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Abstract

The restricted isometry property (RIP) is an integral tool in the analysis of various
inverse problems with sparsity models. Motivated by the applications of compressed
sensing and dimensionality reduction of low-rank tensors, we propose generalized no-
tions of sparsity and provide a unified framework for the corresponding RIP, in partic-
ular when combined with isotropic group actions. Our results extend an approach by
Rudelson and Vershynin to a much broader context including commutative and non-
commutative function spaces. Moreover, our Banach space notion of sparsity applies
to affine group actions. The generalized approach in particular applies to high order

tensor products.



1 Introduction

The restricted isometry property (RIP) has been used as a universal tool in the analysis of
many modern inverse problems with sparsity prior models. Indeed, the RIP implies that
certain linear maps act as near isometries when restricted to “nice” (or sparse) vectors.
Motivated from emerging big data applications such as compressed sensing or dimension-
ality reduction of massively sized data with a low-rank tensor structure, we provide a
unified framework for the RIP allowing a generalized notion of sparsity and extend the
existing theory to a much broader context.

Let us recall that in compressed sensing the RIP played a crucial role in providing guar-
antees for the recovery of sparse vectors from a small number of observations. Moreover,
these guarantees were achieved by practical polynomial-time algorithms (e.g., [10, 42]).
In machine learning, the RIP enabled a fast and guaranteed dimensionality reduction of
data with a sparsity structure. The notion of sparsity has been shown for various mod-
els and in many cases the RIP turns out to hold near optimally in terms of the scaling
of parameters for several classes of random linear operators. For example, a linear map
with random subgaussian entries satisfies a near optimal RIP for the canonical sparsity
model [10, 3, 28], low-rank matrix model [40, 9], low-rank tensor model [39], and manifold
models [19]. Baraniuk et al. [3] provided an alternative elementary derivation that com-
bines exponential concentration of a subgaussian quadratic form and standard geometric
argument with union bounds.

Linear operators with special structures such as subsampled Fourier transform arise in
practical applications. These structures are naturally given by the physics of applications
(e.g., Fourier imaging) and subsampled versions of these structured linear operators can be
implemented within existing physical systems. Furthermore, structured linear operators
also enable scalable implementation at low computational cost, which is highly desirable
for dimensionality reduction. A partial Fourier operator has been shown to satisfy a

near optimal RIP for the canonical sparsity model in the context of compressed sensing



[11, 42, 38]. The linear operator that generates randomly sampled Pauli measurements in
quantum tomography was also shown to satisfy a near optimal RIP for a low-rank matrix
model [31]. The RIP of other structured random matrices such as block diagonal matrices
and subsampled circulant matrices has been shown too [20, 41, 28].

Although the RIP under certain scenarios of sparsity models and structured random
matrix as in the above examples has been studied in the literature, there are still applica-
tions whose setting does not fit in the existing theory because the classical sparsity model
does not hold and/or the assumptions on the linear operator are not satisfied. To develop
theory for such scenarios, in this paper, we extend the notion of sparsity and the RIP for

structured linear operators in several ways described below.

1.1 Generalized notion of sparsity

We first generalize the notion of sparsity. Let H be a Hilbert space and K C H be
a centered convex body. We will consider the Banach space (X,|| - ||x) obtained by
completing the linear span of K with the norm || - ||x given as the Minkowski functional
pr(:) : X — R, which is defined by pg(x) := inf{\ > 0|2z € AK}. Then a generalized

sparsity model is induced from X and H as follows:

Definition 1.1. A vector x € H is (K, s)-sparse if

lzllx < Vsllzla,

where X is the Banach space with unit ball K.

The set of (K, s)-sparse unit vector in H, denoted by Kj, is geometrically given as
the intersection of /sK and the unit sphere S = {z | ||z||g = 1} in H. Then the set
of (K, s)-sparse vectors, denoted by Ty, is the star-shaped nonconvex cone given by RK
(or CKj if the scalar field is complex). These two sets are visualized in Figure 1. For
example, if H = Eév and X = K{V , then I'y corresponds to the set of approximately s-

sparse vectors with respect to the canonical basis. The authors of this paper showed that



I's = RK;

Figure 1: Visualization of an abstract sparsity model using a convex set K and the unit
sphere S in a Hilbert space H. (a) The set of s-sparse unit vectors (red). (b) The set of
s-sparse vectors (gray-shaded).

existing near optimal RIP results extend from the exact canonical sparsity model to this
approximately sparse model [26]. This generalized notion of sparsity covers a wider class
of models beyond the classical atomic model. For example, in the companion paper [27,
Section 4], we demonstrate a case where a sparse vector is not represented as a finite linear
combination of atoms but defined by an infinite dimensional Banach space. It also allows
a machinery that optimizes the sample complexity for the RIP of a given atomic sparsity
model by choosing an appropriate Banach space (see [27, Section 2]). In a special case,
where the “sparsity level” s in Definition 1.1 is set to 1, our theory covers an arbitrary set,
where K is its convex hull.! The Minkowski functional in the generalized sparsity model
is closely related to the atomic norm in the signal processing literature. Chandrasekaran
et al. [16] presented a unified theory where the regularization with an atomic norm, which
is the Minkowski functional given by the convex hull of an atomic set, to inverse problems
induces a sparse representation of the solution in the corresponding atomic model. Here we
define a generalized sparsity model directly from a convex set K, which is not necessarily

derived from a specific atomic model.

!Note that taking the convex hull of a given set does not increase the number of measurements for RIP.
Therefore, the convex set K can be considered as the convex hull of a given set of interest in this case.



1.2 Vector-valued measurements

Next we consider vector-valued measurements which generalize the conventional scalar-
valued measurements. This situation arises in several practical applications. For example,
in medical imaging and multi-dimensional signal acquisition, measurements are taken by
sampling transform of the input not individually but in blocks. The performance of ¢1-
norm minimization has been analyzed in this setting [37, 6] and it was shown that block
sampling scheme, enforced by applications, adds a penalty to the number of measurements
for the recovery. This analysis extends the noiseless part of the analogous theory for the
scalar-valued measurements [8], which relies on a property called local isometry, which is
a weaker version of the RIP. For stable recovery from noisy measurements, one essentially
needs the RIP of the measurement operator but block sampling setting does not fit to
existing RIP results for structured linear operators. In this paper, we will consider general
vector-valued measurements in a Hilbert space and generalize the notion of incoherence
and other properties accordingly. This extension, in particular combined with a generalized
sparsity model, requires the use of theory of factorization of a linear operator in Banach

spaces [33].

1.3 Sparsity with enough symmetries and group-structured RIP

We also generalize the theory of the RIP for a partial Fourier measurement operator
to more general group-structured measurement operators, which will exploit the inherent
structure in the Banach space that determines a sparsity model. Particularly, we consider
Banach spaces with “enough symmetries” described below. Let G be a group and o :
G — Op be an affine representation that maps an element in G to the orthogonal group
Oy in RY. An affine representation is isotropic if averaging the conjugate actions on any
linear operator becomes a scalar multiple of the identity. A convex set K has enough
symmetries if there exists an isotropic affine representation such that o(g)K = K for all

g € G. A Banach space has enough symmetries if its unit ball does. Finite-dimensional



Banach spaces with enough symmetries have been studied extensively (see [46, 17, 33]).
For example, the Banach space lev , which induces the “approximate” canonical sparsity
model, has enough symmetries (see Section 4.2 for more details). Our original motivation
for this generalization comes from studying the low-rank tensor model in /5 ®, 05 @, (5,
where ®, denotes the projective tensor product.? In fact a nice feature of spaces with
enough symmetries comes from their stability under tensor products.

When X has enough symmetries with respect to G with an affine representation
o, let v : X — 7 be a linear operator given by v(z) = [vi(2),...,vm(z)]", where
V1, ...,U;, € X* are obtained by sampling the (adjoint) orbit {o(g)*n| g € G} of n € X*,
ie. vj(xz) = (n,o(g;)r) with g; € G for j =1,...,m. For a certain class of group actions,
the corresponding group-structured measurement operator A = (1/4/m)v has fast imple-
mentation. For example, the Banach space £} has enough symmetries with respect to the
group actions consisting of circular shifts in the canonical basis and in the Fourier basis.
When n = [1,...,1]T € RY, the orbit of by circular shifts in the Fourier domain gener-
ates the Fourier basis and the resulting matrix A : CN¥ — C™ becomes a partial discrete
Fourier transform. In general, A corresponds to a windowed partial Fourier transform
where the window is determined by 7. Fast algorithms exist for computing these trans-
forms. We will demonstrate the RIP of these group-structured measurement operators
holds with high probability when the group elements are randomly selected.

Again, the group-structured measurement operator is a natural extension of a partial
Fourier operator. Unlike the other extension to subsampled bounded orthogonal system
[38], the group-structured measurement operator is tightly connected to a given generalized

sparsity model through the underlying Banach space.

2For normed spaces X and Y, the projective tensor product, denoted by X ®, Y, is defined by the
norm || T||x := inf{3 2, lexllllysll | T = >2) x @y, zx € X, yr € Y} (see e.g. [34]).



1.4 Main results

We illustrate our main results in the general setting on concrete examples of random
group-structured measurement operators and generalized sparsity models. The next two
theorems commonly assume the following conditions: i) H = ¢}'; ii) The convex set K
that determines the sparsity model has enough symmetries with respect to a compact
group G and an isotropic affine representation o : G — Op; iii) The Banach space X is
given by the norm given as the Minkowski functional of K as before. A set of random
measurements are obtained by randomly sampling group actions. Specifically, we assume
that g1, ..., gm are independent copies of a Haar-distributed random variable ¢g in G.
The first theorem demonstrates our main result in the case where K is a polytope

given as an absolute convex hull of finitely many vectors.?

