THE ASTROPHYSICAL JOURNAL, 866:5 (17pp), 2018 October 10

© 2018. The American Astronomical Society. All rights reserved.

Sound Speed Dependence of Alignment in Accretion Disks
Subjected to Lense-Thirring Torques

John F. Hawley' @ and Julian H. Krolik*
! Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA
2Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA
Received 2018 February 25; revised 2018 September 4; accepted 2018 September 4; published 2018 October 5

Abstract

We present a series of simulations in both pure hydrodynamics (HD) and magnetohydrodynamics (MHD)
exploring the degree to which alignment of disks subjected to external precessional torques (e.g., as in the
“Bardeen—Petterson” effect) is dependent upon the disk sound speed c,. Across the range of sound speeds
examined, we find that the influence of the sound speed can be encapsulated in a simple “lumped-parameter”
model proposed by Sorathia et al. In this model, alignment fronts propagate outward at a speed ~0.2r{)pecess(1),
where €).cess is the local test-particle precession frequency. Meanwhile, transonic radial motions transport angular
momentum both inward and outward at a rate that can, in steady-state, be described roughly in terms of an
orientation diffusion model with diffusion coefficient ~2¢2 /€2, for local orbital frequency 2. The competition

between the two leads, in isothermal disks, to a stationary position for the alignment front at a radius o<c{4/ 3. For
alignment to happen at all, the disk must either be turbulent due to the magnetorotational instability in MHD, or, in
HD, it must be cool enough for the bending waves driven by disk warp to be nonlinear at their launch point.
Contrary to long-standing predictions, warp dynamics in MHD disks appears to be independent of the ratio
s/ (o), for orbital speed vy, and ratio of stress to pressure «. In purely HD disks, i.e., those with no internal
stresses other than bulk viscosity, warmer disks align weakly or not at all; cooler disks align qualitatively similarly
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to MHD disks.
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1. Introduction

Considerable theoretical effort has been devoted to under-
standing disk alignment, but progress has been slow. One
reason stems from one of the earliest results in the field. As
shown long ago by Papaloizou & Pringle (1983), warped disks
necessarily create radial pressure gradients. These radial
pressure gradients then induce radial fluid motions, which
can carry differently aligned angular momentum from one
radius to another. One of the central questions to answer is
therefore the nature of the mechanisms governing the speed of
these radial motions. Reynolds stresses result from these
motions, but they are difficult to quantify because they
correspond to different elements of the stress tensor than those
associated with accretion.

Early efforts to define these stresses focused on analytical
approaches (Bardeen & Petterson 1975; Hatchett et al. 1981;
Papaloizou & Pringle 1983; Pringle 1992; Papaloizou &
Lin 1995). It was therefore natural to adopt a simple
prescription for stresses, the Shakura & Sunyaev (1973) “o”
model. However, applying this model to warped disks required
extending it from its original definition (vertically integrated
and time-averaged stresses mediating accretion in flat disks, not
necessarily tied to any particular mechanism) to one in which it
was specifically a viscosity (therefore negatively proportional
to shear) and applied to all components of the stress tensor.
Introduction of this ansatz led to a dichotomy in warped disk
problems, dividing them according to whether the ratio of
stress to pressure o was greater than the disk aspect ratio (the
“diffusive” regime) or the other way around (the “bending
wave” regime) (Papaloizou & Pringle 1983; Papaloizou &
Lin 1995).

Another reason for slow progress is the centrality of
nonlinear fluid dynamics, for which numerical simulation is a
better tool than analytic methods. An exemplar is the
pioneering work of Nelson & Papaloizou (2000), which
investigated nonlinear effects in the alignment process through
numerical simulations using smoothed particle hydrodynamics
(SPH). In their calculation, internal stress was provided by the
intrinsic numerical viscosity of the SPH code; this effective
viscosity was calibrated with a series of bending wave
calculations (Nelson & Papaloizou 1999). They examined
alignment for different disk thicknesses (e.g., Mach number =
12, 30), different black hole inclinations (10°, 30°), and a
variety of Newtonian and pseudo-Newtonian potentials
designed to model the Lense—Thirring effect; in some cases,
they also included relativistic apsidal precession. They found,
among other things, that the alignment transition radius rrz,
defined as the point where the disk tilt has a value halfway
between the initial misalignment and full alignment, lies at
smaller radius than originally predicted by Bardeen & Petterson
(1975), and that r7 is larger for a thinner disk. They proposed
several analytic models, all of them based on versions of the
diffusion approximation, for the location of rr as a function of
disk and black hole parameters. Since this work, there have
also been numerous other SPH-based investigations, all
assuming an « model, viz. that the fluid’s internal stresses
can be described by an isotropic viscosity whose stress
is linearly proportional to the local pressure (Lodato &
Pringle 2007; Lodato & Price 2010; Nixon et al. 2012; Nealon
et al. 2016).

Internal stress is an essential component of disk dynamics,
but it does not originate with some unknown «a viscosity, nor is
it necessarily isotropic; rather, it arises from MHD turbulence
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within the disk that is driven by the magnetorotational
instability (MRI; Balbus & Hawley 1991, 1998). MHD
simulations require abandoning SPH as the numerical techni-
que and adopting a grid-based scheme. This is not without its
difficulties, however. To capture the MHD turbulence, a
simulation must have relatively fine resolution within the disk
(dozens of grid zones across a pressure scale height /) and a
timestep that is very short compared to an orbital timescale. As
a further challenge, the Lense—Thirring precession frequency
{precess at the transition radius is considerably smaller than the
orbital frequency 2. Consequently, simulations able to probe
the alignment transition at a realistic scale are costly. One way
to address this challenge is to focus on the near-hole region,
where the various timescales are not too dissimilar, but if
Nelson & Papaloizou (2000) are correct, the disk must be
geometrically thick for the alignment transition to occur close
to the black hole. Fragile et al. (2007) and Morales Teixeira
et al. (2014) investigated this region with MHD simulations of
misaligned disks in the Kerr metric. A problem with working
so close to the black hole, however, is that the inflow rate is
rapid near the innermost stable orbit (the ISCO), both because
the ISCO is not far inside this region and because the disk’s
thickness implies a relatively high pressure, and radial pressure
gradients accelerate inflow. As a result, matter can be carried
into the black hole faster than the rate at which the disk can
precess or align. Liska et al. (2018) carried this program a step
further, focusing on the interaction between the alignment of
thick disks and jets.

We have adopted a different approach. Rather than
considering the problem with a relativistic metric, we instead
include only a lowest-order post-Newtonian term to represent
the Lense—Thirring torque in order to focus on idealized models
in which the physical processes can be studied in isolation and
in detail. Thus, we are not trying to simulate realistic disks, nor
would we expect the specific results of any one simulation to be
found in Nature; instead the goal is to isolate the principal
mechanisms at work. Moreover, throughout this program we
consider only genuinely physical mechanisms: that is, we
eschew any use of a phenomenological viscosity.

We began with the simulations of Sorathia et al. (2013b), who
considered the simple case of the relaxation of an unforced
warped disk in pure hydrodynamics, without internal stresses.
Angular momentum transport was controlled by unbalanced
pressure gradients associated with the warp. Sorathia et al.
(2013b) argued on the basis of their simulations that the most
relevant distinction is actually between linear and nonlinear
bending waves. If the local direction of the angular momentum is
defined by the unit vector £, bending waves become nonlinear
when the induced radial pressure contrast across an e-fold in
radius is order unity, ie., when ¢ = |d¢/dInr|/(h/r) > L.
Linear waves can propagate through a laminar background;
nonlinear waves are damped quickly as they induce shocks
(Nelson & Papaloizou 1999; Sorathia et al. 2013b).

Our next study (Sorathia et al. 2013a) simulated a misaligned
disk with fully developed MHD turbulence in Newtonian
dynamics. To represent the Lense—Thirring (gravito-magnetic)
torque, we follow Nelson & Papaloizou (2000) and use the
form pv x h, where p is the mass density, v is the fluid
velocity, and

2 6 -r)r
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Here J represents the specific angular momentum of the central
mass and r is the spherical radius; the parameter a used to
describe spin in a Kerr spacetime specifies its magnitude in
units of r,c, where r, = GM| / ¢?. In terms of this parameter, the
Lense-Thirring precession frequency is

2

Qprecess = % ()
Because Qprecess <K ) except very near the black hole, and
numerical simulation of MHD turbulence demands resolving
timescales <2~!, the computational expense of such a
simulation can be prohibitive. To alleviate this problem while
retaining the essential physics, we chose to multiply {2precess by
a constant factor large enough to make it ~O(0.1)2:
sufficiently small compared to the dynamical frequency for
orbital dynamics to dominate, but not so small as to make the
simulations impossible.

Making this parameter adjustment, Sorathia et al. (2013a)
evolved a moderately thick (h/r ~ 0.1-0.2) disk with an
adiabatic equation of state, using both hydrodynamics (HD)
and MHD. The results showed no support for the assumption
that an isotropic viscosity limits vertical shear, as the actual
magnitude of the r—z component of the magnetic stress is both
very small and carries a sign uncorrelated to the sign of the
shear (unlike any sort of viscous stress or the r—¢ stress
resulting from the MRI). Thus, what regulates the magnitude of
the radial velocities is not viscosity, but pressure gradients and
gravity. Because so much previous work had assumed the
existence of an “isotropic «v viscosity,” this finding calls into
question much that had seemed well-established. In particular,
if this viscosity does not actually exist, what is the meaning of a
regime distinction based upon it?

This work also emphasized a prerequisite for disk alignment:
a negative precession phase gradient, so that the angular
momentum carried outward by the radial motions has the
correct sign for alignment. It further found that although
magnetic forces are in general weaker than pressure forces in
warped disks, MHD turbulence disrupts the phase coherence of
bending waves, delaying the enforcement of solid-body
precession and maintaining the precession phase gradient.
MHD turbulence also completes alignment even when the
remaining warp is too small to drive Reynolds stresses. This
MHD simulation did not, however, achieve a steady-state
transition front; the alignment front traveled outward to where
the available gas, and hence misaligned angular momentum,
began to rapidly decline. Strikingly, the paired HD simulation
failed to align, an indication of the importance of MHD
turbulence to the alignment process, even though its direct
contribution to alignment is at most secondary.

