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Abstract

We study the problem of learning conditional generators from noisy labeled sam-
ples, where the labels are corrupted by random noise. A standard training of
conditional GANs will not only produce samples with wrong labels, but also gener-
ate poor quality samples. We consider two scenarios, depending on whether the
noise model is known or not. When the distribution of the noise is known, we
introduce a novel architecture which we call Robust Conditional GAN (RCGAN).
The main idea is to corrupt the label of the generated sample before feeding to
the adversarial discriminator, forcing the generator to produce samples with clean
labels. This approach of passing through a matching noisy channel is justified
by accompanying multiplicative approximation bounds between the loss of the
RCGAN and the distance between the clean real distribution and the generator
distribution. This shows that the proposed approach is robust, when used with
a carefully chosen discriminator architecture, known as projection discriminator.
When the distribution of the noise is not known, we provide an extension of our
architecture, which we call RCGAN-U, that learns the noise model simultaneously
while training the generator. We show experimentally on MNIST and CIFAR-10
datasets that both the approaches consistently improve upon baseline approaches,
and RCGAN-U closely matches the performance of RCGAN.

1 Introduction

Conditional generative adversarial networks (GAN) have been widely successful in several applica-
tions including improving image quality, semi-supervised learning, reinforcement learning, category
transformation, style transfer, image de-noising, compression, in-painting, and super-resolution
[30, 13, 49, 36, 26, 58]. The goal of training a conditional GAN is to generate samples from distribu-
tions satisfying certain conditioning on some correlated features. Concretely, given samples from
joint distribution of a data point x and a label y, we want to learn to generate samples from the true
conditional distribution of the real data PX|Y . A canonical conditional GAN studied in literature is
the case of discrete label y [30, 36, 35, 32]. Significant progresses have been made in this setting,
which are typically evaluated on the quality of the conditional samples. These include measuring
inception scores and intra Fréchet inception distances, visual inspection on downstream tasks such as
category morphing and super resolution [32], and faithfulness of the samples as measured by how
accurately we can infer the class that generated the sample [36].

We study the problem of training conditional GANs with noisy discrete labels. By noisy labels,
we refer to a setting where the label y for each example in the training set is randomly corrupted.
Such noise can result from an adversary deliberately corrupting the data [7] or from human errors in
crowdsourced label collection [12, 18]. This can be modeled as a random process, where a clean data
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point x ∈ X and its label y ∈ [m] are drawn from a joint distribution PX,Y with m classes. For each
data point, the label is corrupted by passing through a noisy channel represented by a row-stochastic
confusion matrix C ∈ Rm×m defined as Cij , P(Ỹ = j|Y = i). This defines a joint distribution for
the data point x and a noisy label ỹ: P̃X,Ỹ . If we train a standard conditional GAN on noisy samples,
then it solves the following optimization:

min
G∈G

max
D∈F

V (G,D) = E
(x,ỹ)∼P̃X,Ỹ

[φ (D(x, ỹ))] + E
z∼N ,y∼P̃Ỹ

[φ (1−D(G(z; y), y))] , (1)

where φ is a function of choice, D and G are the discriminator and the generator respectively
optimized over function classes G and F of our choice, and N is the distribution of the latent random
vector. For typical choices of φ, for example log(·), and large enough function classes G and F ,
the optimal conditional generator learns to generate samples from P̃X|Ỹ , the corrupted conditional
distribution. In other words, it generates samples X from classes other than what it is conditioned
on. As the learned distribution exhibits such a bias, we call this naive approach the Biased GAN.
Under this setting, there is a fundamental question of interest: can we design a novel conditional
GAN that can generate samples from the true conditional distribution PX|Y , even when trained on
noisy samples?

Several aspects of this problem make it challenging and interesting. First, the performance of such
robust GAN should depend on how noisy the channel C is. If C is rank-deficient, for instance, then
there are multiple distributions that result in the same distribution after the corruption, and hence no
reliable learning of the true distribution is possible. We would ideally want a theoretical guarantee
that shows such trade-off between C and the robustness of GANs. Next, when the noise is from
errors in crowdsourced labels, we might have some access to the confusion matrix C from historical
data. On other cases of adversarial corruption, we might not have any information of C. We want to
provide robust solutions to both. Finally, an important practical challenge in this setting is to correct
the noisy labels in the training data. We address all such variations in our approaches and make the
following contributions.