Theorem 1.2 (Polytope). Let K be an absolute convex hull of M points in CN, X be the
Banach space with the norm || - |x given as the Minkowki functional of K, u : X — (4
be a linear map that satisfies tr(u*u) = N. Suppose that X has enough symmetries with
respect to a group G and an isotropic affine representation o : G — Opn. Let g1,...,gm be

independent copies of a Haar-distributed random variable g in G. Then

1 m
sup | — 3 [lu(o(gp)o)|3 — =[] < 862
||| x <+/s mjzl
|z|l2=1

holds with high probability for m = O(5=2s||ul|% __,4(1 +Inm)(1 + In(md))?(1 + In M)).

X—ed

Theorem 1.2 generalizes the RIP result of a partial Fourier operator (e.g., [42]) in
the three ways discussed above. The operator norm of u in Theorem 1.2 generalizes
the notion of incoherence in existing theory. Most interestingly, combined with a clever
net argument, Theorem 1.2 enables the RIP of a random group-structured measurement

operator for low-rank tensors (see Section 6).

3The absolute convex hull of a set S is defined by Sorci ez [neN, zp e S, Ap €K, Y0 ;| A] <13,
where K denotes the underlying scalar field.



The second theorem deals with the sparsity model with respect to a ‘“nice” Banach
space whose norm dual has type p [34]. (Details are explained in Section 3.) Here for

simplicity we only demonstrate an example where p = 2.

Theorem 1.3 (Dual of type 2). Let X be an N-dimensional Banach space in (Y such
that i) The norm dual X™* has type 2; 11) X has enough symmetries with respect to a group
G and an isotropic affine representation o. Let n € X* satisfy ||nll2 = VN and g1,...,9m

be independent copies of a Haar-distributed random variable g in G. Then

m

1
sup. | — > ln,a(gy)z)? —llz)3| < 6 v 6°
lzllx<vs ™" j=1

[[=]l2=1

holds with high probability for m = O(52s[Ta(X*)]|%||nllx+(1 + Inm)?3), where To(X*)

denotes the type-2 constant of X*.

Theorem 1.3 covers many known results on the RIP of structured random linear op-
erator and should be considered as an umbrella result for this theory. Importantly The-
orem 1.3 applies to noncommutative cases such as Schatten classes. For example, Theo-
rem 1.3 implies the previous RIP result for a partial Pauli operator applied to low-rank
matrices [31] as a special case.

Theorems 1.2 and 1.3 are just exemplar of the main result in full generality given in
Theorem 2.1. Indeed, the enough symmetries of the underlying Banach space of a gener-
alized sparsity model is only a sufficient condition that guarantees that the expectation of
the random measurements preserves the norm. In the companion paper [27], we demon-
strate that Theorem 2.1 also provides theory for the RIP for infinite-dimensional sparsity

models without relying on the enough symmetry with isotropic group actions.

1.5 Notation

In this paper, the symbols ¢, c1,c2,... and C,Cq,Cs, ... will be reserved for numerical

constants, which might vary from line to line. We will use notation for various Banach



spaces and norms. The identity operator on Banach space X will be denoted by Idx. For
a linear map T : X — Y between Banach spaces X and Y, the operator norm of T will
be denoted by ||T||x—y. (The subscript will be dropped when the corresponding Banach
spaces are obvious from the context.) We will use the shorthand notation || - ||, and B}
respectively for the norm and unit ball in Ki,v for 1 < p < ooand N € IN. For a set
T C Z, let (e)jer denote the canonical basis for C/l. The index set Z should be clear
from the context. For a linear operators v; : X — Y for j = 1,...,m, the composition
map, denoted by (vj)i<j<m, is defined by [(vj)i<j<m](z) = (vi(2),..., v (z)) € Y™ for

x € X, where Y™ denotes the Cartesian product of m copies of Y given by [[; j<m Y-

1.6 Organization

The rest of this paper is organized as follows: The main theorem in full generality is
stated and proved in Section 2. Various examples of generalized sparsity models and their
complexity are discussed in Section 3, followed by the illustration of Banach spaces with
enough symmetries for various affine group representations in Section 4. By collecting
these results, we derive rigorous versions of Theorems 1.2 and 1.3 in Section 5. Finally, we
conclude the paper with the application of the main results for a low-rank tensor model

in Section 6.

2 Rudelson-Vershynin method

In this section, we derive a unified framework that identifies a sufficient number of mea-
surements for the RIP of structured random operators in the general setting introduced
in Sections 1.1 and 1.2. We will start with the statement of the property in the general

setting, followed by the proof.



2.1 RIP in the general setting

Let H be a Hilbert spaces, K be a centrally symmetric convex set in H, and X be the

Banach space with the norm given as the Minkowski functional of K. Let

Poi={we X|lzllx < Vsllzllu} (1)

denote the set of (K, s)-sparse vectors and K be the intersection of I'g and the unit sphere
in H. Let vq,..., v, be independent random linear operator from X to Zg. For notational
simplicity, we let v : X — ¢7(¢4) denote the composite map (vj)1<j<m. Then v generates
a set of m vector-valued linear measurements in ¢4. We will consider the measurement
operator given as the normalized map A = (1/y/m)v.

Our results are stated for a class of incoherent random measurement operators. We
adopt the arguments by Candes and Plan [8] to describe these measurement operators.
In the special case of X = ¢ and d = 1, Candes and Plan considered a class of linear
operators given by measurement maps satisfying the following two key properties. 1)
Isotropy: Evjv; = Iy for all j = 1,...,m, where Iy denotes the identity matrix of size
N; ii) Incoherence: |[vj]/s is upper-bounded by a numerical constant o (deterministically

or with high probability). In our setting, the isotropy extends to

Evjv; =1d . (2)

But we will also consider the case where

Evjv; =@, Vj=1,...,m (3)

holds with ® : H — H satisfying
el <1. (4)

Obviously, the isotropy is a sufficient condition for the relaxed properties in (3) and (4).

10



Non-isotropic cases where the expectation of a random operator is not an isometry has
been also studied in specific scenarios of compressed sensing [8] and embedding of dynamic
systems [21].

We also generalize the notion of incoherence by using an 1-homogeneous function
agq @ B(X,¢%) — [0,00) that maps a bounded linear map from X to ¢4 to a nonnegative
number. A natural choice of oy is the operator norm, which is consistent with the above
example of K = B} and d = 1. The operator norm of v; in this case reduces to ||v;||x+ =
||vjlloo. However, in certain scenarios, there exists a better choice of a4 than the operator
norm that further reduces the sample complexity that identifies a sufficient number of
measurements for the RIP. One such example is demonstrated for the windowed Fourier
transform in the companion paper [27, Section 2.

Under the relaxed isotropy conditions in (3) and (4), with a slight abuse of terminology,

we say that A satisfies the RIP on I'y with constant § if
A2l ) — 82| < 5V ) 2]>, Vo el (5)

In the special case where the isotropy (® = Id) is satisfied, the deviation inequality in (5)
reduces to the conventional RIP. Note that ® is a nonnegative operator by construction.
If ® is a positive operator, then (z,®x) is a weighted norm of x and (5) preserves this
weighted norm through w with a small perturbation proportional to ||z||%.

Our main result is a far reaching generalization of the RIP of a partial Fourier operator
by Rudelson and Vershynin [42]. We adapt their derivation that consists of the following
two steps: The first step is to show that the expectation of the restricted isometry constant
is upper-bounded by the ~o-functional [44] of the restriction set, then by an integral of the
metric entropy number by Dudley’s theorem [29]. Later in this section, we show that the

first step extends to the general setting with the upper bound given by

11



where N(-,-) and ¢;(-) respectively denote the covering number and the dyadic entropy
number [14]. The second step is where our theory deviates significantly from the previous
work [42]. In the scalar-valued measurement case (d = 1), Rudelson and Vershynin used a
variation of Maurey’s empirical method [12] to get an upper bound on the integral in (6)
for K being the unit ball in E{V , which in turn provided a near optimal sample complexity
up to a logarithmic factor. Liu [31] later extended the result by Rudelson and Vershynin
[42] to the case of a partial Pauli operator applied to low-rank matrices via the dual
entropy argument by Guédon et al. [24].

Our result further generalizes these results. In particular, our result provides flexibility
that can address the vector-valued measurement case and optimize sample complexity over
the choice of the 1-homogeneous function oy on L(X, Eg). In the general setting, we need
to adopt other tools in Banach space theory to get an analogous upper bound. For this
purpose, we introduce a property of the convex set K, defined as follows: Let 1 < p < 2.
We say that K is of entropy-type (p, aq) if there exists a constant M, ,,(K) such that

E21(v) < My, (K)m! 27 HP(1 4+ Inm) PP max aq(v;) (7)
Sjsm

holds for any m € N and any composite map v = (v;)1<j<m, where [p]| denotes the largest
integer that is equal to or smaller than p. ¢ Throughout this paper, My o, (K) will denote
the smallest constant that satisfies (7). Note that oy generalizes the notion of incoherence
and M), ., represents the complexity of a given sparsity model, which is discussed in more
details in Section 3. In most examples we discuss later, M), o, is indeed upper bounded by
a logarithmic factor, which in turn provides near optimal scaling of the sample complexity.

Our main theorem below identifies a sufficient number of measurements for the RIP

of a random linear operator in the general setting.

Theorem 2.1. Let K be a symmetric centered convex body in a Hilbert space H and X be

the Banach space with the norm given as the Minkowski functional of K. Let I's be defined

“The exponent of (14 Inm) is chosen as 1 + |p| — 1/p in order to make My, o, (K) independent of m
in the examples in Section 3.

