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Optimal surface segmentation is a state-of-the-art method used for segmentation of multiple globally
optimal surfaces in volumetric datasets. The method is widely used in numerous medical image segmen-
tation applications. However, nodes in the graph based optimal surface segmentation method typically
encode uniformly distributed orthogonal voxels of the volume. Thus the segmentation cannot attain an
accuracy greater than a single unit voxel, i.e. the distance between two adjoining nodes in graph space.
Segmentation accuracy higher than a unit voxel is achievable by exploiting partial volume information
in the voxels which shall result in non-equidistant spacing between adjoining graph nodes. This paper
reports a generalized graph based multiple surface segmentation method with convex priors which can
optimally segment the target surfaces in an irregularly sampled space. The proposed method allows non-
equidistant spacing between the adjoining graph nodes to achieve subvoxel segmentation accuracy by
utilizing the partial volume information in the voxels. The partial volume information in the voxels is ex-
ploited by computing a displacement field from the original volume data to identify the subvoxel-accurate
centers within each voxel resulting in non-equidistant spacing between the adjoining graph nodes. The
smoothness of each surface modeled as a convex constraint governs the connectivity and regularity of
the surface. We employ an edge-based graph representation to incorporate the necessary constraints and
the globally optimal solution is obtained by computing a minimum s-t cut. The proposed method was
validated on 10 intravascular multi-frame ultrasound image datasets for subvoxel segmentation accuracy.
In all cases, the approach yielded highly accurate results. Our approach can be readily extended to higher-
dimensional segmentations.

Published by Elsevier B.V.

1. Introduction

tation problem is transformed into an energy minimization prob-
lem (Li et al., 2006; Ishikawa, 2003; Boykov et al., 2001). A graph is

Optimal surface segmentation method for 3-D surfaces repre-
senting object boundaries is widely used in image understanding,
object recognition and quantitative analysis of volumetric medical
images (Li et al., 2006; Abramoff et al., 2010; Withey and Koles,
2008). The optimal surface segmentation technique (Li et al., 2006)
has been extensively employed for segmentation of complex ob-
jects and surfaces, such as knee bone and cartilage (Yin et al., 2010;
Kashyap et al., 2013), heart (Wu et al., 2011; Zhang et al., 2013),
airways and vessels tress (Liu et al., 2013; Bauer et al., 2014), lungs
(Sun et al, 2013), liver (Zhang et al., 2010), prostate and bladder
(Song et al., 2010), retinal surfaces (Garvin et al., 2009; Lee et al.,
2010) and fat water decomposition (Cui et al., 2015). The segmen-
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then constructed, wherein the graph nodes correspond to the cen-
ter of evenly distributed voxels (equidistant spacing between ad-
joining nodes). Edges are added between the nodes in the graph
to correctly encode the different terms in the energy function. The
energy function can then be minimized using a minimum s-t cut
(Li et al., 2006; Boykov and Kolmogorov, 2004). The resultant min-
imum s-t cut corresponds to the surface position of the target sur-
face in the voxel grid.

The method requires appropriate encoding of primarily the fol-
lowing three types of energy terms (Song et al., 2013; Shah et al.,
2015) into the graph construction. The data term (also commonly
known as the data cost term) which measures the inverse likeli-
hood of all voxels on a surface, a surface smoothness term (sur-
face smoothness constraint) which specifies the regularity of the
target surfaces and a surface separation term (surface separa-
tion constraint) which governs the feasible distance between two
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adjacent surfaces. A detailed description of the energy terms is
provided in Section 2.1. Various types of surface smoothness and
surface separation constraints are used for simultaneous segmen-
tation of multiple surfaces. Optimal surface detection method (Li
et al., 2006; Wu and Chen, 2002) uses hard smoothness constraints
that are a constant in each direction to specify the maximum al-
lowed change in surface position of any two adjacent voxels on
a feasible surface. It uses hard surface separation constraints to
specify the minimum and maximum allowed distances between
a pair of surfaces. Methods employing trained hard constraints
(Garvin et al., 2009), use prior term to penalize local changes in
surface smoothness and surface separation. The constraints can
also be modeled as a convex function (convex smoothness con-
straints) as reported in Ref. (Song et al., 2013; Dufour et al., 2013).
Furthermore, a truncated convex function (truncated convex con-
straints) may also be used to model the surface smoothness and
surface separation constraints (Kumar et al., 2011; Shah et al,,
2014; 2015) to segment more complex surfaces but does not guar-
antee global optimality. A truncated convex constraint enforces a
convex function based penalty with a bound on the maximum pos-
sible penalty.

However, since volumetric data is typically represented as an
orthogonal matrix of intensities, the surface segmentation cannot
achieve a precision greater than a single unit voxel, i.e. the distance
between two adjoining nodes in the graph space. Accuracy higher
than a single unit voxel (subvoxel accuracy) can be attained by
exploiting partial volume effects in the image volumes (Abramoff
et al., 2014; Malmberg et al., 2011) which leads to non-equidistant
spacing between the adjoining graph nodes resulting in an irregu-
larly sampled space. Volumetric images are obtained by discretiz-
ing the continuous intensity function uniformly sampled by sen-
sors, resulting in partial volume effects (Shannon, 1949; Trujillo-
Pino et al., 2013). Partial volume effects are inherent in images as
voxels "'combine’ partial information from various features (such as
tissues) of the imaged object. The spatial resolution in images is
limited by the detector/sensor design and by the reconstruction
process, which results in 3-D image blurring introduced by the fi-
nite spatial resolution of the imaging system (Soret et al., 2007).
Mathematically, the finite resolution effect is described by a 3-D
convolution operation, where the image is formed by the convo-
lution of the actual source with the 3-D point spread function of
the imaging system, which causes spillover between regions. The
signal intensity in each voxel is the mean of signal intensities of
the underlying tissues included in that voxel. The ignored partial
volume information can be utilized by computing a displacement
field directly from the volumetric data (Abramoff et al., 2014) to
identify the subvoxel-accurate location of the centers within each
voxel, thus requiring a generalized construction of the graph with
non-equidistant spacing between orthogonal adjoining nodes (ir-
regularly sampled space). Increased subvoxel segmentation accu-
racy attained by exploiting the partial volume effects has the po-
tential for better diagnosis and treatment of disease.

The optimal surface segmentation technique employing the dif-
ferent types of smoothness constraints as discussed above is not
capable of efficiently segmenting surfaces with subvoxel accuracy
in a volume which requires segmentation in a grid comprising of
non-uniformly sampled voxels where the spacing between the or-
thogonally adjoining nodes is not equidistant.

To address this problem, the subvoxel accurate graph search
method (Abramoff et al., 2014) was developed to simultaneously
segment multiple surfaces in a volumetric image by exploiting
the additional partial volume information in the voxels. A dis-
placement field is computed from the original volumetric data.
The method first creates the graph using the conventional opti-
mal surface segmentation method (Li et al., 2006), then deforms
it using a displacement field and finally adjusts the inter-column

(a) (b)

Fig. 1. Example of a 3 x 3 voxel grid to demonstrate subvoxel accuracy. Each voxel
is represented by a red node in the graph space. (a) Graph nodes with equidistant
spacing between them. True subvoxel accurate surface is shown in green. The seg-
mented surface using optimal surface segmentation method with hard constraints
is shown in yellow. (b) The displacement field derived from the grid is applied to
the central nodes displacing the centers to exploit the information from the partial
volume effect shown by brown arrows. The resultant segmentation with the sub-
voxel accurate graph search is shown in blue. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

edges and inter-surface edges to incorporate the modification of
these constraints. Specifically, such a deformation shall result in
non-equidistant spacing between the adjoining nodes which may
be considered equivalent to a generalized case of a cube volume
formed by non-uniform sampling along the z dimension for the
purposes of 3-D surface segmentation. The method demonstrated
achievement of subvoxel accuracy compared to the traditionally
used optimal surface segmentation method (Li et al., 2006). An ex-
ample is shown in Fig. 1. However, the method employs hard sur-
face smoothness which does not allow flexibility in constraining
surfaces. Specifically, the previous approach was not capable of in-
corporating a convex surface smoothness constraint in the graph
with non-equidistant spacing between adjoining nodes.

