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Abstract

We present the first relativistic prediction of the electromagnetic emission from the surrounding gas of a
supermassive binary black hole system approaching merger. Using a ray-tracing code to post-process data from a
general relativistic 3D magnetohydrodynamic simulation, we generate images and spectra, and analyze the viewing
angle dependence of the light emitted. When the accretion rate is relatively high, the circumbinary disk, accretion
streams, and mini-disks combine to emit light in the UV/extreme-UV bands. We posit a thermal Compton hard
X-ray spectrum for coronal emission; at high accretion rates, it is almost entirely produced in the mini-disks, but at
lower accretion rates it is the primary radiation mechanism in the mini-disks and accretion streams as well. Due to
relativistic beaming and gravitational lensing, the angular distribution of the power radiated is strongly anisotropic,
especially near the equatorial plane.

Key words: accretion, accretion disks – black hole physics – galaxies: nuclei – magnetohydrodynamics (MHD) –
radiative transfer

1. Introduction

1.1. Context

Electromagnetic (EM) observations of supermassive binary
black holes (SMBBHs) and their environments have the
potential to provide critical new information about both galaxy
evolution and strong-field gravity. Unlike merging stellar-mass
binary black holes (BBHs) recently discovered by the LIGO–
Virgo Collaboration (Abbott et al. 2016a, 2016b, 2016c,
2017), SMBBHs may often merge in gas-rich environments
(Dotti et al. 2009; Pfister et al. 2017; Goulding et al. 2018) and
can therefore be EM-bright during all stages of the coalescence
process.

Direct detection of SMBBHs through gravitational wave
(GW) emission may be accomplished by orbiting GW
observatories, but not any time soon (Amaro-Seoane
et al. 2017). Pulsar Timing Array observations could detect
GW radiation from SMBBHs, but the GW frequencies to which
they are sensitive correspond only to the weakly relativistic
regime for the most massive SMBBHs M109 ( ; Shannon
et al. 2015). Identification of photons from SMBBHs by some
of the many EM telescopes now operating could jump-start this
field, sharply refining our estimates of the population and
evolution of SMBBHs, as well as guiding planning and
development of space-based GW observatories.

Observational efforts to identify SMBBHs to date have been
defined by qualitative guesses about what observable properties
might be distinctive. One approach to finding true SMBBHs is
focused on high-resolution imaging, possible only via radio-
frequency Very Long Baseline Interferometry (Tremblay et al.
2016). The recent discovery of possible orbital motion in the radio
galaxy 0402+379 presents an exciting new prospect of probing a
SMBBH’s kinematics (Bansal et al. 2017). Another approach rests
upon the hope that some aspects of their light may exhibit periodic
variability (Graham et al. 2015; Liu et al. 2015, 2016). The latter

approach is made difficult by the fact that the monitoring programs
rarely cover more than a few cycles of the candidate periods
identified, thus providing only weak evidence for periodicity. The
results presented here are a first step toward establishing more
physically grounded predictions of distinctive spectral and timing
properties of these intriguing systems.

1.2. Prior Work

The structure of a circumbinary disk when the binary mass
ratio q M M 0.022 1 º is well-established: if the binary
semimajor axis is a and its eccentricity is e, a gap forms within
a radius from the center of mass ≈2a(1 + e) because closed
orbits enclosing the binary do not exist at smaller radii, while
an ordinary accretion disk occupies radii a2 (Pringle 1991;
MacFadyen & Milosavljević 2008; Roedig et al. 2011; Shi
et al. 2012). Although early work treating a 1D model of such a
system argued that torques exerted by the binary would prevent
any accretion through the gap (Pringle 1991), detailed 2D and
3D simulations have shown that, although matter can pile up
near r a2» , ultimately inflow equilibrium is achieved so that
the mass accretion rate across the gap matches that in the outer
parts of the circumbinary disk (MacFadyen & Milosavljević
2008; Noble et al. 2012; Roedig et al. 2012; Shi et al. 2012;
D’Orazio et al. 2013; Farris et al. 2014; Shi & Krolik 2015).
Matter crosses the gap in narrow streams, whose ultimate
destinations depend upon the matter’s specific angular
momentum. Gas with specific angular momentum close to
the circular orbit value at the circumbinary disk’s inner edge
spends enough time in the gap that binary torques propel it
back to r a2» , where it shocks against the disk; gas with
significantly lower angular momentum is created by deflection
in these shocks and plunges into the zone of the binary (Shi &
Krolik 2015). Once the streams find their way close to the
binary, they join one of the “mini-disks,” individual accretion
disks each centered on one of the partners in the binary
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(Bowen et al. 2017, 2018; Ryan & MacFadyen 2017; Tang
et al. 2017). Although it was initially expected that accretion
from the circumbinary disk to the mini-disks would be cut off
when the timescale on which the binary orbit shrinks due to
GW radiation becomes shorter than the accretion timescale in
the inner region of the circumbinary disk (Milosavljević &
Phinney 2005), simulations have shown that this cut-off does
not actually occur (Noble et al. 2012; Farris et al. 2015a)
because the very shortness of the binary lifetime means that
only material very close to the edge of the circumbinary disk
needs to be drawn upon to feed the flow.

Radiation can arise in any of these regions: the circumbinary
disk, the streams, and the mini-disks. Its energy source is
dissipation of kinetic energy and magnetic field energy which,
in turn, is drawn from mass moving into deeper portions of the
gravitational potential. Several different mechanisms can
contribute to this dissipation. In ordinary accretion disks, the
majority of the heat is generated by dissipation at the short-
lengthscale end of the inertial cascade associated with
magnetohydrodynamic (MHD) turbulence stirred by the
magnetoroational instability (MRI; Balbus & Hawley 1998).
A smaller portion can be generated by magnetic reconnection
and related effects in the atmospheres of disks, their “coronæ”
(Noble & Krolik 2009). These two processes are responsible
for most of the dissipation in the circumbinary disk and
possibly in the mini-disks. In addition, however, in the context
of binary accretion, shocks can contribute in several ways.
There are the shocks already mentioned, where outward-
moving streams strike the inner edge of the circumbinary disk;
their luminosity has been previously discussed (Noble et al.
2012; Tang et al. 2018). There can also be shocks where
inward-moving streams strike the outer edge of a mini-disk
(Roedig et al. 2014; Farris et al. 2015b). If the mini-disks are
sufficiently hot (sound speed cs at least v0.1 orb~ , for vorb the
speed of a circular orbit at the relevant location), tidal
interactions and stream impacts can generate spiral shocks of
substantial amplitude within the mini-disks (Ju et al. 2016;
Bowen et al. 2017; Ryan & MacFadyen 2017).

Radiation can also be created in the course of the merger
proper, but most calculations of it so far have been conducted
only at the level of “proof of principle” (Bode et al. 2010, 2012;
Palenzuela et al. 2010; Farris et al. 2011, 2012, 2014;
Giacomazzo et al. 2012; Gold et al. 2014a, 2014b; Kelly
et al. 2017), with Farris et al. (2012) being the first fully
relativistic general relativistic MHD (GRMHD) simulation of
accreting BBHs. These numerical relativity calculations did not
develop mini-disks, possibly because they did not integrate
long enough or they considered binaries at too close a
separation, even though Nature would have had ample time
to do so before the binary became so close.

More has been accomplished concerning the epoch of
approach to merger. Using analytic estimates for disk structure,
Roedig et al. (2014) argued that when the binary separation is
at least several tens of gravitational radii (r GM c Mg

2º = for
G c 1;= = here M is the total binary mass), but close enough
that the circumbinary disk is able to radiate a significant
luminosity (i.e., a M300 ), there should be a “notch” in the
thermal spectrum due to the weakness of radiation from the
accretion streams crossing the gap. This notch might appear
anywhere from the near-IR to the near-UV, depending on
parameters. They further predicted that in this phase of
SMBBH evolution there should be a substantial hard X-ray

component due to Compton cooling of the gas shocked when
an accretion stream strikes the outer edge of a mini-disk.
A number of papers adopting 2D hydrodynamics, and

assuming both accretion stress and dissipation are described by
a phenomenological “α” viscosity, have explored accretion
onto mini-disks over long enough periods of time for the
circumbinary disk to reach equilibrium out to large multiples of
a (MacFadyen & Milosavljević 2008; Farris et al. 2014, 2015a;
Ryan & MacFadyen 2017; Tang et al. 2018). In all but one of
the papers of this group, the fluid dynamics were Newtonian,
and took place in a Paczynski–Wiita potential; in Ryan &
MacFadyen (2017), a single mini-disk was studied with 2D GR
hydrodynamics in a Schwarzschild spacetime perturbed by
Newtonian tidal gravity to approximate the influence of the
other black hole (BH).
These simulations have yielded predictions of the emitted

radiation, doing so by describing the cooling rate in terms of
their α parameter combined with a disk dynamical temperature,
defined by ignoring radiation pressure and scaled by an
assumed disk Mach number (again, Ryan & MacFadyen 2017
is the exception: in this paper the surface brightness in the fluid
rest-frame is defined to be the thermal rate at a temperature
defined by the ratio of vertically integrated gas pressure to
surface density, but divided by the vertical optical depth). A
principal result of this series of papers is the prediction of a
spectrum comprising three quasi-Planckian thermal peaks, one
at 1 keV arising principally from the circumbinary disk,
another (somewhat weaker) component at 3 keV emitted by
the streams, and a third at 20 keV radiated by the mini-disks,
but fading over time (Tang et al. 2018).
Recently, Bowen et al. (2017, 2018) reported the first

simulations of mini-disk dynamics when the binary separation
is small enough (a few tens of M) that the orbit evolves due to
GW emission. Using a fully relativistic spacetime for a binary
comprising an equal-mass pair of non-spinning BHs, they
encountered several surprises. Because the relativistic gravita-
tional potential between the two BHs becomes shallower than
in the Newtonian regime, the mini-disks stretch toward the L1
point and the amount of gas passing—or “sloshing”—back and
forth between them increases sharply when the separation is