12



by (1) from X and H. Let A = (1/\/m)v, where v = (vj)i1<j<m denotes the composition
map constructed from v, ..., v, € L(X,€%). Suppose that K is of entropy-type (p,aq)
with Mp o, (K) as in (7) and v, ..., vy satisfy (3) and (4). Let 1 <p <2 and 0 < (< 1.

Then there exists a numerical constant ¢ such that if

m!~1/p 1/2k
> Mo, (K)y/s6~! E 2k 8
w5 2 Mpedl KIS g (8 sup ey ®)
and
1/k
m > e5 2sIn(¢™)sup (E sup [uy/*) 9)
keN 1<j<m

then A : X — (7 (¢9) satisfies the RIP in (5) on T's with constant § with probability 1 — .

The moment terms in (8) and (9) are essentially probabilistic or deterministic upper
bounds on sup;<;<,, @(vj) and sup;<;<,, |lvjll, respectively. Indeed, a tail bound im-
plies moment bounds by the Markov inequality and the converse can be shown by direct
calculation with Stirling’s approximation of the gamma function. (e.g., see [22, Chap-
ter 7].) These two terms extend the notion of incoherence of measurement functionals
with respect to the given sparsity model. On the other hand, M, ., (K) describes the
complexity of sparsity model. The number of measurements providing the RIP given in
(8) is proportional to M, ,(K). Indeed, this complexity is up to a logarithmic factor
for the generalized sparsity models derived from some canonical sparsity models in the
literature such as sparse vectors in the standard basis and low-rank matrices. The inco-
herence and complexity parameters are controlled by a choice of the parameter p and the

1-homogeneous function ay.

Remark 2.2. A natural choice for the parameters in Theorem 2.1 is p = 2 and aq(-) = |||

Then the conditions in (8) and (9) reduces to

1/k
S .52 2 3 -1 12k
m > cd ‘s [MZ’H,”(l—i—lnm) V In(¢ )} Zlelll\)l (E max l|vs]| )

However, as shown in Sections 3.4 and 3.5 (also see [27, Section 2]), there are cases where

13



we can further reduce the number of measurements for the RIP in (8) by optimizing over

K, p, and ay.

2.2 Proof of Theorem 2.1

Since Theorem 2.1 generalizes a special example of the partial Fourier case with the
canonical sparsity model, we derive the proof of Theorem 2.1 by modifying the Rudelson-
Vershynin argument [42] so that it applies to the general setting. In high level, the left-
hand side of (5) denotes the deviation of sum of random variables from its expectation. In
high level, the symmetrization [29, Lemma 6.3] followed by Dudley’s inequality provides
an upper estimate given as a function of the “entropy numbers” of the linear operator
v X = 0m(09).

Let us start with recalling the relevant notation. Let D and E be symmetric convex
bodies in Banach space Y. The covering number N(D,FE) is the minimal number of

translates of FE to cover D, i.e.

N(D,E) := min{k |3y1.....yveD, D | (yj+E)}.

1<j<k

The packing number M (D, E) is the maximal number of disjoint translates of E by ele-

ments of D, i.e.
M(D,E) := max{k | 3y1,....yn €D, y; —yi & E, Vj #z} .
Then the covering number and packing numbers are related by
N(D,E) < M(D,E) < N(D,E/2) .
Let T: X — Y be a linear map. The dyadic entropy number [14] is defined by
e)(T, D) :=inf{e > 0| M(T(D),eBy) < 271} .

14



For D = By, we use the shorthand notation ¢;(T') = ¢;(T, Bx). The following equivalence

between metric and dyadic entropy numbers is well known (see e.g., [34]).

Lemma 2.3 ([34]). There exist numerical constants c¢,C > 0 such that
c/ VILN(T(D),e)de < Y all.D) C/ VInN(T(D), ¢)de .
0 =1 Vi 0

Note that since (e;(T")) is a nonincreasing sequence of positive numbers, °7°, ,(T)//1
coincides with the norm of (¢;(7)) in the Lorentz sequence space £(2,1) [5]. Therefore, we
will use the shorthand notation & 1(T) to denote Y72, e;(T)/V/1.

The following lemma provides a key estimate in proving Theorem 2.1.

Lemma 2.4. Let K be a symmetric conver set in H = (Y, X be the Banach determined
from K as before, and Ky = \/sK NS, where S is the unit sphere in €Y. Let D be a
subset of K. Let v : X — (T (£3) be the composition map (vj)1<j<m from linear operators
Vi, .oy U from X to £3. Let &, ..., &m be independent copies of & ~ N(0,1). Then for
all ke N

m kN 1/k m 1/2
(= sup | j}zjlgjnvj(x)n%\ ) <ovs (222; los@)I3) " (Eaa(0) + VAllell)
Proof. Define (3 : 3 — (7 by

B(@) = [l @3, - - lom(@)3]", =€ f5.

Let & = [£1,...,&n]". Then > i1 &Gllvi() 13 is written as (€, B(x)), which is a subgaussian
process indexed by z. By the tail bound result via generic chaining [18, Theorem 3.2] and

Dudley’s inequality [29], for all k € N, we have

(Bsup (€ 5)I) " < [\ N(ED). By s+ sup (Bl s@n) L 10

z€D xzeD
where 3(D) denotes the set {8(x) | x € D}.

15



We first compute an upper bound on the first summand in the right-hand side of (10).
Let

m{E;mw@m. (11)

Then for z, 2’ € D we have

W@“WM:éwwm s g[) "

— (3|0, 05(0) — (@) + oy a) — vy )

i=1
< <§;) <(x)>‘2>1/2+ (g}‘(vj(ﬂﬂl),vj(:r—x/))f)lm
< (S 1) s IE) " + (LI~ )

—_

IN

max lv; () — v;(z \2[(2\\% 2 ) /2+ <ZH@;‘(:€’)H§)1/2]

2R 13%3%” [vj(z) —v;(2)]2 -

IN

Let T denote the maximal family of elements in D such that inf,zrcr || 5(x) — (2|2 > .

Then it follows that inf, spcr [|v(x) — U($l)||€gé(£g) > ¢/(2R). This implies that

N(B(D),eBeg) < [T] < N(v(D), 1= Bones))

( (VsK), Bem(zd)) = N(v(K),ﬁ\/gB%(eg)).

IN

Using a change of variables, this implies

/Ooo \/1nN(6(D),ng£n)d5

IN

AR\/5 / \/InN(v(K), e By (p4))de
0

< cRysEq(v: X — 1 (1)) .

Next, we compute an upper bound on the second summand in the right-hand side of

16



(10). By Khintchine’s inequality for all € D

(Bl s )"

IN

VE|B(@)]2 = (Zuvj )"

) 2 ) )
x/%(zluvxmuz) ma [foj(@)l < VER max ;)]s
J:

IN

Therefore

1/k
sup (E|(€. 8@)*) © < sup VER max [loj(x)ll2 = VESR vl epe -

zeD x€\/sK

Combining these estimates yields the assertion.

Corollary 2.5. Suppose the hypothesis of Lemma 2.4. Then

(& sup 12@ vi@.w)| )" < oy (;ggiilvml%)” " (&1 + VL)

z,yeD
Proof. By the polarization identity, we have

1

3
(vj(z),v 12‘l vj (z +ily), vj(x+ily)> ,
1=0

where i = v/—1. Then we apply the argument for D= U?:o D +i'D. Note that

m

m
(wj(x +ily), vi(z +i'y)) :Zv] ,vj(x
=1

J
m
+i (i), v(y)) +i!
j=1

Jj=1

Then by the Cauchy-Schwartz inequality for x,y € D we have

m
| twita+ i) v +i'y)| < 2Zrm |12+22va I3 < 2R,
7=1

17



where R is defined in (11). Thus, the assertion follows by replacing /s by 44/s. O

Proposition 2.6. Let H, K, and K, be defined as before. Let § > 0, 0 < ( < 1, and
v be defined by v(z) = [v1(2),...,0m(2)]" for x € X, where vy,...,vm are independent

random maps from X to €% satisfying (3) with ® and (4). Suppose that
i) The linear operator ® satisfies |[® : H — H|| < 1.

ii) The random linear operator v : X — (7 (¢9) satisfies

sup Cf((IES V2EVL/2k /I (CTY(Ey 0| 2%) 1/21<;) <6 (12)

keN
for a numerical constant c.