Our main contribution is extension of the framework pre-
sented in Ref. (Abramoff et al., 2014) to incorporate convex sur-
face smoothness/separation constraints for multiple surface seg-
mentation in irregularly sampled space. The proposed method is
a generalization of the graph based optimal surface segmentation
with convex priors (Song et al., 2013) in the regularly sampled
space. Consequently, the graph constructed in the regularly sam-
pled space forms a special case in the irregularly sampled space
framework where the spacing between the adjoining nodes is set
to be a constant (equidistant). The use of convex priors allows
for incorporation of many different prior information in the graph
framework as discussed previously while attaining subvoxel accu-
racy. Unlike the subvoxel accurate graph search method (Abramoff
et al., 2014), the proposed method does not require a two step
process to create the graph by the conventional method and then
readjust the edges, but instead provides a one step function to add
edges between nodes from two neighboring columns to incorpo-
rate the convex prior.

Subvoxel surface segmentation methods employing adaptive
grids (Lang et al.,, 2014) and located cuts (Malmberg et al., 2011)
have also been used to segment surfaces with subvoxel precision.
The adaptive grid methodology (Lang et al., 2014) requires a pre-
segmentation of the target surfaces and generates an application
specific grid, wherein, the graph nodes are only placed in the re-
gion of interest between the inner and outer surfaces by perform-
ing flattening of the surfaces using a regression model. The sur-
faces are then segmented using the optimal surface segmentation
method (Li et al., 2006). The sub pixel segmentation method as
described in Ref. (Malmberg et al., 2011), utilizes an initial seg-
mentation to create fuzzy vertices in the graph using a distance
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transform. Utilizing the information from the fuzzy vertex segmen-
tation, a located cut for the boundary of the vertex segmentation
is then derived to compute the final segmentation. Both meth-
ods essentially make local adjustments and improvements to the
segmentation in the regularly sampled space, while the proposed
method computes the globally optimal solution from the graph
constructed in the irregularly sampled space.

In addition, the adaptive moving grid has been used for solv-
ing partial differential equations (PDEs) (Budd et al, 2009). The
grid adaptivity also finds its application in the quadtree and oc-
tree methods for improving resolution locally in a hierarchical data
representation (Samet, 1988).

Note that a straightforward way to solve the problem is to sim-
ply up-sample the columns and directly apply the graph search
method, which increases the graph size proportional to the factor
of upsampling, thus resulting in very high computation time and
is dependent on determination of the minimum scale of subvoxel-
accurate segmentation. The proposed method does not require any
such upsampling and is capable of segmenting the target surfaces
in the available resolution with subvoxel accuracy. Additionally, the
proposed method does not introduce additional parameters in the
formulation in comparison with graph search method (Li et al.,
2006).

In the following sections, we briefly explain the formulation for
the optimal surface segmentation method in the regularly sampled
space, explain the formulation and description of our novel graph
construction to incorporate the convex smoothness constraints in
the irregularly sampled space. Next, the evaluation is performed
on intravascular multi-frame ultrasound image datasets for vali-
dation and applicability of the method to demonstrate subvoxel
segmentation accuracy compared to optimal surface segmentation
method with convex priors in regularly sampled space (Song et al.,
2013). Finally, the proof for correctness of graph construction to
model the convex surface smoothness constraints is presented in
Appendix A and B.

2. Methods
2.1. Problem formulation and energy function

The problem formulation for the widely used optimal surface
segmentation methods (Li et al., 2006; Wu and Chen, 2002; Song
et al., 2013) is described as follows. Consider a volume I(x, y,
z) of size XxYxZ A surface is defined as a function S(x, y),
where xex={0,1,... X -1}, yey={0,1,...Y -1} and S(x, y) ez
= {0,1,...Z—1}. It is worth noting that the center of voxels
are uniformly sampled. Each (x, y)-pair corresponds to a voxel
column {(I(x,y,z)|z=0,1,...,Z—1}. We use a and b to denote
two columns corresponding to two neighboring (x, y)-pairs in the
domain xxy and Ns; to denote the set of pairs of neighboring
columns. The function S(a) can be viewed as labeling for a with the
label set z (S(a) ez). For simultaneously segmenting A(A >2) dis-
tinct but interrelated surfaces, the goal of the problem is to seek
the globally optimal surfaces S;(a), where i=1,2,... A in I with
minimum separation d;;,; where j=1,2,... A — 1 between each
adjacent pair of surfaces S; and S, .

The problem is transformed into an energy minimization prob-
lem. The energy function E(S) takes the following form as shown
in Eq. (1):

A
ES) =Y 3 Disi@)+ Y Va(Si(@), Sib))
i=1 aexxy (a,b)eNs (1 )
A-1

+ Z Z Hq(Si11(a), Si(a))

i=1 aexxy

The data cost term X,cxxyD;i(S;j(a)) measures the total cost of
all voxels on a surface S;, where D; measures the inverse probabil-
ity of a voxel belonging to surface S;. The surface smoothness term
> (@.byens Vab (Si(@), Si(b)) constrains the connectivity of a surface in
3-D and regularizes the surface. Intuitively, this defines how rigid
the surface is. The surface separation term Hq(S;(a), Si;1(a)) con-
strains the distance of surface S; to S;, ;. The energy function is
appropriately encoded in a graph. A minimum s-t cut is then com-
puted on the graph to get solutions for the target surfaces S;’s.

Typically graph construction is done with equidistant spac-
ing between the adjoining nodes (regularly sampled space). Our
main contribution is to allow for optimal surface segmentation
in the irregularly sampled space with convex surface smooth-
ness/separation constraints by allowing non-equidistant spacing
between the nodes.

We formulate the multiple surface segmentation problem in a
similar manner for the irregularly sampled space. Consider a vol-
ume I(x,y,7) where xex = {0,1,... X -1}, yey = {0,1,... Y — 1}
and Z € R. Each (x, y)-pair corresponds to a column {(I(x,y.2)|Z € R,
denoted by col(x, y). Assume each col(x, y) has exactly Z elements
obtained by sampling strictly in the increasing order along the Z
direction which are indexed by {0, 1,... Z — 1} along col(x, y). This
yields a volumetric image I(x, y, z) of size X x Y x Z, where xex =
{0.1,...X -1}, yey={0.1,...Y-1}and ZeZ = {0,1,... Z -1},
which allows for non-equidistant spacing between two adjacent el-
ements in the column. As discussed previously a and b are used to
denote two neighboring columns. For ease of understanding, we
assume Z = Z for the remainder of this paper.

Note, for purposes of the experiments in this paper, relaxation
of equidistance constraint concerns the z axis only. As the image
domain we consider is an x-y grid, we thus only relax the equidis-
tance constraint along the z-axis. It is possible and would be use-
ful to relax the equidistance constraint in the x- and y-axes if the
image domain is defined on a meshed simple surface, that is, the
sought surface is monotone to the meshed surface. However, to
avoid the interference, we may restrict to move the center point
around within each voxel.