Krolik & Hawley (2015) examined a disk with an isothermal
equation of state in which the surface density increased with
radius. The alignment front moved outward through the disk,
but slowed, reversed and then stopped, illustrating how a
steady-state transition front could be formed. To explain the
alignment front propagation speed, dry/dt, and the radius of the
steady-state transition radius rzy, Sorathia et al. (2013a) and
Krolik & Hawley (2015) proposed that the propagation speed
of the alignment front is determined by the rate at which
angular momentum whose direction could cancel the misalign-
ment could be carried outward in the disk. This rate is
characterized by the angle v between the angular momentum
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(perpendicular to the black hole spin axis) being carried
outward and the direction opposite to the local misaligned
angular momentum (here we use “local” to mean “averaged on
a spherical shell”). The transported angular momentum
optimally cancels the misaligned angular momentum when
v = 0. The local torque scales with the surface density > and
sin 3, the local misalignment. The alignment front propagation
speed is the ratio of this torque to the local misaligned angular
momentum, and is given by

dry
d_l]: = <COS ’Y> I(rf) Vprrecess, (3)

where the averaging over cosy refers to an average over the
turbulence. 7 is the dimensionless integral

3723 PX) sin 5(x) E(x)
I = f dx sin B(ry) E(rf)
in which x = r/r

Sorathia et al. (2013a) and Krolik & Hawley (2015)
proposed that alignment stalls where the speed of the alignment
front matches the speed with which misaligned angular
momentum from the outer disk is mixed inward. If this inward
mixing is described as a diffusion-like process, the diffusion
coefficient is ~c? /€. With this assumption, Krolik & Hawley
(2015) developed a relation for the transition radius ry as a
function of & /r. Because Krolik & Hawley (2015) considered
only a single value of &/r, however, they could not fully test
this hypothesis.

Dimensional analysis leads to an effective diffusion
coefficient proportional to CSZ /§2; consequently, this scaling is
shared with earlier diffusion models based on different
mechanisms (Pringle 1992; Scheuer & Feiler 1996; Nelson &
Papaloizou 2000). However, contrasting underlying mechan-
isms lead to different predictions for the dimensionless factor
multiplying ¢2/Q. Initially, it was thought to be ~a '
(Pringle 1992; Scheuer & Feiler 1996). Ogilvie (1999) then
pointed out that this estimate applied only to small amplitude
warps and developed a new prediction better-suited to the
quasilinear regime. As a nonlinear theory, however, it leads to
an effective warp diffusion coefficient that varies with position
and time. The SPH simulations Lodato & Price (2010), which
used an isotropic alpha viscosity, found consistency with the
Ogilvie (1999) predictions for an averaged value of the warp
amplitude when a > 0.2. However, for o < 0.2 (the physical
regime if « is estimated in a way informed by time-averaged
MHD simulations), the actual warp profile was not well-fit,
leading to progressively larger uncertainty in the numerical
inference of the warp diffusion coefficient as alpha decreased.
Further, even modest warps in this theory lead to negative
values of the effective accretion stress. More fundamental
questions were raised about the applicability of a diffusion
model by Sorathia et al. (2013b), who found that the stress
associated with nonlinear warps in pure non-viscous hydro-
dynamics was neither linearly proportional to the warp
amplitude nor simultaneous with the warp. In addition, no
diffusion model can be successful without a mechanism to
maintain the appropriate precession phase gradient interior to
the transition front.

The purpose of the present study is to deepen our
investigation of the transition front, and to test further the
applicability of the diffusive model as it appears in our
formulation. The prime question is: What is the dependence of

“)
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the alignment process and the location of r7 on the disk sound
speed? Unless rr scales in the right way with ¢, no diffusive
model can be correct. Equating the alignment front speed with
the diffusion velocity yields

<*COS "Y> IrTQprecess = A[C?/(l‘TQ)]B(}"T), (5)

where 2 is the local orbital frequency and A is the
dimensionless factor in the diffusion coefficient. The quantity
B = |0sin3/01Inr|/sin 3, so as to give the characteristic rate
at which misaligned angular momentum is transported radially
by diffusion. Inserting the radial dependences for ) ccess and
the orbital frequency, we find

2/5
rr/r = [—2(“/ f;ij": eIk ] (c/e)>. ©)
T

In other words, diffusive models in general predict r; < ¢, 43,
Here we present new isothermal disk simulations, similar to the
one carried out in Krolik & Hawley (2015), but with reduced
values of c¢;. Our aim is to test this scaling across as wide a
range of disk aspect ratio as possible (thereby also challenging
the a-based regime dichotomy) and, if the scaling is confirmed,
to calibrate the dimensionless factor A. We will, in addition,
study the degree to which diffusion may or may not describe
the time-dependent processes leading to an alignment steady
state.

2. Simulation Methods and Parameters
2.1. Model System

In the present work, we continue to use the model first
studied in Krolik & Hawley (2015), an isothermal disk orbiting
a point-mass in Newtoman gravi 3y with a Keplerian angular
velocity distribution, 0P =GM /r°. Since we employ a New-
tonian potential, the radial units are arbitrary, in contrast to both
relativistic gravity or a pseudo- Newtoman potential defined in
terms of a gravitational radius r, = GM /c%. To avoid creating a
naked singularity, |a/M| < 1 for real black holes; by contrast,
in our scale-free Newtonian approximation, we can regard J in
Equation (1) as a free parameter whose magnitude is
unbounded. The only physical constraint is to preserve the
ordering precess < 2. For the simulations in this paper, we set
GM=1, and Qprecess = 2/r*, which is equal to 1/15.8 of the
orbital frequency at the ﬁdumal radius of r = 10. We report
time in units of fiducial orbits, defined as 200 units of code
time, which is almost exactly the orbital period at r = 10, e.g.,

Py = 2772 = 199 at r = 10.

As in our earlier papers, we omit general relativistic apsidal
precession, which causes the epicyclic frequency to differ from
the circular orbital frequency. Because the focus of these
studies is on alignment far from the black hole, where the
apsidal precession frequency is much slower than the eddy
turnover rate in the MHD turbulence, we expect that any effects
due to apsidal precession would be minimal. Relativistic
apsidal precession has been modeled in Newtonian HD
simulations of warped disks (Nelson & Papaloizou 2000;
Nealon et al. 2016). Both studies, focusing on distances only a
few tens of r, from the black hole, found that apsidal
precession could influence alignment, but their other results
contrasted strongly, and neither identified any specific physical
mechanism by which apsidal precession modifies alignment.
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This question can more fruitfully be explored once the simpler
problem is better explicated.

The sound speed ¢? of the isothermal equation of state is
selected to set the scale height of the disk &2 = ¢, /€). The scale
height varies ocr3/2, making the disk aspect ratio flare outward
ocrl/2, We set the density at the equator p. = 1 at all radii and
determine its vertical distribution by assuming it is in
hydrostatic equilibrium, i.e., p = p.exp(—z2/2h?). At the
initial inner (r = 6) and outer disk limits, the disk is truncated.
Consequently, it is not in true radial pressure equilibrium
(especially at the disk boundaries), and in the subsequent
evolution the disk’s outer boundary moves outward from where
the disk was initially truncated. The surface density > o h
increases outward ocr3/2 until the outer portion of the disk
where, due to the finite size of the disk, > smoothly declines to
zero. This surface density profile does not correspond to inflow
equilibrium for this temperature distribution, but does con-
stitute a simple model where the sound speed is the dominant
factor in distinguishing one case from another. It should be
noted that not all disk systems in Nature are necessarily in
inflow equilibrium, and in any case alignment generically
proceeds faster than inflow (Papaloizou & Pringle 1983).

The initial magnetic field is defined by a vector potential
proportional to the square root of the disk density within an
“envelope” function,

Ay = Agp'/?sin [g(ro/r)l/z](r/rm = DA = r/row) (1)

where r, = 4 is the grid inner boundary, ry, is the disk inner
radius and ry,, is the disk outer radius. The vector potential is
limited to positive values with a cutoff at 0.05p,, i.e.,

Ay = max(A4s — 0.05p,, 0). (8)

The field amplitude factor Ay is chosen so that the initial
volume-integrated ratio of gas to magnetic pressure, the plasma
B, is 1000. This particular vector potential leads to a weak,
primarily radial, magnetic field that rapidly generates toroidal
field through Keplerian shear. Although a radial field is MRI
unstable (Hawley & Balbus 1992, provide an example of the
evolution of the radial MRI), the toroidal field MRI proves to
be the most significant in generating MHD turbulence. We seed
the MRI by imposing 1% random pressure perturbations on the
initial condition.

To ensure that the MHD turbulence is well-developed before
we study the effects of Lense—Thirring torques, we let the disk
evolve from this initial condition untii MHD turbulence is
developed in the inner disk, typically 15-20 fiducial orbits. At
that point, the torque is turned on and the disk evolved toward
an alignment steady state.

2.2. Numerics

As in our previous MHD simulations of warped disks
(Sorathia et al. 2013a; Krolik & Hawley 2015), we use our
Fortran-95 version of the 3D finite-difference code Zeus (Stone &
Norman 1992a, 1992b; Hawley & Stone 1995). The Zeus code
solves the standard equations of Newtonian MHD (supplemented
by the torque term previously described) using direct finite
differencing. We work in spherical coordinates (r, 6, ¢). The
radial grid extends outward from a minimum value using a
logarithmically graded mesh. Because we are working with
relatively thin disks, and we wish to avoid potential difficulties
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with coordinate singularities near the axis, we limit the extent of
0 to the interval [0.1, 0.9]7. The 6 zones are concentrated around
the equatorial plane using the polynomial spacing given by
Equation (6) of Noble et al. (2010),

0(y) = g[l +0 =92y - D+ (E - 27fc)(2y - 1)"]-
€))

The 6 grid index is y = (i + 0.5)/N, where i is the zone-index
and N is the total number of 6 zones; 6, is the size of the
“cutout” around the polar grid axis, £ = 0.65, and n = 13.
The resulting distribution of zones has a relatively large A6
near the cutouts along the axis, smoothly decreasing to a small,
constant Af over a symmetrical region surrounding the
equator. The ¢ coordinate covers the full 27 in angle with
uniform spacing.