Then
( sup —Z v (2)]13 — (= @x)‘ > 5\/(52> <. (13)

IGKS

Proof. Let Z denote the left-hand side of the inequality in (13). Let (v})1<j<m be inde-

pendent copies of (v;)i<j<m. By the standard symmetrization (see e.g. [29, Lemma 6.3]),

we have
(B24)/* < (BE sup B Z o)1~ i3] )

< 2(& sup —Zejuv] @) \f(E;;pS!Z@ fo@iz)"
where (g;) is a Rademacher sequence and &1, . . ., &, are independent copies of £ ~ N(0, 1).
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By conditioning on (v;)i<j<m, we deduce from Lemma 2.4 that

o m k\1/k
(E2/% < 2 (BEe swp | Sl )
xX s ':1

_ 1/k
< Clﬂ{ “(xsélp Z |vj (= ) (E2,1(v) + \/Ellv\l)k]

e 112k N 1/2k
< - Ev(€2’1(v) + \/EH’UH) } v( Sup Z HUJ H2> ]
_ays (&1 (v) + \/EHUH)%] YRk e ( sup 1 Z ||v-(x)\§>k] -
< Ul : vk, m A j
< D [k, € (o) + VEIup*]

1/2k
1Y

(supfznv] )| = (2, 02) + (x, @)

JIEKS

1/2

c1y's 2k\1/2k 2k\1/2k EN1/k
<
< [ ) 4 VRE I [+ (824 ]
Let b be the factor before (1 4 (EZ¥)Y/*)1/2 then we have (EZ¥)Y/* < \/2(b + b?). Since
k € Z was arbitrary, a consequence of the Markov inequality [18, Lemma A.1] implies that

there exists a numerical constant ¢y such that

7 < Cf/\%g(Engl( )Qk)1/2k (E 52 ( )Zk)l/k

T % VIn(CT ool 4 (¢ (B o) ¢

holds with probability 1 — ¢. The condition in (12) implies Z < §V §2. O

Proof of Theorem 2.1. Since K is of entropy-type (p, aq), for every v : X — (L (H) we

have

52,1@) < Mpad(K) 1/2- 1/p( —|—lnfm)1ﬂpJ 1/p12§a<>;104d(%)
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Then we get

1/2k
(B2 (0))1/2 < My () (E max aq(v)?) " m!270(1 4 nm) el =1/o
Sjsm

and hence

1/2k

1+|p]-1/p
L\/E(Egm(v)%)l/zk < V8Mpa,(K)(1 +1nm) <IE e ad(vj)2k>

s
vm - ml/p kléIN) 1<j<m
By Proposition 2.6, it suffices to satisfy

1/2k

ml/p cMp o, (K)\/s (]E max Oéd(vj)gk)

>
(14 Inm)t+lel-1/p = 5 ilég 1<j<m

and

S s In(¢71)

sup(E, [|o]|**) /% .
keN

3 Complexity of sparsity models

Our generalized sparsity model is induced from a convex set K in a Hilbert space H.

A sufficient number of measurements for the RIP is determined by the geometry of the

underlying Banach space X whose norm is the Minkowski functional of K. In this section,

we discuss the complexity of K given in terms of M, ,(K) for various examples of the

generalized sparsity model. We first recall the notion of Banach spaces of type p, which

will be frequently used in the remainder of this section.

Definition 3.1. A Banach space X has type p if there exists a constant C such that for

all finite sequence (x;) in X

Elxenll)” < (S s
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where (g5) is a Rademacher sequence [3/]. The type-p constant of X, denoted by T,(X),

is the smallest constant C that satisfies (3.1).

The following upper estimates of entropy numbers given by Maurey’s empirical method

will be used to compute the complexity of various generalized sparsity models.

Lemma 3.2 (Maurey’s empirical method [12, Proposition 1]). Let X be a Banach space

of type p and v : £} — X. Then there exists a numerical constant C' such that

ex(v) < CT(X)|v| f(k,n,p), (15)
where )
1-1

f(k,n,p) := 2~ F/mVD) <log2(1]jn/k) Y, i) ’ . (16)

Remark 3.3. Note that f(k,n,p) in Lemma 3.2 satisfies
f(k.n,p) <27 (logyn)' " VPETIHP vk < (17)

and

f(k,n,p) <27Fmp= 4P vk > p (18)

3.1 Relaxed canonical sparsity

The sparsity level in the canonical sparsity model, which consists of exactly sparse vectors,
is implicitly controlled by the ¢1 norm. A relaxed canonical sparsity model is obtained by
Definition 1.1 with H = ¢ and X = ¢} and includes exactly sparse vectors and their
approximation with small perturbation. The convex set K that generates this model is
the unit ball Bf¥ in ¢)¥. We derive an upper bound on MQ’H,”(B{V) by using a well known

application of Maurey’s empirical method, which is given in the following lemma.

Lemma 3.4. Let v: (Y — ¢ (¢4). Then

E1(v) < CVI+InN (14 Inm)¥2|v| .
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Proof. Let 1 < g < oo be arbitrarily fixed. Let v, : £ — E;”(Eg) be defined as v, = (Id®¢)v

where ¢ : {3 — (" is the formal identity. Then we have
logl < llell - o]} < m* /4o -

Furthermore, by [12, Lemma 4], which follows from the result due to Schiitt [43], the

entropy number of ;7! : ty' — L% is upper bounded by
ek(Lfl) < Cl2f(lc/mvl) )

On the other hand, the noncommutative Khintchine inequalities (see e.g. [35]) implies
that Egl(ﬁg) has type 2 and Tg(fg"b(ﬁg)) < Cay/q.

Similar to the proof of [12, Proposition 3], by choosing ¢ = 1 4 Inm, we obtain

ear(v) < er(vg)er(t™)
< CymM ||| To (6 (64)) f (k, N, 2)27 R/mvD)

< CyV1 +1Inmlv||f(k, N,2)2~ /™D

First, let us assume that m < N. Then, by plugging in (18) and (17), we have

er(v) < CsvV1+Inm|v|vV1I+In NE~V2 VE<2m, (19)
and
er(v) < CsvV1 +Inml||27 ¥ CIN=V2 i > 2m . (20)
Therefore,

00 2m 0o
Z ek('U) < 05\/1 +1DTTLHU|| (\/1 +1HNZ]€_1 +N_1/2 Z k—1/22—k/(2m)> , (21)
k=1 \/E k=1 k=2m+1

®) (55)
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where (§) is upper-bounded by
2m
(§)§1+/ tldt <1+In2+1Inm (22)
1

and (§8§) is upper-bounded by

00 00 2 ™m
< [T rrgem gy < / Vo<
(88) < /2m t—/42 dt <2 - exp 3m/n2 ¢ < 0o (23)

Then the assertion follows by plugging in (22) and (23) to (21).

When m > N, instead we have

er(v) < CsvV/1+Inmllo|vV1I+InNk~V2 VE<2N, (24)
and
er(v) < Csv/1+Inmlv||27 ¥ CNIN=V2 yi >N . (25)

The logarithmic factor in the resulting is v/1+1Inm (1 + In N)3/2, which is less than
VI+InN (14 Inm)3?2. This completes the proof. O

The following upper estimate of Ms,,(B}) is obtained as a direct consequence of

Lemma 3.4 through the definition in (7).

Proposition 3.5. Let ag(u) = ||u||4v_>€g. Then
My, (BY) < CV1+InN.

3.2 Relaxed atomic sparsity over finite dictionary

An immediate extension of the canonical sparsity model is the atomic model over a finite
dictionary. A vector is atomic s-sparse if x is represented as a finite linear combination of
a given set of vectors called atoms [16]. The set of all atoms is called a dictionary. This

atomic model generalizes the sparsity model over a finite dictionary (see e.g. [4, 1]). Here
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we consider a special case where the dictionary is a finite set {x | 1 < k < M} consisting
of unit vectors in a Hilbert space H, i.e. |xg|lg = 1 for k = 1,..., M. Then a relaxed
atomic sparsity model is derived from the absolute convex hull of the dictionary denoted
by K = absconv{zy |1 < k < M}. The set of “sparse” vectors is given as the cone
generated by Ky = /sK NS where S denotes the unit sphere in H. The normalization
of the atoms implies that the dictionary is the set of all unit 7-sparse vectors in H. The

complexity of K is upper-bounded by the following corollary.

Corollary 3.6. Let H be a Hilbert space, K = absconv{z; |1 < j < M} C H, X be
the Banach space with the norm given as the Minkowski functional of K, and aq be the

operator norm, i.e. ag(u) = |jul| for u: X — 4. Then

Proof. Let v = (vj)i1<j<m where v; : X — ¢4 for j=1,...,m. Then we have
énjfgwad(vj) = vl x—em eg) -

Define Q : ¢/ — X so that Q(ey) = =y for all k = 1,..., M, where ey,..., ey are

standard basis vectors in R™. Then

1@l v x = e lzellx =1,

where the last identity follows from the construction of || - || x from K. Therefore
10;Qllpar spg < Mvjllxeg, Vi=1,..., M.
By Lemma 3.4, we have

E21(0Q : A1 = C2(6)) < Cllolx g ey VI T M (1 + Inm)?,
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Thus Proposition 3.5 applies. Indeed, entropy numbers are surjective, i.e.
ex(vQ M 5 Y) = ep(v: X =Y)

for any Banach space Y. Therefore, the estimate in Corollary 3.6 is as tight as that in

Lemma 3.5. OJ

3.3 Norm dual of type-p Banach spaces

Previous sparsity models are constructed with the Banach space ¢}/, where Maurey’s
empirical method applies directly. In this section, we further generalize the result to the
scenario where the norm dual X* has type p by using the entropy duality. We restrict the
measurements to the scalar-valued case in this section. The extension to the vector-valued
case will be discussed in the next section. The following lemma shows through Maurey’s
method that the unit ball K of X has type (p, aq) if X* has type p when a4 is the operator

norm.

Lemma 3.7. Let X be a Banach space such that X* has type 1 <p <2 andv: X — £2.
Then

S0 )T (X follm P2+ Iy
= vk

where p' = p/(p — 1) and ¢(p) is a constant that depends only on p. Moreover, for p =2,

Q)

> li/(;) < Ty (XH)|Jo]|(1 + Inm)>/?
k=1

for a numerical constant c.
The following corollary is a direct consequence of Lemma 3.7.

Corollary 3.8. Suppose that X* is of type p for 1 <p < 2. Then

M, 1 (K) < e(p)Tp(X*)ym /P12
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where c¢(p) is a constant that depends only on p.