M30 . The sloshing is quasi-periodically modulated at a
frequency 2 –2.75 binW , where binW is the binary’s orbital
frequency. Although tidal effects in Newtonian binaries are
known to induce m=2 spiral waves in mini-disks, the leading-
order post-Newtonian (PN) terms induce strong m=1
features. Perhaps most surprisingly, when the separation is as
small as 20M, the inflow time in the mini-disks is so short that
their mass responds strongly to modulation of their supply rate
on the binary orbital timescale.

1.3. Our Work

Here we will make use of the data reported in Bowen et al.
(2018), produced using the HARM3D code (Noble et al. 2009),
to make detailed predictions of both the spectrum and the time
dependence of the light emitted. Because the HARM3D code is
both intrinsically conservative and uses a local cooling function
to radiate nearly all the heat produced, whether generated by
turbulent dissipation or shocks, the luminosity we predict is
automatically consistent with the energy budget of the flow.
These predictions are, however, dependent upon two assump-
tions about the fluid-frame spectrum: where the gas is optically
thick, we assume it radiates a local blackbody spectrum;
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and where the gas is optically thin, we assume it
radiates hard X-rays in a manner similar to active galactic
nuclei (AGNs), emitting a thermal Compton spectrum with
temperature kT m c0.2 100 keVe

2=  .
The remainder of this paper is organized as follows. In

Section 2, we specify the means by which we determine the
EM emission from the simulation data and transport it through
the binary’s spacetime to a simulated observer. Then in
Section 3, we describe the results of our ray-tracing calcula-
tions. In Section 4 we discuss the implications of our findings,
and summarize them in Section 5.

2. Methodology

Calculating the radiation observed at infinity produced by
gas in the state determined by the simulation requires a number
of steps, and the use of different codes and techniques. In
Section 2.1 we briefly describe the numerical details and
assumptions behind the simulation; further details are given in
a separate paper focused on its analysis(Bowen et al. 2018).
We then explain our model for the thermodynamics assumed in
the simulation in Section 2.2 and provide the specifics of the
radiative transfer solution in Section 2.3.

Space and time coordinates are reported in units of the total
BBH mass, M, assuming geometrized units G c 1= = . Stated
times of snapshots are elapsed times from the start of the
simulation, generally quoted in terms of the initial binary
orbital period t M600bin  .

2.1. GRMHD Simulation Details

Our calculation assumes the existence of an accretion flow
around an inspiraling equal-mass binary with an initial
separation a M200 = . In the immediate vicinity of each BH,
the spacetime is well modeled as a boosted and perturbed BH
spacetime(Detweiler 2005; Poisson 2005) in horizon-penetrat-
ing coordinates(Johnson-McDaniel et al. 2009). Elsewhere in
the domain, the spacetime may be described using PN
theory(Blanchet 2014). The PN solution is combined with
BH perturbation theory via asymptotic matching in regions of
common validity to produce a global analytic spacetime, which
has been shown to reasonably satisfy the Einstein field
equations and is described in full detail inMundim et al.
(2014) and Ireland et al. (2016). The entire spacetime is
described in terms of PN harmonic (PNH) coordinates, which
are also the coordinates used in our ray-tracing calculations.
The PN description is sufficiently high-order to self-consis-
tently contain both gravitational radiation and the consequent
orbital evolution.

The MHD simulation was performed using the HARM3D
code(Noble et al. 2009), which evolves the magnetized matter
on a background spacetime (which can be, as it is here, time-
dependent) through conservation of baryon number density,
conservation of stress-energy, and the Maxwell induction
equation (see Noble et al. 2009 for more details). In the initial
state, a circumbinary disk (whose properties are taken from the
quasi-steady state t M50,000= snapshot of the RunSS
simulation described in Noble et al. 2012) occupies the region
outside a2» from the center of mass, while identical mini-disks
fill the BHs’ Roche lobes, each threaded by a weak poloidal
magnetic field (that is, poloidal with respect to the central BH
and a polar axis parallel to the orbital axis). If there were no
magnetic field, both disks would be close to dynamical

equilibrium. The magnetic field eventually destabilizes the
disks through magnetic winding and the development of the
MRI; the resulting magnetic stress helps the disks accrete and
evolve. Details regarding the mini-disk construction can be
found in Bowen et al. (2017, 2018).

2.2. Thermodynamic Model

Because the simulation’s flux-conservative numerical methods
ensure that all dissipated energy is captured and turned into heat,
we are able to self-consistently predict the amount of light emitted
by our simulation. If there were no losses, the heat retained by the
fluid would continually add vertical pressure support in the disk
and geometrically thicken it. The thermal energy would then be
accreted into the BH or be carried out from the disk by a wind. By
adding a loss term to the energy equation, we can create a more
realistic structural model for the accretion flow (i.e., disks with
constant aspect ratio supported by gas pressure) while also
evaluating the amount of energy available for radiation.
This loss term mimics a bolometric (frequency-integrated)

cooling rate and appears as a sink term in the gas’s equation of
motion: T uc = -l

l
m m. Its recorded value serves as a

bolometric source to our radiation transfer solution, which is
performed as a post-processing step. This procedure contrasts
with other post-processing methods in which the gas’s
emissivity is determined by the temperature found in the
simulation without consideration of radiative losses (e.g., Bode
et al. 2010; Farris et al. 2011; Kelly et al. 2017).
As in Noble et al. (2012), the cooling function is designed to

cool the gas toward the initial entropy (S 0.010 = ) at a rate per
unit volume

t

S

S

S

S
, 1c

cool 0 0

1 2



r

=
D

+
D⎛

⎝⎜
⎞
⎠⎟ ( )

where ρ is the rest-mass density, ò is the specific internal
energy, S S S0D º - , and tcool is the cooling timescale.
Choosing the target entropy as its initial value allows us to
measure how much total heat is produced by internal
dissipation from the simulation’s onset to its completion.
We set four distinct regions of cooling timescales following

Bowen et al. (2017). In the outermost region, r a1.5 , the gas
is cooled over a time equal to the the local Keplerian orbital
period: t r M M2cool

3 2p= +( ) . Here, r is the PNH radial
coordinate distance from the center of mass(Blanchet 2014). In
the vicinity of an individual BH of mass mi, where r a0.45i  ,
the cooling time is set using the local Boyer–Lindquist
coordinates: t r m2 icool BL

3 2p= . For the coordinate mappings
relating the PNH coordinate system to the local Boyer–
Lindquist coordinates, see Bowen et al. (2017). In the
remaining portion of the simulation domain, between the
mini-disks and the circumbinary disk, the cooling time is set to
the value found at the inner edge of the outer
region, t r a1.5cool =( ).
Sample density and cooling function distributions in the

equatorial plane as well as in a poloidal slice through one of the
BHs are shown in Figures 1and 2, respectively. To avoid
contamination from excessively bright regions caused by
artificially high-entropy zones in floor states, our ray-tracing
calculations neglect emission from fluid cells with 10 4r < - in
code units. This density scale was consistently identified
throughout the simulation’s duration to be where gas
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transitioned from a dense, turbulent state characteristic of a disk
to a more laminar, tenuous flow characteristic of a corona. The
“cutout” region covering the polar-coordinate origin at the
center of mass appears in the center in black in the plots of
Figures 1and 2 (see Section 2.3.2 for further details).