Our contributions. We introduce two architectures to train conditional GANs with noisy samples.

First, when we have the knowledge of the confusion matrix C, we propose RCGAN (Robust
Conditional GAN) in Section 2. We first prove that minimizing the RCGAN loss provably recovers
the clean distribution PX|Y (Theorem 2), under certain conditions on the class F of discriminators
we optimize over (Assumption 1). We show that such a condition on F is also necessary, as without
it, the training loss can be arbitrarily small while the generated distribution can be far from the real
(Theorem 4). The assumption leads to our particular choice of the discriminator in RCGAN, called
projection discriminator [32] that satisfies all the conditions (Remark 1). Finally, we provide a finite
sample generalization bound showing that the loss minimized in training RCGAN does generalize,
and results in the learned distribution being close to the clean conditional distribution PX|Y (Theorem
3). Experimental results in benchmark datasets confirm that RCGAN is robust against noisy samples,
and improves significantly over the naive Biased GAN.

Secondly, when we do not have access to C, we propose RCGAN-U (RCGAN with Unknown noise
distribution) in Section 4. We provide experimental results showing that performance gains similar to
that of RCGAN can be achieved. Finally, we showcase the practical use of thus learned conditional
GANs, by using it to fix the noisy labels in the training data. Numerical experiments confirm that the
RCGAN framework provides a more robust approach to correcting the noisy labels, compared to the
state-of-the-art methods that rely only on discriminators.

Related work. Two popular training methods for generative models are variational auto-encoders
[22] and adversarial training [14]. The adversarial training approach has made significant advances
in several applications of practical interest. [37, 2, 5] propose new architectures that significantly
improve the training in practical image datasets. [58, 16] propose new architectures to transfer the
style of one image to the other domain. [26, 43] show how to enhance a given image with learned
generator, by enhancing the resolution or making it more realistic. [27, 50] show how to generate
videos and [51, 1] demonstrate that 3-dimensional models can be generated from adversarial training.
[23] proposes a new architecture encoding causal structures in conditional GANs. [42] introduces the
state-of-the-art conditional independence tester. On a different direction, several recent approaches
showcase how the manifold learned by the adversarial training can be used to solve inverse problems
[9, 57, 53].

2



Conditional GANs have been proposed as a successful tool for various applications, including class
conditional image generation [36], image to image translation [21], and image generation from text
[38, 55]. Most of the conditional GANs incorporate the class information by naively concatenating
it to the input or feature vector at some middle layer [30, 13, 38, 55]. AC-GANs [36] creates an
auxiliary classifier to incorporate class information. Projection discriminator GAN [32] takes an inner
product between the embedded class vector and the feature vector. A recent work [31] which proposes
spectral normalization shows that high quality image generation on 1000-class ILSVRC2012 dataset
[39] can be achieved using projection conditional discriminator.

Robustness of (unconditional) GANs against adversarial or random noise has recently been studied
in [10, 52]. [52] studies an adversarial attack that perturbs the discriminator output. The proposed
architecture of RCGAN is inspired by a closely related work of AmbientGAN in [10]. AmbientGAN
is a general framework addressing any corruption on the image itself (not necessarily just the labels).
Given corrupted samples with a known corruption, AmbientGAN applies that corruption to the output
of the generator before feeding it to the discriminator. Motivated by the success of AmbientGAN
in de-noising, we propose RCGAN. An important distinction is that we make specific architectural
choices guided by our theoretical analysis that gives a significant gain in practice (Appendix J). Under
the scenario of interest with noisy labels, we provide sharp analyses for both the population loss and
the finite sample loss. Such sharp characterizations do not exist for the more general AmbientGAN
scenarios. Further, our RCGAN-U does not require the knowledge of the confusion matrix, departing
from the AmbientGAN approach. Learning classifiers from noisy labels is a closely related problem.
Recently [34, 20] proposed a theoretically motivated classifier which minimizes the modified loss
in presence of noisy labels and showed improvement over the robust classifiers [29, 45, 46]. [47]
proposed adding noise to the classifier output to match the noise distribution.

