to show that
min (|10 El3 > E|3,

fETj

max d*. . ,
E’E[m]\supp(x_j) ” ((j=1)m+£")

or equivalently,

min Z |@keyi; |2 > max

2
Z |axe Vi |~

€eT] kel £'e[m]\supp(x.}) keln]
Since
Elgirvi: 12 1 2 2 2 1 2
[@keyii|” = n_2| k75115 + [xe17) + ;|wkj| ,

it suffices to show that for all £ Tj’ and £" € [m],

1 _ _
. D 1Pl > 2| D (|ak£‘”,ij > — Elazryij I2) :
ke[n] keln]

(31)
Recall that
Vkj = lka;x.j + wy;-

By the triangle inequality and Lemma 26, for all j € [N] and
t e [m],

> (@il - Eliazyy )

ke[n]

T 2 T 2
< Z (Mkakfﬂk.x-ﬂ — E|Arareag. x| )
keln]

+2 z Re (lkakgma;x.jw_kj)
keln)]

- Z (Iﬁwkj * — Elarcwy; Iz)
keln]

Cw \? IIx.jlI3 log>(amN)
ﬂ) n3/l2 ’
with probability at least 1 — n .

By Assumptions 4 and 7, if we plug the above result
into (31), then the following sample complexity is sufficient
for Algorithm 3 to correctly identify the subsets ij (j € [N]D
with probability at least 1 —n=:

12 _ 2Ce (1 N Cw )
(1 —0) J1-60
Thus the first half of Theorem 14 is proved.

Given that the support T covers the large entries indexed
by T,

Ecé(l—i-

2
50 logg(nmN).

1 1 1
IENz, D*E — —xA"|| = |-Tg,xAT — —xAT||
n n n

1+4
— D> xl
JEINLEelm\T;
1+ d)d
< ;'w_ (32)
n
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‘We also have

|Tiz, D*E — Elly, D*E||
Q1. D* Es — EQr, D*E|| + [|1Q1, D*En||

[A

1
(10, B.Qj, — Qr,EBQY, || + 1Q7, B0, I)
1
— g+
\/E( B+ ow),
where the last inequality follows from Lemmas 16 and 21,
given that the conditions of Theorem 12 are satisfied. By the
triangle inequality, and (32) and (33),

[A

[A

(33)

1 1
ITg, D*E — —x2T|| < Tt V(1 +6)dx),

where dp can be made arbitrarily small by a sufficiently
large C in (13), dw can be made arbitrarily small by a
sufficiently small Cw in Assumption 6, and the last term
can be made arbitrarily small by a sufficiently small dy in
Assumption 7. Therefore, the first left and right singular
vectors u and v can become arbitrarily close to x and to
A/llAll2 (up to a global phase factor, i.e., a constant of unit
modulus), respectively, and |r}*q(0)| approaches

n32 1Al 1y 113

> 1—26.
Jr2 + 1Ay 1B /n + 17 13

The inequality follows from Assumption 4, ie., +/1—3d <
|kl < V/T+6, and 1/J/T+38 < |yl = 1/14| < 1/4/T=6.m

VI. NUMERICAL EXPERIMENTS

In this section, we test the empirical performance of Algo-
rithm 1 and Algorithm 2.

A. Subspace Case: Power Iferation vs. Least Squares

In Algorithm 1, we choose @ = /n, and f = |B]
(computed using another power iteration on B). We compare
Algorithm 1 with the least squares approach in [7, Sec. 3.3],
where y; = 1 is used to avoid the trivial solution.

We generate A e C"™ as a complex Gaussian ran-
dom matrix, whose entries are drawn independently from
CN(0, %), i.e., the real and imaginary part are drawn inde-
pendently from A(0, ﬁ). The unknown gains and phases A
are generated as follows:

i = eV (1 W11 6— 1)e~/—_1¢’r’<), Vkelnl, (34)

such that A; is on a small circle of radius /1 + 6 — 1 centered
at a point on the unit circle, and ¢; and qp;( are drawn
independently from a uniform distribution on [0, 2x). Figure 1
visualizes one such synthesized A; in the complex plane. We
set 6 = 0.1 in all the numerical experiments. The entries
of X € C™N are drawn independently from CA/(0, N]—m),
so that the Frobenius norm of X is approximately 1. In the
noisy setting, we generate complex white Gaussian noise

2
W e C"N, whose entries are drawn from CA/(0, ;,—ﬁ).
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Fig. 2. Subspace case: The empirical success rates of power iteration

(blue solid line) and least squares (red dashed line). The x-axis represents
m, and the y-axis represents the empirical success rate. (a) — (d) are the
results with o = 0, 0.1, 0.2, and 0.5, respectively.

We define measurement signal-to-noise ratio (MSNR) and
recovery signal-to-noise ratio (RSNR) as:

[diag(2)AX [|r
IWlE
RSNR := —101log;(2 — 2|7*7®)).

MSNR := 20log,,

£l

We test the two approaches at four noise levels: oy = 0,
0.1, 0.2, and 0.5, which roughly correspond to MSNR of oo,
20 dB, 14 dB, and 6 dB. At these noise levels, we say the
recovery is successful if the RSNR exceeds 30 dB, 20 dB,
14 dB, 6 dB, respectively. The success rates do not change
dramatically as functions of these thresholds. In the experi-
ments, we set n = 128, N = 16, and m = §,16,24, ..., 64.
For each m, we repeat the experiments 100 times and compute
the empirical success rates, which are shown in Figure 2.

As seen in Figure 2(a), both power iteration and least
squares achieve perfect recovery in the noiseless setting.
However, as seen in Figures 2(b) — 2(d), power iteration is
clearly more robust against noise than least squares, whose
performance degrades more severely in the noisy settings.