2.3. Ray-tracing Method

After the simulation data have been generated, they are post-
processed using a general relativistic ray-tracing code called
BOTHROS(Noble et al. 2007). This code has been used to
calculate the EM emission from a variety of single BH accretion
simulations(Noble & Krolik 2009; Noble et al. 2009, 2011) and
is used here for the first time in a dynamical spacetime. We
provide a brief summary of the code before continuing with
a description of the new aspects necessary for the work
presented here.
BOTHROS allows a user to produce time- and frequency-

dependent images of gas and is specifically tailored to systems
including single and binary BHs. It approximates radiation as
freely moving light rays—or null-like geodesics—within the
system’s curved spacetime. The code uses an observer-to-
source approach, shooting photons from a distant pinhole
camera in various directions through the source volume. For a
fixed camera location, tracing photons backward is advanta-
geous computationally, as only the light rays received by the
observer are calculated. Each ray that is launched ultimately
contributes a spectrum, Iν, to each pixel in the simulated
camera. The camera can be positioned at any point in space,
often specified in spherical coordinates r , ,cam cam camq f{ }. The
integral of Iν over the pixels produces the locally imaged flux
spectrum F r , ,cam cam camq fn ( ).
If the integrated optical depth along a ray never reaches

unity, the geodesic is terminated when it either exits the
simulation domain or reaches a distance r r1.001i ihor< from
the ith BH with horizon radius r ihor . Otherwise, the geodesic is
terminated at the photosphere. From either kind of termination
point, the radiation transfer equation is integrated along the
geodesic in the opposite direction back to the camera. Its
efficiency is large enough that, using 16 cores, BOTHROS is
capable of producing images with resolution matching the
simulation resolution in only a few minutes per frequency per
simulation snapshot. The ability to process 3D time-dependent
GRMHD data efficiently gives the code an advantage over
others that rely on analytic models or angle-averaged data (e.g.,
Zhu et al. 2012) and that use more time-consuming (though
more versatile) Monte Carlo approaches(Dolence et al. 2009;
Schnittman & Krolik 2013; Schnittman et al. 2016).

2.3.1. Geodesic Calculation

Because of the time-dependent spacetime, a unique geodesic
must be calculated for each pixel and snapshot. The field of
view and the number of pixels determines the angular
resolution of the resultant images and the initial conditions of
the geodesics. The quantity rmax sets the extent of the field of
view, so the angular field of view is therefore r rmax cam» . The
simulation domain is a sphere of radius 260M; depending on
how much of the domain we want to ray-trace, we set rmax

somewhere between 0M and 260M.
To mimic an observer at infinity, the camera must be

sufficiently distant for the spacetime to be nearly flat and for the
rays shot out to be nearly parallel in the regions of interest. To

Figure 1. Snapshot at t=1030M of the rest-mass density ρ (top) and cooling
function c (bottom) in the equatorial plane of the HARM3D simulation, using a
logarithmic color scale for each. The BHs’ horizons are denoted as black circles
displaced from the origin, while the black circle in the center represents the
coordinate cutout at the origin. The horizontal and vertical coordinates are in
the PNH Cartesian coordinates. We have set 0c = (black) where it is ignored
in the radiative transfer calculation.

Figure 2. Snapshot at t=1030M of the rest-mass density ρ (top) and cooling
function c (bottom) in a poloidal plane through one of the BHs; the color scale
is logarithmic for both quantities. The BHs’ horizons are denoted as black
circles displaced from the origin, while the black circle in the center represents
the coordinate cutout at the origin. The horizontal and vertical coordinates are
in the PNH Cartesian coordinates. We have set 0c = (black) where it is
ignored in the radiative transfer calculation.
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achieve these conditions, we place the camera at r M1000cam =
from the center of mass. In order to confirm that this is an
appropriate choice, we have checked that F r , ,cam cam camq fn ( )
changes by less than 1% when moving rcam from M103 to

M105 . We chose the former setting for our image generation
because it is computationally less demanding—a serious
concern when processing 104( ) snapshots, each with 106( )
pixels.

We can adjust freely the polar (or inclination) angle camq
and the azimuthal angle of the camera camf . The inclination
angle is of crucial importance: viewing the SMBBH face-on
( 0camq = ) is qualitatively different from viewing it edge-on
( 90camq = ). As 90camq  , images become more dependent
on camf (or the phase of the orbit) because relativistic beaming
and double-lens effects introduce strong azimuthal dependence.

We use a Lagrangian approach to integrate the geodesic
equation:

d x

d

dx

d

dx

d
0, 2

2

2l l l
+ G =

m

ab
m

a b
( )

where Gab
m are the Christoffel symbols, and λ is the affine

parameter. In practice, Equation (2) is cast in first-order form,
providing us with a set of eight ordinary differential equations
to solve at each spacetime point for each ray, four equations
each for the ray’s position xm and the 4-velocity Nm. However,
one equation is eliminated because we find the time-component
N t from the null-like condition the ray must satisfy: N N 0=m

m ,
choosing the positive Nt solution so that the ray points forward
in time. The initial direction of the spatial components, Ni, is
chosen so that the ray points toward the camera’s focus at the
camera’s position.

In this work, we use BOTHROS in the fast-light approx-
imation, which considers the simulation data frozen in time as
the photon travels through it. The assumption simplifies the
simulation data-processing, as it allows us to ray-trace one
time-slice of data at a time. However, we still include the time
dependence of the metric by including its time derivatives in
Equation (2). The validity of this approach will be discussed in
Section 4.4.

Because the camera is located at a distance r acam  (where
a is the binary separation), photons must travel large distances
of empty (low emissivity and absorptance) space of little
physical interest. For computational efficiency and without loss
of accuracy, we may take larger steps through such regions
than, for example, near the BHs by exploiting an adaptive
stepsize control mechanism. The fifth-order Cash–Karp
algorithm(Press et al. 1992) is used because of its high-order
accuracy, stepsize adaptivity, and ability to handle stiff
conditions. We permit a maximum relative error of 10−6,
which we have demonstrated—through a convergence study—
yields <1% relative error in any quantities reported herein.
Figure 3 illustrates the results of our geodesic calculations in
the equatorial plane of the binary spacetime and gives some
visual intuition of the metric’s influence on the rays.

2.3.2. Processing the Simulation Data

The cells in our simulation are distributed nonuniformly in
space using a time-dependent transformation between a
uniformly discretized numerical coordinate system (x¢m)—
analogous to a 3D block of memory—and the actual spatial
coordinates of the cells expressed in a “physical” spherical

coordinate system. The nonuniform system allows us to
efficiently resolve small features near the BHs as well as the
larger scale dynamics in the circumbinary disk. We call this
system “warped” or dual-fisheye coordinates(Zilhão &
Noble 2014). The simulation data are stored on disks as a set
of files, one file for each time slice or snapshot. Each contains
all the necessary 3D grid functions v, ,c ir ¢( ), where v i¢ are
the 3-velocity components of the gas in the simulation’s
coordinates.
Because the geodesic integration may be done independently

from any particular simulation’s coordinate system and there
are no symmetries to exploit, we chose to generate the
geodesics in the coordinates used by our metric, namely the
Cartesian PNH coordinate system (xm). The radiation transfer
equation, however, depends on both the geodesic information
and the simulation data, so processingHARM3D simulation
data requires us to transform between xm and x¢n , a problem
requiring the solution of a nonlinear algebraic set of equations.
Grid function data are interpolated to points along the ray, and
vector quantities are transformed to the PNH Cartesian basis in
which the geodesics are expressed.
For each point along a ray, the interpolation proceeds by first

converting the ray’s coordinates into the simulation’s coordi-
nate system, so that we may efficiently look up the subset of
data needed. Once the set of eight cells surrounding a geodesic
point are found, the grid function values v, ,c ir ¢( ) from these
cells are linearly interpolated to this geodesic point. To match
the simulation’s resolution, we add a point (if necessary) on the
geodesic at each HARM3D cell encountered and interpolate in
the same way. Sometimes the Cash–Karp algorithm used to
integrate the radiation transfer equation requires values at
intermediate points along the ray; we compute these by
interpolating the stored values using the fourth-order Lagran-
gian method.
The simulation’s grid excludes “cutout” or “excised” regions

around the origin and z-axis in order to avoid coordinate
singularities. Even though geodesics are free to move through

Figure 3. Representation of 100 geodesics in the equatorial plane,
distinguished using color. The x and y coordinates shown are in the PNH
Cartesian coordinate system.
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these cutout regions, no data are stored there. This means that
they do not contribute to the ray’s resultant flux or optical
depth, so they are treated as vacua for the sake of the transfer
integration. We note that rays traveling through the cutout may
also travel through regions with gas and record a significant
integrated opacity.

Once the GRMHD simulation data are read and interpolated,
the 3-velocity (v i¢ ) of the gas is used to calculate its 4-velocity,
um, in global PNH inertial coordinates. The fluid’s 4-velocity
allows us to calculate the fluid-frame frequency of the photon:

k u , 3n = - m
m ( )

where km is the photon’s 4-momentum. Because the spacetime
and the fluid’s velocity field are inhomogeneous and dynamic,
a photon’s locally measured frequency can vary significantly
along its path.

