
Skyline Queries Constrained by Multi-Cost

Transportation Networks

Qixu Gong

Computer Science

New Mexico State University

Las Cruces, New Mexico

qixugong@nmsu.edu

Huiping Cao

Computer Science

New Mexico State University

Las Cruces, New Mexico

hcao@cs.nmsu.edu

Parth Nagarkar

Computer Science

New Mexico State University

Las Cruces, New Mexico

nagarkar@nmsu.edu

Abstract—Skyline queries are used to find the Pareto optimal
solution from datasets containing multi-dimensional data points.
In this paper, we propose a new type of skyline queries whose
evaluation is constrained by a multi-cost transportation network
(MCTN) and whose answers are off the network. This type of
skyline queries is useful in many applications. For example, a
person wants to find an apartment by considering not only the
price and the surrounding area of the apartment, but also the
transportation cost, time, and distance between the apartment
and his/her work place. Most existing works that evaluate skyline
queries on multi-cost networks (MCNs), which are either MCTNs
or road networks, find interesting objects that locate on edges
of the networks. Formally, our new type of skyline queries takes
as input an MCTN, a query point q, and a set of objects of
interest D with spatial information, where q and the objects
in D are off the network. The answers to such queries are
objects in D that are not dominated by other D objects when
considering the multiple attributes of these objects and the
multiple network cost from q to the solution objects. To evaluate
such queries, we propose an exact search algorithm and its
improved version by implementing several properties. The space
of the exact skyline solutions is huge and can easily reach the
order of thousands and incur long evaluation time. We further
design much more efficient heuristic methods to find approximate
solutions. We run extensive experiments using both real and
synthetic datasets to test the effectiveness and efficiency of our
proposed approaches. The results show that the exact search
algorithm can be dramatically improved by utilizing several
properties. The heuristic approaches to find approximate answers
can largely reduce the query time and retrieve results that are
comparable to the exact solutions.

Index Terms—Skyline Queries, Transportation Networks,
Multi-dimensional Data

I. INTRODUCTION

Skyline queries are important in finding Pareto optimal so-

lutions in multi-dimensional data. Conducting skyline queries

on multi-cost networks (MCNs) has been studied [15], [17],

[22], [27] in recent years. Examples of MCNs include road

networks and multi-cost transportation networks (MCTNs). In

an MCN, the cost of an edge is multi-dimensional in nature.

For example, the cost of a road segment can represent the

walking distance, driving time, and gasoline consumption.

As far as we know, in existing works on evaluating skyline

queries, the query points and the query results need to be

simultaneously present on the edges of the given network.

This work has been supported by NSF #1633330, #1345232, and #1757207.

We study the skyline query problem in a different real-

world setting where the query points and/or the query results

are off an MCTN while finding the solutions to the skyline

queries need to utilize an MCTN. We denote such type of

skyline queries as MCTN-constrained skyline queries. We

now describe some of the real-world applications of MCTN-

constrained skyline queries:

• Application example 1. Alice works at company X, which

is the query point, and wants to find an apartment, which

is a query result (target object), with a reasonable price and

in a safe area. The apartment should be within reasonable

distance from Alice’s work place so that the commute time

and the cost of using public transportation is acceptable. The

desired apartment is one skyline solution when considering

four factors: apartment price, safety of the apartment area,

transportation time, and transportation cost. To find such

apartments, we need to consider the travel distance and the

cost of using the available public transportation network.

• Application example 2. Alice attends a conference, where the

conference venue is a query point, and wants to find a hotel

(a query result) with good price and good service because

the conference hotel is too expensive. Also, this hotel should

not be too far away from the conference venue and the travel

time between them should be reasonable. The hotel that meets

Alice’s requirements is a skyline solution of this conference

venue (the query point) after taking into consideration the

following factors: hotel price, hotel service, transportation

time, and transportation cost. To find such hotels, we need

to consider the travel distance and the cost of using the public

transportation network or using road networks.

Fig. 1. Example of MCTN-constrained skyline queries & answers



When MCTNs are utilized to constrain skyline queries, there

are several major challenges due to our problem setting: (i) the

solution target object o (e.g., the apartment/hotel that Alice

finally decides to rent/book) is not known when the query is

issued, and (ii) both the query point q and the target object o
are not located on the MCTN. One solution to a target object

is a path containing three segments as shown by the three

blue dash lines or the three purple dotted lines in Figure 1.

The first segment is from q to a starting graph node vs, the

second segment is a graph path from vs to an ending graph

node vt, and the third segment is from vt to the target object

o. When the query is issued, the starting graph node vs, the

ending graph node vt, and the destination o are all unknown.

The algorithm needs to find them in the search process. Once

the graph nodes vs and vt are known, it is trivial to find the

first and the last segments. The challenges lie in (i) finding

the proper vs and vt and (ii) finding the graph paths from vs
to vt that are not dominated by any other path between these

two nodes. Every node in this MCTN can be vs or vt, thus a

naive method needs to search paths between N×(N−1) node

pairs, where N is the number of nodes in the MCTN. This

calculation is prohibitively expensive.

Many skyline query processing techniques have been pro-

posed (e.g., [2], [18], [19], [25]). However, these works do not

take into consideration MCTNs for evaluating our proposed

new queries. The work that is closest to our problem setting

is [15], which presents an approach to find skyline paths

between a given pair of source and destination graph nodes

on an MCTN. Our problem is much more challenging. In

[15], both the source and destination graph nodes are known.

However, in our problem the starting and ending graph nodes

are all unknown since the query point q and the target object

o are not on the MCTN. We discuss in more depth the

differences between our work and [15] in Section II-C and

propose a method that utilizes several heuristic rules in [15]

in Section VI-B.

To evaluate the MCTN-constrained skyline queries and

address the above mentioned challenges, we propose a baseline

approach and several heuristics to improve the baseline. The

contributions of this paper are as follows.

• We propose a new type of skyline queries whose answers

are constrained by an MCTN. We consider the situation that

the MCTN is stored on disk. This is different from most works

that consider holding the graphs in memory (e.g., [8]).

• We propose a Best First Search (BFS) based baseline

approach to evaluate such queries and find exact answers.

• We improve upon the baseline approach by utilizing several

geometric-based properties that we observe.

• We improve the exact search algorithms by utilizing heuristic

rules to find approximate solutions. These heuristic methods

further improve the query efficiency and are able to find

answers that are comparable to the exact skyline solutions.

• We conduct extensive experiments using real and synthetic

datasets. The results show that our improved methods can

reduce the search space significantly.

The paper is organized as follows. In Section II, we discuss

works that are related to our research problem. Section III for-

mally defines the proposed problem. Sections IV and V present

our proposed approaches. Section VI shows our experimental

results. Finally, Section VII concludes our work.

II. RELATED WORK

A. Skyline problem

The skyline problem is first proposed in [3], which in-

troduces a Block Nested Loop (BNL) method and a Divide-

and-Conquer approach. In general, there are two directions to

solve the original skyline problem. The first direction is to

design special index structures (e.g., variants of R-tree [9] or

R+-tree [21]) to accelerate query processing [18], [19]. The

second direction is to pre-sort the source data to improve the

efficiency of data scans [2], [6].

The original skyline problem has been extended to various

applications. The k-dominant skylines problem is proposed in

[4], which generalizes the dominance relationship by requiring

that a point needs to be better than other points in at least k
attributes. The dynamic skyline problem is introduced in [19],

in which the dominance relationship between two points is

defined based on an ad-hoc query point q.

Other works focus on proposing new methods to reduce

the size of the skyline result set. In [16], [24], only k-

representative results are returned. In [25], the authors define

the score of a data point o by considering the total number

of points it dominates and the distance between o and these

dominated points. All these works do not involve any graph

structured data, which we use.