2.3. Diagnostics

As in our previous studies, we establish Cartesian coordi-
nates to describe how the disk tilts and warps, choosing the
direction of the black hole spin J to define the z-axis. The polar
axis of the code’s spherical grid, which is parallel to the initial
disk angular momentum, is in the x—z plane, tilted 12° (0.21
radians) from the z-axis in the X direction. For questions of
alignment and evolution of the disk angular momentum, we
map the disk’s angular momentum vector onto this Cartesian
coordinate system. At each radius we compute a shell average
of the angular momentum, £(r), and transform the resulting
averaged vector into the Cartesian system. We can then define
several diagnostic quantities, such as the misalignment angle

B = tan~" (Jul/1LD), (10)

where €7 = £} + ¢7. In all the simulations reported here, the
value of [ starts at 12°; at perfect alignment 5 = 0. The
precession angle is defined as

Dprec = tan~' (4, /L,); (an

¢ increases as the disk angular momentum vector precesses
around the z-axis.

To gauge the numerical quality of the simulation we employ
certain metrics previously developed and studied in Hawley
et al. (2011, 2013), as well as in Sorathia et al. (2012). The Q
metrics measure the number of grid cells spanning a
characteristic MRI wavelength A\yr; = 27|va|/€2. Their speci-
fic definitions are

AMRIY
— Awrip 12
Oy AD (12)
and
AMRI¢
= CMRI$ 13
Q2 rsinf A¢ (13)

The Alfvén speed v in the expression for the characteristic
MRI wavelength is obtained from the appropriate component
of the magnetic field (By for Qy, B, for Q). The Q metrics are
density-weighted shell averages; larger values tend to yield
more fully developed turbulence. Hawley et al. (2011, 2013)
estimate that Q values >15-20are indicative of adequate
resolution.
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Table 1
Simulation List
Name (r, 0, &) c? h/r(=10) Orbits Fout
KH2015 352 x 384 x 1024 1073 0.1 124 35
KH2015-H 352 x 384 x 1024 1073 0.1 11.1 35
High-thin 704 x 770 x 1024 25 % 107* 0.05 22.3 31
Low-thin 320 x 400 x 500 25 % 107 0.05 22.6 28
Thin-H 320 x 400 x 500 25 % 107* 0.05 33.8 28
V-thin 765 x 765 x 1024 125 x 1074 0.035 15.2 37
V-thin-H 400 x 400 x 400 125 x 1074 0.035 21.0 35
Big-H 600 x 400 x 400 25 % 107% 0.05 20.8 100

A second set of metrics measures the average properties
of fully developed MHD turbulence; these metrics are
calibrated by the values measured in highly resolved local
simulations. Hawley et al. (2011, 2013) developed two such
diagnostics: upae = ,@/Pmag, the ratio of the Maxwell stress,
M,, = — B,B,/4r, to the magnetic pressure; and (B;) / (B3),
the ratio of the radial to toroidal magnetic energy. When
suitably averaged over the computational domain in well-
resolved simulations, including local shearing box simulations,
these quantities are 0.45 and 0.2, respectively (Hawley
et al. 2013).

We can also characterize the magnetic stress in the disk in
terms of the traditional o parameter. Here we define a shell-
averaged « as

fMordH
)= G ot (14)

It should be noted that both stress and density vary locally and
along all axes, and that, for simplicity, we compute the stress in
terms of the original (r, 6, ¢) grid, even when the disk is
aligned with the black hole equatorial plane. The small tilt
angle we assume (12°) makes that a reasonable approximation.

2.4. Simulations

Table 1 lists the simulations carried out for this study along
with the simulation from Krolik & Hawley (2015). The table
gives: the name of the simulation; the number of grid cells
employed; the sound speed; i/r at the fiducial radius r = 10;
the run duration with torque in units of fiducial orbits; and the
radius of the outer boundary of the disk at the onset of the LT
torque. This last quantity is defined as the radius where the
azimuthally averaged surface density drops below 5% of the
initial maximum value, except for Big-H, where it is the outer
grid boundary. For each MHD simulation, we also ran a purely
hydrodynamic counterpart. These models are labeled with a
suffix “H.”

Our prev10us simulation, KH2015, was an isothermal disk
with ¢* = 0.001, so that & = ¢,/Q0 = 1 at the fiducial radius
r =10 (i.e., i/r = 0.1 at that location). This simulation used a
grid of (352, 384, 1024) zones in (r, 8, ¢), spanning a range of
[4, 40] in radius, [0.1, 0.9]7 in @ and the full 27 in ¢. As the
primary goal of the present work is to examine the influence of
sound speed in the alignment of the disk, we will contrast
KH2015 with two thinner disks.

The High-thin model has half the sound speed and therefore
half the scale height of KH2015, with &/r = 0.05 at the
fiducial radius. The reduction in scale height demands a greater
number of grid cells if the number of zones per 4 is to be

maintained. It uses (704, 770, 1024) cells in (r, 6, ¢). For
comparison purposes we also carried out a lower resolution
version of this disk (Low-thin), which has (320, 400, 500) cells.
The radial mesh is spaced logarithmically between r = 4 and
35 in the low resolution simulation and between r = 4 and 40
in the high resolution case. In the high resolution simulation,
Ar = 0.0327 at the fiducial radius, and the 6 zones are
concentrated around the equatorial plane, as described above;
A6 = 0.0014 in the plane, corresponding to about 36 zones per
h (=0.5 at the fiducial radius). In the lower resolution
simulation, Ar at r = 10 is 0.068, and the minimum A# is
0.0027. The ¢ zones are always uniform in size, A¢p = 0.0061
in High-thin, 0.0126 in Low-thin. Outflow boundary conditions
are employed on the radial inner and outer boundaries, and
along the 6 boundary that forms a “cutout” around the
polar axis.

The initial evolution phase of High-thin was computed
without any applied LT torque and lasted 18 orbits. At the end
of the initial “no torque” phase (18 orbits), Q,, rises from 10 at
r = 5 to values above 30 for r > 9. Qg has a similar profile, but
is only ~0.850Q. These values indicate that the primary MRI
wavelength is well-resolved. Low-thin is similar, but with Q
values about half those in High-thin. At the end of the “no
torque” evolution in High-thin, oy, had an average value of
0.28 and (B?) / <B¢> had an average value of 0.14 between
r =5 and 25 (the main portion of the disk). These are below
the values associated with well-developed MHD turbulence
in highly resolved shearing sheet simulations (Hawley
et al. 2013), but they are relatively constant across the radial
range of the disk. Following this initial evolution the LT torque
was turned on, and the simulation ran for an additional 22.3
orbits.

In our second comparison run, V-thin, the sound speed is
reduced by a further /2, with ¢ = 1.25 x 10~*, making
h/r =0.035 at r=10. Resolution requirements make it
challenging to go to much smaller sound speeds, at least with
a single-grid system. V-thin uses 765 x 765 x 1024 grid
zones; the radial mesh is logarithmically distributed between
r =4 and 45, with Ar = 0.032 at the fiducial radius. The 6
zones are distributed according to Equation (9) with a
minimum A# = 0.0014, corresponding to 25 zones per h at
the fiducial radius. The ¢ zones are spaced identically as those
in High-thin. As with the other models, this disk was initially
evolved without any applied torque, in order to allow MHD
turbulence to develop. To save computational time, however,
the evolution without torque was limited to a ¢ domain
[0, 7w/2]. Because the primary MRI wavelengths are consider-
ably smaller than r7/2, and the resulting turbulence is local,
this should be adequate to establish the initial disk. The no
torque disk was evolved for 17.25 orbits, after which the data
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were replicated over the remaining azimuthal quadrants, small
random perturbations were added to break m = 4 symmetry,
the torque was switched on, and the simulation was run for an
additional 15.2 orbits. At the end of the initial “no torque”
phase, Qy varies between 10 and 25 inside of r = 11, rising to
above 30 for r > 12. Q4 ~ 20 inside r = 20, declining slowly
with radius beyond that point. These values are somewhat at
the low end of adequate resolution. At the end of the “no
torque” evolution, amy,,g had an average value of 0.18 and
(B?) /(B7) had an average value of 0.12 between r = 5 and 20.
Again, these are below the values associated with well-
developed MHD turbulence in highly resolved shearing sheet
simulations (Hawley et al. 2013), and lower than the values
found in High-thin.

Although alignment depends on the magnitude and proper-
ties of the internal stress, much of the process is purely
hydrodynamic, i.e., it is principally determined by pressure
gradients and gravity (Sorathia et al. 2013a). Simulation of
hydro disks therefore provides a mechanism to investigate
certain facets of the alignment process in isolation, as well as to
help identify the specific role of MHD stresses (Sorathia
et al. 2013a). These purely hydrodynamic (HD) disks are
inviscid; there is no internal stress (MHD or viscous), that is,
a = 0. Such disks are also of interest in their own right as they
can represent weakly magnetized or highly resistive disks, e.g.,
cold protostellar disks.

Because there is no need to resolve the MRI or the resulting
turbulence, HD models require less resolution and are less
expensive computationally. For simulation KH2015-H, how-
ever, we chose to use the same initial disk and grid as the
original MHD model and simply turned off the magnetic terms
at the time when the LT torque was applied. Any residual
internal disk turbulence died out promptly. The same procedure
was used for Thin-H, which began from the Low-thin initial
state. For hydrodynamic models with a different grid from the
MHD model, the initial disk was evolved without torque in
axisymmetry until the acoustic transients died down. Subse-
quently, the disk was mapped to full 3D and then subjected to
LT torque.