2.3.3. Assigning Units

Lengths and times in the simulation are defined in units of M
(with G c 1= = ), but because we performed the GRMHD
simulation in the Cowling approximation (neglecting the fluid’s
self-gravity), the unit of gas mass is undefined. This fact allows
us to set the total mass M of the binary and the physical density
(or mass) scale of the gas independently when converting
simulation data from code units to physical units.

To define a physical lengthscale appropriate to a SMBBH,
we set M M106= . Instead of setting the gas density scale
directly, we derive it from a more intuitive quantity, the
accretion rate Ṁ . To scale the accretion rate, we first calculate
the accretion rate in code units:

M r t u g d d, , 4rò r q f= - -˙ ( ) ( )

where u r is the radial component of the 4-velocity, and the
integration is performed on spherical surfaces of fixed radius.
In the circumbinary region, these spheres are centered on the
center of mass and the radial component is that of the global
inertial PNH basis. Once M r t,˙ ( ) in code units is found, the
density scale can be set by converting Ṁ to cgs units as
described in Appendix B. Because the simulation did not
achieve inflow equilibrium in the mini-disks, while the inner
portion of the circumbinary disk in RunSS did, we used the
average Ṁ over the radial range a r a2 4< < in our initial
condition for units definition. We scale this value to a fraction
of the Eddington accretion rate in order to explore a range of
optical thicknesses using the parameter m M MEddº˙ ˙ ˙ , where
M L cEdd Edd

2h=˙ ( ) with nominal radiative efficiency η=0.1
and L M M1.2 10 erg sEdd

38 1= ´ -
 . We will start by study-

ing high accretion rate flows (m 0.5=˙ ) in Section 3.2, then
move to low accretion rate flows (m 8 10 4= ´ -˙ ) in
Section 3.3.

The absence of inflow equilibrium in the mini-disks affects
some of our results; its implications will be discussed in
Section 4.4. We completely ignore emission from r M150> ,
where the circumbinary disk is also out of inflow equilibrium,
but the neglected luminosity is much smaller.

In order to faithfully recover the flux of a simulated pointing, we
need to ensure that all parts of the simulation data are adequately
sampled by the rays cast through it. This means that a given
snapshot’s flux, integrated over all the pixels, must be converged

with respect to the number of pixels used for a fixed field of
view. We have found that a resolution of ∼7pixels/M for the
r M60< region and a coarser resolution of∼2pixels/M for the
M r M60 150< < region is necessary to compute the flux (at a

given time and frequency) to ∼1% accuracy.

2.3.4. Radiation Transfer Solution

The specific intensity measured at the camera is found by
integrating the Lorentz-invariant form of the transfer equation
along a geodesic:

I
j I, 5

l
a

¶
¶

= - ( )

where λ is the affine parameter, and I, j, and α are, respectively,
the Lorentz invariant intensity, emissivity, and absorption
coefficient. See Appendix A for details on the choice of affine
parameter and a derivation of this equation.
The light coming from an optically thick medium is

effectively radiated from its photosphere (the surface at which
its optical depth passes through unity). If a geodesic encounters
a photosphere, we integrate the transfer equation from there to
the camera with initial condition I I ;0 photosphere= otherwise the
integration starts from the end of the geodesic with I 00 = . In
other words, we have to integrate the equation only in optically
thin regions.
In order to create spectra, we vary the frequency in cgs units

at the camera, n¥. At each point X along the geodesic, we
calculate the corresponding Doppler and gravitationally shifted
frequency Xn via

F k u , 6X Xn n= - m
m¥∣ ( )( )∣ ( )

where F n¥( ) is the conversion factor from numerical units to
cgs units (see Appendix B), km is the 4-velocity of the photon,
and um is the 4-velocity of the gas in global inertial coordinates.
Given a fluid-frame model for jν and αν, we can then find j(X)
and Xa( ) from Equation (15) to discretely integrate
Equation (5). The integration is performed using the same
fifth-order Cash–Karp algorithm used to integrate the geodesic
equations.

2.3.5. Opacity Model

The radiative model chosen in a region strongly depends on
whether the gas is thermalized. Gas inside a disk can generally
be considered thermalized if the vertically integrated effective
optical depth of the disk, a a sefft t t t~ +( ) , is much larger
than unity, where at and st are the optical depths from
absorptive and scattering processes, respectively. At the
densities and temperatures of interest here, the dominant
source of opacity is electron scattering, so we neglect
absorptive processes. Even though we do not calculate at
and, rigorously speaking, 1a st t t= +  does not ensure
thermalization, we make the reasonable assumption that there is
still enough absorption in the disks for them to be thermalized.
We therefore assume a gray (frequency-independent)

Thomson opacity for electron scattering:

, 7Ta k r=n ( )

where ρ is the gas density and mT T Hk s= is the Thomson
opacity (obtained by dividing the Thomson cross section by the
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mass of a hydrogen atom). Each segment along the ray
contributes a Lorentz-invariant optical depth differential equal to

d ds d . 8t a a l= =n ( )

Here we are interested in the optical depth between the
observer and the material we simulated, so we integrate
Equation (8) from the camera to the source along the geodesic.

In Figure 4, we show the calculated optical depth in the high
accretion rate case at inclination 0camq = , which effectively
corresponds to a vertical integration. We see that the image
bifurcates neatly into two zones: that whose geodesics
encounter so much gas (in mini-disks, accretion streams, to
the circumbinary disk) that 1t  , and that whose geodesics
traverse only cavities, so that 1t  even after integrating to
the far end of the geodesic.

2.3.6. Emissivity Model

Below the photosphere (the 1t = surface), we assume the
disk’s gas is in thermal equilibrium. We therefore initialize the
specific intensity at the photosphere with a blackbody
spectrum,

I B T
h

c e
,

2 1

1
. 9eff

3

2 h
kTeff

n
n

= =
-

n n n( ) ( )

The effective temperature, Teff , is the temperature associated
with the local radiative cooling flux ( ) at the photosphere and
can be found using the Stefan–Boltzmann law:

T , 10eff
1 4 s= ( ) ( )

where σ is the Stefan–Boltzmann constant. The flux is found by
integrating the cooling function vertically inside the photo-
sphere:

ds d
1

2

1

2
, 11c c

1 1
  ò ò n l= =

t t> >
( )

where the factor of 1/2 comes from the fact that the disk has
two photospheric surfaces from which heat can escape.6 This
integral is approximately vertical through the disk for views
with 0 ;camq  we restrict our exploration of optically thick
models to this viewing angle because applying our ray-tracing
method at other viewing angles would locate the photosphere at
an artificially high altitude from the disk midplane. This is
because the disk is stratified vertically and extends indefinitely
radially outward. Rays traveling horizontally pass through
more material before reaching the actual photosphere, which is
the surface at which the gas becomes transparent in any
direction—not necessarily the same as the ray’s but one that is
almost always vertically outward due to the gradient of the
disk’s stratification. Figure 5 gives a representation of the
photosphere and the effective temperature at its surface as
viewed face-on.
In evaluating this image, it should be recognized that in those

regions where the Thomson optical depth is ∼1–10—most of
the mini-disks’ surface area and part of the accretion
streams’—a substantial part of the dissipation may take place
in regions that actually lie outside the thermalization photo-
sphere. Consequently, our approximation overestimates the
thermal luminosity and underestimates the luminosity arising
from non-thermalized regions.
Outside thermalized regions, the predominant radiative

process is inverse Compton scattering. In such regions, the
dimensionless temperature kT m ce 2Q º rarely exceeds 0.2
because the Compton scattering energy-loss rate increases as
electrons become relativistic and further plasma cooling can be
accomplished by pair production (see the pedagogical review in

Figure 4. Log10 of the optical depth at m 0.5=˙ , r M60max = , 0camq = , and
t M t1180 2 bin=  . The rings of large optical depth circling the horizons
correspond to the photon spheres, where the geodesics wrap around the BHs
multiple times, accumulating extra optical depth.

Figure 5. Effective temperature on the photosphere, projected into the binary’s
orbital plane, at m 0.5=˙ , t=1030M. Log T T10 eff 0( ) in the fluid frame is
shown, where T 5 100

5= ´ K. The effective temperature at infinity is altered
by gravitational redshift and Doppler-boosting; the former dominates for face-
on views, so the observed effective temperature seen at 0camq  would be
rather lower near the BHs than shown here. Uncolored (white) areas within the
cavity region lack the opacity necessary to surpass the photosphere criterion.