The empirical phase transitions of power iteration are shown
in Figure 3. We fix N = 16 and plot the phase transition with
respect to n and m (Figure 3(a)); we then fix n = 2m and plot
the phase transition with respect to N and m (Figure 3(b)).
Clearly, to achieve successful recovery, n must scale linearly
with m, but N can be small compared to m and n. This
confirms the sample complexity in Theorem 11, of n = m

3111

256

192

128

64 128 192 256 16 32 48 64

(@) (b)

Fig. 3. The empirical phase transition of power iteration. Grayscale represents
success rates, where white equals 1, and black equals 0. (a) The x-axis
represents m, and the y-axis represents n. (b) The x-axis represents m, and
the y-axis represents N.

and N Z 1. Careful readers may notice in Figure 3(b) that for
N =5 the success rates at m < 16 are worse than those at
m = 16. This seemingly peculiar phenomenon is caused by
a small n = 2m, which does not belong to the large number
regime associated with a high probability.

B. Sparsity Case: Truncated Power Iteration vs. £;
Minimization

In the sparsity case, we use the same setup described in
the previous section, except for the signal X. The supports of
the sg-sparse columns of X are chosen uniformly at random,
and the nonzero entries follow CA/ (0, N%D). This unstructured
sparsity case is more challenging than the joint sparsity case
in Theorem 12.

In Algorithm 2, we choose a = /i, and B = || B||. In all the
experiments, we assume that the sparsity level sg is known, and
set 51 = 2s¢ for convenience. A more sophisticated scheme
that decreases s as the iteration number increases may lead
to better empirical performance [11].

For the experiment we suppose that the phases {pi}}_; in
(34) are available, and let

y © ._ [e_‘/__]*"l, e e—\/—_lqan]—l— (35)
denote the initial estimate of y, which is close to but different
from the true y, i.e., the entrywise inverse of A in (34). See
Figure 1 for an illustration of A, yi, and y(m. Then we
initialize Algorithm 2 with 7@ =[0F .y (Oﬂk]T.

We compare Algorithm 2 with an £; minimization
approach. Wang and Chi [8] adopted an approach tailored for
the case where A is the DFT matrix and A; =~ 1. They use
a linear constraint > 41, 7k = n to avoid the trivial solution
of all zeros. For fair comparison, we revise their approach to
accommodate arbitrary A and A. The revised approach uses
the alternating direction method of multipliers (ADMM) [61]
to solve the following convex optimization problem4:

min |[vec(X)]s
7. X

s.t. diag(y)Y = AX,

},(0)*}, =n.

“In the noisy setting, one could replace the linear constraint diag(y )Y = AX
with an ellipsoid constraint ||diag(y )Y — AX || < €. However, the parameter
€ needs to be adjusted with noise levels. For fair comparison of robustness
to noise, we use the linear constrained £1 minimization in the noisy setting
(similar to [8]).
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8 16

Fig. 4. Sparsity case: The empirical success rates of truncated power iteration
(blue solid line) and £1 minimization (red dashed line). The x-axis represents
50, and the y-axis represents the empirical success rate. (a) — (d) are the results
with oy = 0, 0.1, 0.2, and 0.5, respectively.

Here, y © is the initial estimate of y defined in (35), and used
as initialization in our Algorithm 2 in this comparison.

We conduct numerical experiments with the same four noise
levels and criterion for successful recovery as in Section VI-A.
In the experiments, we set n = 128, m = 256, N = 16, and
so = 8,16,24, ..., 64. For each s9, we repeat the experiments
100 times and compute the empirical success rates, which are
shown in Figure 4. In the noiseless case (Figure 4(a)), {1
minimization achieves a slightly higher success rate near the
phase transition. However, truncated power iteration is more
robust against noise than £; minimization, which breaks down
completely at the higher noise levels (Figures. 4(b) — 4(d)).

Figure 4(a) clearly shows that truncated power iteration
recovers 7 successfully when n = 128, N = 16, and 5o = 32.
This suggests that truncated power iteration may succeed when
n and N are (up to log factors) on the order of so and 1,
respectively. However, while the scaling with the number of
sensors n agrees with Theorem 12, success with such small
number of snapshots N is not guaranteed by our current
theoretical analysis.

Next, we assume that only a subset of the phases {gi};_;
are available, and examine to what extent Algorithm 2 and
€1 minimization depend on a good initial estimate of y.
In the numerical results shown in Figure 5, we consider
only the noiseless setting of BGPC with sparsity, and set
so = 4,8,12,...,32. In Figures 5(a) and 5(b), we replace
1/2 and 3/4 of {g};_, with random phases, respectively, and
use the resulting bad estimate y (?) in Algorithm 2 and £,
minimization. As seen in Figure 5, truncated power iteration
is less dependent on accurate initial estimate of y.

We repeat the above experiments for the joint sparsity case,
where we replace ﬁs, in Algorithm 2 with ﬁ;l. We also
replace the £; norm |[vec(X)|; in the competing approach
with a mixed norm:

1/2

= > ( > |x£‘j|2) ,

telm] je[N]

X
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Fig. 5. Sparsity case: The empirical success rates of truncated power iteration
(blue solid line) and ¢; minimization (red dashed line), with bad initial
estimate of the phases. The x-axis represents sp, and the y-axis represents
the empirical success rate. (a) and (b) are the results for which 1/2 and 3/4
of {pk }£=I are initialized with random phases.

0.5 B
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Fig. 6. Joint sparsity case: The empirical success rates of truncated power
iteration (blue solid line) and mixed minimization (red dashed line). The
x-axis represents sp, and the y-axis represents the empirical success rate.
(a) — (d) are the results with oy = 0, 0.1, 0.2, and 0.5, respectively.

which is a well-known convex method for the recovery of
jointly sparse signals. The results for different noise levels and
for inaccurate y (?) are shown in Figures 6 and 7, respectively.
In the joint sparsity case, truncated power iteration is robust
against noise, but seems less robust against errors in the initial
phase estimate. We conjecture that the failure of Algorithm 2
in the joint sparsity case is due to the restriction of ﬁ;l.
By projecting onto jointly sparse supports, the algorithm is
likely to converge prematurely to an incorrect support. When
compared to the results in Figures 7(a) and 7(b), Figures 7(c)
and 7(d) show that using ﬁs. instead of ﬁ;l in the first half of
the iterations indeed improves the performance of Algorithm 2
in the joint sparsity case. In the rest of the experiments, we use
ﬁs1 during the first half of the iterations in Algorithm 2 for
the joint sparsity case.