3. Results

Figure 1, which shows a density slice for each of the three
high resolution MHD simulations at late times in their torqued
evolution, gives an introduction to our results. The density slice
is in the ¢ = 0 plane, which corresponds to the maximum tilt
of the black hole equatorial plane with respect to the initial disk
equator (and grid equator). The relative thickness of the disks is
immediately apparent, as is the greater extent of the aligned
region as the sound speed decreases. In the following
subsections, we will elaborate more quantitatively on how the
pace and degree of alignment do (or do not) depend on sound
speed.

3.1. Dependence of Alignment on Sound Speed

The behavior of the alignment front in the MHD models
(KH2015, High-thin, and V-thin) is qualitatively, and in some
respects quantitatively, similar (see Figure 2). In all cases, when
the torque is turned on, an alignment front moves out through the
disk, and this front initially travels with almost the same speed in
all three of these simulations. Overlaid on each of the (3 plots in
Figure 2 is a curve showing a trajectory through spacetime
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Figure 1. Contour plots of of the log density in the ¢ = 0 plane at orbit 12 in
KH2015 (top), orbit 24.3 in model High-thin (middle) and orbit 15.2 in model
V-thin (bottom). The range in log density is from 1.0 to —3.3. Overlaid on each
figure is a line showing the equatorial plane for the black hole spin axis of 12°.

whose radial velocity is dry/dt = 0.35r0pecess(r). We chose the
coefficient 0.35 empirically because it provides a good fit to
the progress of the head of the alignment front, defined here as
the point where 3 = 10° (the red-orange edge in terms of the
color scale). The alignment front spreads as it moves outward
because the front speed decreases where (3 is smaller. For
example, drg/dt = 0.2r Qprecess(r) where (3= 6°, the half-
alignment level. Within the alignment front the value of 7
(Equation (4)) is 0.3-0.4, with the lower value during front
advancement and ~0.4 at the stalling radius. Similar behavior is
seen in all three models, except that the alignment front in V-thin
continues to advance over the length of the simulation. During
the time when the alignment front moves monotonically
outward, these speeds describe the propagation of the alignment
front in all three models, regardless of sound speed, suggesting
that the proportionality factor does not strongly depend on c,
and that the speed of the alignment front is determined solely by
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Figure 2. Spacetime diagrams (quantities integrated over spherical shells as
functions of radius and time) for the alignment angle 3 in simulations KH2015
(top), High-thin (middle), and V-thin (bottom). Time is in orbits at » = 10 after
the torque is applied. Colors run from 3 = 0 (blue: aligned) to 8 = 14° (red).
Overlaid on the spacetime diagrams is a curve corresponding to an alignment
front speed of 0.357€ccess- Note that the three simulations ran for different
durations (High-thin ran for the largest number of orbits), and the data are
missing from the first orbit in the V-thin model.

the delivery of aligning momentum by the LT torque for as long
as the front is still well inside the stalling radius. That this should
be so is reasonable because the alignment front’s characteristic
speed ocrQprecess is both independent of sound speed and or 2,
whereas dependence on sound speed enters through the radial
mixing speed ~c?/(r§2)), which is ocr'/2. Consequently, the
front’s motion depends only on the Lense-Thirring angular
momentum delivery rate at small radii.

The stalling radius is where those two velocities become
comparable, but the front does not stop the first time it reaches
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Figure 3. Alignment angle (3 as a function of log radius at orbit 10 in KH2015
(leftmost curve), and at orbit 18 in High-thin (rightmost solid curve). The
dashed line corresponds to the KH2015 curve moved to the right by a factor of
245, corresponding to the reduction in sound speed by 2 in going from
KH2015 to High-thin. The slope d3/d logr is quite similar for both models.

this point. Typically (as seen in the top and middle panels of
Figure 2), it overshoots, retreats, and only then approaches its
steady-state position. In both of these cases, where the 5 = 10°
contour peels away from the model curve is exactly where the
alignment front begins to fall back from its maximum
overshoot. Unlike the untrammeled alignment front speed,
the stalling radius does depend on sound speed; we also expect
that it will depend on the slope of the alignment profile
(Equation (6)). In KH2015 the front stalls after 5 orbits at about
r = 10, and subsequently retreats to establish a steady state at
r = 7 lasting from orbit 7 until the end of the simulation. In
High-thin the alignment front moves out farther, almost to
r ~ 15, before stalling around orbit 12. After staying at that
radius for several orbits, the alignment front subsequently
retreats to r = 12, where it remains for the last few orbits of the
simulation. In V-thin the alignment front moves outward very
nearly monotonically up until the end of the simulation at 15
orbits, when it has reached r ~ 16. In the 15 orbits of this
simulation, V-thin never reaches the point where mixing
motions characterized by the sound speed become significant.
The progressively longer times required to approach steady
state illustrate a difficulty with modeling increasingly thin
disks: as the transition radius moves out, the ratio of precession
rate to orbital frequency diminishes, and the front propagation
speed slows down. Very thin disks require not only greater
resolution, but also longer simulations.

All diffusion models, including ours, predict that the radius
of the steady-state alignment front should scale o<c;4/ 5 when
the disk is isothermal. This prediction is tested in Figure 3,
which shows G(r), the alignment angle as a function of radius
after alignment steady state has been achieved, at 10 orbits in
model KH2015 and 18 orbits in High-thin. In fact, scaling the
radial location of 3(r) in KH2015 by 2*/° (the predicted sound
speed scaling) gives excellent agreement not only in the
location of the alignment front, but also with respect to its
internal structure in the two simulations. The gradients in
alignment across the front in KH2015 and High-thin are nearly
identical: d sin(3)/dInr = 0.22 in the former, 0.20 in the
latter. That the shapes of the curves are so similar when ( is
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Figure 4. The radius where, in steady state, the alignment angle 3 = 3° plotted
as a function of the sound speed for the three runs KH2015 (orbit 12.4), High-
thin (orbit 15), and V-thin (orbit 15). The dashed line shows the location

obtained by rescaling the KH2015 point according to ¢, 473,

plotted as a function of Inr also demonstrates that the ratio of
the front’s thickness to its radius is nearly independent of c;.
V-thin does not reach an overall steady state during the time
it was evolved, but it does reach a steady state in the inner part
of the disk, where the alignment is close to complete. Figure 4
shows the location of the point where 3 = 3° in each of the
models as a function of sound speed. The dashed line
corresponds to a rescaling of the KH2015 value oc, 45 In
addition, the alignment gradient within the front, even though it
has not reached its equilibrium location, agrees closely with the
other two MHD simulations: d sin(3) /d Inr = 0.22 during the
final orbit. Thus, even partial alignment agrees very well with
the posited sound speed scaling.
In fact, the 0574/ 3 scaling of the alignment’s radial profile
applies even more generally than these MHD examples. A
comparison of 3(r) in two purely hydrodynamic runs, Thin-H
and V-thin-H, is given in Figure 5. As in Figure 3, the curve for
0(r) is moved outward by a factor corresponding to the ratio of
the sound speeds to the 4/5 power. The rescaled curve lies
nearly upon the curve for V-thin-H, indicating that the sound
speed dependence carries over to the HD case as well (although
not necessarily the coefficient). This is not completely
surprising, as the model is based on the premise that a
hydrodynamic quantity, c,;, determines the rate of inward
mixing of misaligned angular momentum. As will be discussed
in the following section, there are nevertheless points of both
contrast and similarity between paired HD and MHD disks.
The total warp rate ¢ = |0¢/01nr| = 12)(h/ r) combines the
alignment gradient with the precession phase gradient. In each
of these models, it is spatially noisy within the alignment front,
but we can compute mean values at the point where the front
stalls. In KH2015 the radially averaged mean value of
¥ = 0.22 at orbit 4 between r = 7 and 12 (corresponding to
the locations of 3 = 6° and 10°). For High-thin, ¢ = 0.31 at
orbit 12 between r = 12 and 17. V-thin does not stall, but at
the end of the simulation (orbit 15) 1) = 0.36 between r = 4
and 19. Contrasting these figures with the alignment gradient, it
is apparent that the contribution due to the precession phase
grows with decreasing sound speed: it is a minor contribution
for h/r = 0.1, but comparable to the alignment gradient’s
contribution for 4/r = 0.035.
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Figure 5. Alignment angle 3 as a function of log radius at orbit 15 in Thin-H
(leftmost curve), and V-thin-H (rightmost solid curve). The dashed line
corresponds to the Thin-H curve moved to the right by a factor of 22/3,

corresponding to the reduction in sound speed by V2 in going from Thin-H to
V-thin-H.

Figure 6 shows spacetime diagrams of the precession angle
¢. Again, there are qualitative similarities shared by all three
models. Initially, the disk precesses at the rate given by {)precess
but soon the precession rate slows and even reverses. Where
alignment is almost complete, the precession angle becomes ill-
defined, but outside of this region, for example at r = 7 in
KH2015, ¢ stops advancing after 2 orbits, reverses until orbit
3.5, and then advances again at a slower rate thereafter. Similar
behavior is seen farther out in the disk; after ~8 orbits, the
precession phase varies quite slowly with radius outside the
alignment front, so that the entire unaligned portion of the disk
precesses nearly as a solid-body with a precession frequency
close to the LT value at r = 16.°

Differential precession persists for a longer time, and to a
greater radius, the lower the sound speed. Comparison with
Figure 2 shows that, for KH2015 and High-thin, the disk
outside the transition front approaches solid-body precession
shortly after the transition front reaches its stalling position. In
High-thin, precession continues at the Lense—Thirring rate
inside r = 15 until orbit 5, after which precession slows and
gradually approaches a rate consistent with {2,recess at r = 20.
Shortly after orbit 15, the precessional phase becomes nearly
independent of radius beyond r = 15. By the end of the
simulation (22.3 orbits) some radial precessional phase gradient
is present from the inner disk out to » = 15; beyond that point
the disk is in solid-body precession. The alignment front in
V-thin continues to advance throughout the simulation. The
r = 15 precession angle ¢ advances at the LT rate through
orbit 5, after which it continues to advance at a slower rate, but
in this case corresponding roughly to the LT rate at r = 25. At
orbit 15, a radial precessional phase gradient persists from
r = 13 outward. The continued existence of a precession phase
gradient over a wide range of radii is consistent with the
continuing advancement of the alignment front.