6 Even though we locate the 1t = surface as the photosphere, we ignore it if
the total optical depth along the ray, tott , is 2tott < . This condition ensures that
the “top” photospheric surface (i.e., the one found by integrating through the
disk from above) lies above the “bottom” photospheric surface (i.e., the one
found by integrating through the disk from below).
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Krolik 1999). When the optical depth is small, the energy
spectrum of photons is exponentially cut off above Θ and
follows a power law below Θ. In observed AGNs, the power-
law (for intensity) varies from 0.3- to 1.3- (Trakhtenbrot
et al. 2017); for simplicity, we set it to −0.5. We then take the
emissivity to be

j
h

kT
e 12

1 2
h
kT

n
µ =n n

-
- n⎜ ⎟⎛

⎝
⎞
⎠ ( )

with kT 100 keV= , or 0.2Q  . We normalize the spectrum in
such a way that the bolometric emissivity matches the cooling
function at every point: j d d cò n W =n . This gives:

j
A4

, 13c 
p

=n n ( )

A d
kT

h
. 14ò n p= =n ( )

In these optically thin regions, the transfer equation is
integrated starting with Iν of the disk at the photosphere
(Equation (9)) or zero if this geodesic does not encounter a
photosphere. For jν and αν, it uses the emissivity
(Equation (13)) and the scattering opacity (Equation (7)).

3. Results

As mentioned in Section 2.3.3, we chose a total system mass
M M106=  to define the length scale and made two choices of
gas density scale through two choices of accretion rate in
Eddington units: m 0.5=˙ (high, Section 3.2) and m 8 10 4= ´ -˙
(low, Section 3.3).

3.1. Optical Depth Images

Thomson optical depth maps for m 0.5=˙ at a variety of
polar angles and times illustrate the basic geometry of the
system (Figure 6); these images can be readily scaled to other
accretion rates because they are linearly proportional to ṁ. The
16 panels show snapshots seen from four different polar angles
at four equally spaced times spanning M150 , a little more than
a quarter of a binary orbit.

The face-on view (0° inclination) provides an approximate
view of the surface density of the gas. The circumbinary disk is
generally quite optically thick ( 50t ), especially in the
overdensity or “lump” feature near its inner edge (Noble et al.
2012; Shi et al. 2012). As is usual for disks around binaries
with order-unity mass-ratios, the region within a2 of the
center of mass has very low density except in a pair of spiral
streams and in a pair of mini-disks, one surrounding each
member of the binary. However, there is also a high optical
depth ring around each BH. Rays reaching us from this close to
a BH wrap around it several times before heading off to
infinity, acquiring additional optical depth by traversing extra
path length. The characteristic magnitude of the optical depth
increases with inclination, reaching ;600–900 at 90camq = ,
as the path through the BBH system is longer by a factor of
sin cam

1q -( ) . Note, however, that the optical depth we measure at
edge-on views is not meaningful because real rays would
traverse parts of the disk well outside our simulation domain.

At intermediate viewing angles (e.g., the 39° inclination
shown in the second row of Figure 6), the optical depth images
still show the circumbinary disk geometry clearly. However, at
large viewing angles ( 71  inclination, bottom two rows of

Figure 6), gravitational effects distort the image very strongly.
There is a region of high optical depth below the BHs, where
the photons travel through the circumbinary disk twice: starting
above the circumbinary disk on the far side of the BHs, they
pass downward behind the BHs through the disk, curve through
the cavity underneath, and are finally gravitationally pulled
upward (by the BHs) and traverse a second time through the
circumbinary disk toward the camera. The low optical depth
region above the BHs arises from those photons that travel over
the BHs and the circumbinary disk and then curve upward
through the cavity, avoiding the dense gas found in the disks
altogether.
Subtler relativistic features also appear at large viewing

angles. A mass moving along the line of sight to an observer
creates a gravitationally lensed image of a source on its far side
that is smaller than its true size if the BH approaches the
observer(Heyrovský 2005). More exotic but perhaps less
apparent, the appearance of a secondary image of one BH on
the opposite side of the other BH can be noticed; this image is
due to the extreme light deflection close to the horizons. A
good example can be seen in the third frames of the bottom two
rows of Figure 6, where a small oval feature forms on the left
side of the BH on the left. Regrettably, it is highly unlikely that
any of these imaging features will be spatially resolvable in the
foreseeable future.

3.2. High Accretion Rate

Our high accretion rate case, m 0.5=˙ , is designed to
demonstrate the interplay between optically thick and optically
thin regions. In the former, dissipated heat emerges in a
thermalized spectrum; in the latter, it is radiated by inverse
Compton scattering from a very hot electron population.
Source-integrated features such as spectra may be observable

soon. To compute spectra from our data, we take two time-
averages of the flux from face-on viewing angles, one over the
second binary orbit, the other over the third. The averaging
suppresses statistical fluctuations. We prevent blurring of the
different components of the disk in the images by rotating the
camera orientation camf at the binary orbital frequency. We
choose a face-on view at which our criterion for distinguishing
thermalized from coronal regions, namely whether the ray
optical depth is greater or less than unity, is well justified. At
higher inclinations it becomes increasingly suspect for two
reasons. First, the optical depth unity point on a geodesic is
found above the actual photosphere because the path-length is
sec camqµ . Second, actual systems viewed edge-on may be

obscured by material at distances not included in our
simulation.
Figure 7 shows the spectral luminosity density in this face-

on view. We define it as L r I d4 coscam
2 òp y= Wn n ( ) , where ψ

is the angle between the geodesic’s direction at the camera and
the line of sight to the center of mass. Images of the system
surface brightness at various frequencies in the face-on view
are shown in Figure 8.
Like classical AGN spectra, this spectrum can also be

described in terms of two components: a thermal UV/soft
X-ray portion and a coronal hard X-ray spectrum. The thermal
UV originates from the photospheres of the system; the hard
X-rays are emitted in optically thin regions, predominantly on
the top and bottom surfaces of the disks. All three locales—the
circumbinary disk, the accretion streams, and the mini-disks—
contribute to both the thermal and coronal spectral components.
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Figure 6. Optical depth integrated along the line of sight at 0camq = , 39°, 71°, and 90° from top to bottom, with m 0.5=˙ . Snapshot times are 1030M, 1080M,
1130M, and 1180M from left to right. The outermost radius shown is 50M, except at 90camq = , where it is set to 30M to focus on the complex relativistic effects at
play. The space between tickmarks on all the axes is 20M.
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However, as remarked in Section 2.3.6, our assignment of all
dissipation below the unit optical depth surface tends to transfer
power from the Comptonized hard X-ray component to the
thermal component, and this effect is particularly strong in the
mini-disks and the accretion streams.

The emitted power is dominated by the thermal UV, with
only ∼1% radiated in hard X-rays; this ratio may, however, be
exaggerated by our simple emission model. More surprisingly,
the single greatest contribution (≈65%) comes from the
circumbinary disk rather than the mini-disks. Because we
simulate a binary whose separation is only 20M, the binding
energy of an orbit at a M2 40= is 0.0125 in rest-mass terms;
this is more than half the effective radiative efficiency found in
our simulation. The mini-disks account for most of the
remainder (25%) in the second orbit, but share the luminosity
almost evenly with the accretion streams in the third orbit. The
mini-disks are less luminous than would be expected for the
several reasons enumerated in the previous paragraph.

It is unsurprising that the thermal peaks from the three
regions should be found at frequencies that increase gradually
from the circumbinary disk to the accretion streams to the mini-
disks. In time-steady ordinary accretion disks, the effective
temperature is r R rR

3 4 1 4µ - ( ), where RR is a correction factor
accounting for the net angular momentum flux and relativistic
corrections. This relation might be a reasonable approximation
within both the mini-disks and the circumbinary disk if r is
defined as the distance to the near BH in the mini-disks and the
distance to the center of mass in the circumbinary disk.
However, the “notch” separating the circumbinary disk and
mini-disk thermal spectra predicted by Roedig et al. (2014) is
not apparent. This can likely be attributed to the comparative
faintness of the mini-disks in a system with binary separation as
small as the one we have analyzed (see Section 4.1 for the
arguments supporting this contention).

A more detailed analysis of where different frequencies are
radiated is aided by the images of Figure 8. The UV surface
brightness (first panel) in optically thick regions varies hardly
at all from the circumbinary disk to the accretion streams to the
mini-disks, but the larger area of the circumbinary disk makes it
the primary contributor to the luminosity in this band.