Next, we plot the phase transitions for truncated power
iteration. We fix N = 16 and m = 2n and plot the empirical
phase transition with respect to n and sp (sparsity case in Fig-
ure 8(a), and joint sparsity case in Figure 8(c)); we then fix
n = 4sg and m = 2n and plot the empirical phase transition
with respect to N and s (sparsity case in Figure 8(b), and
joint sparsity case in Figure 8(d)). It is seen that, to achieve
successful recovery, n must scale linearly with sp, but N can
be small compared to sg and n. On the one hand, the scaling
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Fig. 7. Joint sparsity case: The empirical success rates of truncated power

iteration with 1§, (blue solid line) and mixed minimization (red dashed line),
with bad initial estimate of the phases. The x-axis represents s, and the y-
axis represents the empirical success rate. (a) and (b) are the results for which
1/2 and 3/4 of [;uk}Ezl are initialiﬂzﬂed with rando'run phases. In (c) and (d),
we repeat the experiments, but use I1y; instead of ITg, in the first half of the
iterations.
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@

Fig. 8. The empirical phase transition of truncated power iteration. Grayscale
represents success rates, where white equals 1, and black equals 0. (a) Sparsity
case: The x-axis represents sg, and the y-axis represents n. (b) Sparsity case:
The x-axis represents sp, and the y-axis represents N. (c) Joint sparsity
case: The x-axis represents sp, and the y-axis represents n. (d) Joint sparsity
case: The x-axis represents sg, and the y-axis represents N.

law n 2 s¢ in Theorem 12 is confirmed by Figure 8; on the
other hand, N > ./so seems conservative and might be an
artifact of our proof techniques. We have yet to come up with
a theoretical guarantee that covers the more general sparsity
case, or requires a less demanding sample complexity N 2 1.
In Figures 8(b) and 8(d), the success rates at smaller sp are
lower than those at a larger s(, because the number of sensors
n = 4sp is too small to yield a high probability.

C. Sparsity Case: Initialization

In this section, we examine the quality of the ini-
tialization produced by Algorithm 3 by comparing it
with two different initializations: (i) the good initialization
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Fig. 9. The empirical success rates of truncated power iteration with the
initialization in Algorithm 3 (blue solid line), with a baseline initialization

7@ = [0; m.1° lIl]T (red dashed line), and with the accurate initialization

n(o) = [0; m‘] .7 (D)T]T with side information in Section VI-B (black dash-
dot line). The x-axis represents sp, and the y-axis represents the empirical
success rate. (a) is the result for the sparsity case, and (b) is the result for the

joint sparsity case.
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Fig. 10. The empirical phase transition of truncated power iteration with
the initialization in Algorithm 3. The x-axis represents sp, and the y-axis
represents n. (a) is the result for the sparsity case, and (b) is the result for
the joint sparsity case.

,?(0) = [0}%], y(D)T]T aided by side information on the
phase in Section VI-B; and (ii) a baseline initialization ) =
[Oxm,l,ll]]T. We use the same setting as in Section VI-B,
except that N = 32. We let ow = 0.1, and claim the
recovery is successful if the RSNR exceeds 20 dB. In the
experiment for the joint sparsity case, for the reason mentioned
in Section VI-B, we ignore the joint sparsity structure and
estimate the support of different columns of X independently
in the initialization and during the first half of the iterations.
Only in the second half of the iterations, we use the projection
ﬁ;l onto jointly sparse supports.

Figure 9 shows that, although the initialization provided by
Algorithm 3 is not as good as the accurate initialization with
side information, it is far better than the baseline. Figure 10
shows the empirical phase transition with respect to n and
5o, when Algorithm 3 is used to initialize truncated power
iteration (sparsity case in Figure 10(a), and joint sparsity
case in Figure 10(b)). The results suggest that when n scales
linearly with sp, Algorithm 3 can provide a sufficiently
good initialization for truncated power iteration. For example,
in 10(a), the success rate is 1 when n = 256 and so = 20.
Therefore, the sample complexity n = sg in Theorem 14 could
be overly conservative and an artifact of our analysis.

D. Dependence on Assumptions

In this section, we study how much the performance of
Algorithms 1 — 3 depend on the Assumptions 3 — 7.
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We first examine the importance of Assumption 3 by com-
paring the recovery success rate under four different models
of A € Cnxm:

« Gaussian: the entries are drawn independently from
CN(O, 1).

« Rademacher: the entries are drawn independently from
a two-point distribution on :I:Ln, each with probability %
(a scaled version of the Rademacher distribution).

+« Random rotation: When n > m, the columns of A
are random orthonormal vectors (formed by computing
the left singular vectors of a complex random Gaussian
matrix). When n < m, the rows of A are random
orthogonal vectors of £ norm ‘/g .

« Partial Fourier: A is a randomly subsampled DFT
matrix. When n > m, the columns of A are a random
subset of columns of the normalized n x n DFT matrix.
When n < m, the rows of A are a random subset of row
of the normalized m x m DFT matrix, scaled by ‘/%

In the subspace case, we compare the success rates of Algo-
rithm 1 for the above four models, with n = 128, m = 16, and
N = 4. In the joint sprasity case, we test Algorithm 2 with
n =128, m = 256, sop = 16, and N = 4. We generate 4 and X
following the same model as in Section VI-A, and for the joint
sparsity case, assume that we have access to the same good
initial estimate y (¥) as in Section VI-B. The measurement Y
contains noise with ¢ = 0.1 (the MSNR ~ 20 dB), and we
declare successful recovery if the RSNR exceeds 20 dB. The
success rates in the subspace case and the joint sparsity case
are shown in Figures 11(a) and 11(b), respectively.