These results are in keeping with previous warped disk
simulations, which typically found that solid-body precession
developed over the entire disk outside the aligned region (if one

3 Although in principle a disk precessing as a solid-body could have a fixed
precession phase gradient, i.e., a permanent twist, we use the term as short-
hand for “uniform precession phase.”
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Figure 6. Spacetime diagrams for the precession angle ¢ in the simulations
KH2015 (top), High-thin (middle) and V-thin (bottom). The angle ¢ runs
between 0 and 27, and the colors run from ¢ = 0 (blue) to ¢ = 2 radians (red)
with all ¢ angles from 2 to 27 as deep red. Times of partial solid-body
precession are shown by horizontal bands of constant color. A comparison of
the three plots shows that the lower the sound speed, the longer differential
precession continues in the disk.

exists). Papaloizou & Terquem (1995) studied bending waves
in a disk induced by the perturbing potential of a binary system.
Viscosity, a or otherwise, was not included. Their analysis led
to an expectation that the disk response could be solid-body
precession if its azimuthal sound crossing time is short
compared to the precession period. The numerical simulations
of Fragile & Anninos (2005), for example, found support for
this. Their hydrodynamic (and inviscid) disk, evolved in a
relativistic metric, aligned out to a relatively close-in radius
beyond which the disk evolved to near solid-body precession.
This result was interpreted as due to bending waves traveling
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across the disk faster than the external torque could drive
precession. In our simulations, the time-steady alignment
transition is consistently at a smaller radius than the point
outside which this criterion for bending wave enforcement of
solid-body precession would be satisfied. In addition, the
ability of bending waves to enforce solid-body precession is
limited by either passage through turbulence (e.g., driven by
the MRI: Sorathia et al. 2013a) or shock-damping when the
bending wave amplitude is nonlinear (see Section 3.2).

Thus, we conclude that, at least over the range of sound
speeds considered here, the two central predictions made by the
model are supported by simulation data. The outward speed of
the alignment front (when well inside its ultimate stationary
location) is ~0.35r{2ecess for the point where 15% alignment
has been achieved, and ~0.27{)cccss for the point where 50%
alignment is achieved, independent of sound speed. In addition,
the steady-state radial location of any given degree of
alignment scales o<cs’4/ 5, suggesting that, for the purpose of
determining steady-state alignment properties, the radial
mixing motions can be approximated as a sort of diffusive
process. Moreover, because the second scaling has the
corollary that the steady-state position of the alignment front
moves outward as ¢, declines, while the intrinsic front speed
decreases with increasing radius, the time required to reach the
steady state is occé,’lz/ 3, colder disks take much longer for the
alignment front to reach its steady state.

3.2. MHD versus HD

Figure 7 shows the evolution of the alignment angle 3 in the
three hydrodynamic models. The most striking thing to note is
that the hydrodynamic version of KH2015 does not achieve
much alignment. At r = 7 some alignment occurs in the first 3
orbits, when the inner disk reaches (3 = 6°6, but then it
regresses back to ~10°. In contrast, the thinner disks show
alignment superficially similar to their MHD counterparts.
Thus, the effects of MHD appear to be more dramatic in hotter,
geometrically thicker disks.

Similar behavior was seen by Sorathia et al. (2013a) in their
paired HD and MHD simulations. The disk was relatively
thick, with h/r ~ 0.12-0.2 at the beginning of the torqued
phase. Its adiabatic equation of state gave a sound speed that
varied in the disk, dropping with radius from Cs2 ~ 0.006 at
r = 17,100.001 at r = 20 (measurements taken at the end of the
run). The inner disk aligned in MHD, but not in HD. In the HD
disks, 1) ~ 2-3 in the initial waves that propagate outward
following the onset of torque. After these initial waves move
out, 1 < 1 throughout most of the disk, and only partial
alignment occurs inside of r = 10, where 3 ~ 6°. Differential
precession ends rather early on; by orbit 5 the disk is near solid-
body precession. Sorathia et al. (2013a) posited that the reason
the MHD disk aligned, while the HD disk did not, or did so
only partially, is that MHD turbulence disrupts the propagation
of bending waves, whereas the HD disk remained laminar,
permitting bending waves to travel. This contrast in bending
wave behavior is important because bending waves, if allowed
to propagate, can quickly lock a wide range of radii in the disk
into solid-body rotation, yet a negative radial gradient of
precession phase is essential to alignment. The same explana-
tion also appears to apply to the thinner disk examined by
KH2015. In our HD version of this simulation, KH2015-H,
bending waves (easily visible in the top panel of Figure 7)
travel rapidly outward, enforcing nearly solid-body precession
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Figure 7. Spacetime diagrams for the alignment angle 5 in the KH2015-H
model (top), Thin-H model (middle) and V-thin-H model (bottom). Colors run
from 3 = 0 (blue: aligned) to 3 = 14° (red). V-thin-H was evolved from an
initial hydrodynamic disk with an inner disk edge at r = 6.

20 25

throughout the disk in ~=3 orbits. Conversely, in KH2015,
bending waves are largely suppressed for the first 5 orbits; the
appearance of bending waves traveling outward from the
alignment front at that time signals the nearly simultaneous
erasure of precession phase gradients outside the alignment
front and the retreat of the alignment front to its long-term
location.

Cooler purely HD disks behave differently. Although High-
thin (a high resolution MHD run) and Thin-H (a lower
resolution HD run) show different histories of orientation front
overshoots and retreats, by the time 20-30 orbits have passed,

10
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both runs have reached near steady-state orientation profiles,
with the front located at very nearly the same place (contrast
the middle panels of Figures 2 and 7; note the different
durations of the runs). Thus, in contrast to KH2015-H, a purely
HD evolution is able to align in a way that ultimately resembles
an MHD disk. Interestingly, the alignment behavior of Low-
thin (a low resolution MHD run) is intermediate between High-
thin and Thin-H: the greater magnetic diffusivity created by
poor resolution makes Low-thin an only weakly MHD
simulation. The still cooler pure HD run V-thin-H behaves
similarly to Thin-H in that the initial alignment front stalls and
partially reverses by orbit 15, while the alignment front in the
MHD version continues to move outward.

To understand why cooler hydrodynamic disks are better
able to align, we look more closely at the character of the
bending waves as a function of sound speed. Just as in
KH2015-H, persistent inward- and outward-traveling bending
waves are visible in both of the thinner HD disks throughout
their evolutions, although the inward-directed waves are
considerably weaker in V-thin-H. However, KH2015-H differs
significantly from the others in its normalized warp amplitude.
The typical unnormalized warp amplitude of the initial bending
waves in KH2015-H is ¢ ~ 0.26, but the fiducial value of &/r
in KH2015-H, ~0.1, making the initial 121 ~ 2-3. By contrast,
in both Thin-H and V-thin-H, 17) is larger since /1/r is smaller (at
the fiducial radius, it is ~0.05 and ~0.035, respectively).
Consequently, the normalized warp v increases with decreas-
ing sound speed, making the cooler disks’ bending waves
increasingly nonlinear in the initial orbits after the torque is
turned on (first ~5 orbits for Thin-H, ﬁrst ~10-12 orbits for
V-thin-H). The spacetime diagram for 1 is shown in Figure 8.
In each of the three figures the color scale is proportional to the
sound speed. The increasing prevalence of red as the sound
speed decreases shows that ¥ increases by a greater factor with
decreasing sound speed than can be attributed solely to the
reduction in scale height. Note too that since &/r o r'/? in
these isothermal simulations, 121 declines with radius, all other
factors being equal. In addition, when the bending waves begin
at a nonlinear amplitude, ¢ diminishes as they travel, making
the decline of ¢ more rapid than r1/2

As shown by Sorathia et al. (2013b), the propagation of
linear and nonlinear bending waves is quite different. The
former can propagate long distances (in laminar disks) with
little damping, while the latter rapidly diminish in amplitude
through shock formation; indeed this diminution can be seen
along the wave tracks displayed in Figure 8. In Thin-H and
V-thin-H, this diminution in amplitude renders the waves less
effective in enforcing solid-body rotation than they are in
KH2015-H. Greater persistence of radial precession phase
contrast follows, and alignment can continue so long as
negative radial precession phase gradients endure. By this
means, as shown in Figure 7, the two thinner HD disks create
sizable aligned regions.

Figure 9 is a spacetime diagram of the radial precession
phase gradient, d¢/dr. In this figure the blue and cyan colors
correspond to negative gradients, a requirement for alignment.
Regions that are gray have no gradient, while yellow-red
regions have the wrong sign for alignment. In the top figure, for
Thin-H, the systematic cyan color in the region r > 10 gives
way to an unfavorable gradient after about 10 orbits. This
corresponds to the reversal of the alignment front after orbit 10
as seen in Figure 7. The criss-cross pattern of waves through
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Figure 8. Spacetime diagrams for the normalized warp ¢ in simulations
KH2015-H (top), Thin-H (middle), and V-Thin-H (bottom). Each plot has a its
own color scale, so that the relative scales are proportional to the relative sound

speed in each model. From this it is clear that v:b is larger in colder disks by an
amount that is greater than that which can be attributed to the decrease in h/r.
V-thin-H was evolved from an initial hydrodynamic disk with an inner disk
edge at r = 6.

the disk is visible in the disk after 10 orbits, with both positive
and negative gradients; the average is, however, slightly
negative and the alignment front recovers and stabilizes. The
MHD model (middle figure) is smoother, and the region of
negative gradient persists for a longer time, until orbit 15. The
“finger” of large positive d¢/dr running from (r = 8, r = 6) to
(r =10, t =9) lies along the edge of a nearly flat aligned
region which is no longer precessing; the angle ¢ “jumps” back
to the value given by {ecesst. Finally, the HD simulation from
Sorathia et al. (2013a) provides an example of the near absence
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Figure 9. Spacetime diagrams for the radial precession phase gradient d¢/dr in
simulations Thin-H (top), and High-Thin (middle), and the HD simulation from
Sorathia et al. (2013a).

of a precession phase gradient when ¢ is in the linear regime.
Following a brief initial period the disk simply experiences
outward moving waves with no net gradient as the disk
precesses as a solid-body (see Figure 3 in Sorathia et al.
2013a).