We define a mapping function for each column a as Lg:
{0,1,...Z—1} — R which maps the index of sampled points in
I(a, 2) to I(a, Z). For example, Ly(i) denotes the Z coordinate of the
i+1-th sample along column a, and L;(i+ 1) > Ly (i) because of the
strictly increasing order of sampling along column a. An example
is shown in Fig. 2. Further, a surface labeling for column a is de-
fined as S(a), where S(a)ez = {0, 1, ... Z — 1}. The function Ly(S(a))
defines the “physical” location (the Z coordinate) of surface S at
column a. For simultaneously segmenting A (A >2) surfaces, the
goal of the problem is to seek the surface labeling S;(a) on all
columns in [ for each surface S;, where i=1,2...A, with mini-
mum separation d; ;1 where j=1,2,...,A —1 between adjacent
pair of surfaces. It is to be noted, that the surfaces are ordered, i.e,
Lq(Siz1(a)) = La(S;(a)). The corresponding energy function for this
formulation is shown in Eq. (2):

A
E®) =) < > Di(La(Si(a))> + Y VaplLa(Si(@), Ly(Si(b)))

i=1 \dexxy (a,b)eNs
A-1

3 Y Hala(Si41 (@), La(Si(@))) (2)
i=1 aexxy

Herein, the surface smoothness term is modeled as a convex
function as shown in Eq. (3).

Vab (La(Si(@)). Ly (Si (D)) = ¥ (La(Si(@)) — Ly (Si(b))) 3)

where, 1(-) is a convex function, and without loss of generality,
we assume that ¥ (0) = 0 Wu and Chen (2002).
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Fig. 2. Example of column structure for irregularly sampled space using mapping
function.

For simplicity, the surface separation term is modeled as a hard
constraint for enforcing the minimum separation between a pair of
surfaces as shown in Eq. (4).

Ha(La(Sis1(a)), La(Si(a)))
B {oo, if La(Siy1(a)) — La(Si(@)) < dija
1o,

otherwise
where d;;,; is the minimum separation between a pair of adja-
cent surfaces. The method is also capable of incorporating a convex
surface separation penalty while enforcing a minimum separation
constraint in the irregularly sampled space using the same frame-
work and is discussed in Section 5.

(4)

2.2. Graph construction

For each surface S;, a subgraph G; is constructed. Herein, the
intra-column edges are added to enforce surface monotonicity and
encode the data term for cost volume D; (for searching S;). Inter-
column edges are added between a pair of neighboring columns
a and b to enforce the surface smoothness penalty term V(-).
The graph G for the simultaneous search of all A surfaces consists
of the union of those A subgraphs G;’s. Furthermore, inter-surface
edges are added between the corresponding columns of subgraphs
G; and G, to incorporate the surface separation term for sur-
face distance changes between two surfaces. A pair of columns
with respect to the same (x, y)-pairs in the domain x xy of sub-

Node of column a with

corresponding label La(z).

Node of column b with
corresponding label Lb(z).

v

Intra-column Edge

Column a

Columnb

Inter-column Edge Type |

\ 4

Inter-column Edge Type Il

Inter-column Edge Type Il

——

Fig. 3. Example graph construction of two neighboring columns a and b to demonstrate enforcement of convex surface smoothness constraints in irregularly sampled space.



A. Shah, M.D. Abamoff and X. Wu/Medical Image Analysis 54 (2019) 63-75 67

graphs G;, G;,; for two adjacent surfaces is defined as correspond-
ing columns. The graph G is then solved by computing a maxi-
mum flow which minimizes the energy function E(S) (Eq. (2)). The
positions of the A target surfaces are obtained by mapping the re-
sultant solution to the physical space using the mapping function
Lq(-). The graph is constructed using the cost volumes generated
for A surfaces from volume I(x, y, z). Each element in the cost vol-
ume D; to search S; is represented by a node n;(a, z) (zez) in G;.
The following edges are added to incorporate the different energy
terms:

2.2.1. Intra-column edges

To ensure the monotonicity of the target surfaces (i.e., the tar-
get surface intersects each column exactly one time) and encode
the data cost term; intra-column edges are added to each sub-
graph G; as described in Ref. (Li et al, 2006). Along every col-
umn a for surface S;, each node n;(a, z)(z>0) has a directed edge
with +oco weight to the node immediately below it and an edge
with D;(Ls(z— 1)) weight in the opposite direction. Additionally,
an edge with +o0o weight is added from the source node s to each
node n;(a, 0) and an edge with D;(Ls(Z — 1)) weight is added from
node n;(a,Z — 1) to the terminal node t.

Any s-t cut with finite cost contains only one of the finite
weight edges D;(Lq(.)) for each column a, thus enforcing surface
monotonicity. This is because, if any s-t cut included more than
one finite weight edges, then by construction it must include at
least one infinite weight edge thereby making its cost infinite.

2.2.2. Inter-column edges

Inter-column arcs are added between pairs of neighboring
columns a and b to each subgraph G; to encode the surface
smoothness term. For the purpose of this paper the incorporation
of a convex smoothness term is presented. Denote a function op-
erator f(rq, rp) as shown in Eq. (5).

if rn<rn

fri.r) = { (5)

otherwise

0
Y (ry —12),

where ¥/(-) is a convex function.

A general weight setting function g(-) is used for the inter-
column edges between two neighboring columns. The following
inter-column edges are added:

For all k; €[0,Z—1] and k, € [1,Z — 1], a directed edge with
weight setting g(kq, k;) as shown in Eq. (6) is added from node
ni(a, k1) to node n;(b, ky). Additionally, a directed edge is added
from node n;(a, k) to terminal node t with weight setting g(kq, Z).

g(k1, ko) = f(La(kq). Ly (ko — 1))
—fla(ky = 1), Ly(ka = 1)) = f(La(ky), Ly(k2)) (6)
+f(La(ky = 1), Ly(k2))

Where, if k; =0, (that is k; — 1 ¢ z), then f(Lq(k; — 1), Ly(ky —
1)) = f(La(ky — 1), Ly(ky)) = 0 and if k, = Z, (that is, k; ¢£z), then
fLa(kq), Ly(ka)) = f(La(ky = 1), Ly(kz)) = 0.

Lemma 1. For any kq and k,, the function g(kq, ky) is non-negative.
(Proof in Appendix A)

In a similar manner, for all k; €[0,Z—1] and ky, € [1,Z-1],
edges are constructed from nodes ni(b, k) to nodes n;(a, ky) with
weight setting g(kq, ky) as shown in Eq. (7). Additionally a directed
edge is added from node n;(b, k) to terminal node t with weight set-
ting g(kq, 2).

g(kq, k2) = f(Ly(k1), La(kz — 1))
—f(Lp(kr = 1), La(kz — 1)) — f(Ly(k1), La(k2)) (7)
+f(Lp(ky — 1), La(ka))

Table 1
Summary of inter-column edge weights of the graph construc-
tion in Fig. 3, based on a linear function of the form v (k; —

ka) = |ki — ka|.
Edge Type  Weight Edge Type  Weight
E(ag, by) 1 2 E(by, a;) 1l 8
E(ag, by) 1 1 E(bs, a;) I 4
E(ay, by) 1 8 E(bs, ap) I 5
E(ay, bs) 1 4 E(bs, a3) I 4
E(ay, b3) 1 5 E(bs, ag) 1 3
E(ag, b3) 11 4 E(b4, (14) 11 6
E(as, b3) 1 3 E(bs, as) 1 3
E(as, by) 11 6 E(bs, as) I 13
E(as, by) 1 3
E(a5' bs) Il 13
E(as, bg) 1 2

It should be noted that the weight setting function g(kq, k) in Eq.
(7) is similar to Eq. (6) with only the column mapping functions Lq( -)
and Ly( -) interchanged. Also, in practice we do not add edges with a
weight of zero in the graph.