B. Shortest path problem

The evaluation of MCTN-constrained skyline queries is

highly related to path finding. Shortest path finding problem

is one of the fundamental problems in the field of graph

processing. The traditional Dijkstra [7] algorithm and the A∗

algorithm [10] (and their subsequent extensions) are most

widely used to find shortest paths in a graph. However, these

traditional algorithms are not efficient in finding shortest paths

in large graphs on the fly. To make online processing of big

graphs faster, new index structures are proposed [1], [5], [11],

[28]. These index structures cannot be directly utilized to solve

our proposed problem because the size of these structures

increases dramatically for the skyline setting (as opposed to

finding shortest paths).

C. Skyline queries on road networks

Given the fundamental importance of skyline queries, such

queries have been proposed on road networks. As far as we

know, the first work that considers skyline queries using road

networks is [13], in which the in-route skyline problem is

defined. This problem finds points of interest (POIs) on the

edges of the network by considering multiple costs that are

calculated using the location of a query (which is on one graph

edge), a pre-defined route, and this route’s destination.

A more often studied problem is the skyline path problem,

which is introduced in [15]. In this problem, given a starting



node vs and a destination node vt in a multi-cost road network,

a network path p from vs to vt dominates another path p′ if

and only if the cost on each dimension of p is better than that

of p′. The search space of skyline paths is huge. To reduce the

search space, Kriegel et al. [15] utilize the landmark index [14]

to estimate the lower bound of the cost from any graph node vi
to the destination node vt. The method in [15] also uses several

heuristics: (h1) If a path p is dominated by one of the skyline

paths found so far, p can be discarded. (h2) If the estimated

cost of p is dominated by one of the skyline paths found so far,

p can be discarded. (h3) A prefix sub-path p of a final skyline

path must be a skyline path from vs to p’s ending node. Our

work is very different from [15]. As analyzed in Section I,

the target object in our problem setting is unknown and the

query point is not on the graph. Because of these, the possible

starting graph node vs and ending graph node vt are unknown.

A naive approach needs to compute skyline paths between N2

node pairs (for possible vs and vt). The method in [15] only

helps improve the search efficiency for one pair of nodes.

Despite the intrinsic differences between our work and [15],

we design an A*-based approach by utilizing several heuristics

presented in [15] to compare with our proposed methods in

Section VI.

Following the initial skyline-path definition in [15], Yang et

al. in [27] define the stochastically dominance relationship and

use the reverse Dijkstra [7] search to estimate the lower-bound

of the cost on each dimension from a network node vi to the

destination node vt. We utilize skyline paths, but we work on

a more challenging problem where the starting graph node vs
and the destination graph node vt are unknown.

More recent related works focus on finding skylines when

using moving objects in road networks as query points. Fu et

al. in [8] find continuous skyline POIs for an object moving

on a road network whose cost is one dimension. Xu et

al. [26] further attempt to improve upon the above problem

by considering complex relations between a moving object’s

state and the given query. None of the above works try to solve

skyline queries whose answers are constrained by an MCTN.

III. PROBLEM DEFINITION

This section formalizes our proposed skyline queries and

related terminologies.

A multi-cost transportation network (MCTN) is represented

as a weighted direct graph G=(V,E,W ) where V (denoted

as G.V ) is the set of nodes and each node contains spatial

information, E⊂V ×V (denoted as G.E) is the set of edges,

and W ∈ R
dG is a set of dG-dimensional positive weight

vectors. Let N be the number of graph nodes and wi be

the cost of the i-th dimension of an edge. In an MCTN, the

nodes can represent bus stops or metro stations and the edges

represent the segments of bus/metro lines.

Let D be a set of objects that are of users’ interest,

such as hotels, restaurants, and apartments. Each object

o ∈ D has spatial attributes and dD non-spatial attributes

o.attr[1],· · ·, o.attr[dD] that users are interested in (e.g., price,

rating of a hotel). The spatial attributes are used for distance

calculation. An object in D may locate on the network or be

off the network. We focus on the case that the objects in D
are off the network because the case that D objects are on G
is an easier special case.

Running example. This section uses the MCTN shown in Fig-

ure 1 as a running example to explain the different concepts.

We assume that the MCTN edges have two cost attributes,

travel time and travel expense, and D contains hotel objects,

which have two non-spatial attributes, price and rating.

A. Graph paths and graph-constrained paths

Definition 1 (A graph path in G). Given a start node vs∈G.V
and a destination node vt ∈G.V , a graph path pG(vs, vt) is

a sequence of nodes (vs, · · · , vi, vj , · · · , vt) where vi ∈ G.V ,

(vi, vj)∈G.E, and no node appears twice in a path.

The cost of a graph path is the summation of the cost of all

the edges of pG.

Example 1. Given the MCTN in Figure 1, one graph path is

pG(v1, v11)=(v1, v7, v12, v11), and its cost is the summation

of the cost of edges (v1, v7), (v7, v12), and (v12, v11).

Definition 2 (A graph-constrained path). Given a start point

os ∈ D ∪ G.V , a target point ot ∈ D ∪ G.V \ os, and an

MCTN G, a G-constrained path from os to ot is pc(os, ot) =
(os, pG(vs, vt), ot), where pG(vs, vt) is a graph path from vs
to vt in G.

A graph-constrained path is called constrained path when

there is no confusion in the context. When os and ot are graph

nodes, the constrained path pc(os, ot) is the same as the graph

path pG(vs, vt) where vs= os and vt= ot. Constrained paths

are used to describe queries in real world.

Example 2. A person may want to find a path from a hotel

os to a restaurant ot by taking buses. A path pc(os, ot) = (os,

pG(vs, vt), ot) may indicate that this person walks from os to

the bus stop vs, takes a bus from vs to another bus stop vt,
and walks from the bus stop vt to the restaurant ot.

In the setting of utilizing transportation networks, the cost

of a constrained path is multi-dimensional. The dimension of

the cost of one constrained path is dG+1. Formally, the cost

of a constrained path is defined as

cost(pc(os, ot))=(dist(os, vs)+dist(vt, ot), cost(pG(vs, vt))).

The function dist(oi, oj) represents the distance (e.g., by

walking or driving) from oi to oj where oi and oj are from D.

It can take different distance measurements, such as Manhattan

distance or Euclidean distance.

Definition 3 (Dummy Path). Given a start point os ∈ D ∪

G.V , a target point ot ∈ D ∪ G.V \ os, and an MCTN G, a

dummy path from os to ot is a special case of a constrained

path pc(os, ot) = (os, pG(vs, vt), ot) where pG(vs, vt) = ∅.

The cost of a dummy path is

cost(pc(os, ot)) = (dist(os, ot), 0, · · · , 0
︸ ︷︷ ︸

dG

) (1)



Example 3. In Figure 1, let q be the given query and

o2 be an object of interest. The path (q, v1, v2, v3, o2) is

a graph-constrained path pc(q, o2). The cost of pc(q, o2) is

(dist(q, v1)+dist(v3, o2), cost(pG(v1, v3)). The special case

of pc(q, o2) is when a user walks from q to o2 directly.

The starting and ending nodes of a graph path or a graph-

constrained path p is denoted as p.start and p.end respec-

tively. Given pG(vs, vt), pG.start=vs and pG.end=vt. Given

pc(os, ot), pc.start=os and pc.end=ot. The length of a path

is the number of nodes in the path sequence minus one.

