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Abstract

Genome-wide mutational screens are central to understanding the genetic underpinnings of
evolved and engineered phenotypes. The widespread adoption of CRISPR-Cas9 genome editing
has enabled such screens in many organisms, but identifying functional sgRNAs still remains a
challenge. Here, we developed a methodology to quantify the cutting efficiency of each sgRNA
in a genome-scale library, and in doing so improve screens in the biotechnologically important
yeast Yarrowia lipolytica. Screening in the presence and absence of native DNA repair enabled
high-throughput quantification of sgRNA function leading to the identification of high efficiency
sgRNAs that cover 94% of genes. Library validation enhanced the classification of essential
genes by identifying inactive guides that create false negatives and mask the effects of successful
disruptions. Quantification of guide effectiveness also creates a dataset from which determinants
of CRISPR-Cas9 can be identified. Finally, application of the library identified novel mutations
for metabolic engineering of high lipid accumulation.
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Introduction

A critical challenge in CRISPR-based library screens is the inability to separate active
from inactive guides to ensure genome-wide coverage and generate high confidence hits.
Typically, multiple guide RNAs are designed to target each gene of interest with the hypothesis
that some guides may not be functional (Joung et al., 2017; Li et al., 2014). This strategy
maximizes the likelihood of full genome coverage through redundant targeting of each gene and
has been successful in identifying new phenotypes (Koike-Yusa et al., 2014; Sidik et al., 2016),
but the presence of inactive guides can obscure screening results and create false negatives (Ong
et al., 2017). While in silico design and activity predictions are emerging, complete training sets
that correlate CRISPR endonuclease activity, guide sequence, and local genetic context are not
yet available.

Herein, we demonstrate a methodology to measure and validate the activity of each guide
RNA in a genome-wide library for screening in the oleaginous yeast Yarrowia lipolytica. We
selected this non-conventional yeast because it has value as a bioprocessing host for the
conversion of biomass derived sugars and industrial waste streams (e.g., glycerol, alkanes, and
fatty acids) into value added chemicals and fuels (Qiao et al., 2017; Schwartz et al., 2017a;
Wagner et al., 2018). Unlike the model yeast Saccharomyces cerevisiae, DNA repair in Y.
lipolytica and most other eukaryotes is dominated by nonhomologous end-joining (NHEJ) (Lobs
et al., 2017). We reasoned that the effectiveness of each guide RNA in a high coverage CRISPR
library could be quantified by comparing library evolution in an NHEJ-proficient strain and an
NHEJ-deficient strain. In a strain lacking NHEJ and a homologous template (i.e., NHEJ-
disrupted haploid Y. lipolytica), double strand break repair is severely limited, and the most
likely outcome of a Cas9-induced DNA double strand break is cell death (Schwartz et al.,
2017b). Using this approach, CRISPR-Cas9 activity can be coupled to cell viability thus
providing a facile, quantitative metric of guide efficiency.

Validated CRISPR libraries promise to generate more accurate and robust genetic screens
with a drastically reduced false negative rate compared with libraries that are naive to the cutting
efficiency of each guide. We demonstrate this by identifying essential genes and by screening for
the industrially relevant phenotype of increased lipid accumulation. In addition, when coupled
with genome structure analysis (i.e., nucleosome occupancy), validation experiments can provide
msights into the biological effects that dictate gnide RNA effectiveness and genome
accessibility. Defining a list of validated guide RNAs for any given organisms is valuable
metabolic engineering resource in and of itself, and is also an important step in moving towards
high coverage, combinatorial screens that simultaneously target multiple genes in the genome
(Shen et al., 2017).