The basic criterion of the ability to maintain precession
phase gradients controls the effectiveness of alignment in both
MHD and purely HD disks. Because, for fixed external torques,
cooler disks have more nonlinear warps, and are therefore less
effective in creating regions of solid-body rotation, cooler disks
are also more able to align. This, too, is illustrated in Figure 7:
the aligned region in V-thin-H extends to larger radii than in
Thin-H. Similarly, the realignment episode seen between orbits
18 and 26 in Thin-H is associated with the reappearance of a
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Figure 10. Evolution of the precession angle ¢ as a function of time at r = 15
(upper pair of curves) and r = 20 (lower pair of curves) for V-thin (solid line)
and V-thin-H (dashed line). The straight lines (dotted—dashed) show the value
of ¢ given by Qprecess? at the selected radii.

precession phase gradient near the alignment front, even
though the outer regions of the disk at that time exhibit very
nearly solid-body precession.

In fact, V-thin-H succeeds so well with alignment that in
many ways it resembles its MHD partner V-thin. In V-thin-H the
alignment front moves at roughly the same pace as it does in
V-thin, and by orbit 15 the alignment front has arrived at very
nearly the same location in both. This early similarity in
alignment is mirrored in similarity of their precession phases
(Figure 10). However, this apparent elimination of contrast
between HD and MHD disks may be a symptom of the slowness
with which low sound speed disks’ alignment properties evolve.
Contrasting their alignment histories (Figure 2 versus Figure 7),
it is apparent that whereas the alignment front in V-thin moves
out monotonically, the alignment front in V-thin-H began to
move inward at >~ 15 orbits. Consideration of their distribution
of precession phases at this time suggests that at later times the
degree of alignment in these two simulations will diverge. At the
latest time in V-thin (15 orbits), the precession phase continues
to decline outside the alignment front, while in the last ~6 orbits
of V-thin-H (¢ =15 to r=21), the magnitude of the precession
phase gradient steadily declines, so that by ¢ = 20, there is
almost no phase contrast from r = 15 to r = 20 (Figure 10). If
our analysis of alignment dynamics is correct, the alignment
front in V-thin will continue to move outward, whereas that in
V-thin-H has already begun to turn around and move to smaller
radii.

Thus, we arrive at the conclusion that when HD disks are
cool enough for their bending waves to be strongly nonlinear at
their launch points, they are able to achieve steady-state
alignment configurations very similar to MHD disks. However,
the process by which they arrive at that steady state can be
somewhat different, especially in the sense that MHD disks
tend to overshoot the ultimate steady-state alignment location
by larger amounts than HD disks.

3.3. Very Large Disks

As we have already remarked, inward-traveling as well as
outward-traveling bending waves can be clearly seen in
Figure 7 in Thin-H, and more weakly in V-thin-H. Their
presence raises the question as to whether waves reflecting off
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Figure 11. Evolution of precession angle ¢ as a function of time at specific
radii in two hydrodynamic disk models. The solid lines are from Thin-H at
locations r = 15, 17, 20, and 25. The dotted—dashed lines are from Big-H at
locations r = 15, 20, and 25. The dashed line shows the angle corresponding to
precession at the LT rate at » = 17, the rate at which the outer disk in Low-thin
evolves toward at late time. Big-H, on the other hand, evolves toward a very
low, or zero, precession rate in the outer disk.

the outer boundary of the disk are overly influencing the
outcome. To test this hypothesis, we ran a model (“Big-H”)
with the same temperature as in Thin-H, but whose outer disk
boundary was moved to r = 100 so that no waves reflected
from there could reach the inner disk during the simulation. In
this model, the alignment front starts off much as in V-thin-H,
with the head of the alignment front (defined here as the radius
where 8 = 10°) reaching a radius comparable to that achieved
in High-thin, r = 17, at ~10 orbits. However, unlike High-
thin, in Big-H the front then retreats abruptly to r = 13, similar
to the location of the late-time front in Thin-H, and stays near
there until the end of the simulation at ~22 orbits. Consistent
with this behavior, the disk outside the alignment front has
essentially no remaining precession phase contrast after ~10
orbits. In this sense, the outer radius of the disk appears to
make little difference.

Larger disks do, however, affect the precession rate of the
solid-body precession in the outer disk (see Figure 11). In Thin-
H, the region r > 15 precesses at a rate equal to the LT rate at
r=17. By contrast, in Big-H, the disk at r > 15 briefly
precesses retrograde from ~9-12 orbits, and then hardly
precesses at all for the rest of the simulation. Such slow solid-
body precession corresponds to the rate at much larger radius, a
situation consistent with the fact that both the mass and the
angular momentum of Big-H are dominated by contributions at
very large radius: > peaks at r &~ 55. Thus, while the size of the
disk seems to have minimal impact on the inner disk alignment,
it has a substantial impact on the late-time solid-body precession
rate in the unaligned disk outside of the alignment region.

4. Discussion: The Operation and
Regulation of Radial Mixing

An understanding of the alignment processes in torqued disks
rests on four basic ideas: (1) the new angular momentum required
to change disk orientation can come only from the external
torque; (2) angular momentum delivered at an inner radius is
carried outward by radial fluid motions induced by the disk warp;
(3) the angular momentum delivered by the external torque can
contribute to alignment only if the precession phase decreases
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outward, hence the onset of solid-body precession can end
alignment; and (4) disk orientation ceases to change when
similarly warp-induced fluid motions convey misaligned angular
momentum inward at a rate matching the outward transmission of
aligning angular momentum. This picture implies that when the
outward transmission of aligning angular momentum dominates,
the location in the disk where its alignment changes from aligned
to misaligned moves outward at a rate ~r{prccss. Because the
radial fluid motions are generically transonic when the disk warp
is nonlinear (Sorathia et al. 2013b), this picture implies that the
balance between growth and diminution of the aligned region
depends on sound speed; the aim of this paper has been to test the
predicted dependence with numerical simulations.

Because simulations of this problem are computationally
expensive, we have investigated this dependence in the sense of
measuring a partial derivative: we have changed the sound speed
without altering anything else. Moreover, to simplify what is
meant by “the sound speed,” we have focused on studying
isothermal disks. We have also restricted our attention to a single
surface density profile (2 P2, except where the disk is
truncated at its boundaries), one that does not correspond to inflow
equilibrium for this temperature distribution. In fact, even within
this model, we have been able to sample only three values of the
sound speed: measured in units of the orbital speed at our fiducial
radius, these values are 0.1, 0.05, and 0.035. Nonetheless, within
these constraints, we have found three notable results:

1. Within the alignment front the coefficient in the
expression for the alignment front speed is ~0.35 at the
point at which the initial disk obliquity has been reduced
by ~15%, and ~0.2 where the disk obliquity has been
reduced by half, independent of sound speed and
independent of whether the disk is MHD and turbulent
or HD and laminar; however, for laminar HD disks to
align at all, they must be sufficiently cool that bending
waves are launched at nonlinear amplitude.

2. Approximating the radial flow of angular momentum,
both inward and outward, as a diffusive process acting on
an alignment gradient of fixed |0f/0Inr| leads to the
prediction that the alignment front becomes stationary at
aradius ¢, 4/3; this prediction is supported very strongly
across the range of sound speeds examined.

3. Maintenance of a precession phase gradient against the
tendency of angular momentum diffusion to enforce solid-
body precession requires disruption of bending wave
propagation. This is most effectively accomplished by fluid
turbulence, which, in this context, is stirred by the
magnetorotational instability, but it can also be accom-
plished, when disks are sufficiently cool, by the shock-
damping of the fluid’s radial motions that occurs when the
disk warp is nonlinear, i.e., |0f/0Inr| > h/r = ¢ /Vor.

In this section we expand upon these points and present some
further consequences of these results.

4.1. The Diffusion Model of Radial Mixing

We begin with deriving the dimensionless factor A in the
orientation diffusion coefficient. Solving Equation (6), we find

A= B(m—‘w<cosw>I(r/h)2(rT/r*>—5/2 (15)
Q("*)
= O.OO9B(rT)*1(r/h)2(rT/r*)*5/2. (16)

13

Hawley & Krolik

Data from our simulations permits evaluation of all the relevant
quantities. Using the measured values of dsin(3/dInr for
KH2015 and High-thin to calculate B(ry), and having found
7 ~0.3 for both of these simulations, the steady-state
alignment front locations for KH2015 and High-thin then
imply A =2 and A = 1.5, respectively. In other words, these
results suggest that the dimensionless factor multiplying the
dimensional form ¢? /€2 is close to a constant ~2.

It is surprising how well the simple diffusion approximation
works, over a factor of 8 in temperature, in predicting time-
steady properties of both our turbulent MHD and inviscid HD
models. The diffusion approximation posits that the flux of
some quantity is proportional to the gradient in its density, but
Sorathia et al. (2013b) showed that the angular momentum flux
induced by a given level of disk warp is both delayed with
respect to the creation of that warp (by a time comparable to an
orbital period) and dependent upon the radial range over which
the gradient extends, not just the gradient’s local value. In fact,
our simulations already show that the position of the alignment
front generically oscillates about its ultimate time-steady
location, behavior inconsistent with a diffusion model.