B. Dominance relationship, skyline paths, and path con-

strained objects

Since the cost of a path (either graph path or constrained

path) is multi-dimensional, it is possible that the cost of two

paths are incomparable to each other. To compare the cost of

paths, we define their dominance relationship as follows:

Definition 4 (Dominance relationship). Given two general

elements e and e′ with multi-dimensional cost cost(e) and

cost(e′) respectively, e dominates e′ (denoted as e ' e′)
if and only if ∀dimension i, cost(e)[i] ≤ cost(e′)[i] and

∃ dimension i, cost(e)[i] < cost(e′)[i].

The dominance relationship is transitive, i.e., if e1 ' e2 and

e2 ' e3, then e1 ' e3. The dominance relationship can be

applied to two paths p and p′ (to replace the general elements

e and e′) to define that a path p dominates p′ (denoted as

p'p′).
Given the dominance relationships defined on paths, the

skyline paths from vs to vt are defined as below.

Definition 5 (Skyline paths). Given an MCTN G, a starting

object os ∈ D ∪G.V , and a target object ot ∈ D ∪G.V , the

skyline paths from os to ot form a set of constrained paths

SP satisfying (1) ∀p′ /∈ SP , ∃p ∈ SP s.t. p ' p′, and (2)

∀p ∈ SP, !p′ ∈ SP s.t. p′ ' p.

Definition 6 (A path constrained object). Given an object

o ∈ D ∪ G.V and a graph-constrained path pc(os, o),
their corresponding constrained object, denoted as opc , has

dD + dG + 1 attributes
(o.attr[1],· · ·, o.attr[dD], cost(pc(os, o)). (2)

Let us denote the attributes of opc as opc .attr, and dc represent

the number of attributes for a path constrained object.

A given object o can have multiple corresponding con-

strained objects {op}, which are constrained by different paths.

Even when several paths that constrain o have the same starting

point os, the constrained objects for o can still be multiple

because there can be multiple different paths from os to o.

Example 4. Given the MCTN in Figure 1 and let q be the

given query. For o2, corresponding to two constrained paths

pc1(q, o2)=(q, v1, v2, v3, o2) and pc2(q, o2)=(q, v1, v7, v3, o2),
we can get two path constrained objects, opc1

2 and opc2

2 . These

constrained objects have five attributes: (i) hotel price and

hotel rating from o2’s attributes, (ii) the walking distance for

two segments (q, v1) and (v3, o2), and the (iii) network cost

including network travel time and network travel expense.

Given a constrained object opc , we call o its base ob-

ject and pc its constraining path. We can represent this as

BaseObject(opc) = o and ConstrainingPath(opc) = pc.

Skyline solutions are path constrained objects. We can apply

the dominance relationship (Def. 4) to two constrained objects

opi and op
′

j (replacing e and e′) to define opi dominating op
′

j ,

denoted as opi ' op
′

j , by treating cost(opi ) = opi .attr and

cost(op
′

j ) = op
′

j .attr.

C. Constrained skyline queries

Definition 7 (MCTN-constrained skyline query). Given an

MCTN G, a set of objects of interest D, and a query point

q, an MCTN-constrained skyline query returns a set R of

constrained objects {opc} and their corresponding constrain-

ing paths {pc(q, o)} such that (i) ∀o′p
′

/∈ R, ∃opc ∈ R s.t.

opc ' o′p
′

, and (ii) ∀opc ∈ R, !o′p
′

∈ R s.t. o′p
′

' opc .

Note that skyline queries are defined in a similar way as

skyline paths (Def. 5).

IV. EVALUATE MCTN-CONSTRAINED SKYLINE QUERIES

This section presents our baseline approach and its improved

version to find the exact answers for our newly defined MCTN-

constrained skyline queries.

A. ExactAlg-baseline: Baseline method to find exact answers

Several naive approaches can be used to find exact answers.

One naive method would be to directly find skyline paths

between every pair of graph nodes (as discussed in Section I).

Another method is to introduce a dummy source node (the

query point) and a dummy destination node (one object of

interest), and then find skyline paths between the dummy

source and destination nodes. To avoid missing any solution,

both the dummy source and destination nodes need to connect

to all the nodes on the MCTN. The methods incur expensive

computations because there are N×(N−1) graph-node pairs

and the number of skyline paths from one graph node to

another graph node is exponential to the length of paths.

Due to the expensive computations of the naive approaches,

we consider utilizing heuristics to solve the problem. One

approach is to design an A*-based algorithm as in [15] by

estimating lower-bound cost in the search process. For our

problem, because the target object of interest is unknown, an

A*-based method needs to consider every object in D as a

possible target object. Even with a fixed target object, we still

need to consider every MCTN node as a starting graph node

and an ending graph node in the skyline path. This method

also needs to find paths between N × (N − 1) node pairs

and the overall computation requires us to apply the method

in [15] |D|×N × (N −1) times to get the exact solutions.

This method shares the similar complexity as the naive method

although it can benefit from the heuristics in [15] to reduce the

search space when the starting/ending graph nodes are fixed.

Considering the expensive computation of finding the exact



solutions, we design a method (Section VI-B) to reduce the

factors of N×(N−1) by finding approximate solutions.

After analyzing the nature of our problem and the different

possible naive approaches, we take a Best First Search (BFS)-

based strategy to solve this problem because BFS only needs

to explore the search space when necessary. We propose a

BFS-based baseline method (ExactAlg-baseline, Algorithm 1)

to evaluate an MCTN-constrained skyline query. This method

utilizes a property of skyline paths. Before describing this

property, we first introduce the concept of a prefix path.

Definition 8 (Constrained prefix path). Given a constrained

path pc(os, ot)= (os, pG(vs, vt), ot) where os∈D, ot∈D, its

constrained prefix path is (os, pG(vs, vt)), which is denoted

as pc(os, vt).

A constrained prefix path is also called prefix path when no

confusion is caused in the context. The cost cost(pc(os, vt))
is (dist(os, vs), cost(pG(vs, vt))).

Example 5. In the scenario of taking buses, a constrained

prefix path means that a user knows the starting bus stop, the

ending bus stop, and the bus line that he/she can take from the

starting bus stop to the ending bus stop. However, this user

does not know which target object he/she can reach from the

ending bus stop.

Property 1 (Property of skyline paths). Given an MCTN G, a

query q, and a constrained path pc(q, ot)=(q, pG(vs, vt), ot),
if pc(q, ot) is a skyline path from q to ot, then its prefix path

pc(q, vt) = (q, pG(vs, vt)) must be a constrained skyline path

from q to vt.

This property generalizes the heuristic rule (h3) in [15]. The

proof of this property can be found in [20] and is omitted here.

This property is utilized in Algorithm 1, which shows the

framework of our proposed baseline exact search algorithm.

This framework keeps the graph nodes that have been pro-

cessed and have the potential to be in a skyline path from

q to a base object of a skyline solution. An element in the

priority queue is a graph node. For each graph node v, we

keep its spatial information, a flag visited to denote whether

the node has been visited, and a structure skypaths to keep all

the skyline paths from q to this node. The spatial information

of the node v is used to calculate the distance from the query

point q to v. This distance is used to rank the elements in the

priority queue. The distance is utilized here because we can

use it to conduct several improvements using Lemmas 2-4.

For each path in v’s skyline path set, we keep its current cost

and an expanded flag to denote whether this path has been

expanded in the traversal process. Every newly created path

has the flag expanded set to be false.

