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a b s t r a c t 

Optimal surface segmentation is a state-of-the-art method used for segmentation of multiple globally 

optimal surfaces in volumetric datasets. The method is widely used in numerous medical image segmen- 

tation applications. However, nodes in the graph based optimal surface segmentation method typically 

encode uniformly distributed orthogonal voxels of the volume. Thus the segmentation cannot attain an 

accuracy greater than a single unit voxel, i.e. the distance between two adjoining nodes in graph space. 

Segmentation accuracy higher than a unit voxel is achievable by exploiting partial volume information 

in the voxels which shall result in non-equidistant spacing between adjoining graph nodes. This paper 

reports a generalized graph based multiple surface segmentation method with convex priors which can 

optimally segment the target surfaces in an irregularly sampled space. The proposed method allows non- 

equidistant spacing between the adjoining graph nodes to achieve subvoxel segmentation accuracy by 

utilizing the partial volume information in the voxels. The partial volume information in the voxels is ex- 

ploited by computing a displacement field from the original volume data to identify the subvoxel-accurate 

centers within each voxel resulting in non-equidistant spacing between the adjoining graph nodes. The 

smoothness of each surface modeled as a convex constraint governs the connectivity and regularity of 

the surface. We employ an edge-based graph representation to incorporate the necessary constraints and 

the globally optimal solution is obtained by computing a minimum s - t cut. The proposed method was 

validated on 10 intravascular multi-frame ultrasound image datasets for subvoxel segmentation accuracy. 

In all cases, the approach yielded highly accurate results. Our approach can be readily extended to higher- 

dimensional segmentations. 

Published by Elsevier B.V. 
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. Introduction 

Optimal surface segmentation method for 3-D surfaces repre-

enting object boundaries is widely used in image understanding,

bject recognition and quantitative analysis of volumetric medical

mages ( Li et al., 2006; Abràmoff et al., 2010; Withey and Koles,

008 ). The optimal surface segmentation technique ( Li et al., 2006 )

as been extensively employed for segmentation of complex ob-

ects and surfaces, such as knee bone and cartilage ( Yin et al., 2010;

ashyap et al., 2013 ), heart ( Wu et al., 2011; Zhang et al., 2013 ),

irways and vessels tress ( Liu et al., 2013; Bauer et al., 2014 ), lungs

 Sun et al., 2013 ), liver ( Zhang et al., 2010 ), prostate and bladder

 Song et al., 2010 ), retinal surfaces ( Garvin et al., 2009; Lee et al.,

010 ) and fat water decomposition ( Cui et al., 2015 ). The segmen-
∗ Corresponding author. 
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ation problem is transformed into an energy minimization prob-

em ( Li et al., 2006; Ishikawa, 2003; Boykov et al., 2001 ). A graph is

hen constructed, wherein the graph nodes correspond to the cen-

er of evenly distributed voxels (equidistant spacing between ad-

oining nodes). Edges are added between the nodes in the graph

o correctly encode the different terms in the energy function. The

nergy function can then be minimized using a minimum s - t cut

 Li et al., 2006; Boykov and Kolmogorov, 2004 ). The resultant min-

mum s - t cut corresponds to the surface position of the target sur-

ace in the voxel grid. 

The method requires appropriate encoding of primarily the fol-

owing three types of energy terms ( Song et al., 2013; Shah et al.,

015 ) into the graph construction. The data term (also commonly

nown as the data cost term) which measures the inverse likeli-

ood of all voxels on a surface, a surface smoothness term (sur-

ace smoothness constraint) which specifies the regularity of the

arget surfaces and a surface separation term (surface separa-

ion constraint) which governs the feasible distance between two

https://doi.org/10.1016/j.media.2019.02.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2019.02.004&domain=pdf
mailto:xiaodong-wu@uiowa.edu
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Fig. 1. Example of a 3 × 3 voxel grid to demonstrate subvoxel accuracy. Each voxel 

is represented by a red node in the graph space. (a) Graph nodes with equidistant 

spacing between them. True subvoxel accurate surface is shown in green. The seg- 

mented surface using optimal surface segmentation method with hard constraints 

is shown in yellow. (b) The displacement field derived from the grid is applied to 

the central nodes displacing the centers to exploit the information from the partial 

volume effect shown by brown arrows. The resultant segmentation with the sub- 

voxel accurate graph search is shown in blue. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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adjacent surfaces. A detailed description of the energy terms is

provided in Section 2.1 . Various types of surface smoothness and

surface separation constraints are used for simultaneous segmen-

tation of multiple surfaces. Optimal surface detection method ( Li

et al., 2006; Wu and Chen, 2002 ) uses hard smoothness constraints

that are a constant in each direction to specify the maximum al-

lowed change in surface position of any two adjacent voxels on

a feasible surface. It uses hard surface separation constraints to

specify the minimum and maximum allowed distances between

a pair of surfaces. Methods employing trained hard constraints

( Garvin et al., 2009 ), use prior term to penalize local changes in

surface smoothness and surface separation. The constraints can

also be modeled as a convex function (convex smoothness con-

straints) as reported in Ref. ( Song et al., 2013; Dufour et al., 2013 ).

Furthermore, a truncated convex function (truncated convex con-

straints) may also be used to model the surface smoothness and

surface separation constraints ( Kumar et al., 2011; Shah et al.,

2014; 2015 ) to segment more complex surfaces but does not guar-

antee global optimality. A truncated convex constraint enforces a

convex function based penalty with a bound on the maximum pos-

sible penalty. 

However, since volumetric data is typically represented as an

orthogonal matrix of intensities, the surface segmentation cannot

achieve a precision greater than a single unit voxel, i.e. the distance

between two adjoining nodes in the graph space. Accuracy higher

than a single unit voxel (subvoxel accuracy) can be attained by

exploiting partial volume effects in the image volumes ( Abràmoff

et al., 2014; Malmberg et al., 2011 ) which leads to non-equidistant

spacing between the adjoining graph nodes resulting in an irregu-

larly sampled space. Volumetric images are obtained by discretiz-

ing the continuous intensity function uniformly sampled by sen-

sors, resulting in partial volume effects ( Shannon, 1949; Trujillo-

Pino et al., 2013 ). Partial volume effects are inherent in images as

voxels ’combine’ partial information from various features (such as

tissues) of the imaged object. The spatial resolution in images is

limited by the detector/sensor design and by the reconstruction

process, which results in 3-D image blurring introduced by the fi-

nite spatial resolution of the imaging system ( Soret et al., 2007 ).

Mathematically, the finite resolution effect is described by a 3-D

convolution operation, where the image is formed by the convo-

lution of the actual source with the 3-D point spread function of

the imaging system, which causes spillover between regions. The

signal intensity in each voxel is the mean of signal intensities of

the underlying tissues included in that voxel. The ignored partial

volume information can be utilized by computing a displacement

field directly from the volumetric data ( Abràmoff et al., 2014 ) to

identify the subvoxel-accurate location of the centers within each

voxel, thus requiring a generalized construction of the graph with

non-equidistant spacing between orthogonal adjoining nodes (ir-

regularly sampled space). Increased subvoxel segmentation accu-

racy attained by exploiting the partial volume effects has the po-

tential for better diagnosis and treatment of disease. 

The optimal surface segmentation technique employing the dif-

ferent types of smoothness constraints as discussed above is not

capable of efficiently segmenting surfaces with subvoxel accuracy

in a volume which requires segmentation in a grid comprising of

non-uniformly sampled voxels where the spacing between the or-

thogonally adjoining nodes is not equidistant. 

To address this problem, the subvoxel accurate graph search

method ( Abràmoff et al., 2014 ) was developed to simultaneously

segment multiple surfaces in a volumetric image by exploiting

the additional partial volume information in the voxels. A dis-

placement field is computed from the original volumetric data.

The method first creates the graph using the conventional opti-

mal surface segmentation method ( Li et al., 2006 ), then deforms

it using a displacement field and finally adjusts the inter-column
dges and inter-surface edges to incorporate the modification of

hese constraints. Specifically, such a deformation shall result in

on-equidistant spacing between the adjoining nodes which may

e considered equivalent to a generalized case of a cube volume

ormed by non-uniform sampling along the z dimension for the

urposes of 3-D surface segmentation. The method demonstrated

chievement of subvoxel accuracy compared to the traditionally

sed optimal surface segmentation method ( Li et al., 2006 ). An ex-

mple is shown in Fig. 1 . However, the method employs hard sur-

ace smoothness which does not allow flexibility in constraining

urfaces. Specifically, the previous approach was not capable of in-

orporating a convex surface smoothness constraint in the graph

ith non-equidistant spacing between adjoining nodes. 