However, because the mini-disks are warmer than the
circumbinary disk, their thermal spectrum remains bright
farther into the extreme-UV (second panel). This image further
reveals that, especially in the third orbit, a sizable part of the
dissipation occurring in the mini-disks takes place in spiral
shocks. In the soft X-ray band (third panel), the principal
contributor is the extreme Wien tail of the thermal emission
from the mini-disks. Finally, in the hard X-ray band (fourth
panel), the emission is dominated by the optically thin
component in the corona, which is strongly concentrated in
the innermost rings of the mini-disks. Again, we caution that
the mini-disk radiation produced in our model may over-
estimate the thermal component at the expense of the
Comptonized X-rays.
The first two panels in Figure 8 also show that nearly all the

light attributed to the accretion streams in Figure 7 is associated
with the shock that occurs when the accretion stream, having
been strongly torqued by the binary’s gravity, is flung outward
and strikes the inner edge of the circumbinary disk.
A number of these comments are in agreement with the 2D

“α-viscosity” hydrodynamics simulations of Farris et al.
(2015b). They, too, found enhanced emission due to shocks
between the accretion streams and both the inner edge of the
circumbinary disk and the outer edges of the mini-disks. In
addition, because they assumed all radiation was thermal, they
placed all this light in the UV/extreme-UV. However, they also
found the unshocked streams had high surface brightness, a
result attributable to the “α-viscosity” creating dissipation even
in laminar regions if they contained significant shear. In
addition, their separation of “mini-disks” from “cavity” from
“circumbinary disk” is different from ours, so the separate
luminosity contributions cannot be directly compared.
Although the images of surface brightness are qualitatively
similar to those of Tang et al. (2018) at times well before
merger in their simulations, and the mass of the system they
simulate is only twice that of ours, the effective temperatures
Tang et al. (2018) find (∼1 keV in the circumbinary disk, tens
of keV in the mini-disks) are much higher than ours. It is
possible this contrast arises because their simulation treats a
case with an accretion rate 104 ´ ours (in order to support

Figure 7. Time-averaged luminosity ( Ln n) spectrum obtained at 0camq =  and r M1000cam = with m 0.5=˙ using simulation data from the second orbit (left) and the
third orbit (right). We have separated contributions from the mini-disk regions (r a< ), the accretion streams (a r a2< < ) and the circumbinary region (r a2> ). The
shaded region around each curve represents the temporal variability of each component, one standard deviation above and below, using a cadence of 10M for each
orbit (60 samples). The cusps on the lower side of the mini-disks’ shaded region in the left-hand panel represent points lying off the scale because the mini-disks’
thermal emission fluctuates by an order of magnitude in the second orbit.
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temperatures 10 ´ higher on a similar thermally radiating
surface area), but they explicitly state neither the accretion rate
they found nor the magnitude of their initial gas surface
density.

3.3. Low Accretion Rate

As explained earlier, we have complete freedom to choose
the inclination of the camera only if the whole domain is
optically thin. To enable further study of inclination effects, we
also studied a low accretion rate, m 8 10 4= ´ -˙ . Because
the density is 625´ lower in this case than in the high accretion
rate case, the system stays optically thin along all directions
except those within 20»  of the orbital plane. For high
inclination angles ( 45cam q ), the camera’s azimuthal angle
also becomes important. Note that here the azimuthal angle is
measured in the corotating frame of the binary, with

90camf = ◦ when the camera is aligned with the two BHs. If,
as is more likely in reality, the camera is stationary in an inertial
frame, the camera’s effective azimuthal angle varies periodi-
cally as the binary members orbit.

We first display images of very hard X-ray (1019 Hz,
400 keV) intensity at three different inclination angles, each

viewed at four different times spread over a quarter-period
(Figure 9). These images somewhat resemble those of optical
depth presented in Section 3.1 because the cooling function,
like the scattering coefficient, is proportional to the density.
However, while the optical depth of the inner circumbinary
disk is generally 5´ the optical depth of the mini-disks, the

X-ray surface brightness of the mini-disks is 5´ that of the
circumbinary disk. This is, of course, because the rate of energy
dissipation per unit mass is much higher, so close to the BHs.
The spectrum of the optically thin case looks very much like

the high-energy ( 3 1016n > ´ Hz) portion of the spectrum
shown in Figure 7 because we assumed that the fluid-frame
coronal spectrum is the same everywhere. Relativistic effects,
however, lead to significant viewing-angle dependence.
Although the shape of the spectrum depends only very

weakly on viewing angle, relativistic effects alter the angular
distribution of its intensity strongly enough to be observation-
ally interesting. Figures 10 and 11 display how the observed
bolometric flux depends on both the polar and azimuthal angle
of an observer. We show only bolometric luminosity because
the spectral shape is much less sensitive to viewing angle than
its overall level.
At most inclinations ( 70cam q ), the flux is almost

independent of azimuthal angle, but increases with inclination
due to relativistic beaming of light emitted by gas moving
toward the observer. However, for nearly edge-on viewing
angles ( 70cam q ), the angular dependence becomes more
complex due to three effects. First, lensing of the farther BH by
the nearer one when 90camf  or 270◦ significantly brightens
the image; the peak flux can be a factor of 3 higher than at other
azimuthal angles with the same inclination. Second, relativistic
beaming increases sharply with greater polar angle. Third, even
for ṁ as low as 8 10 4´ - , the circumbinary disk can intercept
light along rays passing close to the orbital plane. Smaller
values of ṁ would diminish the range of angles around the

Figure 8. Images of time-averaged spectral power ( r I4 cam
2p n n) erg s 1-[ ] at various frequencies with m 0.5=˙ , showing the transition from the blackbody-dominated

regime to the inverse Compton scattering-dominated regime. The time averages were performed over the second orbit (top row) and the third orbit (bottom row)
separately. From left to right, we encounter (i) the circumbinary dominated UV, (ii) mini-disk-dominated soft X-rays, (iii) X-rays near the boundary between thermal
and corona dominance, and (iv) the mini-disk corona-dominated hard X-rays. The two white circles in each panel mark r=a and r a2= . The space between
tickmarks on all the axes is 20M.
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plane affected by optical depth. Because the bright peak is due
to lensing, it is not particularly affected by the optical depth
through the disk. However, at other azimuthal angles, the disk
cuts off the rise in flux due to Doppler beaming, running almost
all the way around the orbital plane in which the flux at

90camq =  is almost a factor of 2 smaller than that
at 70camq = .

4. Discussion

4.1. Spectral Features

There has been much discussion in the literature regarding
the imprint on the thermal spectrum that may be created by the
gap formed around a binary, with suggestions ranging from a
sharp cut-off at the temperature of the circumbinary disk’s
inner edge (in early work assuming there is little accretion from
the circumbinary disk to the binary: Gültekin & Miller 2012;
Kocsis et al. 2012; Tanaka et al. 2012; Tanaka & Haiman
2013), to a deep notch between frequencies corresponding to

the temperature of the circumbinary disk’s inner edge and those
corresponding to the temperature of the mini-disks’ outer edge
(Roedig et al. 2014), to a gentle change of slope in this region
(Farris et al. 2015b) or a distinct notch, but centered at several
keV (Tang et al. 2018). The degree to which such a feature
appears hinges on the contrast between the highest temperature
achieved in the circumbinary disk and the lowest temperature
found in the mini-disks; more precisely, the relevant contrast is
between the temperatures of regions radiating thermally.
Applying simple equilibrium Newtonian disk theory to this
situation, as in Roedig et al. (2014), leads to a temperature ratio
across the gap of ;3.
In our high accretion rate example, this ratio is smaller, only

;1.25–2 (see Figure 5), smoothing the spectrum so that the
notch almost disappears (see Figure 8). The diminished
temperature ratio results from a combination of effects, none
of them present in simple disk theory.
One is a higher temperature strip along the inner edge of the

circumbinary disk (also visible in Figure 5) due to the shock

Figure 9. Log10 of spectral power ( r I4 cam
2p n n) erg s 1-[ ] at 10 Hz19n = , 0 , 71 , 90camq =    (from top to bottom) and t M M M M1030 , 1080 , 1130 , 1180= (from

left to right), with m 8 10 4= ´ -˙ . Again, the width of each image is 50M, except at 90camq =  where it is set to 30M to give a better view of the gravitational lensing.
The space between tickmarks on all the axes is 20M.
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driven by accretion streams flung outward by the binary’s
torque. Also found in the work of Farris et al. (2015b), this strip
can partially fill the notch if it radiates thermally.

The small binary separation we have studied (a M20= ) also
leads to a weaker temperature contrast: the outer edges of these
mini-disks are only a factor of 2 outside their innermost stable
circular orbit (ISCO) radii. So close to the ISCO, the dissipation
rate per unit area rises inward considerably more gradually than the
classical r 3- scaling. Incorporating this correction into standard
disk theory for spin-less BHs (as in our simulations) diminishes the
predicted temperature ratio from 3 to 2 , but if the BHs had
near-maximal spin, there would be essentially no alteration to the
temperature ratio because the ISCO angular momentum is rather
smaller for rapidly spinning BHs than for non-spinning BHs, and
this flattening of the dissipation profile is due to diminution of
radial contrast in angular momentum. For essentially the same
reason, at radii only a few times that of the ISCO, radial pressure
gradients can accelerate inflow without dissipation (Beloborodov
& Illarionov 2001; Krolik et al. 2005). Thus, the surface brightness
not far outside the ISCO can be significantly depressed relative to
the classical r 3- scaling. In addition, the short inflow time in the
mini-disks when the binary separation is small leads to a state in
which they are close to inflow equilibrium with respect to their
instantaneous mass accretion rates, but this rate can be either larger
or smaller than their mean share of the accretion rate through the
circumbinary disk.