The ExactAlg-baseline method consists of two steps, graph

traversal and creation of the result set. In graph traversal, it

first finds the graph node nearest to q and puts it in the priority

queue (Lines 5-6). Then, it pops out the next best node v from

the priority queue (Line 8) and expands its skyline paths. If

the node v has not been visited before, this algorithm creates

Algorithm 1: Method ExactAlg-baseline

Input : an MCTN G, a query point q, the set of objects of interest D

Output: the set of skyline solutions R

1 begin

2 Initialize a priority min-queue Q to be empty;

3 Initialize the result set R = ∅;

4 // Step 1: Graph traversal

5 vnearest= the nearest graph node to q;

6 Q.enqueue(vnearest);

7 while Q is not empty do

8 v = Q.pop();

9 if v is not visited before then

10 Create a dummy path dp;

11 v.visited = true;

12 addToSkyline(dp, v.skypaths);

13 foreach path p ∈ v.skypaths do

14 if p.expanded = fasle then

15 foreach vnext ∈ neighbors(v) of G.V do

16 pnext = path(p, vnext);

17 if pnext is a new skyline path from q to vnext then

// Property 1

18 vnext.Skypaths.add(pnext);

19 Q.enqueu(vnext);

20 // Step 2: Create path constrained objects and put

them to result set

21 Initialize the candidate result set Dcand to contain the objects in D that

are not dominated by q;

22 foreach v is visited do

23 foreach pc ∈ v.skypaths do

24 foreach o ∈ Dcand do

25 Create opc with attributes updated using o’s attributes,

cost(pc), and dist(pc.end, o);

26 addToSkyline(opc ,R);

27 return R;

a dummy path dp (Line 10).

The second step (Lines 21-25) creates all the constrained

objects that can be skyline solutions. Such objects are denoted

as skyline candidates. In particular, it first finds the objects

of interest that are not dominated by q (Line 21). These

objects are possible skyline candidates. This step utilizes the

R-tree structure [19] to index all the objects in D. Then,

for every visited node v, each of its skyline path pc(q, v)
can be combined with a base object o ∈ Dcand to form a

skyline candidate opc . opc consists of dD attributes from o and

1 + dG attributes from the cost of pc (Line 25). In particular,

opc .attr[i] = o.attr[i] for 1 ≤ i ≤ dD, opc .attr[dD + 1] =
cost(pc)[1]+dist(pc.end, o), and opc .attr[i] = cost(pc)[i−dD]
for dD+2 ≤ i ≤ dD+dG+1. Let the average number of

skyline paths for each visited node be |SP |, Lines 22-25 have

complexity O(|G.Vvisited|× |SP |× |Dcand|).

A very important step in the algorithm is to add a candidate

constrained object to the result set R, which can be potentially

huge. The details of this step are presented in Algorithm 2

(addToSkyline). It checks whether it can add a new object

objnew (a path or a constrained object) to the skyline object

set. This algorithm utilizes the following Property 2.

Property 2. Given a new object objnew, if objnew dominates

an object obj ∈ Sskyline, then objnew must be a skyline object

and needs to be added to the result set Sskyline.

The proof of this property can be found in [20] and is

omitted here due to space limitations.

Utilizing this property, the function addToSkyline works as

follows. If the result set Sskyline is empty, the new object

objnew is directly added to Sskyline (Line 2). If the set



Algorithm 2: Function addToSkyline

Input : a new object objnew (which can be a path or a constrained object), a

set of skyline objects Sskyline

Output: updated Sskyline

1 begin

2 if Sskyline is ∅ then

3 Sskyline.insert(objnew);

4 else

5 can insert = true;

6 i = 0;

7 while the i-th object in Sskyline (obj) is not null do

8 if checkDominance(obj, objnew) then

9 can insert = false;

10 break;

11 if checkDominance(objnew, obj) then

12 Sskyline.remove(obj);

13 continue;

14 i++;

15 if can insert is true then

16 Sskyline.insert(objnew);

17 return Sskyline;

Sskyline is not empty, the algorithm checks the dominance

relationship of the new object objnew and the existing object

obj in Sskyline. In this step, we keep a flag can insert, with

initial value true, to denote whether the new object objnew is

dominated by any existing object. If it is dominated by one

object, then it should not be inserted to Sskyline and the value

of can insert is set to false (Line 9). If an existing object

obj is dominated by objnew, the algorithm removes obj from

the set Sskyline. After we scan every object obj ∈ Sskyline,

if the flag can insert is true, we insert objnew into the set

Sskyline (Line 16). The major computation in this function

is the checking of the dominance relationship between the

new object objnew and each object obj ∈ Sskyline. The

function checkDominance(obji, objj) is used to check whether

the object obji dominates another object objj .

B. ExactAlg-improved: Improved exact search algorithm

Two major expensive computation steps in Method

ExactAlg-baseline are traversing the graph and constructing

constrained objects to update R. In this section, we propose

several lemmas that help us improve the baseline method by

reducing the queue size and the size of Dcand. The proof of

these lemmas are omitted here due to space limitations, and

can be found in [20]. We denote the method that utilizes these

several lemmas as ExactAlg-improved.

1) Improvement to reduce queue size:

Lemma 1. Let q be one query point and o be an object in D.

The dummy path pc(q, o) must be a skyline path from q to o.

Utilizing this lemma, we can directly add a new dummy path

to the set of skyline paths of one graph node. This Lemma is

implemented in Line 12 of the baseline method (Algorithm 1).

Lemma 2. Given a query q and two graph nodes vi and vj ,

if dist(q, vj) > dist(q, vi), then the prefix path pc(q, vi) =
(q, pG(vj , vi)) cannot be a skyline path from q to vi.

This lemma can be implemented before Line 17 in the base-

line method (Algorithm 1). A condition can be added to check

the relationship between dist(q, p.start) and dist(q, vnext). If

dist(q, p.start) > dist(q, vnext), the new path pnext is not a

skyline path from q to vnext based on this lemma. Thus, we

do not need to put it in the priority query.

2) Improvement to reduce skyline candidates: In the base-

line algorithm, every object o ∈ Dcand is utilized to form

skyline candidates by using the constrained path pc(q, o) =
(pc(q, v), o) (Lines 24-26). We propose strategies to improve

this step by eliminating the construction of skyline candidates

for some objects in Dcand.

The new strategies utilize two lemmas. Let q be a query

and let pc = (q, pG(vs, vt), o) be a constrained path where

pG(vs, vt) is not empty. We present two lemmas as follows.

Lemma 3. Given q and pc, if pc is a skyline path from q to

o, then cost(pc)[1] = (dist(q, vs) + dist(vt, o))<dist(q, o).

Lemma 4. Given q and pc, if pc is a skyline path from q to

o and dist(vt, o) ≥ min{dist(vt, ox)|ox ' o}, opc is not a

skyline solution.

Algorithm 3: Function addToSkylineImproved

Input : query q, new path np, skyline solutions R, candidate objects Dcand

Output: updated R

1 begin

2 vs = np.start; vt = np.end;

3 foreach o ∈ Dcand do

4 distmin = MIN{dist(vt, ox)|ox % o};

5 if ((dist(q, vs) + dist(vt, o) < dist(q, o))
6 & (dist(vt, o) < distmin) then ; // Lemmas 3& 4

7

8 Create opc with attributes updated using o’s attributes,

cost(np), and dist(np.end, o);

9 addToSkyline(opc ,R) (Algorithm 2);

10 return R;

We create a new function addToSkylineImproved (Algo-

rithm 3) by utilizing Lemmas 3 and 4 to reduce the time

of updating skyline results. This function creates new skyline

candidate opc only when the distances from q to vs and from

vt to o meet the given conditions in both lemmas. These

two conditions limit the creation of candidate skylines. With

this function, ExactAlg-improved rewrites Lines 24-26 in the

baseline method to

addToSkylineImproved(q, pc,R, Dcand).

C. How much space to improve

We utilize different Lemmas to improve the exact search

algorithms in Sections IV-B1 and IV-B2. Do we still have

much space to improve the baseline algorithm? We propose a

measurement, called visiting ratio, to quantify this.

For a given query, the visiting ratio is defined as follows.