Remark 3.9. A similar estimate to Lemma 3.7 has been shown by Chafai et al. under a
stronger assumption that the Banach space X is uniformly convex [15, Chapter 5]. The
entropy duality by Bourgain et al. [7] applies to this more restrictive setting too and one

can obtain the same upper estimate.
Proof of Lemma 3.7. Let v* : {T" — X* denote the adjoint of v. Let ¢ > 2 be arbitrary
fixed and ¢’ = q/(q—1). Let vy : X — £ be defined by v, = wv, where v : £} — £ is the
identity operator. Let vy be the adjoint of vg. Then the duality of the entropy numbers [7,
Proposition 4 and Lemma C] implies that there exists a numerical constant Cy for which

k k k

Zej < Zej Uq ClTQ 2Z€] CIT2(£m HL || Zej

j=1 j=1 j=1 Jj=1
holds for all k € N. Since T2(¢7") < /g [12, Lemma 3] and [ Hgm_wm — m!/9, by choosing
g =Inm as in [13], we obtain

k
Ze] ) < Cy longe] . (26)

j=1

Since (eg(v)) is a nonincreasing sequence of positive numbers, it satisfies

J=1
Therefore, for any [ € N, we have
l l k l k
ex(v) 1 $gw) e
3 5 LSS0 gy L
! !

(27)



where the second inequality follows from (26).
Moreover, since v* is an operator from /7" to X*, Maurey’s empirical method in

Lemma 3.2 implies

ex(v') < G3Tp(XT) o]l f(k,m,p), (28)

where f is defined in (16).
Therefore, by (18) and (17), we obtain

er(v*) * -1 1/p - —1/2—-1/p -1/p —1/29—k/m
E < C3T,(XH)||v]|{ 27 (logy m) /P k P ym—/P k 2 .
\/% =3 p( )i H( (logy m) E E

k=1 k=1 k=m+1
—_———
(888) (8888)
(29)
If p < 2 (or equivalently p’ > 2), then (§§8§) is upper-bounded by
m / 1 1 71 /

< ~1/2-1/p' gy < i1 1/2-1/p"

(§§§)_1+/1 ! dt<1+ (3 p,) m (30)
Otherwise, if p = 2 (or equivalently p’ = 2), then (§8§§) is upper-bounded by
(888) < 1 +/ tldt<1+Inm. (31)
1

On the other hand, from a tail bound on the standard Gaussian distribution, (§§88) is

upper-bounded by

o) [e%¢) 2
ss) < [ mar s 2 /f exp <‘m71n2> wwe [T @

By plugging in (30) and (32) to (27) through (29) followed by maximizing over [ € N,

we obtain

- ex(v) <1 1 >_1 * 1/2—1/p' 1+1/p/
E < Oyl =— T, (X5 ||vllm P1+1nm PO Vi<p<?2
p \/E 4 9 p/ p( )H || ( ) b

for a numerical constant C3. Let ¢(p) = C3(1/2—1/p')~1. This proves the first part. The
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proof for p = 2 is given by replacing (30) by (31) in the above argument. O

3.4 Unconditional basis and lattices

Next we discuss the generalization of the previous section to the vector-valued measure-
ment case. When v : X — (7 (¢9) takes m measurements in ¢4 with d > 1, the domain of
its adjoint v* is no longer K’lnd. Thus the estimate by Maurey’s method does not apply to
this setting even when combined with the entropy duality. Here we show that imposing
the lattice structure to a Banach space X with norm dual of type p provides the extension
of the estimate in the scalar-valued case to the vector-valued case.

We first consider the finite-dimensional case. A Banach space X in RY is a lattice if

its unit ball K is a convex symmetric set that satisfies

D.(K) = K, VYee{-1,1}", (33)

where D, denotes the diagonal operator that performs the element-wise multiplication with
¢. In the complex case we require this condition for all ¢ € TV, where T = {z € C | |z| = 1}
denotes the set of unit modulus complex numbers. Equivalently, the norm || - || x given as

the Minkowski functional of K satisfies

[(zi)i<isnllx = [[(|zili<i<n)llx -

The general definition of Banach lattice is more involved. We will consider a subset
of Banach lattices given by a norm on measurable function f on {1,...,n}, N, [0,1] or

[0, 00) such that

If1lx = 1£lx, (34)

where |f| is defined by |f|(t) = |f(¢)| for all ¢ in the domain of f. (See [30] for more
details.) The arguments in this section apply to all infinite-dimensional Banach lattices

satisfying (34).
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Recall that the norm dual of a Banach lattice is also a lattice [30]. Indeed, the norm
dual consists of functions defined on the same domain. From this property, there exists a

normed space X*(£4) of length-d sequences in X* with the norm defined by

, Vare X*, (35)
X*

d N
1@ 1<i<all x= gy = H(Z |7 >
=1

where (Zle |2|?)1/2 denotes the “square root” function defined by

1/2

d 1/2 d
[(Zﬁ?) ](t):z(Z\x;(tw) vt
=1 i=1

Then we consider a factorization of v : X — £ (¢4) through ¢2™?. Since the norm dual
of Eg’g“i is E%md, Maurey’s method applies. The lattice structure of X enables to control the
norms of the factors via X*(¢4). In this way we extend the upper estimate of M, ,(K)
in Section 3.3 for the scalar-valued case (d = 1) to the vector-valued case (d > 1). For
the analysis of the factorization of v, we will use a homogeneous function v%, on L(X,¢4)

defined by

Yoo(w) = inf (bl x_yer llallp e - (36)
u = ab oo %2

Note that %, is not necessarily a valid norm. The following Lemma shows a well-known

upper estimate of v% (see e.g. [33]).

Lemma 3.10. Let X be a lattice with unit ball K as above and u : X — (3. Then there

exists a numerical constant C such that
V2 (u) < Cll(u*(ei))r<i<dllx-egy < 2CUu(K)),

where

l(u(K)):=E sup (¢,2)
zeu(K)

for & ~ N(0,1,) in the real case (or & ~CN(0,1y) in the complex case).
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Proof. There exists an isomorphic embedding a : £3 < £2? due to Kashin (see e.g., [34]).
Since X is a lattice, X (¢4) is defined as in (35) with X* replaced by X. Moreover, one
can define X (¢24) with

2d

> lukl

k=1

1(yr)1<k<adll x 20y == , Yy e X,

X

where

2d 2d
(Z \ZM) ()= lw®), Vt.
k=1 k=1

Let © = (7;)1<i<qa € X(£2) and y = (yx)1<k<2a € X (£3?) such that y = (Id ® a)z, i.e.

d
e(t) =Y agiwi(t), v,
i=1

where ay; denotes the (k,i)th entry of the matrix representation of a. Then we have
||yHX(£%d) < ||aH||x||X(€g). This implies X (£2) is also embedded into X (£29).

Moreover, since ¢4 and ¢3¢ are finite-dimensional lattices, the dual spaces of X (¢4) and
X (£29) are given by X*(¢4) and X*(¢29), respectively [30]. By the Hahn-Banach theorem,
for every o* = (2})1<i<q € X*(£3) with Hx*HX*(gg) = 1, there exists ¥* = (y})1<k<2d €
X*(£24) that satisfies |y*[| x+(22y < C1 for a numerical constant Cy and z* = (Id ® a*)y".

Choose z* = (2)1<i<d = (u*(ei))1<i<d- Then let y* = (y;)1<r<a2q be the extension of
z* as above. Define a linear operator ¢ : X — (24 by ¢(z) = ((y}, 2))1<k<2q for z € X.
Then u is factorized as u = a*¢. Since X*(¢£24) C (24(X*), the operator norm of ¢ is

upper-bounded by

1o = max llvillxs =yl < 19 x-@) < Cullellxeeg) -
where || - [|2a(x+) and || - [| x«(,24) are respectively defined by
y* [l e2e(x+) = | max gl x-
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and
* — *
Il ceqezsy = | mace 1wl | .
with the “max” function given by

(s, i) 0= swp ol v

1<k<2d 1<k<2d

Therefore,

d * *
oo () < Cullz*|| e (g lla”||

where ||a*|| is a numerical constant. This proves the first assertion.
Let &,...,&y are independent copies of £ ~ N(0,1) in the real case (or & ~ CN(0,1)

in the complex case). By Khintchine’s inequality (see e.g. [25]),

I#*xagy = [0 (eMisiza . ) = 50 [(ter uteD iz,
< \@SUEE ‘ zd:&@i’u(x»‘ < \@Esuflz ‘ i&(&w@))‘
re i=1 TER =1

d
— \/5 E sup Re< Z&ei, U(.’L‘)> = ﬁZ(U(K)) .
i=1

zeK

Here we used the invariance of the distribution of £ with respect to {—1,1} in the real

case (or with respect to T in the complex case) and the symmetry of K. O

Choosing the homogeneous function g as
ag(u) = [lu*(ei)1<icall x(eg) (37)

allows us to use Maurey’s empirical method on a factorization of (v;)1<j<m : X — €7 (¢4)
while the involved operator norms are controlled by Lemma 3.10. The following theorem

provides the resulting upper estimate of M, o,(K).

Theorem 3.11. Let K be a convexr symmetric set, X be the Banach space with the norm
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given by the Minkowski functional of K, and agq be chosen as in (37). Suppose that the
norm dual X* has type p for 1 <p <2 and K satisfies (33) in the finite-dimensional case

(or (34) in the infinite-dimensional case). Then
My, (K) < C(p)T,(X*)d"/P~12(1 4 Ind)'+PI=1/»

for a constant C(p) that depends only on p.

Proof. Let vy,...,v,m € L(X, (%) be maps with ag(v;) < 1 for j = 1,...,m. Then by
Lemma 3.10 and the definition of 72 in (36), for each j, there exists a factorization
v; = ajb; by bj : X — £2¢ and a; : £2¢ — ¢4 such that 1051 x 24 < 1 and H%Hegg%g <
72(v;) < C, where C is the constant in Lemma 3.10.