Our main contribution is extension of the framework pre-

ented in Ref. ( Abràmoff et al., 2014 ) to incorporate convex sur-

ace smoothness/separation constraints for multiple surface seg-

entation in irregularly sampled space. The proposed method is

 generalization of the graph based optimal surface segmentation

ith convex priors ( Song et al., 2013 ) in the regularly sampled

pace. Consequently, the graph constructed in the regularly sam-

led space forms a special case in the irregularly sampled space

ramework where the spacing between the adjoining nodes is set

o be a constant (equidistant). The use of convex priors allows

or incorporation of many different prior information in the graph

ramework as discussed previously while attaining subvoxel accu-

acy. Unlike the subvoxel accurate graph search method ( Abràmoff

t al., 2014 ), the proposed method does not require a two step

rocess to create the graph by the conventional method and then

eadjust the edges, but instead provides a one step function to add

dges between nodes from two neighboring columns to incorpo-

ate the convex prior. 

Subvoxel surface segmentation methods employing adaptive

rids ( Lang et al., 2014 ) and located cuts ( Malmberg et al., 2011 )

ave also been used to segment surfaces with subvoxel precision.

he adaptive grid methodology ( Lang et al., 2014 ) requires a pre-

egmentation of the target surfaces and generates an application

pecific grid, wherein, the graph nodes are only placed in the re-

ion of interest between the inner and outer surfaces by perform-

ng flattening of the surfaces using a regression model. The sur-

aces are then segmented using the optimal surface segmentation

ethod ( Li et al., 2006 ). The sub pixel segmentation method as

escribed in Ref. ( Malmberg et al., 2011 ), utilizes an initial seg-

entation to create fuzzy vertices in the graph using a distance
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ransform. Utilizing the information from the fuzzy vertex segmen-

ation, a located cut for the boundary of the vertex segmentation

s then derived to compute the final segmentation. Both meth-

ds essentially make local adjustments and improvements to the

egmentation in the regularly sampled space, while the proposed

ethod computes the globally optimal solution from the graph

onstructed in the irregularly sampled space. 

In addition, the adaptive moving grid has been used for solv-

ng partial differential equations (PDEs) ( Budd et al., 2009 ). The

rid adaptivity also finds its application in the quadtree and oc-

ree methods for improving resolution locally in a hierarchical data

epresentation ( Samet, 1988 ). 

Note that a straightforward way to solve the problem is to sim-

ly up-sample the columns and directly apply the graph search

ethod, which increases the graph size proportional to the factor

f upsampling, thus resulting in very high computation time and

s dependent on determination of the minimum scale of subvoxel-

ccurate segmentation. The proposed method does not require any

uch upsampling and is capable of segmenting the target surfaces

n the available resolution with subvoxel accuracy. Additionally, the

roposed method does not introduce additional parameters in the

ormulation in comparison with graph search method ( Li et al.,

006 ). 

In the following sections, we briefly explain the formulation for

he optimal surface segmentation method in the regularly sampled

pace, explain the formulation and description of our novel graph

onstruction to incorporate the convex smoothness constraints in

he irregularly sampled space. Next, the evaluation is performed

n intravascular multi-frame ultrasound image datasets for vali-

ation and applicability of the method to demonstrate subvoxel

egmentation accuracy compared to optimal surface segmentation

ethod with convex priors in regularly sampled space ( Song et al.,

013 ). Finally, the proof for correctness of graph construction to

odel the convex surface smoothness constraints is presented in

ppendix A and B . 

. Methods 

.1. Problem formulation and energy function 

The problem formulation for the widely used optimal surface

egmentation methods ( Li et al., 2006; Wu and Chen, 2002; Song

t al., 2013 ) is described as follows. Consider a volume I ( x, y,

 ) of size X × Y × Z . A surface is defined as a function S ( x, y ),

here x ∈ x = { 0 , 1 , . . . X − 1 } , y ∈ y = { 0 , 1 , . . . Y − 1 } and S ( x, y ) ∈ z

 { 0 , 1 , . . . Z − 1 } . It is worth noting that the center of voxels

re uniformly sampled. Each ( x, y )-pair corresponds to a voxel

olumn { (I(x, y, z) | z = 0 , 1 , . . . , Z − 1 } . We use a and b to denote

wo columns corresponding to two neighboring ( x, y )-pairs in the

omain x ×y and N s to denote the set of pairs of neighboring

olumns. The function S ( a ) can be viewed as labeling for a with the

abel set z ( S ( a ) ∈ z ). For simultaneously segmenting λ( λ≥ 2) dis-

inct but interrelated surfaces, the goal of the problem is to seek

he globally optimal surfaces S i ( a ), where i = 1 , 2 , . . . λ in I with

inimum separation d j, j+1 where j = 1 , 2 , . . . λ − 1 between each

djacent pair of surfaces S j and S j+1 . 

The problem is transformed into an energy minimization prob-

em. The energy function E ( S ) takes the following form as shown

n Eq. (1) : 

(S) = 

λ∑ 

i =1 

( ∑ 

a ∈ x ×y 

D i (S i (a )) + 

∑ 

(a,b) ∈ N s 
V ab (S i (a ) , S i (b)) 

) 

+ 

λ−1 ∑ 

i =1 

∑ 

a ∈ x ×y 

H a (S i +1 (a ) , S i (a )) 

(1) 
The data cost term �a ∈ x × y D i ( S i ( a )) measures the total cost of

ll voxels on a surface S i , where D i measures the inverse probabil-

ty of a voxel belonging to surface S i .The surface smoothness term
 

(a,b) ∈ N s V ab (S i (a ) , S i (b)) constrains the connectivity of a surface in

-D and regularizes the surface. Intuitively, this defines how rigid

he surface is. The surface separation term H a (S i (a ) , S i +1 (a )) con-

trains the distance of surface S i to S i +1 . The energy function is

ppropriately encoded in a graph. A minimum s - t cut is then com-

uted on the graph to get solutions for the target surfaces S i ’s. 

Typically graph construction is done with equidistant spac-

ng between the adjoining nodes (regularly sampled space). Our

ain contribution is to allow for optimal surface segmentation

n the irregularly sampled space with convex surface smooth-

ess/separation constraints by allowing non-equidistant spacing

etween the nodes. 

We formulate the multiple surface segmentation problem in a

imilar manner for the irregularly sampled space. Consider a vol-

me ˜ I (x, y, ̃  z ) where x ∈ x = { 0 , 1 , . . . X − 1 } , y ∈ y = { 0 , 1 , . . . Y − 1 }
nd ˜ z ∈ R . Each ( x, y )-pair corresponds to a column { ( ̃ I (x, y, ̃  z ) | ̃ z ∈ R ,

enoted by col ( x, y ). Assume each col ( x, y ) has exactly ˜ Z elements

btained by sampling strictly in the increasing order along the z̃

irection which are indexed by { 0 , 1 , . . . ˜ Z − 1 } along col ( x, y ). This

ields a volumetric image I ( x, y, z ) of size X × Y × ˜ Z , where x ∈ x =
 0 , 1 , . . . X − 1 } , y ∈ y = { 0 , 1 , . . . Y − 1 } and ˜ z ∈ ̃  z = { 0 , 1 , . . . ˜ Z − 1 } ,
hich allows for non-equidistant spacing between two adjacent el-

ments in the column. As discussed previously a and b are used to

enote two neighboring columns. For ease of understanding, we

ssume ˜ Z = Z for the remainder of this paper. 

Note, for purposes of the experiments in this paper, relaxation

f equidistance constraint concerns the z axis only. As the image

omain we consider is an x-y grid, we thus only relax the equidis-

ance constraint along the z-axis. It is possible and would be use-

ul to relax the equidistance constraint in the x- and y-axes if the

mage domain is defined on a meshed simple surface, that is, the

ought surface is monotone to the meshed surface. However, to

void the interference, we may restrict to move the center point

round within each voxel. 