Visiting Ratio =
|{Nodes ∈ pc|o

pc ∈ R}|

|{Nodes in G that are visited}|

A higher ratio means that larger number of graph nodes that

are visited earlier are also in the constrained paths of the final

results. Thus, less graph traversal effort is wasted.

We examine the visiting ratio by plotting the ratios for

different settings of
|D|
N

in Figure 2. The figure shows that the

visiting ratio is very high. Even when the number of objects

is only 20% of the graph size N , the visiting ratio is more

than 40%, which means that more than 40% of the nodes that



(a) Fix |D|=1000 and vary N

from 1000 to 30,000
(b) Fix N=10,000 and vary |D|
from 300 to 10,000

Fig. 2. Visiting ratio vs.
|D|
N

are visited in the query process is a node in the constrained

path of a result. These results show that there is little space

to improve the exact search algorithm.

V. HEURISTIC METHODS TO FIND APPROXIMATE

SOLUTIONS

The space of exact skyline answers is huge. It can reach

thousands, thus incur very expensive calculation. This section

proposes strategies to reduce the unnecessarily huge space of

results based on two intuitions in real applications.

The first intuition comes from how users utilize search

results. Given a query, people tend to utilize the first few

answers [23]. The thousands of answers returned to users may

not really help much. The second intuition is related to how

much users care whether a solution is an exact solution or not.

In the applications of utilizing transportation networks, when a

non-skyline answer is close to a skyline answer (e.g., the travel

time differs from the exact travel time (which is thirty minutes)

by two minutes and all the other dimensions are the same), the

non-skyline answers are generally acceptable to users. Based

on the above intuitions, we propose two heuristic approaches

to find approximate solutions. These approximate solutions are

comparable to the exact solutions, while the heuristic methods

can dramatically reduce the result space.

A. Heuristic approach by using approximate range search

The first heuristic targets to reduce the number of starting

and ending nodes during graph traversal by using approximate

range search. We denote this method as Approx-range.

Observations: In real applications of utilizing transportation

networks, many bus/metro stops are far away from a query

point q. To get results for the query q, it is not reasonable to

use those faraway bus/metro stops as starting graph nodes to

traverse the graph. Also, if a bus/metro stop is far away from

the target object, people may not want to walk to such target

object. A similar scenario is observed by [12] which limits the

distance from a query point to the target result.

We use the statistics of real datasets to find the reasonable

distance threshold. From the real data (see Section VI for

detailed descriptions), we run a random query and get the

result set R of exact skyline solutions. From R, we extract

all the constrained paths. Then, we get the distinct starting

and destination graph nodes {vs} and {vt}. We calculate the

distance from q to each vs and plot the distribution of such

distances in Figure 3(a). Similarly, we calculate the distance

from each vt to its corresponding paths’ constrained objects

(a) Distribution of the distance
from q to the starting nodes of
graph paths

(b) Distribution of the distance
from the ending nodes of graph
paths to the base objects of sky-
line solutions

Fig. 3. Distribution of distance

and plot the distance distribution in Figure 3(b). The figures

show that more than 80% of graph starting nodes are within

1 Kilometer (Km) of the query point, and more than 20% of

objects of interest are within 1Km of a graph ending node.

The distance from the ending nodes to constrained objects is

larger than the distance from q to the starting nodes of the

graph paths. This is because {vt} are more constrained by the

paths and the attributes of objects.

Based on these statistics, we set a parameter τ to limit the

range search of starting and ending graph nodes. For a given

query q, we find the graph nodes that are within distance τ

from q and treat them as starting nodes to traverse the graph.

Similarly, for each graph node v, which can be a potential

ending node of a graph path, we find objects in D that are

within distance τ from v. Such objects have the potential to

form a skyline answer.

B. Heuristic approach by using limited prefix paths

Another factor that impacts the performance of the exact

search algorithms is the number of skyline paths. As shown

in [15], when the length of a path increases, the number of

skyline paths between two nodes increases dramatically. When

a path is long, this number becomes prohibitively huge. It

incurs expensive calculation in the exact search methods.

Our second heuristic approach targets to reduce the factor

of |skypaths| of each graph node. It is inspired by [17]

which defines the skyline candidates by considering only the

shortest path on each dimension from the query point to each

target object. Utilizing a similar idea, this heuristic chooses the

skyline paths that have the minimum value on one dimension

to expand. This heuristic reduces the number of skyline paths

that need to be expanded for each node to dG.

Fig. 4. Four skyline paths from q to vi

Figure 4 shows a simple example of the path expansion

for a node vi where the graph dG is two. p1, p2, p3, and p4
represent the constrained prefix paths that need to be expanded.

The exact search algorithm needs to expand all the four paths.



This heuristic only needs to expand p1 and p4 because they

have the minimum cost on dimension d1 and d2 respectively.

Issue caused by dummy paths. The heuristic approach

described above always chooses the dummy path to expand

because dummy paths only have one non-zero dimension

and have zero cost (minimum cost value) on all the other

dimensions. Thus, when we expand the skyline paths at each

node, the dummy path for this node is always chosen to be

expanded. This way, too much information is lost.

We propose to apply range searches to this heuristic to avoid

the issue. When we use approximate range search, for a graph

node v that is too far away from q (beyond the threshold τ ),

we can avoid creating dummy paths from q to v. Then, node v
does not have a dummy path as a skyline path to be expanded.

We denote the heuristic that utilizes both the range searches

and the limited skyline-path expansion as Approx-mix.

C. Indexed search algorithm

Lemma 4 shows that we can eliminate candidate objects by

utilizing only the attributes of objects in D and the distance

from graph nodes to these objects. For each graph node v, we

can calculate a set of objects that have the possibility to form

candidate solutions. Let Sv be a set with such objects. I.e.,

Sv = {oi|∃oj , (oi ' oj) ∧ (dist(v, oj) > dist(v, oi))}. The

set Sv can be pre-calculated and be used to calculate distance

in Line 4 of Algorithm addToSkylineImproved.

We create an index structure to organize these sets of Sv .

This index structure is denoted as LSO to represent local

skyline objects. The index structure organizes the objects in

three layers. The first layer contains all the objects in D on

the disk. The second layer has N blocks where the i-th block

Bi contains the pointers pointing to the objects Svi in the first

layer. The third layer keeps N pointers, where the i-th pointer

points to block Bi in the second layer. Utilizing the index,

we can save calculations in two steps. First, we do not need

to calculate Dcand for each query. Instead, we replace Dcand

with Snp.end in Algorithm 3. Second, the condition in Line 6

of Algorithm 3 does not need to be checked because the way

we build the index guarantees that this condition is satisfied.

Algorithm 4: Algorithm to construct the LSO index

Input : the set of objects D, an MCTN G

Output: the LSO index

1 begin

2 Initialize LSO to be empty;

3 S = findSkyline(D);

4 foreach v ∈ G.V do

5 Create Bv for node v as a block for the second layer of the index;

6 Add all the objects in S to Bv ;

7 foreach pair (o, s) where s ∈ S and o ∈ D \ S do

8 if ((s % o) ∧(dist(v, o) < dist(v, s)) ∧(dist(v, o) < τ) )

then

9 Bv .add(o); Break;

10 LSO.add(v, Bv);

11 return LSO;

Algorithm 4 describes the process to construct the LSO
index. It creates the second layer of the index. For each graph

node v, it creates a block Bv with pointers pointing to (i)

all the skyline objects of D and (ii) base objects for skyline

candidates. The skyline objects in D can be found by applying

any state-of-the-art skyline finding algorithm (e.g., [19]) by

considering only the non-spatial attributes of o ∈ D (Line 3).