Although we cannot state with confidence why diffusion
fails to describe the time-dependence of warp evolution, yet
succeeds as a guide to the time-steady solution, there are some
plausible arguments that could provide a partial explanation.
The delay between angular momentum flux and warp creation
becomes less and less relevant as conditions approach steady
state. The simple sound speed scaling may be a product of all
our simulations sharing the same surface density profile and tilt
angle, as well as possessing a single sound speed everywhere.
As a result, the several shape factors are nearly the same, both
|0 /81nr| across the alignment front and the dimensionless
integral Z (Equation (4)). In addition, because the dynamical
factors relevant to this problem (the Newtonian orbital
frequency, the Lense-Thirring torque) are both power-laws in
radius, and therefore scale-free, and because all the simulations
shared the same scale height and surface density profiles as
well as the same intrinsic misalignment angle, it was possible
for all these shape factors to remain invariant to changing
sound speed.

It is also important to point out that much previous work has
been done casting warp dynamics in terms of diffusion models.
Nelson & Papaloizou (2000), for example, discussed several
potential formulza for the transition radius, all of them based on
diffusion models, but with diffusion coefficients multiplied by
different dimensionless factors. Two, in which the multi-
plicative factor is independent of c,, are consistent with 6;4/ 5
scaling if the disk is isothermal. In the first, labeled Ry, the
transition radius is proportional to o?/3 because, following
Papaloizou & Pringle (1983), they supposed that the diffusion
coefficient was multiplied by 1/«. The Rpp formula, which
assumes that radial mixing occurs at the same rate as accretion,
leads to a diffusion coefficient multiplied by «, so that the
transition radius is oca~>/>. In the third formula, Rp», the
diffusion is assumed to cease when the transition radius is small
enough that v < H/r; this has the effect of changing the sound
speed scaling and removing any «-dependence from the
expression for the transition front. Thus, the factors that
convert the sound speed proportionality into an equality are
important. When there is no shear viscosity at all (as in both our
MHD and HD simulations), no role for a remains: the stresses
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relevant to alignment are neither viscous nor directly related to
the accretion stress. In our formulation, o never enters the
calculation; perhaps unsurprisingly, the multiplicative factor is
therefore a constant ~O(1) for both MHD and HD models.

Ogilvie (1999), using quasilinear methods, developed an
effective diffusion coefficient theory for warp propagation. His
expression for the dimensionless factor multiplying ¢/,
when evaluated for the approximate conditions of our MHD
simulations, is also ~2. Although this agreement is interesting,
the reason for it is unclear, as this theory depends in an
essential way on the assumption of an isotropic « viscosity, and
the value of the diffusion constant in turn depends on . We
previously demonstrated that the assumption of an isotropic «
is not supported by actual MHD calculations (Sorathia
et al. 2013a). Moreover, our results found very similar
behavior for both MHD disks and for thin disks in pure HD,
1.e., with zero accretion stress so that o« = 0. This indicates that
value of the accretion stress does not significantly matter to the
effective diffusion coefficient predicting the time-steady
alignment front location. In addition, Ogilvie (1999) presents
a time-dependent theory and, as we have already discussed, our
simulations do not support the use of a diffusion model for
time-dependent properties.

To close, we point out another reason that may explain the
limitations of diffusion in this context. The alignment front’s
oscillation in position is closely associated with the state of the
precession phase profile. Whereas diffusion models are
intrinsically local, the precession phase profile arises from
global effects having to do with the radial propagation of
bending waves (e.g., Papaloizou & Terquem 1995; Larwood
et al. 1996). This global influence is another reason why
diffusion models may not be adequate for describing alignment
dynamics. In the next subsection we will expand upon the
importance of the precession phase profile.

4.2. Precession Phase Gradients

Lense-Thirring torques (and qualitatively similar torques
like those produced by Newtonian quadrupoles) are purely
precessional: the direction of the torque is precisely perpend-
icular to the angular momentum direction of the matter upon
which the torque acts; the torque is also perpendicular to the
angular momentum of the central object (black hole spin for
Lense-Thirring torques, the orbital axis when a Newtonian
quadrupole is due to a binary). For this reason, if all the matter
has the same angular momentum orientation, i.e., it forms a flat
disk in which all orbits share the same orbital axis for all times,
these torques can never cause alignment. Instead, they force the
matter’s angular momentum to precess around the direction of
the instigating angular momentum without any change in
angular momentum magnitude. The only way external torque
can lead to alignment is if the torque that is identically
perpendicular to the local angular momentum where it is
delivered is then transferred to a place where it is no longer
perpendicular; this can occur only if the precession phase varies
with radius within the disk. Moreover, this transfer causes
alignment rather than enhanced misalignment only if the
precession phase of the material where the angular momentum
is ultimately deposited lags behind the precession phase of the
material suffering the initial torque.

In these simulations, both the MHD and the HD, the
significance of precession phase gradients has been made
still clearer. Alignment front progress is often non-monotonic,
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with both overshoots and retreats before the front becomes
stationary. The turn from outward motion to inward is, without
exception, associated with a diminution in the precession phase
gradient just outside the instantaneous position of the front;
reversal of inward motion to outward is equally strongly
associated with restoration of a negative radial precession phase
gradient. Thus, the regulation of precession phase gradients is a
central element of alignment dynamics, and these gradients are
controlled by two mechanisms triggered by warps: radial flows
and bending waves.

Conversely, alignment fronts become stationary when the
gradient in alignment angle is sufficient for inward and outward
mixing to balance, while the precession of the disk well outside
the alignment front is very nearly solid-body. The precession
rate for the outer disk under these circumstances is close to
the Lense-Thirring rate at the radius of the mean angular
momentum, ie., 1= frr dr rzf(r)E(r)/frT dr vl (r)X(r).
Here ¢ is the local specific angular momentum and the lower
limit of the integral is r7 so as to include only the disk outside
the alignment front. The identification is quantitatively quite
close: in Thin-H, for example, the outer disk precession rate
matches the Lense-Thirring rate at r ~ 17, while r; defined by
the integral is ~19. The contrast between Thin-H and Big-H is
particularly striking in this context; the existence of the
extended outer disk in Big-H has a profound effect on the
resulting solid-body precession rate.

This result is consistent with previous simulations, e.g.,
Fragile et al. (2007), who found that the final solid-body
precession rate was comparable to the value expected for the
averaged angular momentum of their finite disk. We observe
the same outcome for solid-body precession rates with both our
“small” and “large” disks. That the precession rate drops
toward zero in our largest disk suggests a potentially interesting
implication for disks in Nature that extend far beyond their
alignment transition radius.

4.3. Warp Categorization

Papaloizou & Pringle (1983) argued, having assumed that all
internal stresses in accretion disks are due to an hypothesized
isotropic « viscosity, that warped disk behavior would exhibit
two different regimes, depending on whether «, the ratio of
vertically integrated accretion stress to vertically integrated
pressure, were greater or less than the disk aspect ratio //r. The
regime in which a > h/r is the “diffusive” regime, while its
opposite is the “bending wave” regime. This characterization
has become a widely adopted working hypothesis for disk
alignment.

Whether this characterization has merit rests in part on the
question “What is a?”” Shakura & Sunyaev (1973) introduced «
to parameterize the r—¢ stress that is responsible for
transporting angular momentum and driving accretion, choos-
ing to measure it in units of the pressure P. But as Pringle
(1992) observed, the stress component responsible for the
damping of a warp and subsequent alignment is distinct from
that responsible for accretion and may not have the same value
of, or dependence on, . Now that it is well-established that
internal disk stresses driving accretion are primarily Maxwell
stresses arising from MRI-driven MHD turbulence (Balbus &
Hawley 1998), the issue need no longer be a matter of
speculation and parameterization. Studies of MRI-induced
turbulence have shown that MHD stresses acting on the shear
flows induced by disk warps (the r—z component of the
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stress tensor) bear no resemblance to an isotropic viscosity
(Sorathia et al. 2013a; Morales Teixeira et al. 2014). This
conclusion that warp evolution has nothing to do with an
“Isotropic « viscosity” is reinforced by the results from our HD
simulations, which align despite being wholly inviscid (o = 0).
The dissipation/transport mechanism governing alignment is
instead shocks and pressure-driven flows. Given these observa-
tions, one might wonder what physical meaning remains to a
distinction between diffusive and wavelike regimes determined
by the value of a. The simulations reported here deepen the
thrust of that question.

As shown by Balbus & Papaloizou (1999), it is possible to
reinterpret «v as a measure of accretion stress caused by MHD
turbulence, but only in reference to long-term time averages of
vertically integrated quantities. The « parameter is then the
ratio of the integrated and averaged stress to the similarly
integrated and averaged pressure. As Balbus & Papaloizou
(1999) also showed, this identification breaks down badly
when taken locally with respect to either time or spatial
position. In that spirit, we can measure the accretion stress in
our simulations (the r—¢ component of the Maxwell stress
tensor; see Equation (14))* in units of pressure, even though its
underlying mechanism is not at all viscous. In our earliest and
hottest (h/r ~ 0.2) simulation (Sorathia et al. 2013a), the
magnitude of the stress normalized in this fashion was
~0.02-0.04, considerably less than A/r. In KH2015, whose
aspect ratio at the fiducial radius was 0.1, the o parameter was
~0.03-0.1, just a little bit smaller than &/r. In our new
simulation with a fiducial &/r = 0.05 (High-thin), the stress
parameter was ~0.2, so that o was several times larger than
h/r. Finally, in our thinnest simulation, in which the fiducial
h/r = 0.035 (V-thin), o was ~0.1-0.15, also several times
larger than //r. In other words, when the disks were relatively
thick, i/r was significantly larger than the normalized accretion
stress, while in the thinner disks 4 /r was rather smaller than the
normalized accretion stress. Strikingly, despite the fact that
they span what had been predicted to be a marker of qualitative
change, we have seen very little contrast in the way these disks
align beyond that which is attributable to the sound speed (and
h/r) itself. Further, in the thinnest disks the alignment in the
MHD disk is qualitatively similar to that seen in the HD disk,
despite the fact that the HD disks have o = 0, and would never
be in the diffusive regime, at least as normally defined. Put
another way, the coefficient term accompanying the cs_4/ 5
dependence in the diffusion model at most depends very
weakly on internal accretion stresses (), at least within the
ranges of values explored here. It appears that the posited
regime distinction based on « does not, in fact, matter
very much.