The empirical success rates in both the subspace and the
joint sparsity cases show that, although we need the complex
Gaussian random matrix model in Assumption 3 for the proof
of our main results, in practice Algorithms 1 and 2 are just as
successful for other models of A as they are for the Gaussian
model. In other words, one does not need A to be a complex
Gaussian random matrix for our algorithms to converge, and
to be effective.

However, our initialization algorithm is not equally suc-
cessful for all models of A. To demonstrate this, we test
our algorithms for the joint sparsity case with n = 128,
m = 256, so = 4, and N = 32, and feed the initial estimates
produced by Algorithm 3 to Algorithm 2. The success rates
in Figure 11(c) clearly show that Algorithm 3 cannot produce
sufficiently accurate estimates under the “Rademacher” model
and the “partial Fourier” model of A. The condition on A
under which Algorithm 3 is empirically successful requires
further investigation, and is beyond the scope of this paper.

Next, we show that Assumptions 4 and 5 are important
in terms of convergence rate and noise robustness of our
algorithms. Despite the fact that, in the subspace case, the
principal eigenvector of G corresponds to the ground truth
regardless of the dynamic range in 4 or the conditioning of
X as long as the solution is unique in the subspace case,
one can only expect the fast convergence and robust recovery
in Theorem 11 under certain regularity conditions on 4 and
X. In the joint sparsity case, the success of truncated power
iteration depends even more on the flatness of 4 and the
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Fig. 11. The empirical success rates of our algorithms under four models of
A. (a) is the result for the subspace case, (b) is the result for the joint sparsity
case with a good approximate initial estimate, and (c) is the result for the
joint sparsity case with initialization produced using Algorithm 3.

good conditioning of X. We demonstrate the importance of
Assumptions 4 and 5 by relaxing them gradually, and observe
the degradation in success rates.

In particular, to compare with the success rates with an
approximately flat A that satisfies Assumption 4 (following the
same model in Section VI-A), we multiply different entries of
A by additional gains — i.i.d. random variables following a
uniform distribution on [0.5, 1] — which roughly increases the
dynamic range of 4 by a factor of 2. We also apply additional
gains drawn from uniform distributions on [0.2, 1], [0.1, 1],
or [0, 1], which makes A progressively less flat by roughly
increasing its dynamic range by a factor of 5, 10, or oco.
Similarly, we increase the condition number of X by a factor of
about 2, 5, 10, or oo, by multiplying the columns of X by i.i.d.
random variables drawn from uniform distributions on [0.5, 1],
[0.2,1],[0.1, 1], or [0, 1]. According to Figure 12, the success
rates, in both the subspace case and the joint sparsity case,
decrease as the flatness of A or the conditioning of X becomes
worse. Such negative impact is more pronounced in the joint
sparsity case.

The extensive numerical experiments in
Sections VI-A and VI-B demonstrate that Algorithms 1 and 2
are successful under reasonable noise levels (MSNR = 20 dB,
14 dB, and 6 dB). The requirement on the noise level in
the joint sparsity case of Assumption 6 is pessimistic when
compared to empirical results, due to limitations of our
theoretical analysis.
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Fig. 12. The empirical success rates of our algorithms under different flatness
of 4, and different conditioning of X. (a) and (b) are the results for the
subspace case, (c) and (d) are the results for the joint sparsity case.

o"'&f @ﬁ&

Fig. 13. The empirical success rates under two models of row sparse X: the
Gaussian model and the Rademacher model.

In order to investigate how critical Assumption 7 is to
the empirical performance of our initialization algorithm, we
compare two models for the nonzero entries of X (in the joint
sparsity case, with n = 128, m = 256, 5o = 4, and N = 32):

« Gaussian: the nonzero entries follow CN (0, NSO

« Rademacher: the nonzero entries follow a two-point

distribution on +—L—, each with probability % (a scaled
version of the Rademacher distribution).

By our discussion in Section III A, the Gaussian model
satisfies Assumption 7 with @ = 4 and dy = ——, while the
Rademacher model is the ideal case with @ =1 and oy = 0.
However, Figure 13 shows that Algorithms 2 and 3 have
higher success rate under the Gaussian model. This suggests
that, although Assumption 7 is important for our theoretical
analysis of Algorithm 3, it cannot be used to predict the
empirical performance of our algorithms, as better constants
in Assumption 7 do not necessarily mean higher success rates.

E. Application: Inverse Rendering

In this section, we apply the power iteration algorithm to
the inverse rendering problem in computational relighting —
given images of an object under different but unknown lighting
conditions (Figure 14(a)), and the surface normals of the
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(d)

Fig. 14. Inverse rendering and relighting. (a) We use 12 images of the
object under different lighting conditions. (b) The surface normals. The three
dimensions of the normal vectors are represented by the RGB channels of
the color image. (c) The recovered albedo map. (d) Computed images of the
object under new lighting conditions.

object (Figure 14(b)), the goal is to recover both the albedo
(also known as reflection coefficients) of the object surface
and the lighting conditions. In this problem, the columns of
Y = diag())AX e R™V represent images under different
lighting conditions, which are the products of the unknown
albedo map 4 € R" and the intensity maps of incident light
under different conditions AX. For Lambertian surfaces, it
is reasonable to assume that the intensity of incident light
resides in a subspace spanned by the first nine spherical
harmonics computed from the surface normals [2], which we
denote by the columns of A € R"*?. Then the columns of
X are the coordinates of the spherical harmonic expansion,
which parameterize the lighting conditions. We can solve for
A and X using Algorithm 1. Our approach is similar to that
of Nguyen ef al. [2], which also formulates inverse rendering
as an eigenvector problem. Despite the fact that the two
approaches solve for the eigenvectors of different matrices,
they yield identical solutions in the ideal scenario where the
model is exact and the solution is unique.

In our experiment, we obtain N = 12 color images and the
surface normals of an object under different lighting condi-
tions,” and we compute the first m = 9 spherical harmonics.