The base objects of skyline candidates are constrained by using

the conditions in Line 8. When an object o is dominated

by a skyline object s, but the distance from a graph node

v to o is less than the distance from v to s, the object

o has the possibility to form a skyline candidate according

to Lemma 4. Furthermore, we utilize the first approximate

heuristic to control that such objects’ distance to v need to be

less than the approximate range τ .

The direct application of the proposed index structure to

the exact search algorithms cannot improve their efficiency

because the number of candidate objects for each graph node

v in exact search algorithms is much bigger than that in the

heuristic methods. For each graph node v, the structure Bv

needs to be stored on multiple disk blocks. Utilizing this index

to answer queries requires frequent I/Os for the index disk

blocks, and does not help improve query efficiency. We will

explore strategies to improve the index structures to facilitate

the evaluation of the exact search algorithms in the future.

D. Goodness of approximate results

To evaluate the quality of an approximate result set Rapprox,

we define a goodness score for Rapprox, score(Rapprox,R),
where R is the solution set returned from the exact algorithm.

Let DR and Dapprox be the set of distinct base objects in R
and Rapprox. Given an object o ∈ DR ∩Dapprox, let P(o,R)
and P(o,Rapprox) contain all the graph-constrained paths of o
in R and Rapprox respectively. We can define the goodness of

approximate result set by considering several intuitions. First,

if the approximate result set shares more common base objects

with the exact result set, Rapprox is better. To represent this

intuition, we calculate the score using the base objects that

are in both the exact and approximate result sets. The second

intuition is that, for a base object o in DR, we prefer to

see that its graph-constrained paths are the same or similar

to the graph-constrained paths of o in Dapprox. To represent

this intuition, we define a score for each object o as

score(o) = max{sim(p, p′)|p ∈ P(o,R), p′ ∈ P(o,Rapprox)}.

If P(o,R) or P(o,Rapprox) is empty, this score is 0, which

means that the base object is not in either result set. The

similarity score of two paths sim(p, p′) is defined to be the

cosine similarity of their path cost.

Definition 9 (Goodness of approximate result set). The good-

ness of Rapprox is defined as

score(Rapprox,R) =
∑

o∈(DR∩Dapprox)

score(o)

|DR|
. (3)

Example 6. Assume that R contains four path constrained

objects, op11

1 , op21

2 , op22

2 , and op31

3 , and Rapprox consists of

three path constrained objects, o
p′

21

2 , o
p′

31

3 , and o
p′

41

4 . Let p21 =
p′21. Then, DR = {o1, o2, o3}, Dapprox = {o2, o3, o4}, and

DR ∩Dapprox={o2, o3}.

score(o2)=max{sim(p21, p
′
21), sim(p22, p

′
21)}=sim(p21, p

′
21)



which is 1 since p21=p′21. For o3, score(o3) = sim(p31, p
′
31).

Thus, the overall

score(Rapprox,R) = score(o2)+score(o3)
3 =

1+sim(p31,p
′

31
)

3 .

The way that we define the goodness score guarantees that

it is in the range of [0,1].

VI. EXPERIMENTS

The algorithms have been implemented using Java 1.8. The

experiments are conducted on a desktop equipped with an

Intel(R) CPU with 3.60 GHz and 32 GB RAM. The trans-

portation network is stored using the Neo4j graph database

(https://neo4j.com). Neo4j is adopted because it is one of

the most popular graph databases according to DB-Engines

ranking (https://db-engines.com/en/ranking/graph+dbms). The

default page size and cache size of the Neo4j database are set

to 2 KB and 2 GB respectively.

A. Data and query

We utilize both synthetic and real data to test our proposed

methods. For synthetic data, we first generate the synthetic

graphs to simulate the public transportation networks. The

default average degree is set to four to simulate the real-world

applications where an intersection generally has four different

road segments. The range of the degree is 1 to 5. The adjacent

graph nodes in a public transportation line are generated such

that the distance between them is in a given range and the

edge direction does not differ much from the previous edge’s

direction in the same transportation line. The attribute values

on each edge are generated following a normal distribution.

Next, we generate the synthetic objects of interest D. For

each object o ∈ D, the number of non-spatial attributes is

set to be three and the values of attributes are sampled from

a uniform distribution. The synthetic objects are generated by

letting the number of graph nodes close to an object follow

a Beta distribution. We also use a parameter maxNeighbor
to limit the maximum number of graph nodes within a given

distance of the objects of interest. When maxNeighbor is

bigger, it means that more graph nodes are closer to an object

of interest and more skyline paths are explored in the search

process. Each synthetic graph has a corresponding set of D.

The real data is obtained from three cities, New York

(NY), Los Angeles (LA), and San Francisco (SF), using

rideschedules (https://rideschedules.com) and Google Maps

API. After preprocessing the data, where the details can be

found from [20], we get a set D with 25,854 objects of interest

(14,155 for LA, 9,589 for SF, and 2,110 for NY). For the

transportation networks, we get 5,127 nodes and 11,152 edges

for NY, 9,041 nodes and 13,615 edges for SF, and 12,433

nodes and 22,752 edges for LA.

A query point is randomly chosen from D. For the same

experiment setting (e.g., D with 10K objects), we generate five

sets of D with the same size and report the averaged running

results from the five sets. For each setting in our experiments,

we choose 30 queries and report the averaged results.

B. Comparison methods and performance metrics
Since no other methods can be directly applied to solve

our proposed problem, we cannot compare our methods with

other existing approaches. We compare the two exact search al-

gorithms, ExactAlg-baseline and ExactAlg-improved. We also

compare the two heuristic methods (Approx-range and Approx-

mix) and their corresponding versions that utilize indexes

to find approximate solutions. For comparison purpose, we

design and implement an A*-based algorithm by using range

search to find approximate solutions. This algorithm is denoted

as Approx-A*-range and is explained below. We did not

implement an A*-based exact search algorithm due to its

expensive computation (as analyzed in Section IV).

A*-based algorithm using range search. Approx-A*-range

finds approximate solutions by using range search. It needs

to consider every object in D \ q as a target object. For a

fixed target object o, this method limits the starting graph

nodes to be the nodes that are within a distance (τ ) from

the query point, and the ending graph nodes to be within a

distance of o by utilizing the heuristic of approximate range

search (Section V-A). This method utilizes a priority queue

to keep the graph nodes that have been explored. For a given

node v popped out from the priority queue, if the cost of its

constrained skyline paths and the estimated cost from v to the

target object o is dominated by an existing skyline path, this

node is not expanded. The lower bound of the cost from v to

a possible ending graph node is calculated using a landmark

index as in [15]. Note that for different target objects, we are

not naively repeating this process. Instead, we use the solutions

that are found so far (potentially from different target objects)

to conduct pruning. The details of the algorithm can be found

in [20] and are omitted here due to space limitations.

Running time is reported to show the efficiency of the

different methods. We do not report the disk I/Os as these

algorithms are very computation heavy. Disk I/Os are not as

representative as the total query time to evaluate the efficiency

of different methods.

Goodness of approximate solutions. For the approximate

solution sets, we report their goodness scores.

C. Performance of the exact search methods

In this section, we test the performance of the pro-

posed exact search methods, ExactAlg-baseline and ExactAlg-

improved, using synthetic data. These results show the pruning

power of the improved algorithm ExactAlg-improved.