Lemma 2. In any finite s-t cut C the total weight of the edges be-
tween any two adjacent columns a and b (denoted by C,}) equals to
the surface smoothness cost of the resulting surface S; with S;(a) = k;
and S;(b) = ky, which is ¥ (Lq(ky) — Ly(ky)), where ¥(-) is a convex
function. (Proof in Appendix B)

Example of a graph construction of two neighboring columns a and
b for a given surface with enforcement of convex surface smoothness
constraint is shown in Fig. 3. Herein, an edge from n;(a, k1) to node
ni(b, k) is denoted as E;(ay, . by,) for the i-th surface. For clarity, an
edge Ei(ay,. bkz) is denoted as Type I if ky > kq, as Type II if ky = kq
and as Type III if ky < k. The respective edge weights in the graph are
summarized in Table 1. The convex function used in the example is a
linear one, taking the form yr(ky — ky) = |kq — k3|.

The following can be verified from the example shown Fig. 3:

The correct cost of cut C; = |21 — 12| = 9. It can be verified that
the inter-column edges contributing to the cost of cut C; are
Type I edges E(a,, bs) and E(aq, b3). Summing the edge weights
from Table 1, cost of cut G; =5+4=09.

e The correct cost of cut G, =|25—37| = 12. It can be verified
that the inter-column edges contributing to the cost of cut C,
are Type | edges E(by, as), E(bs, as) and Type Il edge E(by, ag).
Summing the edge weights from Table 1, cost of cut G, =3 +
3+6=12.

The correct cost of cut C3 = |25 — 3| = 22. It can be verified that
the inter-column edges contributing to the cost of cut C3 are
Type 1 edges E(ag, by), E(ay, by), E(ay, b3), E(ay, b3), Type Il edge
E(az, b3). Summing the edge weights from Table 1, cost of cut
CG=1+8+4+5+4=22.

The correct cost of cut C4 = |25 — 1| = 24. It can be verified that
the inter-column edges contributing to the cost of cut C4 are
Type I edges E(ap, by), E(ag, by), E(ay, by), E(ay, b3), E(az, bs),
Type Il edge E(as, b3). Summing the edge weights from Table 1,
costofcutC4 =2+1+8+4+5+4=24

2.2.3. Inter-surface edges

The surface separation term Hgy(-) between two adjacent sur-
faces is enforced by adding edges in a similar manner as described
in Ref. (Abramoff et al., 2014) from column a in subgraph G; to cor-
responding column a in subgraph G;, ;. Along every column a in G;,
each node n;(a, z) has a directed edge with +o0o weight to the node
ni1(a,7'), (Z €z,La(@) - La(2) 2 djjy1,La(@ = 1) = La(2) < djjy1).
Additionally an edge with +o0o weight is added from node n;(a, z)
to the terminal node ¢ if L;(Z — 1) — La(2) < dj i 1-
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Node of column a
with label Ls(2’) in
for surface Si1.

z=2

2 permnrenn. Node of column a
" withlabel La(z) in for
=1 Q 7=1 adjacent surface Si.
Feasible cut
=0 @ @ z=0 Infeasible cut
N S

+ oo Inter-surface edge

O >
Fig. 4. An example graph for incorporation of surface separation constraint be-
tween two corresponding columns is shown. Only the inter-surface edges are
shown for clarity. The minimum separation constraint d;;,; = 2. It can be seen that
cut C; is a feasible cut since the minimum separation constraint is not violated

while cut C, is infeasible since the minimum separation constraint is violated as
Lo(Z =1) = La(z=1) < djjs1.

It can be verified, that no finite s-t cut is possible when L;(z') —
Lq(z) < d;i,q. since by construction an inter-surface edge of +oo
weight will be cut, thus making the cost infinite. An example of a
graph construction for two corresponding columns of adjacent pair
of surfaces with enforcement of the surface separation constraint is
shown in Fig. 4.

Thus the surface separation term Hg(-) is correctly encoded in
graph G. Note that if Hy(-) is modeled with a convex function, the
same graph construction as that for the surface smoothness term
can be used to encode it in the graph.

2.3. Surface recovery from minimum s-t cut

The minimum s-t cut in the graph then defines optimal A sur-
faces S; where i =1,2...A. For a given surface §;, the surface la-
bel for each col(x,y) €z, where x e X and y €y is given by the
minimum s-t cut (Li et al., 2006). The final surface positions for
each column a is recovered by applying the mapping function Lg :
{0,1,...Z—-1} > R, where a e X xy, thereby yielding the resul-
tant surface positions for each column L,(S;(a)) € Z, where Z € R.

3. Experimental methods
3.1. Intravascular ultrasound (IVUS) images

To study the applicability of the proposed method, the segmen-
tation of lumen and media with subvoxel accuracy was performed
in Intravascular Ultrasound (IVUS) images as shown in Fig. 5.

Atherosclerosis, a disease of the vessel wall, is the major
cause of cardiovascular diseases such as heart attack or stroke
(Frostegard, 2005). Early atherosclerosis results in remodeling, thus
retaining the lumen despite plaque accumulation (Glagov et al.,
1987). Atherosclerosis plaque is located between lumen and media
that can be identified in IVUS images. Automated IVUS segmen-
tation of lumen and media is of substantial clinical interest and
contributes to clinical diagnosis and assessment of plaque (Balocco
et al., 2014).

In this experiment we compare the segmentation accuracy of
the lumen and media using the proposed method with the com-
plete set of methods used in the standardized evaluation of IVUS
image segmentation (Balocco et al., 2014). The compared meth-
ods are namely, P1 - Shape driven segmentation based on linear
projections (Unal et al., 2008), P2 - geodesic active contour based
segmentation (Caselles et al., 1997), P3 - Expectation maximization
based method (Cardinal et al., 2006; 2010), P4 - graph search based
method (Downe et al., 2008), P5 - Binary classification of distin-
guishing between lumen and non-lumen regions based on multi-
scale Stacked Sequential learning scheme (Gatta et al., 2011), P6
- Detection of Media border by holistic interpretation of the IVUS
image (HoliMADb) (Ciompi et al., 2012), P7 - Lumen segmentation
based on a Bayesian approach (Mendizabal-Ruiz et al., 2013), P8
- Sequential detection (Bourantas et al., 2008). Herein, method P4
is based on the optimal surface segmentation method using hard
constraints (Li et al., 2006) applied on regularly sampled space. For
fair and robust analysis, we also compare the segmentation accu-
racy of the proposed method in the irregularly sampled space to
the optimal surface segmentation method using convex smooth-
ness constraints in the regularly sampled space (OSCS) (Song et al.,
2013) and applied deformations to the OSCS segmentation results
(DOSCS as described in Section 3.1.2). The proposed method, OSCS
and DOSCS method employ the same parameter settings. Addi-
tionally, we compare the measures obtained from our method
to a deep learning method with a UNET architecture (UNET)
which was applied on the same dataset and was reported in Ref.
(Balakrishna et al., 2018). Overview of each method’s feature, in-
cluding whether the algorithm was applied to lumen and/or media,
whether the segmentation was done in 2-D or 3-D and whether
the method was semi-automated or fully automated is shown
in Table 2.