We define a mapping function for each column a as L a :

 0 , 1 , . . . Z − 1 } → R which maps the index of sampled points in

 ( a, z ) to ˜ I (a, ̃  z ) . For example, L a ( i ) denotes the ˜ z coordinate of the

 +1-th sample along column a , and L a (i + 1) > L a (i ) because of the

trictly increasing order of sampling along column a . An example

s shown in Fig. 2 . Further, a surface labeling for column a is de-

ned as S ( a ), where S ( a ) ∈ z = { 0 , 1 , . . . Z − 1 } . The function L a ( S ( a ))

efines the “physical” location (the ˜ z coordinate) of surface S at

olumn a . For simultaneously segmenting λ ( λ≥ 2) surfaces, the

oal of the problem is to seek the surface labeling S i ( a ) on all

olumns in I for each surface S i , where i = 1 , 2 . . . λ, with mini-

um separation d j, j+1 where j = 1 , 2 , . . . , λ − 1 between adjacent

air of surfaces. It is to be noted, that the surfaces are ordered, i.e,

 a (S i +1 (a )) ≥ L a (S i (a )) . The corresponding energy function for this

ormulation is shown in Eq. (2) : 

(S) = 

λ∑ 

i =1 

( ∑ 

a ∈ x ×y 

D i (L a (S i (a )) 

) 

+ 

∑ 

(a,b) ∈ N s 
V ab (L a (S i (a )) , L b (S i (b))) 

+ 

λ−1 ∑ 

i =1 

∑ 

a ∈ x ×y 

H a (L a (S i +1 (a )) , L a (S i (a ))) (2) 

Herein, the surface smoothness term is modeled as a convex

unction as shown in Eq. (3) . 

 ab (L a (S i (a )) , L b (S i (b))) = ψ(L a (S i (a )) − L b (S i (b))) (3)

here, ψ( ·) is a convex function, and without loss of generality,

e assume that ψ(0) = 0 Wu and Chen (2002) . 
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Fig. 2. Example of column structure for irregularly sampled space using mapping 

function. 
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Fig. 3. Example graph construction of two neighboring columns a and b to demonstrate e
For simplicity, the surface separation term is modeled as a hard

onstraint for enforcing the minimum separation between a pair of

urfaces as shown in Eq. (4) . 

 a (L a (S i +1 (a )) , L a (S i (a ))) 

= 

{∞ , if L a (S i +1 (a )) − L a (S i (a )) < d i,i +1 

0 , otherwise 
(4)

here d i,i +1 is the minimum separation between a pair of adja-

ent surfaces. The method is also capable of incorporating a convex

urface separation penalty while enforcing a minimum separation

onstraint in the irregularly sampled space using the same frame-

ork and is discussed in Section 5 . 

.2. Graph construction 

For each surface S i , a subgraph G i is constructed. Herein, the

ntra-column edges are added to enforce surface monotonicity and

ncode the data term for cost volume D i (for searching S i ). Inter-

olumn edges are added between a pair of neighboring columns

 and b to enforce the surface smoothness penalty term V ab ( ·).
he graph G for the simultaneous search of all λ surfaces consists

f the union of those λ subgraphs G i ’s. Furthermore, inter-surface

dges are added between the corresponding columns of subgraphs

 i and G i +1 to incorporate the surface separation term for sur-

ace distance changes between two surfaces. A pair of columns

ith respect to the same ( x, y )-pairs in the domain x × y of sub-
nforcement of convex surface smoothness constraints in irregularly sampled space. 
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Table 1 

Summary of inter-column edge weights of the graph construc- 

tion in Fig. 3 , based on a linear function of the form ψ(k 1 −
k 2 ) = | k 1 − k 2 | . 

Edge Type Weight Edge Type Weight 

E ( a 0 , b 1 ) I 2 E ( b 2 , a 1 ) III 8 

E ( a 0 , b 2 ) I 1 E ( b 3 , a 1 ) III 4 

E ( a 1 , b 2 ) I 8 E ( b 3 , a 2 ) III 5 

E ( a 1 , b 3 ) I 4 E ( b 3 , a 3 ) II 4 

E ( a 2 , b 3 ) I 5 E ( b 3 , a 4 ) I 3 

E ( a 3 , b 3 ) II 4 E ( b 4 , a 4 ) II 6 

E ( a 4 , b 3 ) III 3 E ( b 4 , a 5 ) I 3 

E ( a 4 , b 4 ) II 6 E ( b 5 , a 5 ) II 13 

E ( a 5 , b 4 ) III 3 

E ( a 5 , b 5 ) II 13 

E ( a 5 , b 6 ) I 2 
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raphs G i , G i +1 for two adjacent surfaces is defined as correspond-

ng columns. The graph G is then solved by computing a maxi-

um flow which minimizes the energy function E ( S ) ( Eq. (2) ). The

ositions of the λ target surfaces are obtained by mapping the re-

ultant solution to the physical space using the mapping function

 a ( ·). The graph is constructed using the cost volumes generated

or λ surfaces from volume I ( x, y, z ). Each element in the cost vol-

me D i to search S i is represented by a node n i ( a, z ) ( z ∈ z ) in G i .

he following edges are added to incorporate the different energy

erms: 

.2.1. Intra-column edges 

To ensure the monotonicity of the target surfaces (i.e., the tar-

et surface intersects each column exactly one time) and encode

he data cost term; intra-column edges are added to each sub-

raph G i as described in Ref. ( Li et al., 2006 ). Along every col-

mn a for surface S i , each node n i ( a, z )( z > 0) has a directed edge

ith + ∞ weight to the node immediately below it and an edge

ith D i (L a (z − 1)) weight in the opposite direction. Additionally,

n edge with + ∞ weight is added from the source node s to each

ode n i ( a , 0) and an edge with D i (L a (Z − 1)) weight is added from

ode n i (a, Z − 1) to the terminal node t . 

Any s - t cut with finite cost contains only one of the finite

eight edges D i (L a (. )) for each column a , thus enforcing surface

onotonicity. This is because, if any s - t cut included more than

ne finite weight edges, then by construction it must include at

east one infinite weight edge thereby making its cost infinite. 

.2.2. Inter-column edges 

Inter-column arcs are added between pairs of neighboring

olumns a and b to each subgraph G i to encode the surface

moothness term. For the purpose of this paper the incorporation

f a convex smoothness term is presented. Denote a function op-

rator f ( r 1 , r 2 ) as shown in Eq. (5) . 

f (r 1 , r 2 ) = 

{
0 if r 1 < r 2 

ψ(r 1 − r 2 ) , otherwise 
(5)

here ψ( ·) is a convex function. 

A general weight setting function g ( · ) is used for the inter-

olumn edges between two neighboring columns. The following

nter-column edges are added: 

For all k 1 ∈ [0 , Z − 1] and k 2 ∈ [1 , Z − 1] , a directed edge with

eight setting g ( k 1 , k 2 ) as shown in Eq. (6) is added from node

 i ( a, k 1 ) to node n i ( b, k 2 ). Additionally, a directed edge is added

rom node n i ( a, k 1 ) to terminal node t with weight setting g ( k 1 , Z ).

(k 1 , k 2 ) = f (L a (k 1 ) , L b (k 2 − 1)) 

− f (L a (k 1 − 1) , L b (k 2 − 1)) − f (L a (k 1 ) , L b (k 2 )) 

+ f (L a (k 1 − 1) , L b (k 2 )) 

(6) 

Where, if k 1 = 0 , (that is k 1 − 1 / ∈ z ), then f (L a (k 1 − 1) , L b (k 2 −
)) = f (L a (k 1 − 1) , L b (k 2 )) = 0 and if k 2 = Z, (that is, k 2 �∈ z ), then

f (L a (k 1 ) , L b (k 2 )) = f (L a (k 1 − 1) , L b (k 2 )) = 0 . 

emma 1. For any k 1 and k 2 , the function g ( k 1 , k 2 ) is non-negative.

Proof in Appendix A ) 

In a similar manner, for all k 1 ∈ [0 , Z − 1] and k 2 ∈ [1 , Z − 1] ,

dges are constructed from nodes n i ( b, k 1 ) to nodes n i ( a, k 2 ) with

eight setting g ( k 1 , k 2 ) as shown in Eq. (7) . Additionally a directed

dge is added from node n i ( b, k 1 ) to terminal node t with weight set-

ing g ( k 1 , Z ) . 

(k 1 , k 2 ) = f (L b (k 1 ) , L a (k 2 − 1)) 

− f (L b (k 1 − 1) , L a (k 2 − 1)) − f (L b (k 1 ) , L a (k 2 )) 

+ f (L b (k 1 − 1) , L a (k 2 )) 

(7) 
It should be noted that the weight setting function g ( k 1 , k 2 ) in Eq.