Let b = (bj)1<j<m : X — £7(024) = (274 be the composition map given by b(z) =

(b1(x), ..., by (x)) for x € X. Since b* is a linear operator from £2™? to X* by Lemma 3.7,

we obtain
E21(b) < e(p)Tp(X*)(2md)YP~V2(1 + Inm + Ind)HPI-1/p (38)

Let D : ¢ (£23) — ™ (£3) be the block diagonal map defined from (a;)1<j<m by

D((zj)1<j<m) = (a1(21), - -, am(zm)) for (2j)1<j<m € €7 (£*4). Then
Do (e28)—sem (ed) = max lajllza e < C (39)

Since v = Db, it follows that
£21(0) < |IDl|pm (g20) - (42 - €2,1(D) -
Plugging in (38) and (39) to the above upper estimate implies the assertion. O

Remark 3.12. In Section 3.2 we have shown that a convex body K given as the convex
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hull of M vectors induces a sparsity model. Recall that K is expressed as K = Q(BM)
with @ : ¢/ — ¢ that maps the vertices of BM to given M vectors in £). Indeed, ¢/} is
a Banach lattice and the above choice of ag(u) = ”(Q*U*(ei))lgigd”z%@g) reduces to the
operator norm ”UQHz{W—wg as in Section Section 3.2. In this sense, the upper estimate on
M, o,(K) in this section naturally extends the corresponding result for K = Q(BM) to

the image of the unit ball in a Banach lattice.

3.5 Schatten classes

The RIP on the low-rank matrix model has been studied with the Banach space with the
norm as the ¢; norm of the singular values. This Banach space of ni-by-no matrices is the
Schatten 1-class and denoted by S7"2. In general, Schatten p-classes S,'"* are examples
of noncommutative L, spaces. In this section, we present that the result for the Banach
lattices in the previous section extends to analogous results for these “noncommutative
lattices”.

The choice of the homogeneous function «g as the operator norm does not provide
the desired decay of entropy numbers for the Schatten p-classes. The following lemma,
which is analogous to Lemma 3.10 for Banach lattices, provides a factorization of a vector-
valued map from a Schatten-p class through the norm dual of E‘{dQ so that one can apply
Maurey’s empirical method. For simplicity of notation, we state our results in the square

case (n; = ng = n). The rectangular case can be shown in a similar way.

Lemma 3.13. Let 1 < g <2 andu: S} — ﬁg. Then there exists a numerical constant c

such that
2 d 1/2 d 1/2
5w < Ol el wen) |+ || el (en)) .
j=1 sm, J=1 Sy

Proof. Let Gg = {Z?zl &zj |z € K} C Ly(Q, P), where &1,...,¢&; are independent
copies of € ~ N (0,1) and K denotes the scalar field, which is either R or C. Similarly, we

define Gg(SZ;) = {Zj‘l:1 §jzj | z; € St C Ly(Q2, P; Sy). Khintchine’s inequality implies
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that there exists an isomorphism ¢ : £§ — (Gg)*, which is an isometry up to a constant.
Furthermore, it has been shown by Pisier [36, Theorem 1.13] that for 1 < ¢ < 2 the
space Gg completely C'-isomorphic to €2d2 for a numerical constant C, i.e. there exists an
isomorphic map a : Gg — Egd2 such that Id®a : Gg(S;‘) — Kgdz(Sg) satisfies [[Id®al| < C.

By duality the norm dual of GZ(S%), denoted by G&(57)*, is a quotient of 52512 (Sg)-
Therefore, for every z* = (27)1<j<a € Eg(S;L)* with ||x*”£g(sg)* = 1, there exists y* =
(Y )1<i<eaz € 62512(5’;1,) that satisfies ”y*ch;iz(sn,) < (4 for a numerical constant Cy and
z* = (Id® . ta*)y*. s

Let 2* = (27)1<j<a Where z = u*(e;) for j = 1,...,d. Then let y* be the image of 2*

via Id ® :~'a* as above. Note that the action of v on z € Sg is written as

u(z) = ((u*(€)), 2))1<j<a = (25, 2))1<j<a = 2" (2)

=[Id® ")y )(z) = a" (g, 2))i<j<ea -

Thus u is factorized as

uw=1"ta*Dyb,

where b: S — (<" is defined by

b(a) = [ 2) . Vres!
HyZHSZ’ 1<i<cd?

and D, : egg"’ — E;ﬁiz is the diagonal operator that takes the element-wise product with
o= (Jlyf]lsm )1<i<eaz € ngp. Then it follows that ||b]| <1 and ||Ds| = |||/ -
o /1<i<

Therefore, by the definition of 'ygng, we have
d? - -
5 () < [l ta* Dl < [l - llollg - fla*]l

where ||¢=!| and ||a*|| are numerical constants.
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Finally, we note

)

lollq = Hy*l!g;gz(sgl) <l M-
Gg(Sg)*

d
> gut(e))
j=1

where the last term is upper-bounded by the right-hand side of our assertion by noncom-

mutative Khintchine inequalities (see e.g. [35]). O

Remark 3.14. For ¢ > 2, we expect a similar result using polynomial A-cb sets. We

leave the details to a future publication.

Theorem 3.15. Suppose 1 < g < 2. Let

d

(Dl el (e,))”)

J=1

(e T (e)) v

1

+
SZ,

)

n
Sq,

d

o

J

where ¢ = q/(q—1). If ¢ > 1, then
My (Bgp) < C(1+Ind)3?(q)3? .

Otherwise

Mso,(Bsp) < (1+1Ind)*?(1+1Inn)?2.

Proof. Theorem 3.15 is analogous to Theorem 3.11 for p = 2 and their proofs are almost
identical. The only difference is that we replace Lemma 3.10 in the proof of Theorem 3.11
by Lemma 3.13 to obtain an upper bound on ’yggQ in the noncommutative case.

For ¢ > 1, we use the fact that S}, satisfies T5(S})) = V' for all 2 < ¢ < oo [45].

For ¢ =1, let r > 1 be arbitrary. Since

ep(v: Sy = M (D) <ep(v: S, — (1)), VkeNN,,
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we have

Ea1(v: Sy — £M(£9)) < Eaq(v: Sp — 17 (49)) . (40)

Furthermore,

ag(vj : S1 — 13 <nY@ag(v; : S, — 13), (41)

where 7' = r/(r — 1). We choose 7' = Inn. Then n'/(?") is upper-bounded by a numerical
constant. Therefore the assertion follows by applying the other case of ¢ > 1 together

with (40) and (41). O

Remark 3.16. (Noncommutative polytope). We have shown in Section 3.2 that convex
hulls generated by a few points induce sparsity models. Our estimate above provides a
noncommutative analogue as follows: Let K € £ be given as K = Q(Bg{l) via @ : ST —
¢5. Let X be the Banach space with the norm given as the Minkowski functional of K.

Choose ag on L(X, (%) as

(

Then we deduce from Theorem 3.15 that

d d 12
Q" u (e @ u"(e;)]))

1

Qe @ (e)])

1

(

J

J

+‘
ST

ad(u) = ‘
Sz,

My, (K) < C(1+1nd)*?(1 +1nn)*?.

4 Sparsity models with enough symmetries

In this section, we explore another geometric aspect of generalized sparsity models in terms
of isometry group actions on the underlying Banach spaces. When a linear measurement
operator is constructed with random sampling of relevant group actions, this geometric
property implies the isotropy of the random measurements in (2), which is a key ingredient
of the restricted isometry property. To this purpose, we introduce Banach spaces of enough

symmetries and the relevant isometric group actions below.
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4.1 Banach spaces with enough symmetries

A Banach space of enough symmetries is defined with relevant isometric group actions.
Let us first recall relevant definitions. Let G be a group and o : G — L(X) for a Banach
space X. Amap o : G — L(X) is an affine representation if there exists ¢ : GXxG — [0, 27)
such that

a(g)o(h) = e?ONa(gh), Vg heG.

In other words, an affine representation is almost multiplicative. Affine representations
are usually obtained from the representation of the Lie algebra. Moreover, an affine

representation yields an honest group presentations 7 : G — L(X) via conjugation so that
m(g)(T) = o(9)Ta(g™"), VgeG, TeL(X).
Indeed, we have

w(g)n(WT = o(g)o(h)To(h) " o(g)™"

= o(gh)e?ITe PN 5 ("1™l = n(gh)T .

In the Banach space literature, a space X is called to have enough symmetries if there

is an affine representation o : G — L(X) such that
lo(g)zlx = llzllx, VeeX, Vgel (42)

and

o(g)T =To(g), YVgeG = T = \d. (43)

For a set S of linear operators in L(X), the commutant, denoted by &', is defined as

the set of linear operators those commute with all elements in S, i.e.

S :={T € L(X)|TS = ST, VS € S}.
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With this definition, the condition in (43) is equivalently written as (o(G))" = CId, i.e.
the commutant of the orbit o(G) := {o(g) | ¢ € G} consists of multiples of the identity.
Indeed, this is equivalent to say that o is irreducible, which means {0} and X are the only
subspaces invariant under group actions [2].

When X is finite-dimensional and G is compact, then an affine representation o : G —
L(X) induces a Hilbert space H via Lewis’ theorem so that o(g) is an isometry on both
X and H for all g € G [46]. Furthermore, we also have an equivalent condition for (43).

These results are shown in the following lemma.

Lemma 4.1. Let X be a Banach space of dimension N with enough symmetries with
respect to a compact group G. Then there exists an inner product on X, with the corre-
sponding Hilbert space H, and an affine representation o : G — L(X) such that o(g) is

an isometry on both X and H for all g € G and

where p denotes the Haar measure on G.