Fig. 5. (a) A single frame of an IVUS multiframe dataset (b) Expert manual tracings of the Lumen (red) and Media (green). (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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Table 2

Overview of the compared method features.
Methods Category Automation  2-D/3-D
P1 (Shape driven) Lumen and Media  Semi 2-D
P2 (Active contour) Lumen Semi 2-D
P3 (Expectation maximization)  Lumen and Media  Semi 2-D
P4 (Graph search) Lumen and Media  Fully 3-D
P5 (Sequential learning) Lumen Fully 3-D
P6 (HoliMADb) Media Fully 2-D
P7 (Bayesian) Lumen Semi 2-D
P8 (Sequential detection) Lumen and Media  Fully 2-D
UNET (Deep learning based) Lumen and Media  Fully 2-D
0SCS Lumen and Media  Fully 3-D
DOSCS Lumen and Media  Fully 3-D
Our Method Lumen and Media  Fully 3-D

3.1.1. Data

The data used for this experiment was obtained from the stan-
dardized evaluation of IVUS image segmentation (Balocco et al.,
2014) database. In this experiment Dataset B as denoted in
Ref. Balocco et al. (2014) was used. The data comprises of a set of
435 images with a size of 384 x 384 pixels extracted from in vivo
pullbacks of human coronary arteries from 10 patients. The respec-
tive expert manual tracings (subvoxel accurate) of lumen and me-
dia for the images were also obtained from the reference database.
The dataset contains 10 multi-frame datasets, in which 3D context
from a full pullback is provided. Each dataset comprises of between
20 and 50 gated frames extracted from the full pullback at the
end-diastolic cardiac phase. Further, the obtained data comprised
of two groups - training and testing set. Approximately one fourth
of the images in the dataset were grouped in the training set and
the remaining were grouped as the testing set, to assure fair eval-
uation of the algorithms with respect to the expert manual trac-
ings. The experiment with the proposed method was conducted in
conformance with the directives provided for the IVUS challenge
(Balocco et al., 2014).

3.1.2. Workflow

Each slice of the volumes in the dataset is first converted into
a polar coordinate image as shown in Fig. 6. For each frame,
given the center of the image, for each angular position 6 =
{0,1, ... 360} degrees on the short-axis view (Balocco et al., 2014),
the corresponding radial columns are generated by considering the
gray-level values of the sequence along the radius at the chosen
angle and the generated columns are stacked consecutively to gen-
erate the polar image volumes. The generated polar image volumes
undergo the application of a 7 x 7 x 7 Gaussian filter with a stan-
dard deviation of 4 for denoising. Next, the cost image volumes
Dyymen and Dyeqiq are generated for the lumen and media respec-
tively. The OSCS method is applied to the cost volumes Dy, and
Dpnedia- Further the GVF as discussed in Section 3.1.3 is computed

on the polar image volumes. The deformation field is then ap-
plied to cost image volumes and the shifted positions of the voxel
centers are recorded. The deformed cost function image volumes
D;umen and D;n ediq r€ then segmented using the proposed method.
The deformation obtained from GVF was applied to the automated
segmentations obtained from the OSCS method, resulting in de-
formed OSCS (DOSCS) segmentations. Finally the resulting segmen-

tations are mapped back to the original coordinate system.

3.1.3. Gradient vector field

A gradient vector field (GVF) (Xu and Prince, 1998) is a feature
preserving diffusion of the gradient in a given image volume. In
this study, GVF is used as a deformation field F(x, y, z) obtained
directly from the input volume data acting on the center of each
voxel (x, y, z) to shift the evenly distributed voxels to the deformed
space. The voxel centers are thus displaced towards the regions
where salient transitions of image properties are more likely to oc-
cur. The shift of the centers of the voxels is given by Eq. (8).

*.y.7Z)=xy.2)+ yF(x,y,2) (8)

where y is a normalization factor. The displacement of each voxel
center is confined to the same voxel. Therefore, F(x, y, z) is nor-
malized such that the maximum deformation is equal to half of
the voxel size §. The normalization factor takes the following form
as show in Eq. (9).

1)
T2 xMAXy ey ol IF (X, . 2)]]

(9)

3.14. Cost function design

To detect the lumen and media, a machine learning approach
is adopted to generate cost images. For each pixel of the polar im-
age in the training set, a total of 148 features were generated. The
following operators are applied in order to generate the features:

« 16 features are generated by applying a set of 16 Gabor filters to
the image according to the following kernel shown in Eq. (10).

1 05x (X )24 (2 )2)4i
o 05x (G ()P +i2m Ux+Vy) (10)

Clxy) = 27 00y

The parameters U and V (scaling and orientation) used are U =
(0.0442, 0.0884, 0.1768, 0.3536), V = (0, /4, 7 [2, 31 [4), ox =
0.5622U and oy = 0.4524U.

« 2 features are generated by applying a 3 x 3 Sobel kernel to the
image in the x and y directions.

e 6 features are generated by computing the mean value (m),
standard deviation (s) and the ratio T of pixel intensities in a
sliding window of size 1 x 10 pixels in the x and y directions.

o 2 features defined as shadow (Sh) and relative shadow (Sr) re-
lated to the cumulative gray level of the image are generated

Fig. 6. (a) A single frame of an IVUS multiframe dataset (b) Polar transformation of (a). Red - Lumen, Green - Media.
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Table 3

Evaluation measures of each method with respect to expert manual tracings. Error measures ex-
pressed as mean and (standard deviation). An empty table cell indicates that the method was not

applied to Lumen or Media. OM-Our Method.

Methods Lumen Media
M PAD HD M PAD HD
P1 0.81(0.12) 014 (0.13) 047 (039) 076 (0.13) 021 (0.16)  0.64 (0.48)
P2 0.83 (0.08) 0.4 (012)  0.51 (0.25)
P3 0.88 (0.05)  0.06 (0.05) 0.34 (0.14) 0.91(0.04) 0.05(0.04) 0.31 (0.12)
P4 0.77 (0.09) 015 (0.12) 047 (022) 074 (017) 023 (0.19)  0.76 (0.48)
P5 0.79 (0.08) 0.6 (0.09)  0.46 (0.30)
P6 0.84 (0.10) 012 (012)  0.57 (0.39)
P7 0.84 (0.08) 011 (0.12) 038 (0.26)
P8 0.81 (0.09) 011 (011)  042(0.22) 079 (0.11) 019 (0.19)  0.60 (0.28)
UNET 0.80 () 0.81 ()
0SCS 0.80 (0.09) 013 (0.07) 043 (019) 0.81(0.08) 011 (014) 051 (0.19)
DOSCS 0.82 (0.08) 012 (0.07) 0.41(017) 084 (0.06) 010 (0.14)  0.48 (0.16)
oM 0.86 (0.04) 0.09 (0.03) 0.37 (0.14) 0.0 (0.03) 0.07 (0.03) 0.43 (0.12)
as shown in the following Eqs. (11) and (12). where Rgyt and Rpgn are two vessel regions defined by the manual
N annotated contour Cpgn and of the automated segmented outline
1 : Cauto Tespectively.
Shix.y) = NN ZBI(X’yS) (1 Percentage of Area Difference (PAD) - Computes the segmenta-
Ys=y . . .
tion area difference as shown in Eq. (14) :
15 | Aasto — Amanl
Srx.y) = = »_ ¥sBI(X. ¥s) (12)  pAD = ‘Tauto — Zman] (14)
NrNC Vs=y Aman

where BI(x, y) is a binary image obtained by thresholding the
image with a thresholding value = 14 and (N, N¢) are the im-
age dimensions.

1 feature is generated by computing the local binary pattern
(Ojala et al., 2002).