Notation. For a vector, ‖x‖p = (
∑
i |xi|p)1/p is the `p-norm. For a matrix, let |||A|||p =

max‖x‖p=1 ‖Ax‖p denote the operator norm. Then |||A|||∞ = maxi
∑
j |Aij |, |||A|||1 =

maxj
∑
i |Aij | and |||A|||2 = σmax(A), the maximum singular value. 1 is all ones vector and I

is identity matrix. [n] = {1, . . . , n}. For a vector x ∈ Rn, xi (i ∈ [n]) is its i-th coordinate.

2 Our first architecture: RCGAN

Training a conditional GAN with noisy samples results in a biased generator. We propose Robust
Conditional GAN (RCGAN) architecture which has the following pre-processing, discriminator
update, and generator update steps. We assume in this section that the confusions matrix C is known
(and the marginal PY can easily be inferred), and address the case of unknown C in Section 4.

G

D

C

z
y

x

ỹ
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Figure 1: The output x of the conditional generator G is paired with a noisy label ỹ corrupted by the
channel C. The discriminator D estimates whether a given labeled sample is coming from the real
data (xreal, ỹreal) or generated data (x, ỹ). The permutation regularizer h is pre-trained on real data.

Pre-processing: We train a classifier h∗ to predict the noisy label ỹ given x under a loss l, trained on
h∗ ∈ arg minh∈H E(x,ỹ)∼P̃X,Ỹ

[`(h(x), ỹ)], whereH is a parametric family of classifiers (typically

neural networks) and P̃X,Ỹ is the joint distribution of real x and corresponding real noisy ỹ.
D-step: We train on the following adversarial loss. In the second term below, y is generated according
to PY and corresponding noisy labels are generated by corrupting the y according to the conditional
distribution Cy which is the y-th row of the confusion matrix (assumed to be known):

max
D∈F

E
(x,ỹ)∼P̃X,Ỹ

[φ (D(x, ỹ))] + E
z∼N, y∼PY
ỹ|y∼Cy

[φ (1−D(G(z; y), ỹ))] ,
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where PY is the true marginal distribution of the labels, N is the distribution of the latent random
vector, and F is a family of discriminators.
G-step: We train on the following loss with some λ > 0:

min
G∈G

E
z∼N, y∼PY
ỹ|y∼Cy

[
φ (1−D(G(z; y), ỹ)) + λ `(h∗(G(z; y)), y)

]
, (2)

where G is a family of generators. The idea of using auxiliary classifiers have been used to improve the
quality of the image and stability of the training, for example in auxiliary classifier GAN (AC-GAN)
[36], and improve the quality of clustering in the latent space [33]. We propose an auxiliary classifiers
h, mitigating a permutation error, which we empirically identified on naive implementation of our
idea with no regularizers.

Permutation regularizer (controlled by λ). Permutation error occurs if, when asked to produce
samples from a target class, the trained generator produces samples dominantly from a single class
but different from the target class. We propose a regularizer h∗, which predicts the noisy label ỹ. As
long as the confusion matrix is diagonally dominant, which is a necessary condition for identifiability,
this regularizer encourages the correct permutation of the labels. More regularizers could potentially
provide additonal robustness and we discuss one such regularizer (similar to the InfoGAN loss [11])
in Appendix K.

Theoretical motivation for RCGAN. When λ = 0, we get the standard conditional GAN update
steps, albeit one which tries to minimize discriminator loss between the noisy real distribution P̃
and the distribution Q̃ of the generator when the label is passed through the same noisy channel
parameterized by C. The main idea of RCGAN is to minimize a certain divergence between noisy
real data and noisy generated data. For example, the choice of bounded functions F = {D :
X × [m] → [0, 1]} and identity map φ(a) = a leads to a total variation minimization; The loss
minimized in the G-step is the total variation dTV(P̃ , Q̃) , supS∈X×[m]{P̃ (S)− Q̃(S)} between
the two distributions with corrupted labels, up to some scaling and some shift. If we choose
F = {D : X × [m] → [0, 1]} and φ(a) = log(a), then we are minimizing the Jensen-Shannon
divergence dJS(P̃ , Q̃) , (1/2)dKL(P̃‖(P̃ + Q̃)/2) + (1/2)dKL(Q̃‖(P̃ + Q̃)/2), where dKL(·‖·)
denotes the Kullback-Leibler divergence. The following theorem provides approximation guarantees
for some common divergence measures over noisy channel, justifying our proposed practical approach.
We refer to Appendix B for a proof.