Proof. Let a be an ideal norm on L(¢Y, X) and ug : £5 — X be the Lewis map with

respect to a such that a(ug) =1 and

det(ug) = alaz)}%(l | det(u)] . (45)

Here we have chosen a fixed basis on X 2 IK" in order to calculate the determinant [34].

Since X has enough symmetries, there exists an affine representation ¢ such that

o(9)(Bx) = Bx, (46)

which implies vol(o(g)Bx) = |det(co(g))|" - vol(Bx) and hence |det(co(g))| = 1. Then
it follows that | det(o(g)uo)| = | det(o(g))| - | det(ug)| = | det(up)|. Furthermore (46) also

implies a(o(g)up) < 1. Thus o(g)up also attains the maximum in (45). Since the ellipsoid
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E = up(BY) is unique for all maximizers ug [34], we deduce that [0(g)](§) = £. This
implies that (ug'o(g)uo)(BY) C By and hence 6(g) := ug'o(g)up is a contraction in
L(¢Y). Applying this to o(g~!), which differs from o(g)~!, up to a scalar of absolute
value 1, we deduce that G(g) is a unitary operator, i.e. [6(g)](BY) = BY. The Hilbert
space H is now obtained from the norm ||z z := |Jug*(2)||2, and then o(g) simultaneously

preserves the unit ball of X and is a unitary operator on H. Indeed by the definition of

the norm in H, it follows that

lo()alla = lug'o(g)uoug (@)ll2 = llug (@)ll2 = llllz, Ve X.

In particular, the linear map

B(T) = /G o(9)To (g~ )du(g)

satisfies 0(go)®(T)o (g5 ') = ®(T) for all gy € G. Thus since X has enough symmetries, it
follows that ®(T") = A(T)Id, where

AN = w(®(T)) = /Gtr(U(Q)TU(gl))dﬂ(g) = tr(T).

The assertion follows by normalization. O

4.2 Examples of isotropic affine representations

A Banach space X can have enough symmetries with respect to multiple isotropic group
actions, i.e. there might exist pairs of a compact group G and an affine isotropic rep-
resentation o : G — L(X) such that the commutant of the corresponding group actions
consists of multiples of the identity. For concreteness, we provide a few examples in the

following.
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4.2.1 Quantum Fourier transform on Z;)V

Let X = Eév and each vector z € Ei,v be represented as [z[0],...,z[N —1]]T € CV, where
the indexing is zero-based and modulo N. Let Sh denote the cyclic shift operator defined
by

Sh(z)[r] =z[r+1], VreZy, Vx.

Let A be the diagonal operator representing the modulation with the Nth primitive root
of unity such that
A)[r]=e N z[r], VreZy, Vx.

Then o : Z% — L(X) defined by
o(l,k) = A'Sh*, V(I,k) € 73
satisfies

—i2nl’k

o(l,k)o(l', k) = A'ShF A" Sh=FShF++ = =X o(I+ 1 k+ k).

Therefore ¢ is an affine representation.

N

Since A is a single generator of the C*-algebra ¢,

every matrix a commuting with
A is a diagonal matrix. Furthermore every diagonal matrix commuting with the cyclic
shift Sh has constant entries. Thus the commutant of the group actions is given by
(0(Zy2)) = CId. Alternatively, since the orbit of any nonzero x spans £, o is irreducible.

Furthermore since KZI)V is a lattice and the ¢, norm is symmetric, i.e. invariant under

generalized permutations, ||o(l, k)z||, = ||z||, for all z € £ and (I, k) € Zyo.
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4.2.2 Sign flips and cyclic shifts on EIJ,V

Next we consider another affine representation for X = Ei,v . Let 5 : G — L(X) be defined

on G = {—1,1}" x Zy by
5(e,k) = D.ShF, Vee {-1,1}V, VkeZy.
Let us show that we deal in fact with a suitable representation. Indeed, since
Sh~'D.Sh = D.
with &’ = Sh(e), it follows that
5(G) = {D€Sh’~C ‘ ee{-1,1}V ke ZN} C On

is a subgroup and the normalized counting measure is the Haar measure. Note that G is
indeed the semi-direct product of {—1,1}" and Zy. Similarly to the previous example,
one can verify that (5(G)) = CId. Furthermore by the construction & also satisfies
16 (e, k) (@)|lp = l|lz|lp for all z € )Y, e € {=1,1}", and k € Zy.

4.2.3 Clifford group and Schatten class

Next we show that there are multiple affine isotropic representations for which the Schat-

ten class X = 57 has enough symmetries.

Example 4.2. Let 0 : G — C™*" be an affine isotropic representation on ¢5. Then

o : G x G — L(Sy) given with the left and right multiplications by

*

[6(9,9)](x) = a(g)za(d)

defines an affine isotropic representation on Sy as shown below: It follows from Lemma 4.1
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that o satisfies (44). Thus

/ [ lo@ @ 0T e )lots™) @ ogdu(a)duls)
GJG

- /G 1d® o(g)] /G o) @ 1T S)[o(g™Y) @ Id]du(9)> 1 ® (" ]du(g)

— / 1d ® o(g)] ( / o(9)To(g) du(g) ® s) 1d ® o(gY]du(g')
G G
(tr(T)Id

® S) Id®o(g"")duly")

tr(T)1d tr(T)Id _ tr(S)Id _ tr(T @ S)Id

= ®/Ga(g’)50(g"1)dﬂ(g’)= L @ = n?

Since each linear operator in L(Sg) is written as a superposition of rank-1 operators, the
above identity implies that & satisfies (44); hence (6(G x G))' = CId. On the other hand,
since by Lemma 4.1 0(g) is unitary on £y for all g € G and the Sy norm is unitarily invari-
ant [52], it follows that [|6(g,9')(x)||lsp = ||z||lsp for all x € S§ and (g9,9") € G x G. For
example, Sy will have enough symmetries with the tensor product of the aforementioned

affine isotropic representations on {}.

Example 4.3. Let o be the affine representation that maps G = Z% to the left matrix

multiplication with the Pauli matrices 1,¢, J,ieJ given by

Let & be the the tensor product of o that maps Z%k to the left matriz multiplication with
the Kronecker product of k Pauli matrices. Since (0(Z3)) = CId, similarly to the above
example, one can show that & satisfies (43). Furthermore, since the Kronecker product of
unitary matrices is also unitary, it also follows that ¢ satisfies (42). Thus & is an affine
1sotropic representation on Sgk. The set of measurements generated with w : SqQk — C given

by u(x) = tr(z) and & above appears in the compressed sensing in quantum tomography
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[31].

Example 4.4. The above affine isotropic representation with the Pauli matrices gener-
alizes as follows [35, p. 175]: Let c1,...,cp € C2**2" be the standard Clifford generators
that satisfy

c.=1, Vr, CrCs = —CsCpy, YT F£ S

Let o be an affine representation that maps € = (e1,¢€9,...,€x) € {0,1}F to the left matrix
multiplication with ¢i'c5? ...cik. Indeed o(e)o(e') = Lo(ee') for all e,¢' € {0,1}*. One

can also show that o satisfies (42) and (43) with Sgk stmilarly to Example 4.3.

4.3 Smoothed sparsity model and enough symmetries

In general, a Banach space X does not have enough symmetries. We present an example
that modifies a given convex set K by averaging over group actions so that the modified
set has enough symmetries.

Let K = Q(S}) with Q : ST — ¢ and G be a finite group. Since €|1G| is a lattice,
€|1G|(S{“) is defined with

[@o)geclgersyy = D zsls: -
geG

Let QY : £7(S%) = £)' be defined by

QG((ng)geG) = ZQ(%)

geG

Then K¢ = Q%(B be the image of the G-orbit of Bgp via Q. Then K & has enough

o sp))
symmetries with any isotropic group actions with G.
On the other hand, since E‘IGI(S{“) is isometrically embedded into Sf|G|, similar to

Section 3.5, it follows that

My o, (K% < C(14+Ind)*?(1 4+ 1Ink +In|G|)>2.
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This implies that M o, (K) is larger than M, ,,(K) only by a poly-logarithmic factor in
Gl

5 RIP via group action

In this section, we illustrate implication of the general RIP result in Theorem 2.1 for
prototype sparsity models when K has enough symmetries with an affine representation

and the measurement operator is group-structured accordingly.

5.1 Relaxed atomic sparsity with a finite dictionary

First, we consider the case where K is a polytope given as an absolute convex hull
of finitely many points. The corresponding sparsity model is is a generalization of the

canonical sparsity model with the unit ¢; ball.

Theorem 5.1 (Polytope). Let K be an absolute convex hull of M points in CN and X be
the Banach space with the norm || - ||x given as the Minkowski functional of K. Suppose
that X has enough symmetries with respect to G with an isotropic affine representation
0:G— L(X). Let gi1,...,g9m be independent copies of a Haar-distributed random variable
geGandu: X — Eg be a linear map satisfying tr(u*u) = N. Then there exists a

numerical constant ¢ such that if
m > C(SiQSHuH?XHN [(1+Inm)(1+Inm+Ind)*(1+InM)VvIn(¢ )],
2

then

sup
||f6H<\f

llzll2=

leu D)3~ 3] =6 vé* | <¢.