121 features are generated by using a 11 x 11 window centered
at each pixel in the image, comprising of the intensity values of
each pixel in the given window.

Using the expert manual tracings for the training set two sep-
arate random forest classifiers (Breiman, 2001) for lumen and me-
dia with 10 trees are trained on all the pixels of the images in the
training set to learn the probability maps which indicate the like-
lihood of a pixel belonging to lumen or media respectively. Finally,
the trained classifiers are then applied to each pixel of the test-
ing set to obtain the two cost images Djymens Diediq for lumen and
media.

3.1.5. Parameter setting

A linear (convex) function, ¥ (k; — ky) = |k — ko| was used to
model the surface smoothness term Vg (-). The surface separation
term Hg(-) is modeled as a hard constraint for enforcing the mini-
mum separation between the lumen and media with dyen media =
2.

4. Results

The quantitative analysis was carried out by comparing the seg-
mentations obtained by the proposed and compared methods with
the expert manual tracings (subvoxel accurate). Three evaluation
measures were used to quantify the accuracy of the segmentations.
The measures used are:

Jaccard Measure (JM) - Quantifies how much the segmented
area overlaps with the manual delineated area as shown in
Eq. (13):

|Rauto N Rmanl

M (Rauto, Rman) = 1o
] ( auto, man) |Rau[o URmanl

(13)

where Aquto and Amgn are the vessel areas for the automatic and
manual contours respectively.

Hausdroff Distance (HD) - Computes locally the distance be-
tween the manual and automated contours as shown in Eq. (15).

HD(Cauto, Cman) = MAX peop, {MAXgeCra [A (P, )]} (15)

where p and g are points of the curves Cgye and Cpan, respectively,
and d(p, q) is the Euclidean distance.

The quantitative results are summarized in Table 3. The results
demonstrate that our method performs better than methods P1,
P2, P4, P5, P6, P8 and is comparable to methods P3 and P7 with
respect to segmentation error measures for lumen and media. Our
method segments both the lumen and media simultaneously while
method P7 segments the lumen only. Furthermore, our method is
fully automated while methods P3 and P7 are semi-automated. Fi-
nally, methods P3 and P7 perform slice by slice segmentation in
2-D while our method performs the segmentation in 3-D and not
slice by slice.

For the UNET method (Balakrishna et al., 2018), the authors
published the performance of their method with respect to Jaccard
Metric. It can be seen from the results that based on the Jaccard
metric, the proposed method outperforms the UNET method.

The quantitative results also show that the proposed method
yields more accurate segmentations than the OSCS and DOSCS
methods for both the Lumen and the Media surfaces. The JM ob-
tained from the segmentation results by our proposed method
were significantly higher (p < 0.01) than the JM computed with
the segmentation results from the OSCS and the DOSCS methods.
The PAD and HD metrics computed with the proposed method
were significantly lower (p < 0.01) than the PAD and HD metrics
computed with the segmentation results from the OSCS and the
DOSCS methods. We did not have access to the actual segmenta-
tion results from the P1-P8 methods to perform a paired t-test for
significance determination and to qualitatively compare the seg-
mentation results.

The average computation time was 105.48 seconds for the OSCS
method, 135.27 seconds for the DOSCS method and 187.35 sec-
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Fig. 7. Qualitative illustrations of lumen and media segmentation using our method. Each image is a single frame of an IVUS multiframe dataset. Red - Lumen expert tracing,
Green - Media expert tracing, Yellow - Lumen segmentation (our method), Blue - Media segmentation (our method).

onds for the proposed method. The increase in average computa-
tion time for the DOSCS method as compared to the OSCS method
is because the DOSCS method requires additional steps of com-
puting the deformation and applying the computed deformation
to the OSCS solution. The increased computation time of the pro-
posed method as compared to the OSCS and DOSCS method is at-
tributed to the increase in the complexity of the graph which re-
sults in higher computation time. For the general convex smooth-
ness function (), the constructed graphs for the OSCS and the
proposed method have the same number of nodes and edges, that
is, each node in a given column has an edge to every node in each
of its neighboring columns. In our IVUS experiments, we used a
special smoothness function ¥ (d) = |d|. Thus, in the OSCS graph
construction, the weight of many of those edges became 0, which
were not necessary to be kept in the graph; while in the graph for
the proposed method, there were more non-zero weighted edges.
Hence, we observed the increase of computation time for the pro-
posed method over OSCS.

Qualitative results are shown in Figs. 7 and 8. Fig. 7 demon-
strates that our method produced very good segmentation of the
lumen and the media. It can also be seen from the illustration
that the segmentations from our method are consistent for vary-
ing shapes of the lumen and media. Fig. 8 shows the compari-
son of OSCS, DOSCS and the proposed method for lumen and me-
dia segmentation. It can be seen from the illustration that the
DOSCS method improves upon the OSCS method by applying the
deformation to the OSCS segmentation results, while the proposed
method achieves more accuracy than DOSCS for both lumen and
media. Constructing the graph with the shifted voxel centers pro-
vides a more accurate encoding of the lumen and media sur-
face positions due to the application of the GVF by adaptively
changing the regional node density so that it is higher in regions
where the target surface is expected to pass through. Employing
a subvoxel accuracy approach allows the segmentation to obtain
a higher precision with respect to the OSCS and DOSCS method
segmentations.
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DOSCS 0OSCS

Our Method

Fig. 8. Qualitative illustrations of lumen and media segmentation using OSCS, DOSCS and our method. The first column shows the same single frame of an IVUS multiframe
dataset. The second column shows a magnified version of the lumen and media segmentation for each compared method. Red - Lumen expert tracing, Green - Media expert
tracing, Yellow - Automated lumen segmentation, Blue - Automated media segmentation.

5. Discussion

A novel approach for segmentation of multiple surfaces with
convex priors in irregularly sampled space (non-equidistant spac-
ing between orthogonal adjoining nodes) was proposed. Our
method advances the graph based segmentation framework in sev-
eral important ways. First, the proposed energy function incorpo-
rates a convex surface smoothness penalty in irregularly sampled
space through a convex function. Second, the approach allows si-
multaneous segmentation of multiple surfaces in the irregularly
sampled space with the enforcement of a minimum separation
constraint. Third, our method guarantees global optimality. Lastly,
the proposed method demonstrates utility in achieving subvoxel
segmentation accuracy while employing a convex penalty to model
surface smoothness. To the best of our knowledge, this is the first
method that fulfills these four aims at the same time. The hallmark
of the proposed method is the ability to perform the segmentation
task in an irregularly sampled space which generalizes the optimal
surface segmentation framework. The proposed method was em-
ployed in rapid fat water segmentation in MRI images and demon-
strated increased efficiency and accuracy (Cui et al., 2018).

The proposed method is also capable of incorporating convex
surface separation penalty while enforcing a minimum separa-
tion in the irregularly sampled space. The incorporation of such
a penalty would involve modifying the surface separation term in
the proposed energy function to impose a convex function based
penalty when the minimum separation constraint is not violated.
The graph construction to enforce such a penalty can be done us-

ing the same framework of the proposed method for enforcing the
surface smoothness constraint.

The method can be used in conjunction with the method pro-
posed by Abramoff et al. (2014) to incorporate prior information
using trained hard and soft constraints (Dufour et al., 2013) to
achieve subvoxel accuracy. Furthermore, the method can also be
incorporated in the image segmentation framework using trun-
cated convex priors (Shah et al.,, 2015) to achieve subvoxel accu-
racy by constructing the convex part of the graph in the irregularly
sampled space, thus providing a potential use for generic modeling
of variety of surface constraints to achieve subvoxel accuracy.