Theorem 1. Let PX,Y and QX,Y be two distributions on X × [m]. Let P̃X,Ỹ , Q̃X,Ỹ be the corre-
sponding distributions when samples from P,Q are passed through the noisy channel given by the
confusion matrix C ∈ Rm×m (as defined in Section 1). If C is full-rank, we get,

dTV

(
P̃ , Q̃

)
≤ dTV (P,Q) ≤ |||C−1|||∞ dTV

(
P̃ , Q̃

)
, and (3)

dJS

(
P̃
∥∥∥ Q̃

)
≤ dJS(P ‖ Q) ≤ |||C−1|||∞

√
8 dJS

(
P̃
∥∥∥ Q̃

)
. (4)

To interpret this theorem, let Q denote the distribution of the generator. The theorem implies that
when the noisy generator distribution Q̃ becomes close to the noisy real distribution P̃ in total
variation or in Jensen-Shannon divergence, then the generator distribution Q must be close to the
distribution of real data P in the same metric. This justifies the use of the proposed architecture
RCGAN. In practice, we minimize the sample divergence of the two distributions, instead of the
population divergence as analyzed in the above theorem. However, these standard divergences are
known to not generalize in training GANs [3]. To this end, we provide in Section 3 analyses on
neural network distances, which are known to generalize, and provide finite sample bounds.

3 Theoretical Analysis of RCGAN

It was shown in [3] that standard GAN losses of Jensen-Shannon divergence and Wasserstein distance
both fail to generalize with a finite number of samples. On the other hand, more recent advances in
analyzing GANs in [56, 6, 4] show promising generalization bounds by either assuming Lipschitz
conditions on the generator model or by restricting the analysis to certain classes of distributions.
Under those assumptions, where JS divergence generalizes, Theorem 1 justifies the use of the
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proposed RCGAN. However, those require the distribution to be Gaussian, mixture of Gaussians, or
output of a neural network generator, for example in [4].

In this section, we provide analyses of RCGAN on a distance that generalizes without any assumptions
on the distribution of the real data as proven in [3]: neural network distance. Formally, consider a
class of real-valued functions F and a function φ : [0, 1] → R which is either convex or concave.
The neural network distance is defined as

dF,φ(P,Q) , sup
D∈F

E
(x,y)∼P

[φ (D(x, y))] + E
(x,y)∼Q

[φ (1−D(x, y))]− µφ . (5)

where P is the distribution of the real data, Q is that of the generated data, and µφ is the constant
correction term to ensure that dF,φ(P, P ) = 0. We further assume that F includes three constant
functions D(x, y) = 0, D(x, y) = 1/2, and D(x, y) = 1, in order to ensure that dF,φ(P,Q) ≥ 0
and dF,φ(P, P ) = 0, as shown in Lemma 1 in the Appendix.

The proposed RCGAN with λ = 0 approximately minimizes the neural network distance dF,φ(P̃ , Q̃)
between the two corrupted distributions. In practice, F is a parametric family of functions from a
specific neural network architecture that the designer has chosen. In theory, we aim to identify how
the choice of class F provides the desired approximation bounds similar to those in Theorem 1, but
for neural network distances. This analysis leads to the choice of projection discriminator [32] to
be used in RCGAN (Remark 1). On the other hand, we show in Theorem 4 that an inappropriate
choice of the discriminator architecture can cause non-approximation. Further, we provide the sample
complexity of the approximation bounds in Theorem 3.