SThe images are downloaded from https://courses.cs.washington.
edw/courses/csep576/05wi/projects/project3/project3.htm on September 16,
2017. The surface normals are computed using the method described in the
same webpage.



3116

We apply Algorithm 1 to each of the three color channels, and
the albedo map recovered using 200 power iterations is shown
in Figure 14(c). We also compute new images of the object
under new lighting conditions (Figure 14(d)).

VII. CONCLUSION

We formulate the BGPC problem as an eigenvector problem,
and propose to solve BGPC with power iteration, and solve
BGPC with a sparsity structure with truncated power iteration.
We give theoretical guarantees for the subspace case with a
near optimal sample complexity, and for the joint sparsity case
with a suboptimal sample complexity. Numerical experiments
show that both power iteration and truncated power iteration
can recover the unknown gain and phase, and the unknown
signal, using a near optimal number of samples. It is an open
problem to obtain theoretical guarantees with optimal sample
complexities, for truncated power iteration that solves BGPC
with joint sparsity or sparsity constraints.

APPENDIX
Proof of Lemma 15: We have

D*D = Iy ® (A" A), (36)
[ Jiara; x. Anlna] x4
D*Es = : : ; (37)
| Miara] x.n Anlnal x.N
[1411* a] XX*ar.
EYE, = (38)
i nl? @] XX
Under Assumptions 3 and 5, we have
ED*D = Iy, (39)
1
ED*E, = —xA", (40)
n
1 .
EE;Es = || X|lgdiag(llal’, ..., 12 1"])
1.
= —diag([|11]?, -, 12a1%1). (41)

Set a = ./n, we have

INm Lﬂxl—r
EBs =117 dia ([|,16 2D |’
7 g(UI411, ..., 12a[])

and
]EQTHBSQ;},
B Ins Qnxa’
T LTay, diag@A . 122D
= P*QP,
where

P = diag([11.ns, 2" 1),

Ins ﬁnrxnl,]

Q= [ﬁln,,xm}x I
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The matrix @ has eigenvalues 0,1,1,...,1,2. The
eigenvectors corresponding to O and 2 are u =
(Qrx)T, -1, /¥nlT/v2 and [Qrx)",1,,/V/A1T/V2,
respectively. Any vector orthogonal to these two vectors
is an eigenvector of Q corresponding to 1. It follows that
Q + pp* — Insy, is positive semidefinite.

Since u is a null vector of Q, we have P~y is a null
vector of P*QP (note that Qr,n = ﬁP_]p). Therefore,
the smallest eigenvalue of the positive semidefinite matrix
P*QP is 0.

Next, we bound the largest eigenvalue of P*QP, which
satisfies

max |[P*QPzl2 < v/1+d max__ [[QPz]2
Izll2=1 I1P2l2<vT+3
= (1+9) max [Qz]2
lzllz=<1

< 2(1+9), (42)

where the first inequality follows from Assumption 4, and
the second inequality follows from the largest eigenvalue
of Q.

Next, we bound the second smallest eigenvalue of P*QP,
which satisfies

min IP*QPz|2
Py, |zllaz1
>J1-0 min 1QPzl2
PzL(PP*) 'y, |Pzlla=v/1-3
=(1-9) 10zll2

min
2L(PP*)"ly, |zl2=1

> (1-9) IUNs4n — pp*)zli2

VI lwr2P

min
2L(PP*)~ 1y, |Izll2=1

—(1-9) min
cL(PPY) Ly, [zlo=1
_a _5)I#“(PP*)"#I
[(PP*)ull2
1-0)2
> 5 @

where the first and third inequalities follow from Assump-
tion 4, and the second inequality is due to the fact that
Q + pu* — Insin is positive semidefinite.

By (42) and (43), all nonzero eigenvalues of EQp, BSQ}H

2
reside in the interval [{52-, 2(1 + 9). m

Proof of Lemma 17: We prove only the joint sparsity case.
One can prove the subspace case by replacing s with m and
getting rid of the union bound.

It is well-known that, for sufficiently large n, a Gaussian
random matrix satisfies RIP [55]. Here, we use a bound for
real Gaussian random matrices [62], and present its extension
to complex Gaussian random matrices. Let T C [m] dg{lote
an index set of cardinality s, i.e., |T| = s < n. Let A =
[Re(A)Q7F, Im(A)Q7F]. By [62, Th. 2.13],

2

P[||2E"‘Z— |l < 3(\/2HE+ s)] >1- Zexp(—%).
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Note also that
QrA*AQ% = QrRe(A) "Re(A)Q%
+V/=1QrRe(A) 'Tm(A)Q%
— V/=1QrIm(A) "Re(A)Q%
+QrIm(A) "Tm(A)Q%.
IQrA*AQY — L] < |QrRe(A) Re(A)Q} — I,/2]
+ |QrRe(A) "Im(A)Q7 |
+ 1Q7Im(A) "Re(A)Q7 |
+ [Q7Im(A) "Im(A)Q} — I,/2]|
< 4||A*A - Iy /2|.

It follows that

]P[||QTA"‘AQ"]L Ll < 6(\/§ n s)]

2
>1- Zexp(—%).

Therefore, there exist constants Cy, ¢y > 0, such that

]P[HQTA*AQ} — Il < C1./Z10gm, VT st |T| :s]
n
1—2of" ( (C‘ 1)251 )
- exp—(——1) =logm
s ) P s 2 %8

—c] &
k]

IV

>1—m

where the first inequality follows from a union bound, and
setting ¢ = (% — 1),/ logm; the second inequality follows

from Stirling’s approximation (7) < (<2)’.

We obtain Lemma 17 by applying the above bound to every
diagonal block of the block diagonal matrix Qr, D*DQF . B

Proof of Lemma 18: By a consequence of the Hanson-
Wright inequality (see [63, Th. 2.1], and its complexification
in [63, Sec. 3.1]), there exists an absolute constant c& such
that

)

PlVAIX Tal — 1] < o] = 1 - 2exp(—207). 44

Set ¢ = C3||X||/logn for some C; > 0, then by a union
bound, there exists an absolute constant ¢o > 0 such that

]P[|,/E||XTak. la—1| <C}lIX|l/logn, Vk € [n]] >1—n—.