The improved segmentation quality of the proposed method is
evident from the illustration in Fig. 8, and shows that segmen-
tation performed in the irregularly sampled space based on the
displacement of the voxel centers to correctly encode the partial
volume information is more accurate compared to the segmenta-
tion performed without any use of partial volume information. The
results on IVUS images demonstrates that the methods achieves
high accuracy with respect to subvoxel accurate expert tracings as
compared to the methods reported in the IVUS challenge (Balocco
et al., 2014) while being fully automated and performing segmen-
tation in 3-D. The approach is not limited to these two modalities
for which the experiments were conducted.

The proposed method is designed for segmentation problems
wherein column structures contain non-equidistant spacing be-
tween consecutive elements. Specifically, for subvoxel image seg-
mentation tasks, the voxels centers are deformed. The deforma-
tion results in decreased spacing between consecutive voxel cen-
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ters along a column in certain areas and likewise, increased spac-
ing between voxel centers in certain regions. This creates subvoxel
resolution in areas with decreased spacing while super-voxel reso-
lution in areas with increased spacing between the voxel centers.
The effect of the super-voxel resolution in those areas is alleviated
due to subvoxel resolution in areas containing voxels with high
likelihood for presence of the surface boundary.

Recently, deep learning methods have also been extensively
used in various medical image analysis and segmentation applica-
tions (Litjens et al., 2017). However, deep learning algorithms are
inherently limited to amount of training data and corresponding
availability of expert annotated truth. While the proposed method
is capable of performing subvoxel-accurate segmentations, major-
ity of the deep learning methods are applied at a voxel level seg-
mentation/classification tasks. The result from the UNET method
demonstrated the superior performance of the proposed method
over traditional deep learning methods. However, it should be
noted that the UNET method was applied in 2-D while UNETs can
also be applied in 3-D, which may result in improvement of re-
sults. Furthermore, many more sophisticated 2-D/3-D deep learn-
ing methods such as conditional GANs have recently been devel-
oped and have shown to achieve high accuracy in segmentation
tasks. Application of such state-of-the-art deep learning methods
may also result in improvement of segmentation performance.

6. Conclusion

We presented a general framework for simultaneous segmen-
tation of multiple surfaces in the irregularly sampled space with
convex priors to achieve subvoxel and super resolution segmenta-
tion accuracy. An edge-weighted graph representation is presented
and a globally optimal solution with respect to the employed ob-
jective function is achieved by solving a maximum flow problem.
The surface smoothness and surface separation constraints provide
a flexible means for modeling various inherent properties and in-
terrelations of the desired surfaces in an irregularly sampled grid
space. The method is readily extensible to higher dimensions.
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Appendix A

Lemma 1. For any k; and k,, the function g(k;, k) is non-negative.

Proof. Let us consider the function g(kq, k;) for edges from column
a to neighboring column b as shown in Eq. (6). We need to prove
that g(kq, k;)>0

g(k1, ka) = f(La(ky), Lp(ky — 1))
—fLa(ks = 1), Ly(kz = 1)) = f(La(k1). Ly(k2))
+f(La(ky — 1), Ly (k2))
The reader should recall because of the strictly increasing order
of sampling, Ly(ky) > La(ky — 1) and Ly(ky) > Ly(ky — 1). ¥(-) is a
convex function with 1/ (0) = 0. The proof is presented in a case-
by-case basis. O

Case 1. Lg(ky) < Lp(ky — 1)

Thus, Lo(ky — 1) < Lp(ky —1). As Ly(ky) > Ly(k; — 1), we have
La(ky) <Lp(ky) and Lq(ky — 1) < Ly(ky). Since f(r;,15) =0if rq <7y
It is straightforward to verify that g(k;, k;) = 0 in Eq. (6).

Case 2. La(k]) > Lb(k2 — ]) and Lﬂ(k] ) < Lb(kz)
In this case, as Lq(ky) > La(kq — 1), we have Lg(k; — 1) < L, (ky).
Thus, g(kq, ky) takes the following form in Eq. (6).

g(k1, ko) = f(La(k1). Lp(ka — 1)) — f(La(ky — 1), Ly (ko — 1))

If Lo(ky —1) <Ly(ky —1), then gk, ky) = f(La(ky),Ly(ky —
1) =¥ La(ky) = Ly(ky = 1)). Thus, glk1, kp)=0 as ¢ (La(ky) -
Ly(ky — 1)) > 0 with Lg(ky) > Ly(ky — 1).

If La(k1 — ]) < Lb(kz — 1), then g(k], kz) = w(La(k]) - Lb(kZ —
1)) — ¥ (La(ky — 1) —Ly(ky — 1)). We know that Lg(kq) — Ly(ky —
1) > Lg(ky — 1) — Ly(ky — 1) > 0. Thus, g(ky, k;)>0 as ¥ (0) =0.
Therefore, in this case g(kq, k;) > 0.

Case 3. Lq(kq)>Ly(ko)
In this case, Lq(k1) > Ly(ky — 1) as L,(ky) > Ly(ky — 1). We dis-

tinguish three subcases: 1) Ly(ky — 1) < Ly(ky — 1), 2) La(ky — 1) <

Lb(kZ) and La(k1 — ]) > Lb(kZ — 1), and 3) La(k1 — 1) > Lb(kZ)
Subcase 1): If Ly(k; — 1) < Ly(ky — 1), then

g(ki, k2) = f(La(k1), Ly(ka — 1)) — f(La(k1), Lp(k2))
=Y (La(ky) = Ly(ky = 1)) — Y (La(ky) — Ly(k2))

Since Ly(k, — 1) <Ly(ky), we have Lg(ky)—Ly(k; —1) >
La(kqy) — Ly (ky). Thus, g(kq, k3)>0 as ¥ (0) =0.

Subcase 2): If Ly(ky — 1) < Ly(ky) and Lg(ky — 1) > Ly(ky — 1),
then g(kq, ky) takes the form shown in Eq. (6) as Lq(kq) > Ly (ky) >
Lo(ky — 1) > Ly(ky — 1).
gk, k) = f(La(ky), Ly(ka — 1))

—fLa(kr — 1), Ly(ka = 1)) — f(La(k1), Ly(k2))
=Y (La(ky) = Lp(ky = 1))
~Y(La(ks = 1) = Ly(ka = 1)) = ¥ (La(k1) — Ly (k2))

Let Lq(ky) —Ly(ky) =81, Lp(ky) —La(kq —1) =6, and Lg(kq —
1) —L,(ky — 1) = 83, where §;>0, §,>0 and §3>0. Rewriting
Eq. (6) and substituting these values, we get the following expres-
sion expression,

g(ki, k2) = Y (La(kr) — Ly(ka — 1))
—Y (La(ks = 1) = Ly(ka = 1)) — ¥ (La(ke) — Ly (k2))
=Y (61 +8+383) —¥(83) — ¥ (61)

It can be verified that g(kq, ky) >0 as y¥(-) is convex.

Subcase 3): If Lo(ky — 1) > Ly(ky), then Lg(ky) — Ly(ky — 1) > 0,
La(k] -1) _Lb(kZ) >0, La(k] -1) —Lb(kz -1)>0, and La(k1) -
Ly(ky) > 0. Hence,
g(ki, k2) = Y (La(kr) — Ly(ka — 1))

—Y (La(ks = 1) = Ly(ka — 1)) — ¥ (La(ke) — Ly (k2))
+V (La(ky — 1) — Ly (k2)).