7) is similar to Eq. (6) with only the column mapping functions L a ( · )

nd L b ( · ) interchanged. Also, in practice we do not add edges with a

eight of zero in the graph. 

emma 2. In any finite s - t cut C, the total weight of the edges be-

ween any two adjacent columns a and b (denoted by C a,b ) equals to

he surface smoothness cost of the resulting surface S i with S i (a ) = k 1 
nd S i (b) = k 2 , which is ψ(L a (k 1 ) − L b (k 2 )) , where ψ( ·) is a convex

unction. (Proof in Appendix B ) 

Example of a graph construction of two neighboring columns a and

 for a given surface with enforcement of convex surface smoothness

onstraint is shown in Fig. 3 . Herein, an edge from n i ( a, k 1 ) to node

 i ( b, k 2 ) is denoted as E i (a k 1 , b k 2 ) for the i-th surface. For clarity, an

dge E i (a k 1 , b k 2 ) is denoted as Type I if k 2 > k 1 , as Type II if k 2 = k 1 
nd as Type III if k 2 < k 1 . The respective edge weights in the graph are

ummarized in Table 1 . The convex function used in the example is a

inear one, taking the form ψ(k 1 − k 2 ) = | k 1 − k 2 | . 
The following can be verified from the example shown Fig. 3 : 

• The correct cost of cut C 1 = | 21 − 12 | = 9 . It can be verified that

the inter-column edges contributing to the cost of cut C 1 are

Type I edges E ( a 2 , b 3 ) and E ( a 1 , b 3 ). Summing the edge weights

from Table 1 , cost of cut C 1 = 5 + 4 = 9 . 
• The correct cost of cut C 2 = | 25 − 37 | = 12 . It can be verified

that the inter-column edges contributing to the cost of cut C 2 
are Type I edges E ( b 4 , a 5 ), E ( b 3 , a 4 ) and Type II edge E ( b 4 , a 4 ).

Summing the edge weights from Table 1 , cost of cut C 2 = 3 +
3 + 6 = 12 . 

• The correct cost of cut C 3 = | 25 − 3 | = 22 . It can be verified that

the inter-column edges contributing to the cost of cut C 3 are

Type I edges E ( a 0 , b 2 ), E ( a 1 , b 2 ), E ( a 1 , b 3 ), E ( a 2 , b 3 ), Type II edge

E ( a 3 , b 3 ). Summing the edge weights from Table 1 , cost of cut

C 3 = 1 + 8 + 4 + 5 + 4 = 22 . 
• The correct cost of cut C 4 = | 25 − 1 | = 24 . It can be verified that

the inter-column edges contributing to the cost of cut C 4 are

Type I edges E ( a 0 , b 1 ), E ( a 0 , b 2 ), E ( a 1 , b 2 ), E ( a 1 , b 3 ), E ( a 2 , b 3 ),

Type II edge E ( a 3 , b 3 ). Summing the edge weights from Table 1 ,

cost of cut C 4 = 2 + 1 + 8 + 4 + 5 + 4 = 24 . 

.2.3. Inter-surface edges 

The surface separation term H a ( ·) between two adjacent sur-

aces is enforced by adding edges in a similar manner as described

n Ref. ( Abràmoff et al., 2014 ) from column a in subgraph G i to cor-

esponding column a in subgraph G i +1 . Along every column a in G i ,

ach node n i ( a, z ) has a directed edge with + ∞ weight to the node

 i +1 (a, z ′ ) , (z ′ ∈ z , L a (z ′ ) − L a (z) ≥ d i,i +1 , L a (z ′ − 1) − L a (z) < d i,i +1 ).

dditionally an edge with + ∞ weight is added from node n i ( a, z )

o the terminal node t if L a (Z − 1) − L a (z) < d i,i +1 . 
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Fig. 4. An example graph for incorporation of surface separation constraint be- 

tween two corresponding columns is shown. Only the inter-surface edges are 

shown for clarity. The minimum separation constraint d i,i +1 = 2 . It can be seen that 

cut C 1 is a feasible cut since the minimum separation constraint is not violated 

while cut C 2 is infeasible since the minimum separation constraint is violated as 

L a (z ′ = 1) − L a (z = 1) < d i,i +1 . 
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It can be verified, that no finite s - t cut is possible when L a (z ′ ) −
L a (z) < d i,i +1 , since by construction an inter-surface edge of + ∞
weight will be cut, thus making the cost infinite. An example of a

graph construction for two corresponding columns of adjacent pair

of surfaces with enforcement of the surface separation constraint is

shown in Fig. 4 . 

Thus the surface separation term H a ( ·) is correctly encoded in

graph G . Note that if H a ( ·) is modeled with a convex function, the

same graph construction as that for the surface smoothness term

can be used to encode it in the graph. 

2.3. Surface recovery from minimum s - t cut 

The minimum s - t cut in the graph then defines optimal λ sur-

faces S i where i = 1 , 2 . . . λ. For a given surface S i , the surface la-

bel for each col(x, y ) ∈ z , where x ∈ x and y ∈ y is given by the

minimum s - t cut ( Li et al., 2006 ). The final surface positions for

each column a is recovered by applying the mapping function L a :

{ 0 , 1 , . . . Z − 1 } → R , where a ∈ x × y , thereby yielding the resul-

tant surface positions for each column L a (S i (a )) ∈ ˜ z , where ˜ z ∈ R . 
Fig. 5. (a) A single frame of an IVUS multiframe dataset (b) Expert manual tracings of th

this figure legend, the reader is referred to the web version of this article.) 
. Experimental methods 

.1. Intravascular ultrasound (IVUS) images 

To study the applicability of the proposed method, the segmen-

ation of lumen and media with subvoxel accuracy was performed

n Intravascular Ultrasound (IVUS) images as shown in Fig. 5 . 

Atherosclerosis, a disease of the vessel wall, is the major

ause of cardiovascular diseases such as heart attack or stroke

 Frostegård, 2005 ). Early atherosclerosis results in remodeling, thus

etaining the lumen despite plaque accumulation ( Glagov et al.,

987 ). Atherosclerosis plaque is located between lumen and media

hat can be identified in IVUS images. Automated IVUS segmen-

ation of lumen and media is of substantial clinical interest and

ontributes to clinical diagnosis and assessment of plaque ( Balocco

t al., 2014 ). 

In this experiment we compare the segmentation accuracy of

he lumen and media using the proposed method with the com-

lete set of methods used in the standardized evaluation of IVUS

mage segmentation ( Balocco et al., 2014 ). The compared meth-

ds are namely, P1 - Shape driven segmentation based on linear

rojections ( Unal et al., 2008 ), P2 - geodesic active contour based

egmentation ( Caselles et al., 1997 ), P3 - Expectation maximization

ased method ( Cardinal et al., 2006; 2010 ), P4 - graph search based

ethod ( Downe et al., 2008 ), P5 - Binary classification of distin-

uishing between lumen and non-lumen regions based on multi-

cale Stacked Sequential learning scheme ( Gatta et al., 2011 ), P6

 Detection of Media border by holistic interpretation of the IVUS

mage (HoliMAb) ( Ciompi et al., 2012 ), P7 - Lumen segmentation

ased on a Bayesian approach ( Mendizabal-Ruiz et al., 2013 ), P8

 Sequential detection ( Bourantas et al., 2008 ). Herein, method P4

s based on the optimal surface segmentation method using hard

onstraints ( Li et al., 2006 ) applied on regularly sampled space. For

air and robust analysis, we also compare the segmentation accu-

acy of the proposed method in the irregularly sampled space to

he optimal surface segmentation method using convex smooth-

ess constraints in the regularly sampled space (OSCS) ( Song et al.,

013 ) and applied deformations to the OSCS segmentation results

DOSCS as described in Section 3.1.2 ). The proposed method, OSCS

nd DOSCS method employ the same parameter settings. Addi-

ionally, we compare the measures obtained from our method

o a deep learning method with a UNET architecture (UNET)

hich was applied on the same dataset and was reported in Ref.

 Balakrishna et al., 2018 ). Overview of each method’s feature, in-

luding whether the algorithm was applied to lumen and/or media,

hether the segmentation was done in 2-D or 3-D and whether

he method was semi-automated or fully automated is shown

n Table 2 . 
e Lumen (red) and Media (green). (For interpretation of the references to colour in 
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Table 2 

Overview of the compared method features. 