45)
By Assumption 4,
2C + C2)(1 + 6
P[|Ak|2|a,;f_xx*a—k__1|5( L+ C(1+9)
n n
-max{ |1 X|1v/iogn, IXIP logn), Vk € [n]]
SR (46)

The spectral norm || X|| is bounded in Assumption 5:
11
Subspace case: I1X1? < (1 +6) max{—, —},
N m
11
Joint sparsity case: ||X||2 <(1+86) max{ﬁ, —h
So

Therefore, Lemma 18 follows from (38), (41), and (46). ®
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Proof of Lemma 19: By (37), the columns of D*E are
independent random vectors. Define
ara) x.

aragxo

Lﬂ_ba;x‘NJ

Then D*Es = [¢1, ¢, ..., ¢Pnldiag(1l). Next, we bound
the spectral norm of the random matrix @ — E®, where
© = [¢1,¢d2,...,¢,], using matrix Bernstein inequality
[57, Th. 1.6]. We need the following bounds to proceed:

1) A bound on [[¢x — Edlla.
First, by [63, Sec. 3.1, Th. 2.1], there exists a constant
e
]P[|JE law.ll2 — v/m| < s] > 1 — 2exp(—che?d).

By a union bound over all k € [n], there exists a constant
C; such that

P[|Vallax Il — v/m| < C5/logn, Vi < [n1]

> 1 —2nexp(—c;CF logn)

Pk =

>1-n", (47)

Note that
1 1
IEdill2 = 7E||X||F = ligxllz < llak. 211X " ax. 2.

By (45) and (47), there exists a constant C3, such that
with probability at least 1 —2n~°2,

llgx — Bl
(04 [logn [logn
< ?max{\/ﬁ,,/logn]max{l, vV }
L Gvm
n

for all k € [n], where the second inequality uses the
assumption that min{N, m} > logn.
2) A bound on |E[(® — E®)*(® — ED)]||.
One should observe that
m
El(¢x — Ed)*(or — Edi)l = —,

n
El(#x — Eéx)* (9w — Ew)] = 0,
for k # k'. Therefore,

E[(® — E®)*(® — E®)] = I,
n
m
|E[(® — ED)*(® — ED)]|| = -
3) A bound on |E[(® — E®)(® — ED)*]|.
Since {¢x};_, are i.i.d. random vectors,

E[(® — E®)(® — Ed)*]

= > El(¢x — Edi) (¢ — Edp)*]

k=1

= nE[(¢1 — E¢1)(¢1 — E¢1)*]
= n[E(p1¢}) — (Ed1)([Ep1)*]

|
= ;(XTX ® In).
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By Assumption 5, in the subspace case,

1 _
IE[(® — E®)(® — E®)*]|| = ” IXTX)|
1486 1
< max{— }
n N’ m

Given the above bounds, we apply the matrix Bernstein
inequality [57, Th. 1.6] as follows:

P[I® — B0l < &|lig — Bdill2 < R, Vk € [n]]

2
e°/2
>1—(Nm+n)ex (—7),
z 1= Wm+nexp(= =73
where
2 {m 1+46 1—1—6}
= max{ —
g n2> aN > nm J’
Ccy.Jm
R=23
n

It follows that
P[I0 — E0|l <¢]
2
e /2
>1—(Nm+n)ex (—7) —2n7,
z 1= Wm+nexpl =773

where the last term 2n~° bounds the probability that
l¢r —Egill2 > R for some k. Hence there exist
constants C3, ¢3 > 0 such that

C3 log(Nm + n)

Pl|® — E® ——
[log(Nm +n) /mlog(Nm + n) }] —
nm ’ n - '

Lemma 18 follows from the above bound, and

1Qr, D*Es — EQr, D*E{|| = || @ — E®||||diag(2)]|
<JV1+0|®©—E0|. =

Proof of Lemma 20: We introduce some notations for this
proof. We use B}, and B smn to denote unit balls in C" with £,
norm, and in me" with Schatten p norm, respectively. The
projection on the support set T is denoted by IIr. For a set
A of matrices, dr(A) and dop(A) denote the radii of A in the
Frobenius norm and in the spectral norm, respectively. We use
72(A, ||-]I) the y2 functional of A, which is another way to
quantify the size of A [58, Sec. 2.2]. These are key quantities
in the upper bound of the supremum of an asymmetric second-
order process [58, Th. 2.3], which we use to prove Lemma 20.

Note that

max_||Qr, D*Es — EQr, D*E;||
o
=5

max,
veBY
ITI=s (iy@Mz)o=o

max |o*®u — Eo*®u|,
ucBj

(48)

where ® = D*E;. Let 7 = ,/E[al”“, ... ,a:_]T. Then z follows
CN (0pun,1, Imn) and o*@u is written as a quadratic form in z

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 5, MAY 2019

as follows:
n N
v Qu = ZZuka;x.jvf'}a_k,
k=1 j=1
=z (dmg(u)@l'lro)( L ®XV ) (49)
where u = [u1,...,us]", v = [o],..., 01T, V =
[01,...,o.n], and Tp = {i € [m]lIIe;erlz > 0} denotes the
row support of X = [x.1,...,x.n]
Let
A= {Aulu € B},
and

B={B,lv € By'N, (Iy ® 7)o = v},

where A, and B, are left and right factors in the quadratic
form in (49), i.e.,
Ay, = diag(u) ® Iy,

and

]' *

B, =-I,®@ XV*.

n

Then (48) is equivalent to

sup sup |Z*AuBuZ _EZ*AHBUZL

AycAB,eB
which is a supremum of an asymmetric second-order process.
We use the result on suprema of asymmetric second-order
chaos processes by Lee and Junge [58, Th. 2.3], which extends
the original result by Krahmer ef al. [64] to asymmetric cases.