In this subcase, let Ly(ki)—Lg(k;y —1) =681, La(k; —1)—
Ly(ky) = &5 and Ly(ky) — Ly(ky — 1) = 83, where 61 >0, §, >0 and
83 > 0. Substituting this in the expression for g(kq, k), we get
8(k1,k2) = Y (81 + 82 +83) — Y (82 +83) — ¥ (81 +62)

+¥ (82).

Let us first consider the case, §, = 0, we get the following ex-

pression,

glk1, ky) =Y (81 +83) — ¥ (83) — ¥ (81)

It can be verified that g(k, k) >0 as ¥(-) is convex.

Next, consider the case when &, >0. It can be observed that
81+ 83 + 83 > 81 + 8 > 6. Therefore, §; + &, can be expressed as,
61 +52 :)\182 +(Q —)q)(é] +82 +83)

Solving for A, we get Aq = ﬁ.

Similarly, it can be observed that 8; + 8, + 83 > &, + 383 > &,
and &, + &3 can be expressed as,

8y + 85 = Ay8y + (1 — A3) (81 + 8 + 83), where A, = 81‘37183
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From the definition of a convex function, and adding the above
two expressions, we get the following,

Y (81 +82) + ¥ (82 +83) < (A +22)¥ (82)
+(2 —)\.1 - }\2)1&(61 +82 +83).

Substituting the value of A; and A,, we get ¥ (81 +63) +
Y (85 +83) < ¥ (82) + ¥ (81 + 8 + 83). Therefore it can be verified
that g(kq, k2)>0.

Thus, through these exhaustive cases, it is shown that for any k4
and k,, the function g(kq, k,)> 0 or in other words is non-negative.

Appendix B

Lemma 2. In any finite s-t cut C, the total weight of the edges be-
tween any two adjacent columns a and b (denoted by C,}) equals to
the surface smoothness cost of the resulting surface S; with S;(a) = kq
and S;(b) = k,, which is ¥ (Lq(k1) — L, (ky)), where (-) is a convex
function.

Proof. Denote an edge from n;(a, k;) to node n;(b, ky) as
Ei(ay,, by,) for the i-th surface. Assume k; > ky. Proof for the case
when k;, > k; can be done in a similar manner by interchanging the
notations for column a and column b.

To show: cost of cut G, , = ¥ (La(kq) — Ly (ky)).

We start by observing such a s-t cut Cy}, will consist of only the
following inter-column edges:

{Ei(am, bn), 0<m<kq, ky +1<n<Z}

Note, here we use the index Z to denote the terminal node t as
described in Section 2.2.2.

Summing up the weights of the above edges using Eq. (6), we
obtain the following expression:

Cop=8k1,2) +8g(k1.Z—1) +g(k1.Z - 2)
+...+8ki ky+1)
+gtki —1,2) +glky —1,Z—-1) +glk; —1,Z - 2)
+...4+8ks—1,ky +1)

+£(0,Z2) +g(0,Z—-1)+g(0,Z-2)
+...+80,ky+1)

Let us first evaluate part of Eq. (6) for k, where 0 <k<k; as
shown below:

gk, 2)+gk,Z-1)+gk,Z—-2) +...+ 8k, ky+1)

= f(La(k), Lp(Z = 1)) — f(La(k—1),L,(Z - 1))
—f(La(k), Ly(Z)) + f(La(k — 1), Ly(Z))
+f(La(k), Ly(Z —2)) = f(La(k = 1), Ly(Z - 2))
—fLa(k),Ly(Z = 1)) + f(La(k = 1), L,(Z - 1))

+f(La(k), Ly(Z = 3)) — f(La(k —1),Ly(Z - 3))
—fLa(k), Ly(Z = 2)) + f(La(k = 1), L,(Z - 2))

+f(La(k), Ly(kz)) — f(La(k = 1), Ly (k2))

—f(La(k). Ly(ka + 1)) + f(La(k = 1), Ly(ky + 1))
= fLa(k), Ly(kz)) = f(La(k — 1), Ly(k2))

—f(La(k).Lp(2)) + f(La(k — 1), Lp(Z))

As described in Section 2.2.2,

fla(k), Lp(Z)) =0, f(La(k—1),Ly(Z)) =0(.Z ¢ 2)
= f(La(k), Ly(k2)) — f(La(k — 1), Ly(k2))

By simplifying Eq. (6) using Eq. (B.1), it follows that:

Cap = f(La(ky). Ly (k2)) — f(La(ky — 1), Ly(k2))
+f(La(ky = 1), Ly(kz)) = f(La(ky = 2), Ly(k2))

(B.1)

FfLa(1). Ly(k2)) — F(La(0). Ly(k2))
+F(La(0), Ly(ky)) — F(La(=1), Ly (k2))
= f(La(ky). Ly(ky)) — f(La(~1), Ly(ky))

As described in Section 2.2.2,

fLa(=1),Ly(kz)) =0, (.- —1¢2)

=V (La(ky) — Ly(k2)),
Using Eq. (5)

Therefore, for this case it is shown that cost of cut C;) =
Y (La(ky) — Lp(k2)).

In a similar manner when k, > k;, the s-t cut G, , will consist of
the following inter-column edges:

{Ei(bm, an), 0<m<ky, ki +1<n<Z}

Summing up the weights of the above edges using Eq. (7), we
obtain the following expression:
Coa =82, Z2) +8(k2, Z - 1) +g(k2,Z - 2)
+...+ gk, ky +1)
glky—1,2) +glky —1,Z-1) + gk, —1,Z - 2)
+...+gky -1,k +1)

£2(0,2) +2(0,Z—-1)+g(0,Z-2)
+...+20,k; +1)

Similar to the previous case, let us first evaluate part of
Eq. (7) for k, where 0 <k <k, as shown below:

gk, 2)+gk,Z—1)+gk,Z—-2)+...+ gk, k; +1)

= fLp(k), La(Z = 1)) = f(Lp(k—1),La(Z - 1))
—fly(k), La(2)) + f(Ly(k — 1), La(Z))
+f(Lp(k),La(Z = 2)) — f(Lp(k —1),La(Z - 2))
—fLp k), La(Z = 1)) + f(Lp(k—1),La(Z - 1))
+f(Lp(k),La(Z - 3)) — f(Lp(k = 1), La(Z - 3))
—fLp(k), La(Z = 2)) + f(Ly(k — 1), La(Z - 2))

+fULp (k). La(ky)) = f(Lp(k — 1), La(ky))

—f(Lp(k). La(ky + 1)) + f(Lp(k = 1), La(ky + 1))
= fLp(k). La(k1)) = f(Ly(k — 1), La(ky))

—fLp(®), La(2)) + f(Lp(k — 1), La(2))

As described in Section 2.2.2,

fLy(k). La(Z)) =0, f(Ly(k=1).La(2))=0 (-Z¢2)

2
— F(Ly (). Latk)) — F(L(k — 1), La(kr) (B2)
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By simplifying Eq. (6) using Eq. (B.2), it follows that:

Cpa = f(Lp(ka), La(kq)) — f(Lp(ka — 1), La(k1))
+f(Lp(ky — 1), La(k1)) — f(Lp(ka — 2), La(ky))

+f(Lp(1), La(k1)) — f(Lp(0), La(k1))
+f(Lp(0), La(k1)) — f(Lp(=1), La(k1))
= f(Lp(k2), La(k1)) — f(Lp(=1), La(k1)),
As described in Section 2.2.2

FLp(=1),La(ky)) =0, (- =1¢2)
= Y (Lp(ky) — La(ky)),

Using Eq. (5)
Therefore, for this case it is shown that cost of cut G,, =

Y (L (k) — La(ky)).
This completes the proof. O
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