We refer to the un-regularized version with λ = 0 as simply RCGAN. In this section, we focus on
a class of loss functions called Integral Probability Metrics (IPM) where φ(x) = x [44]. This is a
popular choice of loss in GANs in practice [48, 2, 8] and in analyses [4]. We write the induced neural
network distance as dF (P,Q), dropping the φ in the notation.

3.1 Approximation bounds for neural network distances

We define an operation ◦ over a matrix T ∈ Rm×m and a class F of functions on X × [m]→ R as

T ◦ F ,
{
g(x, y) =

∑

ỹ∈[m]

Tyỹ f(x, ỹ) | f ∈ F
}
. (6)

This makes it convenient to represent the neural network distance corrupted by noise with a confusion
matrix C ∈ Rm×m, where Cyỹ is the probability a label y is corrupted as ỹ. Formally, it follows
from (5) and (6) that dF (P̃ , Q̃) = dC◦F (P,Q). We refer to Appendix F for a proof. For dF (P̃ , Q̃)
to be a good approximation of dF (P,Q), we show that the following condition is sufficient.
Assumption 1. We assume that the class of discriminator functions F can be decomposed into three
parts F = {f1 + f2 + c | f1 ∈ F1, f2 ∈ F2} such that c ∈ R is any constant and

• F1 satisfies the inclusion condition:

T ◦ F1 ⊆ F1 , (7)

for all |||T |||∞ , maxi
∑
j |Tij | = 1; and

• F2 satisfies the label invariance condition: there exists a class F ′2 of functions over only x,
such that

F2 =
{
α g(x, y) | g(x, y) = f(x), for any f(x) ∈ F ′2, and α ∈ [0, 1]

}
. (8)

We discuss the necessity and practical implications of this assumption in Section 3.2, and give
examples satisfying these assumptions in Remark 1 and Appendix C. Notice that a trivial class with a
single constant zero function satisfies both inclusion and label invariance conditions. For example,
we can choose c = 0 and also choose to set either F1 = {f(x, y) = 0} or F2 = {f(x, y) = 0}, in
which case F only needs to satisfy either one of the conditions in Assumption 1. The flexibility that
we gain by allowing the set addition F1 + F2 is critical in applying these conditions to practical
discriminators, especially in proving Remark 1. Note that in the inclusion condition in Eq. 7, we
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require the condition to hold for all max-norm bounded set: {T : maxi
∑
j |Tij | = 1}. The reason a

weaker condition of all row-stochastic matrices, {T :
∑
j Tij = 1}, does not suffice is that in order

to prove the upper bound in Eq. 9, we need to apply the invariance condition to |||C−1|||−1
∞ C−1 ◦ F .

This matrix |||C−1|||−1
∞ C−1 is not row-stochastic, but still max-norm bounded.

We first show that Assumption 1 is sufficient for approximability of the neural network distance from
corrupted samples. For two distributions PX,Y and QX,Y on X × [m], let P̃X,Ỹ and Q̃X,Ỹ be the
corresponding corrupted distributions respectively, where the label Y is passed through the noisy
channel defined by the confusion matrix C ∈ Rm×m, i.e. P̃ (x, ỹ) =

∑
y P (x, y)Cy,ỹ .

Theorem 2. If a class of functions F satisfies Assumption 1, then

dF (P̃ , Q̃) ≤ dF (P,Q) ≤ |||C−1|||∞dF (P̃ , Q̃) , (9)

where we follow the convention that |||C−1|||∞ =∞ if C is not full rank.

We refer to Appendix F for a proof. This gives a sharp characterization on how two distances
are related: the one we can minimize in training RCGAN (i.e. dF (P̃ , Q̃)) and the true measure of
closeness (i.e. dF (P,Q)). Although the latter cannot be directly evaluated or minimized, RCGAN is
approximately minimizing the true neural network distance dF (P,Q) as desired.

The lower bound proves a special case of the data-processing inequality. Two random variables from
P and Q get closer in neural network distance, when passed through a stochastic transformation. The
upper bound puts a limit on how much closer P̃ and Q̃ can get, depending on the noise level. This
fundamental trade-off is captured by |||C−1|||∞. Under the noiseless case where C is the identity
matrix, we have |||C−1|||∞ = 1 and we recover a trivial fact that the two distances are equal. On
the other extreme, if C is rank deficient, we use the convention that |||C−1|||∞ = ∞ and the two
distances can be arbitrarily different. The approximation factor of |||C−1|||∞ captures how much the
space F can shrink by the noise C. This coincides with Theorem 1, where a similar trade-off was
identified for the TV distance. In Remark 3 in Appendix D, we show that these bounds cannot be
tightened for general P , Q, and F .