Next, we compute the key quantities, given as functions of

A and B, which we need to apply [58, Th. 2.3]. Let A, € A.
Since |Tp| < sp, we have

[[AxllF = /Sollullz < /5o

and the radius of .4 in the Frobenius norm satisfies

dp(A) < /50.
On the other hand,
lAull = llulloo =1,

which implies that the radius of .4 in the spectral norm satisfies

dop(A) < 1.
Moreover, for A,, A}, € A, we have
Au — Awll = [l — 4] c-

Therefore, by the Dudley’s inequality [65],

o0
y2(A 1) < fo log NCA, [ D)dt

oo

< [ JlogNBs. 1esi s
000

S [ Jloe N i ar

< log”2
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where the third step follows from the entropy duality result
by Artstein ef al. [66] and the last step follows from Maurey’s
empirical method [67] (also see [68, Lemma 3.1]). Collecting
the above estimates shows that the relevant quantities are
given by

y2(A, 1D @r(A) + 72(A, [I-1)) + dr(A)dop(A)
< max{,/solog”*n, log’ n},
dop(A)(72(A, I1-) + dr(A))
< max{/s0, log*?n},
dop(A)? < 1.

Next we consider the other set 5. Let B, € B. Then
|ByllF = —IIXV"‘IIF < —IIXIIIIVIIF = —IIXII

Therefore
dr(B) < : X1l
F =/ .
On the other hand,
1 . 1
IBoll = —IIXVT < =XV,
n n
which implies
1
dop(B) < EIIXII-
Moreover, for B,, B, € I3, we have
1 f
By — Byl < ;IIXIIIIV -V,

where V' =
fore,

[v/),...,v/y]l and o’ = [v/], ..., 0/} ]T. There-

728, I11)
1 oo
< i /0 JOENOTI=Tir Bgp, [ lgg; D

1 1
< X1 [ flog NUirie i B, - g 1

1 1
—I1X]| /0 \/log D Nz By, |-llgn: dt

|T|=s

[A

[A

1 1
E||X||/0 \fslogm —l—logN(BS;,N, "'"S&,N; t)dt

1
< x|/ (Vslogm
1
+ [ foeN By, Tl nar)

1
S IXIVs + Nlog(sN +m),

A

3119

where the last step follows from Lemma 27. Therefore,
the parameters for B are estimated as

728, D@5 (B) + 72(B, |I-I) + dp(B)dop(B)
< niznxuz((s + N)log’(sN +m)
++/s + NJ/nlog(sN + m)),
dop(B)(72(B, |I-1)) + dr(B))
S %IIX I>(V/s + Nlog(sN +m) + v/n),

dop(B)? < ||X||2

According to [58, Th. 2.3], the optimal upper bound is
obtained as the geometric mean of the dominant parameters
for the two sets. More precisely, the suprema is (up to an
absolute constant) no larger than

s/ (s + N/ + V5 T W)/

n

IX||log® nlog(sN +m)

with probability 1 —n~3. By Assumptions 4 and 5,
14kl = V1

1
IX| < max[1/ +o

which completes the proof. [ ]
Lemma 27:

o0
/ \flog N(Bgnn,tBgnn)dt < </m + Nlog(mN).
0 2 o

1+6

Proof of Lemma 27: First, by the dual entropy result by
Artstein ef al. [66], we have

log N(BS?,N, IBS&,N) 5 log N(Bspln,N, tBSgI,N)

Then we approximate the S; ball as a polytope using a
trick proposed by Junge and Lee [68]. Let R be the set of all
rank-1 matrices in the unit sphere of S3" N Then By mN is the
absolute convex hull of R. We construct an e-net Am of the

sphere S™~!. Then
2ym
|Am| = (1 + —) .
€

For an arbitrary f € §™~1, we have a sequence {fili2, CAn
such that

f=> af,
I=1

and

o0
D | <
1=1

The existence of such a sequence follows from the optimality
of the construction of the net. Similarly we construct an e-net
Ay € S¥=1 of SN=1. Then

2\ N
|AN|S(1+E) .
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For an arbitrary g € SV !, we have a sequence {g;}3°, C Ay
such that

oo
g= gk
k=1
and
o0
1
D 1Bl < :
— 1—¢
Therefore,
oo
f&* =D aipifig;
Ik=1
and

> lalipel < (=)

1,k=1
‘We can choose € so that

1 2
(=) =2
1—e/ —

2
1+—- <8.
€

and

Let Ay v = Ay x Ay. Then
log(|Am,n]) < (m + N)log8
and
Bsfa,N C 2absconv(A,, n).

Now, it suffices to compute

o0
/{) \flog N (2absconv(A, ), IBSge,N)df.

Then use a change of variable and get

oo
A \flog N(2absconv(A ., n), fBSg:,N)df

o0
= 2/ \flog N (absconv(Apn,,N), 1B mn)dr.
0 2

Let Ay n = {q1,...,9u}, where M = |Ay n|. Define
linear mapping Q : (3{“ — f’g"N by Q(e;) = vec(g;) for
i = 1,...,M. Since |vec(gi)ll2 = lgills, = 1 for all i,
we have

1Q: e — enN) =1,
Note

o0
fﬂ ‘/log N (absconv(A,, n), fBSgu,N )dt

— f - ‘/log N(Q(B"), tB)d.
0

By a version of Maurey’s empirical method (see for example
[68, Proposition 3.2]), we have

00
f \flog N(Q(B{d),fng:N)df < log M log(mN)
0
< +/m + Nlog(mN).