Thus, in the circumstances posited here, the notch is likely to
be weak. However, it could partly re-emerge in binaries with
separations larger by a factor of 2–3 or more or in binaries in
which the BHs spin rapidly because in both instances the outer
rim of the mini-disks is farther from the ISCO. It might be
further re-excavated if more of what is considered “disk” in our
analysis were, in fact, optically thin enough to make
thermalization of its emission imperfect. Even at an accretion
rate m 0.5=˙ , the Thomson optical depth through the outer rim
of the mini-disks, where the accretion streams strike, is only
;5–10. Particularly at the very high post-shock temperature
associated with these shocks, the absorption opacity is likely
too low to thermalize the radiation spectrum. As a result,
energy would be shifted from radiation at the lowest
temperature of the mini-disks to much harder photons, while

the higher-temperature thermally radiating regions of the mini-
disks would be unaffected.
Hard X-ray production is generic to accreting BHs, and is

usually attributed to inverse Compton scattering by electrons
heated by magnetic dissipation events in low-density material
above the accretion disk (Schnittman et al. 2013). At low
accretion rates, the optical depth of the mini-disks, the
accretion streams, and the inner regions of the circumbinary
disk would be so small that essentially all the radiated power
should be in this band. Post-processing of simulation data
relevant to single BHs with high accretion rates indicates that
∼10% of the heating takes place in regions optically thin to
Thomson scattering, and is therefore radiated as Compton-
scattered hard X-rays (Noble & Krolik 2009; Schnittman
et al. 2013). In our high accretion rate case, the hard X-ray
luminosity is a similar fraction of the mini-disk luminosity. As
we have already remarked elsewhere, more realistic emissivity
models may lead to an augmentation of the X-ray luminosity.
In addition, because this simulation had a sizable cut-out at the
system center of mass, we were unable to see the “sloshing”
motion described in Bowen et al. (2017); the shocks in this part
of the flow may also produce X-rays.

4.2. Radiative Efficiency

Integrating over the face-on spectrum, we find that the
emitted power in the high accretion case is L0.1 Edd rather
than the L0.5 Edd that might be expected from m 0.5=˙ . Several
factors contribute to this discrepancy (which applies equally
well to the low accretion rate case). Roughly half can be
attributed to our definition of ṁ, which assumes 10% radiative
efficiency, whereas these are Schwarzschild BHs, for which the
canonical radiative efficiency, the binding energy at the ISCO,
is only 5.7% (the actual radiative efficiency may reach 6%
according to Noble et al. 2011). A smaller decrease in the
luminosity observed in the face-on view is caused by
relativistic effects: beaming into the equatorial plane and
gravitational redshift (Noble et al. 2011 found the polar
suppression in a Schwarzschild spacetime to be ;10%).
In addition, as we have already emphasized, each mini-disk’s

outer edge is only twice as far from its BH as its ISCO. With

Figure 10. Dependence of the bolometric luminosity on the observer’s angle of inclination ( camq ) from the z+ -axis for m 8 10 4= ´ -˙ . The luminosity was averaged
over azimuthal viewing angle ( camf ), and time-averaged over the second orbit (left) and the third orbit (right). Curves at 12 equal intervals of time during each orbit are
shown.
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specific angular momentum only slightly greater than that at the
ISCO, gas can accrete with comparatively little in the way of
dissipation. When this occurs, matter is accreted with greater
orbital energy, and therefore radiates almost a factor of two less
efficiently (Beloborodov & Illarionov 2001).
Yet another relevant consideration is an artifact of the brief

duration of our simulation. To travel from the circumbinary
disk to the binary, matter must go inward once, be torqued to
greater angular momentum, shock against the circumbinary
disk, lose angular momentum, and then fall toward the binary.
This process takes roughly as long as an orbital period at the
circumbinary disk edge, approximately three binary orbital
periods. Because our simulation ran only three binary orbital
periods, it did not run long enough for the mass-supply rate to
the binary to equilibrate with the mass accretion rate in the
inner portion of the circumbinary disk.

4.3. Angular Dependence and Time Dependence

The accretion rate from a circumbinary disk to mini-disks
surrounding the individual members of a binary system is in
general modulated on frequencies comparable to the binary
orbital frequency (MacFadyen & Milosavljević 2008; Roedig
et al. 2011; Noble et al. 2012; Shi et al. 2012; Farris et al.
2014). Whether this translates into time dependence of
radiation depends on how swiftly the cross-gap accretion rate
translates into photon emission. When the inflow through
the mini-disks is governed by conventional disk mechanics
(i.e., turbulent MHD stresses), the inflow time is nearly always
considerably longer than the binary orbital period. In the
situation treated here, however, the mini-disk inflow time is
comparable to or shorter than the modulation period. As
mentioned in the previous subsection, this may in part be due to
the fact that the mini-disks’ outer edges are not far from the
ISCO, permitting accretion to be driven by pressure gradients
at least as much as by internal stresses (Beloborodov &
Illarionov 2001). Additionally, because the mini-disks are in a
binary, tidal forces induce spiral shocks that can also transport
angular momentum, particularly if the disk is comparatively hot
(Lynden-Bell & Pringle 1974; Ju et al. 2016), and these are
indeed present in our simulation data (Bowen et al. 2018). As a

result of the accelerated inflow rate, the switching of the
accretion from one mini-disk to the other that accompanies the
overall modulation in accretion rate is reflected in a strong
modulation of the accretion rate in each mini-disk; if the inflow
rate were slower, the accretion rate in the individual mini-disks
would track the longer-term accretion rate, not the modulated
version.
In this context, relativistic effects can create time variability

in a number of ways. As demonstrated in Section 3.3 with
regard to the low accretion rate case, Doppler beaming and
gravitational lensing can work together to induce periodic
variation at twice the orbital frequency when the system is
viewed within ≈20° of the orbital plane. Although Figure 11 is
posed in terms of azimuthal angle dependence in the corotating
frame, this translates to time dependence in an inertial frame.
Similar effects can also modulate the light observed from a

more rapidly accreting system viewed not too far from the
plane, but they work somewhat differently. The key change is
that these disks are much more optically thick. This means, for
example, that they are more effective at blocking nearly edge-
on views. In addition, and of greater interest, the time for
photons to escape from within a mini-disk can be comparable
to or longer than the inflow time within the mini-disk. When
the photon diffusion time is longer than the inflow time,
absorption can both smooth out the accretion rate modulation
and also suppress the emitted luminosity. Quantitative evalua-
tion of these effects demands more powerful simulation tools.

4.4. Caveats

Our methods are based upon some approximations that are
often, but not always, valid. One is the assumption of “fast
light.” This assumption essentially translates to ray-tracing
within single snapshots corresponding to a single value of
coordinate time, even though light requires a finite time to
travel across the source region. This approximation would not
support predictions of time variability on scales comparable to
or shorter than the light crossing time. However, because the
photon diffusion time through optically thick disks is
generically an order of magnitude or more longer than the
local dynamical time, and the dynamical time is r M M3 2~( ) ,

Figure 11. Dependence of the bolometric luminosity on the observer’s azimuthal position ( camf ) at a variety of inclination angles ( camq ) for m 8 10 4= ´ -˙ . Solid
curves represent time-averaged quantities over the second orbit (left) and the third orbit (right), while shaded regions show the standard deviation of the set of 12 time
levels of data used to make the averages. The ith curve from the bottom is vertically offset by i9 1 10 erg s sr38 1 1- ´ - -( ) , meaning the 0camq =  curve should really
lie at 1.1 10 erg s sr39 1 1~ ´ - - .
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such rapid variability is unlikely to be important for the thermal
portion of the spectrum. For the optically thin case, the relevant
considerations are different. Our model for the Comptonized
spectrum short-circuits any account of the time required for the
spectrum to reach a steady state. Because we set the
temperature in the optically thin corona component to a fixed
value, emulating the corona temperature seen in observed
AGNs, we neglect the time variability associated with
temperature fluctuations in the corona that may be present in
natural systems. The variability in the corona from our
calculations is therefore due solely to the cooling timescale,
set to be the local orbital period—a timescale much larger than
the local light crossing time. Thus, mainly because of the
assumptions built into our coronal emission model, our fast-
light approximation is expected to accurately capture the time
variability of our system.