On the other hand, we have seen that bending waves in
purely hydrodynamic disks change from propagating waves to
strongly damped waves as a function of a different dimension-
less parameter, = |0 /&1nr|/(h/r). When the warp is such
that this ratio is relatively small, as in KH2015-H or the HD
simulation of Sorathia et al. (2013b), bending waves propagate
without dissipation, and can therefore travel long distances
through the disk while losing little energy or angular

4 The total stress includes an additional part from the Reynolds stress due to

the MHD turbulence. Typically, the Maxwell stress is larger than the Reynolds
stress by a factor of 34 (Balbus & Hawley 1998) and inclusion of the
Reynolds stress would increase the effective value of a accordingly. This has
no qualitative impact on our conclusions here.
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momentum. However, when 12) is large (as in Thin-H and
V-thin-H), disk bends cause strong local pressure-driven flows
and shocks, which quickly drain energy from any associated
bending waves (Sorathia et al. 2013b). Nelson & Papaloizou
(1999), in their study of bending waves, also observed that the
amplitude of the warp relative to i/r determined whether
waves could propagate or were damped. Unlike a condition
based on «, this 1) condition is based on actual physical
quantities. Whether P is large or small determines the ability of
the waves to bring the disk into a state of solid-body
precession, a consequence of which is to bring to an end any
further alignment. To reiterate, the quantity determining that
critical value is the warp rate, as opposed to a viscosity
coefficient, and the mechanism is different, namely the
disappearance of shocks limiting the propagation of bending
waves, as opposed to the bending wave radial crossing time
becoming shorter than the nominal “viscous” damping rate of
the waves.

The contrast between KH2015 (alignment) and KH2015-H
(no alignment) and the MHD-HD pair in Sorathia et al. (2013a)
show that even when 121 is small, and non-diffusive linear wave
propagation would be expected, the presence of MHD
turbulence can nevertheless disrupt the wave propagation
through the disk, helping to preserve the precession phase
contrast that allows for alignment. Even in the “Thin” and
“Very Thin” paired models where the HD model did align, the
MHD models had larger transition front radii and extended
alignment. Thus, the accretion stress due to the MHD
turbulence does affect alignment, but its role is indirect and
accomplished by helping to delay the onset of solid-body
precession and preserve differential precession rather than
through direct diffusion of the disk warp.

4.4. Is MHD Necessary?

We have shown that in moderately thick disks (those of
Sorathia et al. 2013a and KH2015, i/r 2 0.1), the alignment
behavior in MHD is strikingly different than in HD. On the
other hand, the contrast in thinner disks (h/r < 0.05), appears
to be much weaker, although still present. The alignment fronts
in the MHD simulations High-thin and V-thin continue
outward beyond the time when their HD counterparts stop
and retreat. The reduced-resolution MHD model Low-thin has
an intermediate behavior between models High-thin and Thin-
H. Finally, it is worth noting that the values of the quality
metrics in the MHD simulations suggest that all the MHD
models were somewhat under-resolved and that with better
resolution the contrast between MHD and HD for thin disks
may increase.

These observations lead to two suggestions. The first is the
one just made at the end of the previous subsection, that
progression toward solid-body precession is hampered when
the disk temperature is cool enough to make the bending waves
induced by differential precession nonlinear. Consequently,
cool HD disks are able to align, even though they remain
laminar. Note that the criterion for being “cool enough” is
related to the initially imposed warp rate ¢: more strongly
warped disks can produce nonlinear bending waves for larger
values of h/r, and therefore align even when they are not
subject to MHD turbulence. The second is that, because such
thin disks are likely to be the norm rather than the exception in
radiatively efficient accretion flows, alignment may take place
in disks immune to MHD effects (if, for example, they are too
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weakly ionized for ideal MHD to be a good approximation) as
well as in disks where MHD turbulence is strong. In other
words, disks possess two solutions to the problem of preserving
their precession phase gradients: MRI-driven turbulence can
disrupt the bending wave passage whether the bending waves
are linear or nonlinear; alternatively, in the absence of
turbulence, if the bending waves are launched in a nonlinear
state, shocks can limit their propagation. The two solutions
differ in the path through which disks reach stationary
alignment states, but the character of those stationary states
can be similar.

In this context, it is also worth noting that the a-viscosity
SPH simulation of Nealon et al. (2016) evolved very similarly to
our MHD simulation KH2015. Because we have already shown
(Sorathia et al. 2013a) that MHD stresses do extremely little to
restrain r—z shear, a role that is at the heart of the traditional
Papaloizou & Pringle (1983) picture, the agreement between
these two simulations suggests that the detailed differences
between MHD stresses and those resulting from the specific
combination of explicit viscosity and numerical diffusivity
present in the SPH simulation must not matter significantly in
this particular instance.’

5. Conclusions

We have carried out a series of time-dependent, three-
dimensional simulations in both HD and MHD designed to
investigate the effect of sound speed on the alignment process in
disks subject to Lense-Thirring torque. From these results we
have constructed a simple model for the position of the steady-
state alignment front in which outward transport of angular
momentum delivered by the Lense-Thirring torque is balanced by
diffusive inward transport controlled by radial pressure gradients,
gravity, and shocks. This model leads to a sound speed scaling
prescription for the location of the steady-state alignment
transition, rr o< 6;4/ 5. In doing so we have achieved, at least
tentatively, a major goal of this subject: the ability to predict the
location of the stationary alignment front in disks subjected to
Lense-Thirring torques. Compared to the traditional picture, in
which radial mixing flows are regulated by an hypothesized
“isotropic « viscosity,” the steady-state alignment fronts we
predict—and find in explicit MHD simulations—are at radii
substantially larger. Moreover, the numerical tests we presented
here have confirmed that the magnitude of the effective warp
diffusion coefficient is given by a constant order-unity number,
independent of the level of accretion stresses. Our data, limited
unfortunately to a small number of cases, suggests that the
diffusion coefficient is ~2¢? /).

Our ability to span at least some dynamic range in sound
speed (about a factor of 3), and hence a range of disk thickness
h/r, has also permitted us to test a rubric that has long served as
a fundamental guide to the field: the distinction between
“diffusive” and “bending wave” regimes of disk alignment.
The traditional discriminant between the two is the amplitude
of the viscous parameter « relative to //r. Based as it is on an
extension of the o model, a model itself founded on

5 The SPH algorithm requires an artificial viscosity. If it is to take the form of

an “isotropic « viscosity,” it entails a sizable bulk viscosity and a fixed ratio
between the SPH smoothing length and the disk’s vertical scale height (Lodato
& Price 2010). This last constraint can lead to inadequate averaging in the
smoothing volumes in low density regions, such as those away from the disk
midplane—where much of the radial motion characteristic of warped disk
evolution takes place.
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dimensional analysis more than specific physical mechanisms,
it may perhaps not be too surprising that this rubric fails when
confronted with a direct test.

Although we have laid out a “diffusion model” for the location
of the stationary alignment front, our orientation diffusion model
differs in several significant ways from the traditional picture.
First, in our model, the internal accretion stress level is set by disk
dynamics, and is not an adjustable free parameter; whether the
disk aspect ratio is large or small compared to the normalized
amplitude of the accretion stress seems to have little impact on
alignment behavior. Particularly notable is the similarity in
alignment in sufficiently thin disks between turbulent MHD and
HD disks, even though the latter are essentially inviscid, at least
with respect to any internal accretion stress. While the accretion
stress does have an indirect, and possibly significant, role to play
(see below), it is not primarily responsible for alignment, or for
establishing the alignment radius ry.

Second, our diffusion model applies only to the prediction of
steady-state alignment properties; indeed, it fails to predict
significant elements of time-dependent behavior, such as over-
shoot and oscillation in the location of the alignment front. In fact,
it is possible that no diffusion model can adequately describe
time-dependent alignment behavior. Work over a number of years
(Nelson & Papaloizou 1999; Lodato & Price 2010; Sorathia
et al. 2013b) has raised suspicions that this might be the case.
Here we emphasize another reason why this may be so: changing
alignment by making use of external precessional torques requires
the correct precession phase gradient. This is an intrinsically
global property because it involves communication over order-
unity radial contrasts, whereas diffusion models refer only to local
gradients in orientation. Traditional “diffusive regime” solutions
automatically impose strict locality by asserting that bending
waves are damped after having traveled a distance that is a small
fraction of their launch point’s radius.

Third, the ability of bending waves to propagate is not limited
by a phenomenological viscosity, but by either of two physical
mechanisms. In MHD, their propagation is hampered by the
turbulence created by the MRI. In HD, the amplitude of the warp
1 relative to h/r determines the character of their propagation. At
low amplitudes, HD warps are able to propagate radially over
extensive distances without losses. At higher, nonlinear ampli-
tudes, the waves are stymied by pressure gradient-driven
Reynolds stresses and shocks. In either MHD or HD, the ability
of these waves to travel within the disk determines whether and
when solid-body precession is established.

Lastly, we note that although MRI-driven turbulence should
exist in all of the many sorts of disks in which the conductivity
is high enough to support ideal MHD behavior, the strong
damping of nonlinear bending waves provides Nature with a
second way to prevent bending waves from spoiling the
precession phase gradients necessary for alignment. All that is
necessary in laminar hydrodynamic disks is for the initial warp
rate |0 /01nr] to be large enough that it significantly exceeds
h/r. In the complete absence of internal accretion stress, there
is a distinct regime in which a diffusion-like process determines
the location of the steady-state alignment front, but its
boundary is determined by the disk aspect ratio relative to
the warp amplitude, not the accretion stress.
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