(a) Query time vs. N (b) # of candidates vs. N

Fig. 5. Exact search algorithms (|D| = 1,000)

The first set of experiments compare these two algorithms

using different graphs, where the number of graph nodes

varies from 1,000 to 1,000,000. In these experiments, we

fix the synthetic dataset to 1,000 objects of interest (i.e.,



TABLE I
SPEED-UP OF ExactAlg-improved OVER ExactAlg-baseline

# of graph nodes

(in millions)
0.001 0.05 0.1 0.2 0.5 1

Running time

Speed-up ratio
2.46 2.16 1.94 2.02 2.03 1.85

# of candidates

Reduction ratio
22.71 16.89 10.44 12.24 16.25 9.75

|D| = 1,000). The running time of the two algorithms are

shown in Figure 5(a). The results show that the ExactAlg-

improved algorithm can speed up ExactAlg-baseline more than

1.8 times (Table I). This is mainly because it reduces the

number of skyline candidates (Section IV-B2). The reduction

in the skyline candidates can be verified using the results

in Figure 5(b) and Table I, which show that the improved

exact search algorithm can reduce the number of skyline

candidates from 1
10 to 1

22 of the candidates in the baseline

algorithm. The reduction in the running time is less than the

decrease in the number of candidates because the running

time is also affected by other factors. In particular, graph

traversal (Step 1 of ExactAlg-baseline) is expensive; also, the

dominance relationship checking in addToSkylineImproved is

not a constant, as it grows with the number of the candidates.

(a) Query time vs. |D| (b) # of candidates vs. |D|

Fig. 6. Exact search algorithms (N=10,000)

(a) Query time vs. dG (b) # of candidates vs. dG

Fig. 7. Exact search algorithms (N=10,000, |D|=5000)

We also conduct experiments by varying the number of data

objects (the number of graph nodes N is fixed), and varying

the average degree of graph nodes (the number of graph nodes

N and the objects of interest D are fixed). Figures 6 and 7

show the running time and the number of skyline candidates

for the above settings. The results of these experiments show

similar trends as the trends in Figure 5.

D. Performance of the heuristic approaches

This section evaluates the performance of the heuristic

approaches to find approximate solutions.

1) Query time: This set of experiments compares the effi-

ciency (query time) of the different heuristic methods. We run

the experiments using two different settings. First, we fix the

number of objects of interest to be 1,000 and vary the graph

size from 1K to 1M. The results are shown in Figure 8.

(a) Query time vs. N (b) # of candidates vs. N

Fig. 8. Heuristic approaches to find approximate solutions (|D|=1,000)

The Approx-mix approach is faster than Approx-range. This

is because less number of prefix paths are expanded using

Approx-mix. Due to the same reason, Approx-mix-indexed uses

less time than Approx-range-indexed. The indexed version

of the approaches, Approx-mix-indexed and Approx-range-

indexed, use much less time than their non-indexed counter-

parts. This shows that the index can help improve the effi-

ciency dramatically. Note that Figure 8(b) shows fluctuations

in the # of skyline candidates. This is because the number of

candidates that can be pruned using the range search and the

limited skyline-path expansion cannot be controlled.

(a) Query time vs. |D| (b) # of candidates vs. |D|

Fig. 9. Heuristic approaches to find approximate solutions (N=10,000)

We further compare the heuristic methods by using different

settings, fixing the graph (N=10,000) and varying the number

of objects of interest (|D|). Figure 9 shows the results. Similar

to the above setting, Approx-mix is faster than Approx-range,

the indexed version of these methods greatly outperforms the

non-indexed version, and Approx-mix-indexed uses less time

than Approx-range-indexed.

2) Goodness of approximate solutions: An important mea-

surement of the heuristic methods is the goodness of the

approximate solutions. This set of experimental results shows

the goodness scores of the approximate solution sets found

by the heuristic approaches. Note that, we do not include the

results for the indexed version because the indexed and the

non-indexed versions return the same result set Rapprox for

the same query. We use two settings: (i) fixing the number of

objects of interest to be 1,000 and varying the graph size from

1,000 to 1,000,000, and (ii) fixing the graph size (N=10,000)

and varying the number of objects of interest (|D|).
Figure 10 plots the goodness scores of the approximate

solution sets. This figure shows clearly that the results returned

by Approx-range has higher goodness score than those from

Approx-mix. This is consistent with our intuition that Approx-

mix removes more valid results. Despite these differences, both

algorithms achieve higher than 60% of goodness. Figure 10(a)



(a) score vs. N (b) score vs. |D|

Fig. 10. Goodness of Rapprox, score(Rapprox,R)

shows that the goodness is slightly worse for larger graphs

(larger N ). This is because the skyline paths in larger graphs

are typically longer and contain more information than the

paths used in a smaller graph. Thus the heuristic approaches

have higher probability to lose information. The goodness

scores fluctuate because the number of candidates pruned by

the heuristics shows relatively random behavior.
3) Index metrics: We show the size and construction time

of indexes for heuristic algorithms to find approximate solu-

tions. The index size is calculated using the data from the

Fig. 11. Index construction vs. N (|D|=1,000)

second and the third layers of the index. Figure 11 shows

that the index size on disk is linear to the number of nodes

in graphs. This is because the the number of pointers in the

second layer is the same as the number of objects in the first

layer. The number of pointers in the third layer is a fixed ratio

of the number of objects.

E. Comparison of the approaches to find exact and approxi-

mate solutions

This section reports experimental results that compare the

exact search algorithm ExactAlg-improved with the indexed

version of the heuristic methods. We use the same experimen-

tal setting as Section VI-D.

(a) Query time vs. N (b) Query time vs. |D|

Fig. 12. Comparison of methods to find exact and approximate solutions

Figure 12 shows the query time of the three methods. The

results show that the methods to find approximate solutions

dramatically outperform the improved exact search algorithm

ExactAlg-improved. This is consistent with the design of these

heuristic methods. The results of the skyline-candidate number

have the same trend as that in the previous sections. We do

not include such results due to space limitations.

F. Compare Approx-A*-range with other methods

This section compares the performance of Approx-A*-range

with our two proposed exact search methods and the Approx-

range-indexed, using synthetic data.

(a) Query time vs. N (b) # of candidates vs. N

Fig. 13. Comparison of the exact search algorithms and the heuristic
approaches that use indexes to find approximate solutions (The tests are on
smaller datasets because Approx-A*-range takes very long time to finish even
for smaller graphs; e.g., it uses more than 8 hours to finish for a graph with
10K nodes and D = 30K. )

Figure 13 displays the running time and the number of

skyline candidates of different algorithms for different graph

sizes. Figure 13(a) shows that Approx-A*-range runs much

slower than all of our proposed methods. It is even slower

than the baseline exact search method. It is mainly because of

the examination of each object of interest as a possible target

object and the calculation of the lower-bound cost which incurs

more computation.

Interestingly, the number of skyline candidates is not pro-

portional to the running time for Approx-A*-range is involved.

Figure 13(b) shows that both Approx-range-index and Approx-

A*-range could reduce the number of skyline candidates

dramatically when compared with the exact search algorithms.

This shows that the Approx-A*-range heuristic algorithm in-

deed can reduce the search space by using the lower-bound

estimation and the pruning strategy although its running time

is still high due to reasons stated above.

G. Experimental results using real datasets

Besides running experiments on synthetic data to test the

performance of our proposed methods in different settings, we

also test our proposed methods on the real datasets collected

for three cities, LA, SF, and NY. For the Approx-range and

Approx-mix methods, the range search range τ is set to 1 Km.

TABLE II
COMPARISON OF DIFFERENT METHODS ON REAL DATASETS

Query Time (in Sec.) # of Skyline Candidates

NY SF LA NY SF LA

ExactAlg-baseline 9.47 175.06 - 3.8 × 107 83 × 107 -

ExactAlg-improved 3.34 60.22 4207.08 318855 0.7 × 107105 × 107

Approx-range 1.06 11.67 591.59 10199 122510 1.8×107

Approx-range-indexed 0.24 0.23 14.40 10199 122510 1.8×107

Approx-mix 0.09 1.67 75.63 830 19444 995924

Approx-mix-indexed 0.08 2.54 3.60 830 19444 995924

(a) Running time of different methods on real datasets (For the LA dataset,

ExactAlg-baseline does not report any results within 5 hours.)