Since the fast-light approximation required us to use the
same metric time slice used by the simulation data snapshot,
the geodesic calculation also assumed the fast-light approx-
imation. The spacetime dynamics are tied to the orbit of BHs,
so if the ratio of their orbital velocity to the speed of light is
small then we would expect that the fast-light approximation is
justified. At the a M20 separation considered here, this ratio
is ;0.1, which is small enough for the approximation to be
reasonable, but only marginally so. We will measure the error
of this assumption in future work in which we propagate the
photons in time with the spacetime and simulation data.

Another concern arises from the short duration of the
underlying simulation (three binary orbits). Over such a short
time, the system has not reached inflow equilibrium in any
sense; put another way, the accretion rate varies substantially as
a function of radius. This is likely true even if the accretion
rates onto the mini-disks are summed. By contrast, because
astrophysical BBHs have evolved for a number of orbits many
orders of magnitude larger than the three orbits of our GRMHD
simulation, in most instances they can be expected to have
reached a very close approximation to inflow equilibrium
(in terms of the total accretion rate onto the mini-disks).
Departures from a radially uniform accretion rate can lead to
distortions in the predicted spectrum by overemphasizing some
temperature regions and underemphasizing others. In addition,
as has been emphasized in both this paper and Bowen et al.
(2018), it is unclear to what degree the mini-disk regions ever
settle into a steady state given the possibility that they may
follow a sequence of depletion/refilling episodes if their inflow
rates are comparable to or faster than the binary orbital
frequency. If so, a time-dependent analysis of their emission
properties (as illustrated here) will be necessary.

A third concern is that our simulation determines the local
scale height of the disk by a rather ad hoc mechanism. In real
disks, it is the result of pressure support whose blend of
radiation and gas pressure, as well as its temperature, are
determined by a balance between turbulent dissipation and heat
transport. By contrast, in our simulation pressure is assumed to
be entirely gas pressure, and the local temperature is held close
to an imposed target temperature by forcing the gas to lose heat
at a rate comparable to the dynamical frequency. Although
these gross approximations may be very significant for
determination of the disk shape, they are likely less so for
time-averaged predictions of photon output. One reason is that

the local rate of heat dissipation is dependent upon the mass
accretion rate and the gravitational potential, rather than the
shape of the disk. Another is that thermal equilibrium fixes the
local spectrum once the surface brightness (the dissipation rate
per unit area) is known. Our very approximate description of
the cooling rate has the virtue of tying the local bolometric
luminosity very closely to the dissipation required by the local
accretion rate. It may, however, be unreliable in regions (e.g.,
the streams or very optically thick regions of the mini-disks)
where the physical cooling time may be long compared to the
time required to change the radius.
A further concern, closely related to the ad hoc cooling rate,

is that although we describe one case in which the accretion
rate is almost Eddington, we ignore both radiation forces and
photon trapping. It is probably best to think of our m 0.5=˙
example as an initial exploration of the properties of such disks.
It is also possible that by setting the criterion for emitting a

locally thermal spectrum to be the existence of a Thomson
scattering photosphere, we overestimated the thermal luminos-
ity and underestimated the unthermalized radiation. Regions
where the Thomson depth is only O 10< ( ) may, in fact,
produce spectra rather harder than the Planckians we
assigned them.
Our method (shooting rays from a distant camera to the

source) describes photon propagation well only when the entire
path is transparent. It is essentially for this reason that we
restricted our high accretion rate predictions to face-on views.
For predictions taking into account the shape of the photo-
sphere, as well as Compton scattering in coronal regions, a
method that follows photons from source to observer (e.g.,
Pandurata: Schnittman & Krolik 2013) is preferable.

5. Conclusions

In this paper we presented a first step toward estimating the
radiative properties of SMBBHs in the stage immediately
before merger.
When the accretion rate is great enough to make most of the

accretion flow optically thick, our model produces thermal
radiation with a spectrum that differs only modestly from
ordinary single BH systems. The contrasts may be greater,
however, for binaries with greater separations or containing
more rapidly spinning BHs or if regions of modest optical
depth achieve only partial thermodynamic equilibrium between
gas and photons.
Outside thermalized regions, inverse Compton scattering

between photons and high-energy electrons produces hard
X-ray emission. The hard X-ray flux may also be subject to
modulation on frequencies comparable to the binary orbital
frequency, particularly when the system is viewed from a
position near the orbital plane and the accretion rate is
comparatively low. Both Doppler beaming and gravitational
lensing can modulate the observed light flux seen by near-plane
observers. Additional X-ray variability may arise from
refilling/depletion episodes caused by periodic passage of the
BHs near the overdensity feature at the edge of the
circumbinary disk.
Some of our predictions are robust; others are subject to cautions

we have enumerated in Section 4.4. However, the post-processing
tool we have created has considerable flexibility and potential
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power, one that can be re-used—employing more realistic
assumptions—on data from future simulations.
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Appendix A
The Lorentz-invariant Radiative Transfer Equation

Let I, α, and j be the Lorentz-invariant intensity, absorption
coefficient, and emissivity, respectively, and let Iν, αν, and jν be
the values measured by a local observer that measures the
photon to have frequency ν. The relationship between these
two sets of quantities is

I
I

j
j

, , . 15
3 2n n

a a n= = =n n
n ( )

The radiative transfer equation in this observer’s frame is

dI

ds
j I , 16a= -n
n n n ( )

where ds is the incremental distance along the geodesic as seen
by the local observer. Inserting Equations (15) into (16) yields

dI

ds
j I

1
. 17

n
a= -( ) ( )

We wish to use the affine geodesic parameter to evolve this
differential equation. If we denote the local observer’s
4-velocity by vm and the photon’s wavevector by km, we have

the following relations:
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Using the freedom we have to choose λ up to an affine
transformation, we define the normalized wavevector N =m

kx c

2
º

l p
m¶

¶

m
. Equations (18) and (19) yield ds dn l= , and we

may rewrite (17) in the simple form:
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Appendix B
Conversion Factors

In order to convert variables used in HARM3D and BOTHROS
to cgs units, we need to match numerical scales (i.e., those
used in the code) to physical scales in cgs units. In the
following, we subscript with an “n” the variables in numerical
units, with a “c” those in cgs units, and with a “c/n” the
conversion factors between the two system of units,
X X Xc n c nº . Let us now discuss how cn is calculated from
nn . We have:

u N

c
. 21c n

c nn = - m
m( )

( )

Since the conversion factors should all be constants along the
geodesics, we can evaluate them at the camera. We denote by
Cm the 4-velocity of the camera, which we set to 1, 0, 0, 0( ),
and the subscript¥ denotes a quantity evaluated at the camera.
If the camera observes the photon at a given frequency cn ¥, we
then get:

u N
C N

C N

c
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As we mentioned in Section 2.3.1, Nm
¥ is set such that the

geodesics are null (N N 0=m
m ), point to the camera from the

field, and move forward in time. Putting this into (21), we
obtain:

u N

c C N
. 23c n

c n c

n
n

n
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m

m
m
¥

¥

( )
( )
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The density scale of the gas is set by choosing an average
accretion rate into the system normalized by the numerical one
measured from the simulation data. Because our circumbinary
disk has reached inflow equilibrium only out to r a4~ we
choose a r a2 4< < as the region within which to measure the
simulation’s accretion rate in code units, i.e., Mn˙ . Measuring
this from the Noble et al. (2012) simulation, we find M 0.03n »˙
at t M50,000= , the time from which we start the Bowen et al.
(2018) simulation.
The other quantities are more straightforward to transform,

and the scales used are shown in Table 1.
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Table 1
Scales Used in BOTHROS to Determine the Conversion Factors in Translating Numerical Units to cgs Units

Quantity (Q) Numerical (Qn) CGS (Qc) Conversion (Qc n)

Length (L) M 1n [ ] GM cc
2 Lc/Ln

Time (T) M 1n [ ] cLc cLc n

Mass (M) M 1n [ ] M M10c
6

[ ] Mc/Mn

Accretion rate (Ṁ ) M 0.03n˙ [ ] M M8 10 0.5c
4

Edd´ --˙ [ ˙ ] M Mc n˙ ˙
Mass density (ρ) M L4n n

2p˙ ( ) M cL4c c
2p˙ ( ) M cLc n c n

2˙ ( )
Frequency (ν) C N 1n- m

m
¥( ) [ ] 10 10 Hzc

14 21n -¥ [ ] C Nc nn- m
m

¥ ¥( )
Affine parameter (λ) Ln nn Lc cn Lc n c nn

Note.Refer to Equation (23) regarding nn . Mn˙ is measured at the inner edge of the circumbinary. We see that all conversion factors can be derived from the free
parameters Mc, Mc˙ and cn ¥. Actual scaling parameters used are specified in square brackets “[].”
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