Methods Category Automation 2-D/3-D 

P1 (Shape driven) Lumen and Media Semi 2-D 

P2 (Active contour) Lumen Semi 2-D 

P3 (Expectation maximization) Lumen and Media Semi 2-D 

P4 (Graph search) Lumen and Media Fully 3-D 

P5 (Sequential learning) Lumen Fully 3-D 

P6 (HoliMAb) Media Fully 2-D 

P7 (Bayesian) Lumen Semi 2-D 

P8 (Sequential detection) Lumen and Media Fully 2-D 

UNET (Deep learning based) Lumen and Media Fully 2-D 

OSCS Lumen and Media Fully 3-D 

DOSCS Lumen and Media Fully 3-D 

Our Method Lumen and Media Fully 3-D 
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.1.1. Data 

The data used for this experiment was obtained from the stan-

ardized evaluation of IVUS image segmentation ( Balocco et al.,

014 ) database. In this experiment Dataset B as denoted in

ef. Balocco et al. (2014) was used. The data comprises of a set of

35 images with a size of 384 × 384 pixels extracted from in vivo

ullbacks of human coronary arteries from 10 patients. The respec-

ive expert manual tracings (subvoxel accurate) of lumen and me-

ia for the images were also obtained from the reference database.

he dataset contains 10 multi-frame datasets, in which 3D context

rom a full pullback is provided. Each dataset comprises of between

0 and 50 gated frames extracted from the full pullback at the

nd-diastolic cardiac phase. Further, the obtained data comprised

f two groups - training and testing set. Approximately one fourth

f the images in the dataset were grouped in the training set and

he remaining were grouped as the testing set, to assure fair eval-

ation of the algorithms with respect to the expert manual trac-

ngs. The experiment with the proposed method was conducted in

onformance with the directives provided for the IVUS challenge

 Balocco et al., 2014 ). 

.1.2. Workflow 

Each slice of the volumes in the dataset is first converted into

 polar coordinate image as shown in Fig. 6 . For each frame,

iven the center of the image, for each angular position θ =
 0 , 1 , . . . 360 } degrees on the short-axis view ( Balocco et al., 2014 ),

he corresponding radial columns are generated by considering the

ray-level values of the sequence along the radius at the chosen

ngle and the generated columns are stacked consecutively to gen-

rate the polar image volumes. The generated polar image volumes

ndergo the application of a 7 × 7 × 7 Gaussian filter with a stan-

ard deviation of 4 for denoising. Next, the cost image volumes

 lumen and D media are generated for the lumen and media respec-

ively. The OSCS method is applied to the cost volumes D lumen and

 media . Further the GVF as discussed in Section 3.1.3 is computed
Fig. 6. (a) A single frame of an IVUS multiframe dataset (b) P
n the polar image volumes. The deformation field is then ap-

lied to cost image volumes and the shifted positions of the voxel

enters are recorded. The deformed cost function image volumes

 

′ 
lumen 

and D 

′ 
media 

are then segmented using the proposed method.

he deformation obtained from GVF was applied to the automated

egmentations obtained from the OSCS method, resulting in de-

ormed OSCS (DOSCS) segmentations. Finally the resulting segmen-

ations are mapped back to the original coordinate system. 

.1.3. Gradient vector field 

A gradient vector field (GVF) ( Xu and Prince, 1998 ) is a feature

reserving diffusion of the gradient in a given image volume. In

his study, GVF is used as a deformation field F ( x, y, z ) obtained

irectly from the input volume data acting on the center of each

oxel ( x, y, z ) to shift the evenly distributed voxels to the deformed

pace. The voxel centers are thus displaced towards the regions

here salient transitions of image properties are more likely to oc-

ur. The shift of the centers of the voxels is given by Eq. (8) . 

(x ′ , y ′ , z ′ ) = (x, y, z) + γ F (x, y, z) (8)

here γ is a normalization factor. The displacement of each voxel

enter is confined to the same voxel. Therefore, F ( x, y, z ) is nor-

alized such that the maximum deformation is equal to half of

he voxel size δ. The normalization factor takes the following form

s show in Eq. (9) . 

= 

δ

2 × max (x,y,z) ∈ (X,Y,Z) || F (x, y, z) || (9) 

.1.4. Cost function design 

To detect the lumen and media, a machine learning approach

s adopted to generate cost images. For each pixel of the polar im-

ge in the training set, a total of 148 features were generated. The

ollowing operators are applied in order to generate the features: 

• 16 features are generated by applying a set of 16 Gabor filters to

the image according to the following kernel shown in Eq. (10) .

G (x, y ) = 

1 

2 πσx σy 
e 

−0 . 5 ×(( x 
σx 

) 2 +( y 
σy 

) 2 )+ i 2 π(Ux + V y ) 
(10)

The parameters U and V (scaling and orientation) used are U =
(0.0442, 0.0884, 0.1768, 0.3536), V = (0, π /4, π /2, 3 π /4), σ x =
0.5622U and σ y = 0.4524U. 

• 2 features are generated by applying a 3 × 3 Sobel kernel to the

image in the x and y directions. 
• 6 features are generated by computing the mean value (m),

standard deviation (s) and the ratio m 

s of pixel intensities in a

sliding window of size 1 × 10 pixels in the x and y directions. 
• 2 features defined as shadow (Sh) and relative shadow (Sr) re-

lated to the cumulative gray level of the image are generated
olar transformation of (a). Red - Lumen, Green - Media. 
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Table 3 

Evaluation measures of each method with respect to expert manual tracings. Error measures ex- 

pressed as mean and (standard deviation). An empty table cell indicates that the method was not 

applied to Lumen or Media. OM-Our Method. 

Methods Lumen Media 

JM PAD HD JM PAD HD 

P1 0.81 (0.12) 0.14 (0.13) 0.47 (0.39) 0.76 (0.13) 0.21 (0.16) 0.64 (0.48) 

P2 0.83 (0.08) 0.14 (0.12) 0.51 (0.25) 

P3 0.88 (0.05) 0.06 (0.05) 0.34 (0.14) 0.91 (0.04) 0.05 (0.04) 0.31 (0.12) 

P4 0.77 (0.09) 0.15 (0.12) 0.47 (0.22) 0.74 (0.17) 0.23 (0.19) 0.76 (0.48) 

P5 0.79 (0.08) 0.16 (0.09) 0.46 (0.30) 

P6 0.84 (0.10) 0.12 (0.12) 0.57 (0.39) 

P7 0.84 (0.08) 0.11 (0.12) 0.38 (0.26) 

P8 0.81 (0.09) 0.11 (0.11) 0.42 (0.22) 0.79 (0.11) 0.19 (0.19) 0.60 (0.28) 

UNET 0.80 () 0.81 () 

OSCS 0.80 (0.09) 0.13 (0.07) 0.43 (0.19) 0.81 (0.08) 0.11 (0.14) 0.51 (0.19) 

DOSCS 0.82 (0.08) 0.12 (0.07) 0.41 (0.17) 0.84 (0.06) 0.10 (0.14) 0.48 (0.16) 

OM 0.86 (0.04) 0.09 (0.03) 0.37 (0.14) 0.90 (0.03) 0.07 (0.03) 0.43 (0.12) 
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as shown in the following Eqs. (11) and (12) . 

Sh (x, y ) = 

1 

N r N c 

N r ∑ 

y s = y 
BI(x, y s ) (11)

Sr(x, y ) = 

1 

N r N c 

N r ∑ 

y s = y 
y s BI(x, y s ) (12)

where BI ( x, y ) is a binary image obtained by thresholding the

image with a thresholding value = 14 and ( N r , N c ) are the im-

age dimensions. 
• 1 feature is generated by computing the local binary pattern

( Ojala et al., 2002 ). 
• 121 features are generated by using a 11 × 11 window centered

at each pixel in the image, comprising of the intensity values of

each pixel in the given window. 

Using the expert manual tracings for the training set two sep-

arate random forest classifiers ( Breiman, 2001 ) for lumen and me-

dia with 10 trees are trained on all the pixels of the images in the

training set to learn the probability maps which indicate the like-

lihood of a pixel belonging to lumen or media respectively. Finally,

the trained classifiers are then applied to each pixel of the test-

ing set to obtain the two cost images D lumen , D media for lumen and

media. 

3.1.5. Parameter setting 

A linear (convex) function, ψ(k 1 − k 2 ) = | k 1 − k 2 | was used to

model the surface smoothness term V ab ( ·). The surface separation

term H a ( ·) is modeled as a hard constraint for enforcing the mini-

mum separation between the lumen and media with d lumen,media =
2 . 

4. Results 

The quantitative analysis was carried out by comparing the seg-

mentations obtained by the proposed and compared methods with

the expert manual tracings (subvoxel accurate). Three evaluation

measures were used to quantify the accuracy of the segmentations.

The measures used are: 

Jaccard Measure (JM) - Quantifies how much the segmented

area overlaps with the manual delineated area as shown in

Eq. (13) : 

JM(R auto , R man ) = 

| R auto ∩ R man | 
| R auto ∪ R man | (13)
m  
here R auto and R man are two vessel regions defined by the manual

nnotated contour C man and of the automated segmented outline

 auto respectively. 