This completes the proof. [ ]
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Proof of Lemma 22: Bear in mind that the columns of ¥ :=
D*E,, which we denote by {wi}i_,. are independent random
vectors with zero mean:

Q. Wi 1
Q. wi2
Y = )
ag. wiN
We bound |[D*E,| using the matrix Bernstein inequality
[57, Th. 1.6]. We need the following bounds:

1) A bound on || yi]2.
Since

lwellz < llak.ll2llwk. 12

By (47), and m > logn,

m
lyellz < (C3 + 1),/ — x VN

kemgam
with probability at least 1 — n—2.
2) A bound on ||E¥*W¥].
Since
m .
EY*Y = Edlag([llwl-"%, w2113, - ., e 13D),
we have
N m 2 _mN 2
[EY*Y| = — max |lwe. 3 < —  max Jwgj|”
n keln] n  keln],je[N]
3) A bound on ||E¥W¥#|.
Since
1
EYY*= D" —diag([lwe1’, [wial’, - .-, [wkn [*1) @ I,
kemn] "
we have
1
E¥Y*|| = — 1?2 < 12
I = max > Jugl* < max - fwy]

ke[n]

Given the above bounds, we completes the proof using
the matrix Bernstein inequality (similar to the proof of
Lemma 19). There exist constants Cy4, ¢4 = 0 such that

ID* Eall = I'P1] = Cs max{/iog(Vm +m),

Vo rog(Nim +m) s |
— 10 m n max H
n 8 kelnl,jervy

with probability at least 1 —n—. [ ]
Proof of Lemma 23: Note that

max [p*Wul,
ucBj

max max
Tcim]  yeppN

ITI=S (1y@Iir)o=v

max | Qr, D*E,|| =
Tc[m]
IT|=s

where

¥ = D*E,

"
= [Iv ®7r. ... Iy @]

wy.

1
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aﬁ,]T. Then z is a standard Gaussian

= Jnlaj,...,

vector, and

1
v*WPu = ﬁ(ll,n R v*)Ep ® Iy)(diag(u) ® In)z.
Let
1
Gup = —(diﬂg(ﬁ)* @ Im)(E: @ Jirm)(ln,] ® v).

Jn
The L, metric is given by

d((,0), @', 0) = \[E@,2— 4 2
= ||qu,u — qu' v’ ll2.

Indeed,

d((u,v), @', 0") =< d((u,v), (,v") +d((u,v), @,0")
< lldiag(u — u")lloo | Enllll0l2
+ [ldiag (") llo [l Enllllo — o’[l2
< ||diag( — u)llool| Enll
+ I Eallllo —"[l2.

LetTy ={v e B;"N : Tcm], [T|=s, (IN®@I7)e =
v}. By Dudley’s theorem (see e.g., [65, Th. 11.17]), we have
E sup sup

Tclm]  yeppN
ITl=s (1yenzyo=o

<24 / JIog N(T, x BE,d(): e)de
0

sup v*¥u
ucBj

o0
< 20E( [ Viog N (T, i e
oo
+ [ g N @, i ete)
o0
< 24l (| Viog NI, Iz e
~ 0
+ [ floeN @ s e

5 ”En"(m + m + 10g3/2 n).

By an extension of Dudley’s inequality to moments
[69, p. 263, Sec. 8.9],

1/p
(]E sup sup  sup [o*Pu |p)
Tl'Tgl[m] BPHN ucBj

=* (IN®1'1T)U v
S IEall(V/slogm + v/Ns +log*/ n) /p.

By a variation of Markov’s inequality [69, Proposition 7.11],
there exist absolute constants C4, ¢4 > 0 such that

sup |0*Wu|

n
ueBj

sup
Tc[m]
ITI=s (hv@ﬂr)v—v

< C4||En||(+/slogm + v/ Ns + logg'/2 n)y/logn,

with probability at least 1 —n—%.
Therefore, Lemma 23 follows from

| Enll = max [lw.|l2 < VN
keln]

sup
BmN

ma Wi |
keln],je [N]I il
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Proof of Lemma 24: If assumptions 3 — 5 are satisfied, then
by (45),

(C+1)J/1+6
lIyi-ll2 < ZT max{l, ||X||,X10gn]

for all k € [n], with probability at least 1 —n~2,
Since

E}E, = diag([yj.wi., yy.w2., ..., Yy wn.]),

(G +1D)J/A+6)(1 +0) > 0such

there exist constants C5 =

that
E*E,| < .
IESEall < max lyelle x VN _max - jug
< — 2 [ max{1, 11V jwij|
max ogn wijl,
110 ") ket ey

with probability at least 1 —n~°2. Therefore, Lemma 24 follows
from Assumption 5. [ ]
Proof of Lemma 25: Lemma 25 follows from

E}E, = diag([[|w1.13, |lw2.113, - - -, lwn.I3)- u

Proof of Lemma 26: We prove these inequalities using the
Hoeffding’s inequality.
For all j € [N], £ € [m], and k € [n],

T 2 T2

[akea.x.j|” — Elakeay. x. j|
1

2, T, 2 2 2

< lake|”lag.x.j|1* + ) (%115 + |xe;1%)

llxj I3 log(aN) | 2llx.jl3

n2

,log(nm)
Ce "

n
- (Cf +2)|Ix.j 113 log?(nmN)
J— 2 3
n

<

where the third line is true with probability at least 1 —n™
for some absolute constant c;. We show this by applying a
Chernoff bound and a union bound to |a¢|?, and applymg the
Hanson-Wright inequality (44) and a union bound to |ak_ . |2.
Then it follows from the Hoeffding’s inequality and a union
bound, that there exist absolute constants Cg, cg > 0 such that
for all j € [N] and £ € [m] we have (20).
Similarly, for all j € [N], £ € [m], and k € [n],

og(nm) llx.jll2y/log(nN)
n Jn ’

with probability at least 1—n~%%. By the Hoeffding's inequality
and a union bound, we have (21). Here we use the following

2
lake| |ak gl =

facts: By Assumption 3, [[x.;]| = %. By Assumption 6,

MmaXie(n], je[N] |Wkj| < C,S\.f'
For £ € [m] and k ET/’;

1
akel? — Blage? < ¢4 280"
with probability at least 1 —n~. By the Hoeffding’s inequality

and a union bound, we have (22). [ |
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