Theorem 2 shows that (i) RCGAN can learn the true conditional distribution, justifying its use; and
(ii) performance of RCGAN is determined by how noisy the samples are via |||C−1|||∞. There are
still two loose ends. First, does practical implementation of RCGAN architecture satisfy the inclusion
and/or label invariance assumptions? Secondly, in practice we cannot minimize dF (P̃ , Q̃) as we only
have a finite number of samples. How much do we lose in this finite sample regime? We give precise
answers to each question in the following two sections.

3.2 Inclusion and label invariance assumptions

For RCGAN, we propose a popular state-of-the-art discriminator for conditional GANs known as the
projection discriminator [32], parametrized by V ∈ Rm×dV , v ∈ Rdv , and θ ∈ Rdθ :

DV,v,θ(x, y) = vec(y)T V ψ(x; θ) + vT ψ′(x; θ) , (10)

where ψ(x; θ) ∈ RdV and ψ′(x; θ) ∈ Rdv are vector valued parametric functions for some integers
dV , dv, and vec(y)T = [Iy=1, . . . , Iy=m]. The first term satisfies the inclusion condition, as any
operation with T can be absorbed into V . The second term is label invariant as it does not depend on
y. This is made precise in the following remark, whose proof is provided in Appendix G. Together
with this remark, the approximability result in Theorem 2 justifies the use of projection discriminators
in RCGAN, which we use in all our experiments.
Remark 1. The class of projection discriminators {DV,v,θ(x, y)}V ∈V1,v∈V2,θ∈Θ defined in Eq. 10
satisfies Assumption 1 for any ψ, ψ′, and Θ, if V1 =

{
V ∈ Rm×dV

∣∣ maxi |Vij | ≤ 1 for all j ∈
[dV ]

}
, and V2 =

{
v ∈ Rdv

∣∣ ‖v‖ ≤ 1
}
.

Other choices of V1 and V2 are also possible. For example, V ′1 = {V ∈ Rm×dV |∑j maxi |Vij | ≤ 1}
or V ′′1 = {V ∈ Rm×dV ||||V |||∞ = maxi

∑
j |Vij | ≤ 1} are also sufficient. We find the proposed

choice of V1 easy to implement, as a column-wise L∞-norm normalization via projected gradient
descent. We describe implementation details in Appendix L. In Appendix E, we show that Assumption
1 is also necessary.
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3.3 Finite sample analysis

In practice, we do not have access to the probability distributions P̃ and Q̃. Instead, we observe a
set of samples of a finite size n, from each of them. In training GAN, we minimize the empirical
neural network distance, dF (P̃n, Q̃n), where P̃n and Q̃n denote the empirical distribution of n
samples. Inspired from the recent generalization results in [3], we show that this empirical distance
minimization leads to small dF (P,Q) up to an additive error that vanishes with an increasing sample
size. As shown in [3], Lipschitz and bounded function classes are critical in achieving sample
efficiency for GANs. We follow the same approach over a similar function class. Let

Fp,L = {Du(x, y) ∈ [0, 1] | Du(x, y) is L-Lipschitz in u and u ∈ U ⊆ Rp} , (11)
be a class of bounded functions with parameter u ∈ Rp. We say that F is L-Lipschitz in u if

|Du1
(x, y)−Du2

(x, y)| ≤ L‖u1 − u2‖ , ∀u1, u2 ∈ U , x ∈ X , y ∈ [m]. (12)
Theorem 3. For any class Fp,L of bounded Lipschitz functions Du(x, y) satisfying Assumption 1,
there exists a universal constant c > 0 such that

dFp,L(P̃n, Q̃n)− ε ≤ dFp,L(P,Q) ≤ |||C−1|||∞
(
dFp,L(P̃n, Q̃n) + ε

)
, (13)

with probability at least 1− e−p for any ε > 0 and n large enough, n ≥ (c p /ε2) log (pL/ε) .