Percentage of Area Difference (PAD) - Computes the segmenta-

ion area difference as shown in Eq. (14) : 

AD = 

| A auto − A man | 
A man 

(14)

here A auto and A man are the vessel areas for the automatic and

anual contours respectively. 

Hausdroff Distance (HD) - Computes locally the distance be-

ween the manual and automated contours as shown in Eq. (15) .

D (C auto , C man ) = max p∈ C auto 
{ max q ∈ C man 

[ d(p, q )] } (15)

here p and q are points of the curves C auto and C man , respectively,

nd d ( p, q ) is the Euclidean distance. 

The quantitative results are summarized in Table 3 . The results

emonstrate that our method performs better than methods P1,

2, P4, P5, P6, P8 and is comparable to methods P3 and P7 with

espect to segmentation error measures for lumen and media. Our

ethod segments both the lumen and media simultaneously while

ethod P7 segments the lumen only. Furthermore, our method is

ully automated while methods P3 and P7 are semi-automated. Fi-

ally, methods P3 and P7 perform slice by slice segmentation in

-D while our method performs the segmentation in 3-D and not

lice by slice. 

For the UNET method ( Balakrishna et al., 2018 ), the authors

ublished the performance of their method with respect to Jaccard

etric. It can be seen from the results that based on the Jaccard

etric, the proposed method outperforms the UNET method. 

The quantitative results also show that the proposed method

ields more accurate segmentations than the OSCS and DOSCS

ethods for both the Lumen and the Media surfaces. The JM ob-

ained from the segmentation results by our proposed method

ere significantly higher ( p < 0.01) than the JM computed with

he segmentation results from the OSCS and the DOSCS methods.

he PAD and HD metrics computed with the proposed method

ere significantly lower ( p < 0.01) than the PAD and HD metrics

omputed with the segmentation results from the OSCS and the

OSCS methods. We did not have access to the actual segmenta-

ion results from the P1-P8 methods to perform a paired t -test for

ignificance determination and to qualitatively compare the seg-

entation results. 

The average computation time was 105.48 seconds for the OSCS

ethod, 135.27 seconds for the DOSCS method and 187.35 sec-
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Fig. 7. Qualitative illustrations of lumen and media segmentation using our method. Each image is a single frame of an IVUS multiframe dataset. Red - Lumen expert tracing, 

Green - Media expert tracing, Yellow - Lumen segmentation (our method), Blue - Media segmentation (our method). 
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nds for the proposed method. The increase in average computa-

ion time for the DOSCS method as compared to the OSCS method

s because the DOSCS method requires additional steps of com-

uting the deformation and applying the computed deformation

o the OSCS solution. The increased computation time of the pro-

osed method as compared to the OSCS and DOSCS method is at-

ributed to the increase in the complexity of the graph which re-

ults in higher computation time. For the general convex smooth-

ess function ψ(), the constructed graphs for the OSCS and the

roposed method have the same number of nodes and edges, that

s, each node in a given column has an edge to every node in each

f its neighboring columns. In our IVUS experiments, we used a

pecial smoothness function ψ(d) = | d| . Thus, in the OSCS graph

onstruction, the weight of many of those edges became 0, which

ere not necessary to be kept in the graph; while in the graph for

he proposed method, there were more non-zero weighted edges.

ence, we observed the increase of computation time for the pro-

osed method over OSCS. 
Qualitative results are shown in Figs. 7 and 8 . Fig. 7 demon-

trates that our method produced very good segmentation of the

umen and the media. It can also be seen from the illustration

hat the segmentations from our method are consistent for vary-

ng shapes of the lumen and media. Fig. 8 shows the compari-

on of OSCS, DOSCS and the proposed method for lumen and me-

ia segmentation. It can be seen from the illustration that the

OSCS method improves upon the OSCS method by applying the

eformation to the OSCS segmentation results, while the proposed

ethod achieves more accuracy than DOSCS for both lumen and

edia. Constructing the graph with the shifted voxel centers pro-

ides a more accurate encoding of the lumen and media sur-

ace positions due to the application of the GVF by adaptively

hanging the regional node density so that it is higher in regions

here the target surface is expected to pass through. Employing

 subvoxel accuracy approach allows the segmentation to obtain

 higher precision with respect to the OSCS and DOSCS method

egmentations. 
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Fig. 8. Qualitative illustrations of lumen and media segmentation using OSCS, DOSCS and our method. The first column shows the same single frame of an IVUS multiframe 

dataset. The second column shows a magnified version of the lumen and media segmentation for each compared method. Red - Lumen expert tracing, Green - Media expert 

tracing, Yellow - Automated lumen segmentation, Blue - Automated media segmentation. 
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5. Discussion 

A novel approach for segmentation of multiple surfaces with

convex priors in irregularly sampled space (non-equidistant spac-

ing between orthogonal adjoining nodes) was proposed. Our

method advances the graph based segmentation framework in sev-

eral important ways. First, the proposed energy function incorpo-

rates a convex surface smoothness penalty in irregularly sampled

space through a convex function. Second, the approach allows si-

multaneous segmentation of multiple surfaces in the irregularly

sampled space with the enforcement of a minimum separation

constraint. Third, our method guarantees global optimality. Lastly,

the proposed method demonstrates utility in achieving subvoxel

segmentation accuracy while employing a convex penalty to model

surface smoothness. To the best of our knowledge, this is the first

method that fulfills these four aims at the same time. The hallmark

of the proposed method is the ability to perform the segmentation

task in an irregularly sampled space which generalizes the optimal

surface segmentation framework. The proposed method was em-

ployed in rapid fat water segmentation in MRI images and demon-

strated increased efficiency and accuracy ( Cui et al., 2018 ). 

The proposed method is also capable of incorporating convex

surface separation penalty while enforcing a minimum separa-

tion in the irregularly sampled space. The incorporation of such

a penalty would involve modifying the surface separation term in

the proposed energy function to impose a convex function based

penalty when the minimum separation constraint is not violated.

The graph construction to enforce such a penalty can be done us-
ng the same framework of the proposed method for enforcing the

urface smoothness constraint. 

The method can be used in conjunction with the method pro-

osed by Abràmoff et al. (2014) to incorporate prior information

sing trained hard and soft constraints ( Dufour et al., 2013 ) to

chieve subvoxel accuracy. Furthermore, the method can also be

ncorporated in the image segmentation framework using trun-

ated convex priors ( Shah et al., 2015 ) to achieve subvoxel accu-

acy by constructing the convex part of the graph in the irregularly

ampled space, thus providing a potential use for generic modeling

f variety of surface constraints to achieve subvoxel accuracy. 

The improved segmentation quality of the proposed method is

vident from the illustration in Fig. 8 , and shows that segmen-

ation performed in the irregularly sampled space based on the

isplacement of the voxel centers to correctly encode the partial

olume information is more accurate compared to the segmenta-

ion performed without any use of partial volume information. The

esults on IVUS images demonstrates that the methods achieves

igh accuracy with respect to subvoxel accurate expert tracings as

ompared to the methods reported in the IVUS challenge ( Balocco

t al., 2014 ) while being fully automated and performing segmen-

ation in 3-D. The approach is not limited to these two modalities

or which the experiments were conducted. 

The proposed method is designed for segmentation problems

herein column structures contain non-equidistant spacing be-

ween consecutive elements. Specifically, for subvoxel image seg-

entation tasks, the voxels centers are deformed. The deforma-

ion results in decreased spacing between consecutive voxel cen-
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ers along a column in certain areas and likewise, increased spac-

ng between voxel centers in certain regions. This creates subvoxel

esolution in areas with decreased spacing while super-voxel reso-

ution in areas with increased spacing between the voxel centers.

he effect of the super-voxel resolution in those areas is alleviated

ue to subvoxel resolution in areas containing voxels with high

ikelihood for presence of the surface boundary. 

Recently, deep learning methods have also been extensively

sed in various medical image analysis and segmentation applica-

ions ( Litjens et al., 2017 ). However, deep learning algorithms are

nherently limited to amount of training data and corresponding

vailability of expert annotated truth. While the proposed method

s capable of performing subvoxel-accurate segmentations, major-

ty of the deep learning methods are applied at a voxel level seg-

entation/classification tasks. The result from the UNET method

emonstrated the superior performance of the proposed method

ver traditional deep learning methods. However, it should be

oted that the UNET method was applied in 2-D while UNETs can

lso be applied in 3-D, which may result in improvement of re-

ults. Furthermore, many more sophisticated 2-D/3-D deep learn-

ng methods such as conditional GANs have recently been devel-

ped and have shown to achieve high accuracy in segmentation

asks. Application of such state-of-the-art deep learning methods

ay also result in improvement of segmentation performance. 