Proof. By Lemma 4.1, we have

o) g g

Eo(g)"u uo(g) =
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Thus the random measurements satisfy the isotropy, i.e.
RS 2 2
Ea}ZWﬁ%WM:HWW
j=1
Let oy : L(X, Eg) — R be the operator norm. Then, since K is G-invariant, it follows that

aq(uo(g;)) = [luo(g)llx—eg = lull x—seg -

Note that [jul| y —ed is no longer random. The assertion follows by applying the above

results with the upper bound on M, . (K) by Corollary 3.6 to Remark 2.2. O
Remark 5.2. When K is not G invariant, one can show the RIP for
K = absconv{o(g)z; |1 <j <M, g€ G}

instead of K. By construction, K is G invariant. Moreover, since K C K , it follows that
lz]| ¢ < ||lz|x for all x € X, where X is the Banach space with unit ball K. Therefore
the RIP on FS(I? ) implies the RIP on I';. For example, if G = Z3%;, then this replacement

of K by K will increase the number of measurements for the RIP in Theorem 5.1 by an

additive term of O(In N).

Let us consider the application of Theorem 5.1 to a specific case where the sparsity
model is given by K = B{V (or equivalently, X = K{V ) and the group-structured mea-
surements are given by the group G = Z~ 2, the isotropic affine representation o in Sec-
tion 4.2.1, and the map u given as u(x) = (n,z) with the generator n = [1,...,1]" € RV.
The group actions on x produce the set of its discrete Fourier transform coefficients. Fur-
thermore, the map w satisfies HuHXﬁgg = |Inllec and tr(u*u) = |n||3 = N. Since the
sparsity model here is a superset of the canonical sparsity model in the standard basis,
Theorem 5.1 in this case implies the known RIP result for a partial Fourier operator

[42, 38, 18].
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5.2 Dual of type-p Banach spaces

Next we consider the case where the norm dual X* has type p and the measurements
are scalar-valued (d = 1). Let oy be the operator norm. Then Lemma 3.7 implies that K

has type (p, aq) if X* has type p. Therefore we obtain the following theorem.

Theorem 5.3 (Dual of type p). Let X be an N-dimensional Banach space such that i)
X* has type p where 1 < p < 2; ii) the unit ball K has enough symmetries with an affine
representation o that maps a compact group G to isometries on both X and (5. Let H be
a Hilbert space in the same vector space with X such that H is isometrically isomorphic
to Eév. Let g1, ..., gm be independent copies of a Haar-distributed random variable g in G
and n € X* satisfy |n|lg = VN. Let p' = p/(p —1). Then there exists a constant c(p)

depending only on p such that if

ml_l/p

-1 %
T nm) 17 = <P VST (X*)|In] x-

and
m > c6 %s|nllx-In(¢Y),
then
1 m
Pl s |37 0 (olg)e) — el 2 v 8| <.
T||\H=

Proof. Let u : X — C be defined by u(z) = (n, x) for x € X. Then by Lemma 4.1 we have

Eo(g)"u*uo(g) = /G o(9)*u uo(g)dulg) = /G o(g™Yuruo(g)du(g)

_tr(ur) Al
= == 1d.

Furthermore, since o(g)(Bx) C Bx we deduce that

E sup sup |(n,o(g;)2)* < |nl3, VgeN.
1<j<mx€Bx
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Lastly Corollary 3.8 implies that M, ,(K) < (1/p —1/2)"[CT,(X*)]?"*'. Hence the

assertion follows from Theorem 2.1. O

Example 5.4. Schatten class S; of n-by-n square malrices has enough symmetries.
Therefore, Theorem 5.3 provides an alternative proof for a near optimal RIP of partial
Pauli measurements by Liu [31]. Pauli measurements are given as an orbit of the Clifford
group with n = /nldcn. Since St is not type 2, let X be Sy with ¢ =Inn instead of ST.
Obviously, all rank-s matrices is (K, s)-sparse with K = Bgn in our generalized sparsity
model. Then To(X™*) < Vinn. In other words, the complexity of K is a logarithmic term.
On the other hand, the incoherence satisfies HWHSZ;, <ellnllsn, = ey/n and the upper bound

1s proportional to n. This large incoherence is the penalty for noncommutativity.

Remark 5.5. As shown in the proof of the two theorems in this section, the isotropy of
random group structured measurements is implied by enough symmetries of the underlying
Banach space X. Furthermore, it simplified the incoherence condition by leveraging the
isometry of all group actions. However, it is not necessary for X to have enough symmetry
to get the RIP result. For example, we present an infinite-dimensional example with L,

in the companion paper [27] without relying on the enough symmetries.

6 RIP on low-rank tensors

In this section, we apply the RIP results in the previous sections to demonstrate that the
group-structured measurement can be useful for dimensionality reduction of higher-order
low-rank tensors. Let N,n,d € N satisfy N = n?. We consider the convex set K C Bév

given by the convex hull of rank-1 tensors, i.e.
K =absconv{y1 ® ---Quyq |y; € By, Vj=1,...,d}. (47)

Note that K is the unit ball of (€§)®g, which is the projective tensor product of d copies

of ¢35 with respect to the largest tensor norm [34]. Let G' be any compact group with an
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affine isotropic action, then the product G¢ admits an affine isotropic action which leaves
K invariant. For example, the tensor product representation Z,24 of the quantum Fourier

transform shows that K has enough symmetries.

Lemma 6.1. Let K be defined in (47). There exist rank-1 tensors 1, ...,y € BY with

InM < 3nd(1+1Ind) such that K C eabsconv{z; |1 <j < M}.

Proof. Let 0 < e < 1/2 and A be an e-net for the unit ball Bf. Then we may assume that
|A] < (1+42/e)™ (we consider the real scalar field). It follows that every element y € BY

has a representation

o0
y =y
j=1

with z; € Aand ;|| < 1 < (1+ 3¢). This implies

o] d
Ny =y  Qaz.

J1senja=11=1

Note that ®{, zj, € A®" and

00 d
> [ Tew| = (14397,
J1yenja=1 1=1

Thus we choose 1/(d + 1) < 3¢ < 1/d and deduce the assertion from

2
In|A®’| < ndln <1 + 6) < ndln(13d) . 0

Corollary 6.2. Let X be the Banach space with the unit ball K defined in (47), 0 < ( < 1,
and & ~ N(0,Ix). Then for all r € N we have

(E|€|[5 )" < c[\/?\/\/?)nd(l—l—lnd)] . (48)
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for a numerical constant c. Furthermore,

Prob(H{HX* > /2[1 + 3nd(1 + Ind) + In(C1)] ) <c

Here || - ||x+ denotes the dual norm of X.

Proof. By Lemma 6.1, there exists A C B such that K C eabsconvA and In|A| <

3nd(1 +Ind). Then

1€llx< = sup [(z,&)| < esup[(z,&)].
zeK TEA

Let p =3ndInd and r > p. Since the net A is contained in the unit ball we deduce

(Bll€]5-)" < e(Esug\<£7x>|’")W < elAlr sug(E!(E,x)\”)”’" < V.
S e

For r < p we just use the L, norm. The second assertion follows by the union bound over

A. O

Theorem 6.3. Let N = n?, K be given in (47), Ks = /sKNSY~! and € N(0,Iy). Let
G be a compact group with an affine isotropic action, gi,...,9m be independent random
variables in G with respect to the Haar measure, and o : G4 — Oy be a tensor product

representation. Let 6 > 0 and 0 < { < 1. Then there exists a numerical constant ¢ such

that if

m > 6 2s(1+1Inm)® [1 +3nd(1 + Ind) + In(¢"H]* ,

then

1 — .
P osup |— > [{o(g;) &) |l=ll3| = v | <.
reK mj:l

Proof. As in the proof of Lemma 6.2, construct A C BY from Lemma 6.1 such that
In|A| < 3dn(1 + Ind) and K = eabsconvA contains K. Let X be the Banach space
induced from K such that the unit ball in X is K. Since K C K , it follows that K, C

VSK NSN=1. Moreover, we have ||z x- < ||| g. for all z, where || - denotes the dual

| 5
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norm of X. Therefore by Theorem 5.1 the assertion holds if
m > e %s|nl%., [(14+Inm)*(1+1In M) VIn(¢™)] .

Indeed, according to the proof of Lemma 6.2, the right-hand side of the inequality in (48)

is also a valid upper bound on ||7|| .. This completes the proof. O

Let us now compare the estimate in Theorem 6.3 to the Gaussian measurement op-
erator. Let &1,...,&, be independent copies of & ~ N (0, Iy). Then by Gordon’s escape

through the mesh [23, Corollary 1.2] and Lemma 6.2, it follows that

1 m
P | sup |— &) % - x2‘2(5\/52 <(
sup m;\( i )" — [l

provided

m > cd~ % [nd(1+Ind) +In(¢"h)] .

To simplify the expressions for the number of measurements, let us choose ¢ not too
small so that In(¢~!) is dominated by the other logarithmic terms and then ignore the log-
arithmic terms. While the Gaussian measurement operator provides the RIP with roughly
snd measurements, the group-structured measurement with a Gaussian instrument pro-
vides the RIP roughly with sn?d? measurements. However, the suboptimal scaling of m
for the group-structured measurement can be compensated by applying a Gaussian ma-
trix to the obtained measurements (see [27, Theorem 4.2]). Since m ~ sn?d? is already
significantly small compared to the dimension n? of the ambient space (63)‘85, this two
step measurement system is much more practical than the measurement system with a
single big Gaussian matrix.

Moreover, besides suboptimal scaling of the number of measurements for the RIP, the
group-structured measurement operator has the following advantages. The transforma-

tions o(g) preserve both the convex body K and the ¢ norm. The incoherence in this case
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of group-structured measurement is determined by the instrument. Lemma 6.2 suggests
that a random gaussian vector € can be a good choice for the instrument in the sense
that it makes the incoherence parameter small. There exist fast implementations for cer-
tain group action transforms, which enable highly scalable dimensionality reduction for

massively sized tensor data.
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