We refer to Appendix I for a proof. This justifies the proposed RCGAN which minimizes dF (P̃n, Q̃n),
as it leads to the generator Q being close to the real distribution P in neural network distance,
dF (P,Q). These bounds inherit the approximability of the population version from Theorem 2.

4 Our second architecture: RCGAN-U

In many real world scenarios the confusion matrix C is unknown. We propose RCGAN-Unknown
(RCGAN-U) algorithm which jointly estimates the real distribution P and the noise model C. The
pre-processing and D steps of the RCGAN-U are the same as those of RCGAN, assuming the current
guess M of the confusion matrix. As the G-step in (2) is not differentiable in C, we use the following
reparameterized estimator of the loss, motivated by similar technique in training classifiers from
noisy labels:

min
G∈G,M∈C

E
z∼N y∼PY

[
φM (G(z; y), y,D) + λ l(h∗(G(z; y)), y)

]

where C is the set of all transition matrices and φM (x, y,D) =
∑
ỹ∈[m]Myỹ φ(1−D(x, ỹ)).

5 Experiments

Implementation details are explained in Appendix L. We consider one-coin based models, which
are parameterized by their label accuracy probability α. In this model a sample with true label y
is flipped uniformly at random to label ỹ in [m] \ {y} with probability 1 − α. The entries of its
confusion matrix C, will then be Cii = α and Ci 6=j = (1− α)/(m− 1), where m is the number of
classes. We call this model uniform flipping model. Code to reproduce our experiments is available at
https://github.com/POLane16/Robust-Conditional-GAN.

Baselines. First is the biased GAN, which is a conditional GAN applied directly on the noisy data.
The loss is hence biased, and the true conditional distribution is not the optimal solution of this
biased loss. Next natural baseline is using de-biased classifier as the discriminator, motivated by
the approach of [34] on learning classifiers from noisy labels. The main insight is to modify the
loss function according to C, such that in expectation the loss matches that of the clean data. We
refer to this approach as unbiased GAN. Concretely, when training the discriminator, we propose the
following (modified) de-biased loss:

max
D∈F

E(x,ỹ)∼P̃X,Ỹ

[ ∑

y∈[m]

(C−1)ỹyφ (D(x, y))
]

+ Ez∼N y∼PY
[
φ (1−D(G(z; y), y))

]
. (14)

This is unbiased, as the first term is equivalent to E(x,y)∼PX,Y [φ(D(x, y))], which is the standard
GAN loss with clean samples. However, such de-biasing is sensitive to the condition number of C,
and can become numerically unstable for noisy channels as C−1 has large entries [20]. For both the
dataset, we use linear classifiers for permutation regularizer of the RCGAN-U architecture.
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Figure 2: Noisy MNIST dataset: Our RCGAN models consistently improves upon all competing
baseline approaches in generator label accuracy (left). The trend continues in label recovery accuracy
(right), where our proposed RCGAN-classifiers improves upon unbiased classifier [34], which is one
of the state-of-the-art approaches tailored for label recovery.

5.1 MNIST

We train five architectures on MNIST dataset corrupted by the uniform flipping noise: RCGAN+y,
RCGAN, RCGAN-U, unbiased GAN, and biased GAN. RCGAN+y architecture has the same
architecture as RCGAN but the input to the first layer of its discriminator is concatenated with a
one-hot representation of the label. We discuss our techniques to overcome the challenges involved
in training RCGAN+y in Appendix L.

Conditional generators can be used to generate samples x from a particular class y, in the classes
it learned. We then can use a pre-trained classifier f to compare y to the true class of the sample,
f(x) (as perceived by the classifier f ). We compare the generator label accuracy defined as
Ey∼PY ,Z∼N [I{y=f(G(z,y))}], in Figure 2, left panel. We generated 10k labels chosen uniformly at
random and corresponding conditional samples from the generators, and calculated the generator
label accuracy using a CNN classifier pre-trained on the clean MNIST data to an accuracy of 99.2%.
The proposed RCGAN significantly improves upon the competing baselines, and achieves almost
perfect label accuracy until a high noise of α = 0.3. RCGAN+y further improves upon RCGAN and
to gain very high accuracy even at α = 0.125. The high accuracy of RCGAN-U suggests that robust
training is possible without prior knowledge of the confusion matrix C. As expected, biased GAN
has an accuracy of approximately 1− α.