. Conclusion 

We presented a general framework for simultaneous segmen-

ation of multiple surfaces in the irregularly sampled space with

onvex priors to achieve subvoxel and super resolution segmenta-

ion accuracy. An edge-weighted graph representation is presented

nd a globally optimal solution with respect to the employed ob-

ective function is achieved by solving a maximum flow problem.

he surface smoothness and surface separation constraints provide

 flexible means for modeling various inherent properties and in-

errelations of the desired surfaces in an irregularly sampled grid

pace. The method is readily extensible to higher dimensions. 
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ppendix A 

emma 1. For any k 1 and k 2 , the function g ( k 1 , k 2 ) is non-negative. 

roof. Let us consider the function g ( k 1 , k 2 ) for edges from column

 to neighboring column b as shown in Eq. (6) . We need to prove

hat g ( k 1 , k 2 ) ≥ 0 

(k 1 , k 2 ) = f (L a (k 1 ) , L b (k 2 − 1)) 

− f (L a (k 1 − 1) , L b (k 2 − 1)) − f (L a (k 1 ) , L b (k 2 )) 

+ f (L a (k 1 − 1) , L b (k 2 )) 

The reader should recall because of the strictly increasing order

f sampling, L a (k 1 ) > L a (k 1 − 1) and L b (k 2 ) > L b (k 2 − 1) . ψ( ·) is a

onvex function with ψ(0) = 0 . The proof is presented in a case-

y-case basis. �

ase 1. L a (k 1 ) < L b (k 2 − 1) 

Thus, L a (k 1 − 1) < L b (k 2 − 1) . As L b (k 2 ) > L b (k 2 − 1) , we have

 a ( k 1 ) < L b ( k 2 ) and L a (k 1 − 1) < L b (k 2 ) . Since f (r 1 , r 2 ) = 0 if r 1 < r 2 .

t is straightforward to verify that g(k , k ) = 0 in Eq. (6) . 
1 2 
ase 2. L a (k 1 ) ≥ L b (k 2 − 1) and L a ( k 1 ) < L b ( k 2 ) 

In this case, as L a (k 1 ) > L a (k 1 − 1) , we have L a (k 1 − 1) < L b (k 2 ) .

hus, g ( k 1 , k 2 ) takes the following form in Eq. (6) . 

(k 1 , k 2 ) = f (L a (k 1 ) , L b (k 2 − 1)) − f (L a (k 1 − 1) , L b (k 2 − 1)) 

If L a (k 1 − 1) < L b (k 2 − 1) , then g(k 1 , k 2 ) = f (L a (k 1 ) , L b (k 2 −
)) = ψ(L a (k 1 ) − L b (k 2 − 1)) . Thus, g ( k 1 , k 2 ) ≥ 0 as ψ(L a (k 1 ) −
 b (k 2 − 1)) ≥ 0 with L a (k 1 ) ≥ L b (k 2 − 1) . 

If L a (k 1 − 1) < L b (k 2 − 1) , then g(k 1 , k 2 ) = ψ(L a (k 1 ) − L b (k 2 −
)) − ψ(L a (k 1 − 1) − L b (k 2 − 1)) . We know that L a (k 1 ) − L b (k 2 −
) > L a (k 1 − 1) − L b (k 2 − 1) > 0 . Thus, g ( k 1 , k 2 ) > 0 as ψ(0) = 0 .

herefore, in this case g ( k 1 , k 2 ) > 0. 

ase 3. L a ( k 1 ) ≥ L b ( k 2 ) 

In this case, L a (k 1 ) > L b (k 2 − 1) as L b (k 2 ) > L b (k 2 − 1) . We dis-

inguish three subcases: 1) L a (k 1 − 1) < L b (k 2 − 1) , 2) L a (k 1 − 1) <

 b (k 2 ) and L a (k 1 − 1) ≥ L b (k 2 − 1) , and 3) L a (k 1 − 1) ≥ L b (k 2 ) . 

Subcase 1): If L a (k 1 − 1) < L b (k 2 − 1) , then 

(k 1 , k 2 ) = f (L a (k 1 ) , L b (k 2 − 1)) − f (L a (k 1 ) , L b (k 2 )) 

= ψ(L a (k 1 ) − L b (k 2 − 1)) − ψ(L a (k 1 ) − L b (k 2 )) 

Since L b (k 2 − 1) < L b (k 2 ) , we have L a (k 1 ) − L b (k 2 − 1) >

 a (k 1 ) − L b (k 2 ) . Thus, g ( k 1 , k 2 ) > 0 as ψ(0) = 0 . 

Subcase 2): If L a (k 1 − 1) < L b (k 2 ) and L a (k 1 − 1) ≥ L b (k 2 − 1) ,

hen g ( k 1 , k 2 ) takes the form shown in Eq. (6) as L a (k 1 ) ≥ L b (k 2 ) >

 a (k 1 − 1) ≥ L b (k 2 − 1) . 

(k 1 , k 2 ) = f (L a (k 1 ) , L b (k 2 − 1)) 

− f (L a (k 1 − 1) , L b (k 2 − 1)) − f (L a (k 1 ) , L b (k 2 )) 

= ψ(L a (k 1 ) − L b (k 2 − 1)) 

−ψ(L a (k 1 − 1) − L b (k 2 − 1)) − ψ(L a (k 1 ) − L b (k 2 )) 

Let L a (k 1 ) − L b (k 2 ) = δ1 , L b (k 2 ) − L a (k 1 − 1) = δ2 and L a (k 1 −
) − L b (k 2 − 1) = δ3 , where δ1 ≥ 0, δ2 > 0 and δ3 ≥ 0. Rewriting

q. (6) and substituting these values, we get the following expres-

ion expression, 

(k 1 , k 2 ) = ψ(L a (k 1 ) − L b (k 2 − 1)) 

−ψ(L a (k 1 − 1) − L b (k 2 − 1)) − ψ(L a (k 1 ) − L b (k 2 )) 

= ψ(δ1 + δ2 + δ3 ) − ψ(δ3 ) − ψ(δ1 ) 

It can be verified that g ( k 1 , k 2 ) > 0 as ψ( ·) is convex. 

Subcase 3): If L a (k 1 − 1) ≥ L b (k 2 ) , then L a (k 1 ) − L b (k 2 − 1) > 0 ,

 a (k 1 − 1) − L b (k 2 ) ≥ 0 , L a (k 1 − 1) − L b (k 2 − 1) > 0 , and L a (k 1 ) −
 b (k 2 ) > 0 . Hence, 

(k 1 , k 2 ) = ψ(L a (k 1 ) − L b (k 2 − 1)) 

−ψ(L a (k 1 − 1) − L b (k 2 − 1)) − ψ(L a (k 1 ) − L b (k 2 )) 

+ ψ(L a (k 1 − 1) − L b (k 2 )) . 

In this subcase, let L a (k 1 ) − L a (k 1 − 1) = δ1 , L a (k 1 − 1) −
 b (k 2 ) = δ2 and L b (k 2 ) − L b (k 2 − 1) = δ3 , where δ1 > 0, δ2 ≥ 0 and

3 > 0. Substituting this in the expression for g ( k 1 , k 2 ), we get 

(k 1 , k 2 ) = ψ(δ1 + δ2 + δ3 ) − ψ(δ2 + δ3 ) − ψ(δ1 + δ2 ) 

+ ψ(δ2 ) . 

Let us first consider the case, δ2 = 0 , we get the following ex-

ression, 

(k 1 , k 2 ) = ψ(δ1 + δ3 ) − ψ(δ3 ) − ψ(δ1 ) 

t can be verified that g ( k 1 , k 2 ) > 0 as ψ( ·) is convex. 

Next, consider the case when δ2 > 0. It can be observed that

1 + δ2 + δ3 > δ1 + δ2 > δ2 . Therefore, δ1 + δ2 can be expressed as,

1 + δ2 = λ1 δ2 + (1 − λ1 )(δ1 + δ2 + δ3 ) 

Solving for λ1 , we get λ1 = 

δ3 
δ1 + δ3 

. 

Similarly, it can be observed that δ1 + δ2 + δ3 > δ2 + δ3 > δ2 

nd δ2 + δ3 can be expressed as, 

δ2 + δ3 = λ2 δ2 + (1 − λ2 )(δ1 + δ2 + δ3 ) , where λ2 = 

δ1 
δ + δ . 
1 3 
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From the definition of a convex function, and adding the above

two expressions, we get the following, 

ψ(δ1 + δ2 ) + ψ(δ2 + δ3 ) ≤ (λ1 + λ2 ) ψ(δ2 ) 

+(2 − λ1 − λ2 ) ψ(δ1 + δ2 + δ3 ) . 