NY SF LA

Approx-range 0.39 0.79 0.93

Approx-mix 0.21 0.56 0.65

(b) Goodness of approximate solution sets

Table II shows the query time of different methods and the

goodness scores of the approximate solutions. For the smaller

NY dataset, the exact search algorithm can finish queries using



reasonable amount of time (3.34 seconds). For the larger SF

and LA datasets, the heuristic methods are 5 to 8 times faster

than the exact search algorithms. We observe that the goodness

score of the approximate solutions for Approx-range is high

(0.79 and 0.93) for SF and LA respectively, but is low (0.39)

for NY dataset. This is because the same τ is utilized for all

the datasets. A range search using the fixed τ on a larger graph

loses less information (i.e., starting nodes for graph traversal)

than the search over a smaller graph.

(a) Query time vs. τ (b) Goodness vs. τ

Fig. 14. Query evaluation on SF data with varying τ

We further show the effect of τ on the different search

algorithms and show the results in Figure 14. Figure 14(a)

shows that Approx-range uses more time for bigger τ . This

is because bigger τ values allow more graph nodes to be

the starting nodes for graph traversal. The goodness values

increase with τ for Approx-range. However, the goodness

values decrease with τ for Approx-mix. This is because a larger

τ allows more objects to have dummy paths in their skyline

paths and this worsens the dummy path issue (Section V-B)

when we expand limited number of skyline paths.

VII. CONCLUSIONS

In this paper, we introduce a new variant of skyline queries,

which are constrained by MCTNs. The major challenge to

address this type of queries comes from the large search

space of the network and the huge number of candidates. We

propose two exact search algorithms to evaluate such queries.

The first exact algorithm ExactAlg-baseline can find exact

skyline answers, but suffers from expensive calculations. The

second exact search algorithm ExactAlg-improved improves

ExactAlg-baseline by implementing several Lemmas. Besides

these, we further propose two heuristic methods to find ap-

proximate solutions for such queries. The heuristic methods

utilize a range search to narrow the space of graph traversal

(Approx-range) and expand limited number of intermediate

paths to reduce the number of candidates (Approx-mix). The

experimental results on both the synthetic and real data show

that ExactAlg-improved outperforms ExactAlg-baseline. The

approximate solutions are reasonably comparable to the exact

solutions, and the methods to find the approximate solutions

run much faster than the exact search algorithms.

REFERENCES

[1] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast exact shortest-
path distance queries on large networks by pruned landmark labeling.
In SIGMOD, pages 349–360. ACM, 2013.

[2] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. Salsa: computing
the skyline without scanning the whole sky. In CIKM, pages 405–414.
ACM, 2006.

[3] Stephan Borzsony, Donald Kossmann, and Konrad Stocker. The skyline
operator. In ICDE, pages 421–430. IEEE, 2001.

[4] Chee-Yong Chan, HV Jagadish, Kian-Lee Tan, Anthony KH Tung, and
Zhenjie Zhang. Finding k-dominant skylines in high dimensional space.
In SIGMOD, pages 503–514. ACM, 2006.

[5] James Cheng, Yiping Ke, Shumo Chu, and Carter Cheng. Efficient
processing of distance queries in large graphs: a vertex cover approach.
In SIGMOD, pages 457–468. ACM, 2012.

[6] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. Skyline
with presorting: Theory and optimizations. In Intelligent Information

Processing and Web Mining, pages 595–604. Springer, 2005.
[7] Edsger W Dijkstra. A note on two problems in connexion with graphs.

Numerische mathematik, 1(1):269–271, 1959.
[8] Xiaoyi Fu, Xiaoye Miao, Jianliang Xu, and Yunjun Gao. Continuous

range-based skyline queries in road networks. World Wide Web,
20(6):1443–1467, 2017.

[9] Antonin Guttman. R-trees: A dynamic index structure for spatial

searching, volume 14. ACM, 1984.
[10] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for

the heuristic determination of minimum cost paths. IEEE transactions

on Systems Science and Cybernetics, 4(2):100–107, 1968.
[11] Hao He, Haixun Wang, Jun Yang, and Philip S Yu. BLINKS: ranked

keyword searches on graphs. In SIGMOD, pages 305–316. ACM, 2007.
[12] Ji Hu, Zidong Yang, Yuanchao Shu, Peng Cheng, and Jiming Chen.

Data-driven utilization-aware trip advisor for bike-sharing systems. In
Data Mining (ICDM), 2017 IEEE Intl. Conf. on, pages 167–176, 2017.

[13] Xuegang Huang and Christian S Jensen. In-route skyline querying for
location-based services. In International Workshop on Web and Wireless

Geographical Information Systems, pages 120–135. Springer, 2004.
[14] Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Matthias Renz, and Tim

Schmidt. Proximity queries in large traffic networks. In Proc. of the ACM

Intl. symp. on Advances in geographic information systems, page 21.
ACM, 2007.

[15] Hans-Peter Kriegel, Matthias Renz, and Matthias Schubert. Route
skyline queries: A multi-preference path planning approach. In ICDE,
pages 261–272. IEEE, 2010.

[16] Xuemin Lin, Yidong Yuan, Qing Zhang, and Ying Zhang. Selecting
stars: The k most representative skyline operator. In ICDE, pages 86–
95. IEEE, 2007.

[17] Kyriakos Mouratidis, Yimin Lin, and Man Lung Yiu. Preference queries
in large multi-cost transportation networks. In ICDE, pages 533–544.
IEEE, 2010.

[18] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. An optimal
and progressive algorithm for skyline queries. In SIGMOD, pages 467–
478. ACM, 2003.

[19] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. Progres-
sive skyline computation in database systems. ACM Transactions on

Database Systems (TODS), 30(1):41–82, 2005.
[20] Huiping Cao Qixu Gong and Parth Nagarkar. Skyline queries con-

strained by multi-cost transportation networks. Technical Report TR-
CS-NMSU-2018-09-02, Department of Computer Science, New Mexico
State University, Las Cruces, New Mexico, 2018.

[21] Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. The r+-tree:
A dynamic index for multi-dimensional objects. Technical report, 1987.

[22] Michael Shekelyan, Gregor Jossé, and Matthias Schubert. Linear path
skylines in multicriteria networks. In ICDE, pages 459–470. IEEE, 2015.

[23] Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael
Moricz. Analysis of a very large web search engine query log. In
ACm SIGIR Forum, volume 33 (1), pages 6–12. ACM, 1999.

[24] Yufei Tao, Ling Ding, Xuemin Lin, and Jian Pei. Distance-based
representative skyline. In ICDE, pages 892–903. IEEE, 2009.

[25] Xike Xie, Hua Lu, Jinchuan Chen, and Shuo Shang. Top-k neighborhood
dominating query. In International Conference on Database Systems for

Advanced Applications, pages 131–145. Springer, 2013.
[26] Bin Xu, Jun Feng, and Jiamin Lu. Continuous skyline queries for moving

objects in road network based on mso. In Proc. of the 12th Intl. Conf.

on Ubiquitous Information Management and Communication, IMCOM,
pages 53:1–53:6. ACM, 2018.

[27] Bin Yang, Chenjuan Guo, Christian S Jensen, Manohar Kaul, and
Shuo Shang. Multi-cost optimal route planning under time-varying
uncertainty. In ICDE, 2014.

[28] Ruicheng Zhong, Guoliang Li, Kian-Lee Tan, and Lizhu Zhou. G-tree:
An efficient index for knn search on road networks. In CIKM, pages
39–48. ACM, 2013.