An immediate application of robust GANs is recovering the true labels of the noisy training data,
which is an important and challenging problem in crowdsourcing. We propose a new meta-algorithm,
which we call cGAN-label-recovery, which use any conditional generator G(z, y) trained on the
noisy samples, to estimate the true label, as ŷ, of a sample x using the following optimization.

ŷ ∈ arg min
y∈[m]

{
min
zy
|||G(zy, y)− x|||22

}
. (15)

In the right panel of Figure 2 we compare the label recovery accuracy of the meta-algorithm using
the five conditional GANs, on 500 randomly chosen noisy training samples. This is also compared to
a state-of-the-art method [34] for label recovery, which proposed minimizing unbiased loss function
given the noisy labels and the confusion matrix. This unbiased classifier, was shown to outperforms
the robust classifiers [29, 45, 46] and can be used to predict the true label of the training examples. In
Figures 5 of Appendix M, we show example images from all the generators.

5.2 CIFAR-10

In Figure 3, we show the inception score [40] and the label accuracy of the conditional generator
for the four approaches: our proposed RCGAN and RCGAN-U, against the baselines Unbiased
(Section 5) and Biased (Section 1) GANs trained using CIFAR-10 images [24], while varying the
label accuracy of the real data under uniform flipping model. In RCGAN-U, even with the regularizer,
the learned confusion matrix was a permuted version of the true C, possibly because a linear classifier
might be too simple to classify CIFAR images. To combat this, we initialized the confusion matrix
M to be diagonally dominant (Appendix L).
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Figure 3: Noisy CIFAR-10 dataset: Our RCGAN (red) and RCGAN-U (blue) consistently improves
upon Unbiased (magenta) and Biased (black) GANs trained on noisy CIFAR-10 in inception scores
(left) and in generator label accuracy (right).

In the left panel of Figure 3, our RCGAN and RCGAN-U consistently achieve higher inception
scores than the other two approaches. The Unbiased GAN is highly unstable and hence produces
garbage images for large noise (Fig. 6), possibly due to numerical instability of |||C−1|||∞, as noted
in [20]. This confirms that robust GANs not only produce images from the correct class, but also
produce better quality images. In the right panel of Figure 3, we report the generator label accuracy
(Section 5.1) on 1k samples generated by each GAN. We classify the generator images using a
ResNet-110 model1 trained to an accuracy of 92.3% on the noiseless CIFAR-10 dataset. Biased
GAN has significantly lower label accuracy whereas the Unbiased GAN has low inception score.
In Figure 6 in Appendix M, we show example images from the three generators for the different
flipping probabilities. We believe that the gain in using the proposed robust GANs will be larger,
when we train to higher accuracy with larger networks and extensive hyper parameter tuning, with
latest innovations in GAN architectures, for example [54, 28, 17, 19, 41].

6 Conclusion

Standard conditional GANs can be sensitive to noise in the labels of the training data. We propose two
new architectures to make them robust, one requiring the knowledge of the distribution of the noise
and another which does not, and demonstrate the robustness on benchmark datasets of CIFAR-10
and MNIST. We further showcase how the learned generator can be used to recover the corrupted
labels in the training data, which can potentially be used in practical applications. The proposed
architecture combines the noise adding idea of AmbientGAN [10], projection discriminator of [32],
and regularizers similar to those in InfoGAN [11]. Inspired by AmbientGAN [10], the main idea
is to pair the generator output image with a label that is passed through a noisy channel, before
feeding to the discriminator. We justify this idea of noise adding by identifying a certain class
of discriminators that have good generalization properties. In particular, we prove that projection
discriminator, introduced in [32], has a good generalization property. We showcase that the proposed
architecture, when trained with a regularizer, has superior robustness on benchmark datasets.
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