Substituting the value of λ1 and λ2 , we get ψ(δ1 + δ2 ) +
ψ(δ2 + δ3 ) ≤ ψ(δ2 ) + ψ(δ1 + δ2 + δ3 ) . Therefore it can be verified

that g ( k 1 , k 2 ) ≥ 0. 

Thus, through these exhaustive cases, it is shown that for any k 1 
and k 2 , the function g ( k 1 , k 2 ) ≥ 0 or in other words is non-negative.

Appendix B 

Lemma 2. In any finite s - t cut C, the total weight of the edges be-

tween any two adjacent columns a and b (denoted by C a,b ) equals to

the surface smoothness cost of the resulting surface S i with S i (a ) = k 1 
and S i (b) = k 2 , which is ψ(L a (k 1 ) − L b (k 2 )) , where ψ( ·) is a convex

function. 

Proof. Denote an edge from n i ( a, k 1 ) to node n i ( b, k 2 ) as

E i (a k 1 , b k 2 ) for the i -th surface. Assume k 1 ≥ k 2 . Proof for the case

when k 2 ≥ k 1 can be done in a similar manner by interchanging the

notations for column a and column b . 

To show: cost of cut C a,b = ψ(L a (k 1 ) − L b (k 2 )) . 

We start by observing such a s - t cut C a,b will consist of only the

following inter-column edges: 

{ E i ( a m 

, b n ), 0 ≤ m ≤ k 1 , k 2 + 1 ≤ n ≤ Z} 

Note, here we use the index Z to denote the terminal node t as

described in Section 2.2.2 . 

Summing up the weights of the above edges using Eq. (6) , we

obtain the following expression: 

 a,b = g(k 1 , Z) + g(k 1 , Z − 1) + g(k 1 , Z − 2) 

+ . . . + g(k 1 , k 2 + 1) 

+ g(k 1 − 1 , Z) + g(k 1 − 1 , Z − 1) + g(k 1 − 1 , Z − 2) 

+ . . . + g(k 1 − 1 , k 2 + 1) 
. 

. 

. 

+ g(0 , Z) + g(0 , Z − 1) + g(0 , Z − 2) 

+ . . . + g(0 , k 2 + 1) 

Let us first evaluate part of Eq. (6) for k , where 0 ≤ k ≤ k 1 as

shown below: 

g(k, Z) + g(k, Z − 1) + g(k, Z − 2) + . . . + g(k, k 2 + 1) 

= f (L a (k ) , L b (Z − 1)) − f (L a (k − 1) , L b (Z − 1)) 

− f (L a (k ) , L b (Z)) + f (L a (k − 1) , L b (Z)) 

+ f (L a (k ) , L b (Z − 2)) − f (L a (k − 1) , L b (Z − 2)) 

− f (L a (k ) , L b (Z − 1)) + f (L a (k − 1) , L b (Z − 1)) 

+ f (L a (k ) , L b (Z − 3)) − f (L a (k − 1) , L b (Z − 3)) 

− f (L a (k ) , L b (Z − 2)) + f (L a (k − 1) , L b (Z − 2)) 

. 

. 

. 

+ f (L a (k ) , L b (k 2 )) − f (L a (k − 1) , L b (k 2 )) 

− f (L a (k ) , L b (k 2 + 1)) + f (L a (k − 1) , L b (k 2 + 1)) 

= f (L a (k ) , L b (k 2 )) − f (L a (k − 1) , L b (k 2 )) 

− f (L a (k ) , L (Z)) + f (L a (k − 1) , L (Z)) 
b b 
As described in Section 2.2.2 , 

f (L a (k ) , L b (Z)) = 0 , f (L a (k − 1) , L b (Z)) = 0(∵ Z / ∈ z ) 

= f (L a (k ) , L b (k 2 )) − f (L a (k − 1) , L b (k 2 )) 
(B.1)

By simplifying Eq. (6) using Eq. (B.1) , it follows that: 

 a,b = f (L a (k 1 ) , L b (k 2 )) − f (L a (k 1 − 1) , L b (k 2 )) 

+ f (L a (k 1 − 1) , L b (k 2 )) − f (L a (k 1 − 2) , L b (k 2 )) 
. 

. 

. 

+ f (L a (1) , L b (k 2 )) − f (L a (0) , L b (k 2 )) 

+ f (L a (0) , L b (k 2 )) − f (L a (−1) , L b (k 2 )) 

= f (L a (k 1 ) , L b (k 2 )) − f (L a (−1) , L b (k 2 )) 

s described in Section 2.2.2 , 

f (L a (−1) , L b (k 2 )) = 0 , (∵ −1 / ∈ z ) 

= ψ(L a (k 1 ) − L b (k 2 )) , 

sing Eq. (5) 

Therefore, for this case it is shown that cost of cut C a,b =
(L a (k 1 ) − L b (k 2 )) . 

In a similar manner when k 2 ≥ k 1 , the s - t cut C b,a will consist of

he following inter-column edges: 

{ E i ( b m 

, a n ), 0 ≤ m ≤ k 2 , k 1 + 1 ≤ n ≤ Z} 

Summing up the weights of the above edges using Eq. (7) , we

btain the following expression: 

 b,a = g(k 2 , Z) + g(k 2 , Z − 1) + g(k 2 , Z − 2) 

+ . . . + g(k 2 , k 1 + 1) 

g(k 2 − 1 , Z) + g(k 2 − 1 , Z − 1) + g(k 2 − 1 , Z − 2) 

+ . . . + g(k 2 − 1 , k 1 + 1) 
. 

. 

. 

g(0 , Z) + g(0 , Z − 1) + g(0 , Z − 2) 

+ . . . + g(0 , k 1 + 1) 

Similar to the previous case, let us first evaluate part of

q. (7) for k , where 0 ≤ k ≤ k 2 as shown below: 

g(k, Z) + g(k, Z − 1) + g(k, Z − 2) + . . . + g(k, k 1 + 1) 

= f (L b (k ) , L a (Z − 1)) − f (L b (k − 1) , L a (Z − 1)) 

− f (L b (k ) , L a (Z)) + f (L b (k − 1) , L a (Z)) 

+ f (L b (k ) , L a (Z − 2)) − f (L b (k − 1) , L a (Z − 2)) 

− f (L b (k ) , L a (Z − 1)) + f (L b (k − 1) , L a (Z − 1)) 

+ f (L b (k ) , L a (Z − 3)) − f (L b (k − 1) , L a (Z − 3)) 

− f (L b (k ) , L a (Z − 2)) + f (L b (k − 1) , L a (Z − 2)) 

. 

. 

. 

+ f (L b (k ) , L a (k 1 )) − f (L b (k − 1) , L a (k 1 )) 

− f (L b (k ) , L a (k 1 + 1)) + f (L b (k − 1) , L a (k 1 + 1)) 

= f (L b (k ) , L a (k 1 )) − f (L b (k − 1) , L a (k 1 )) 

− f (L b (k ) , L a (Z)) + f (L b (k − 1) , L a (Z)) 

As described in Section 2.2.2 , 

f (L b (k ) , L a (Z)) = 0 , f (L b (k − 1) , L a (Z)) = 0 (∵ Z / ∈ z ) 

= f (L b (k ) , L a (k 1 )) − f (L b (k − 1) , L a (k 1 )) 
(B.2)
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By simplifying Eq. (6) using Eq. (B.2) , it follows that: 

 b,a = f (L b (k 2 ) , L a (k 1 )) − f (L b (k 2 − 1) , L a (k 1 )) 

+ f (L b (k 2 − 1) , L a (k 1 )) − f (L b (k 2 − 2) , L a (k 1 )) 
. 

. 

. 

+ f (L b (1) , L a (k 1 )) − f (L b (0) , L a (k 1 )) 

+ f (L b (0) , L a (k 1 )) − f (L b (−1) , L a (k 1 )) 

= f (L b (k 2 ) , L a (k 1 )) − f (L b (−1) , L a (k 1 )) , 

As described in Section 2.2.2 

f (L b (−1) , L a (k 1 )) = 0 , (∵ −1 / ∈ z ) 

= ψ(L b (k 2 ) − L a (k 1 )) , 

sing Eq. (5) 

Therefore, for this case it is shown that cost of cut C b,a =
(L b (k 2 ) − L a (k 1 )) . 

This completes the proof. �
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