Results
Genome-wide CRISPR-Cas9 library design, construction, and analysis

We designed a library of single guide RNAs (sgRNAs) to target 7,854 coding sequences
in Y. lipolvtica PO1f (Figure 1A, Fig. S1A, and Table S1). Unique sgRNAs were designed to
target the first 300 exon base pairs in each gene, scored, and then ranked based on their predicted
on-target cutting efficiency (Doench et al., 2014). The first 300 bp were targeted to maximize the
likelihood of disrupting gene function in the case of an indel. The complete library was
subsequently designed to contain the 6 highest scoring sgRNAs for each gene, along with 480
nontargeting controls. The library was synthesized and subsequently cloned into an expression
vector with sgRNA expression driven by a synthetic RNA polymerase III (Pol IIT) promoter
(Schwartz et al., 2017c; Schwartz et al., 2016). Sequencing revealed that over 97% of the
designed sgRNAs were well represented in the library (Fig. S1B).
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Figure 1. Genome-wide CRISPR-Cas9 validation and screening in Yarrowia lipolytica. (A)
Schematic representation of sgRNA library design and workflow for genome-wide validation
and screening. Y. lipolytica PO1f was used as the base strain for all experiments. Fitness score
(FS) experiments used PO1f with constitutive expression of Cas9 from Streptococcus pyogenes
(PO1f Cas9). Cutting score (CS) experiments used PO1f Cas9 with functionally disrupted
nonhomologous end-joining (NHEJ) by inactivation of KU70 (PO1f Cas9 ku70). LOF indel
indicates loss of function insertion or deletion, and cnfrl strain indicates the negative control
strain that does not express Cas9 but does contain the sgRNA library. (B) Comparison of FS to
CS for each sgRNA after 2, 4, and 6 days of growth on defined minimal media containing 2%
glucose. Transformations were done in biological triplicates with at least 100-fold coverage of the
library in each replicate. FS and CS values shown are the mean of the three biological replicates.

Growth screens in three different Y. /ipolytica strains enabled us to experimentally
determine two separate metrics for each sgRNA (Figure 1A). A fitness score (FS) was defined as
the log, ratio of the abundance of any given sgRNA in a Cas9 expressing strain (PO1f Cas9) to
the abundance of the same sgRNA in the negative control (PO1f). Each sgRNA was also given a
cutting score (CS) by calculating the same log, ratio, but in this case comparing a Cas9
expressing NHEJ deficient strain (PO1f Cas9 ku70) to the control strain. FS is a measure of how
harmful a CRISPR-Cas9 mediated indel was to cell growth, whereas CS is a measure of how
efficient an sgRNA was for inducing a Cas9-mediated DNA double strand break. By using
transformed PO1f as the denominator in FS and CS calculations, any bias introduced from
variability in plasmid maintenance (due to a specific sgRNA sequence or otherwise) is implicitly
accounted for, and changes in sgRNA abundance can be attributed to Cas9 function and the
resulting effect on cell fitness. A pilot scale experiment with a nontargeting sgRNA and known
functional sgRNAs targeting one essential gene and one nonessential gene confirmed that the
outcomes of the FS and CS experiments were consistent with this scoring methodology (Fig. S2).
A second pilot scale experiment analyzing a subset of sgRNAs that span the spectrum of CS
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showed, as expected, that cell growth is strongly correlated with CS in the PO1f Cas9 ku70 strain
(Fig. S2). The absence of growth in cells containing an sgRNA with a low CS also suggests that
alternative DNA repair pathways, such as microhomology-mediated end-joining, do not
significantly contribute to repair.

The evolution of the full genome-wide library over three subculture cycles (6 days in
total) and corresponding CS and FS values are shown in Figure 1B. Only after two growth cycles
(day 4) were significant changes in cell phenotype and library distribution observed. The
nontargeting control population behaved as expected, shifting to the upper right quadrant of the
FS/CS plot indicating nonfunctional sgRNAs that resulted in no change in cell fitness. The day 4
and day 6 data indicate that the majority of the library was able to create double strand breaks.
This is apparent from the shift toward the lower two quadrants. The lower left quadrant is
indicative of sgRNAs that both cut (negative CS) and have a negative effect on growth (negative
FS). The lower right quadrant also contains sgRINAs that cut effectively but have a neutral or
positive effect on cell growth (positive FS). The upper left quadrant is only sparsely populated
around the origin, likely because this quadrant represents instances with observed negative
growth effects in the absence of a functional sgRNA (positive CS). Overall, three important
trends are apparent: 1) the library skews strongly towards negative CS values, indicating that
many of the sgRNAs are functional; 2) sgRNAs that do not produce a cut in the genome can be
identified in the upper right quadrant; and, 3) a broad range of FS values results from outgrowth-
based screens, suggesting that the library can be used to select for a wide variety of phenotypes.
Based on these results and the observation that changes in fitness were not observed after one
growth cycle (2 days), we selected day 4 data for all subsequent analysis.

sgRNA validation and analysis of functional determinants

Based on the average CS of the nontargeting controls, we set a value of 2 as the threshold
to 1dentify inactive sgRNAs (i.e. noncutters, CS> 2). At the other end of the spectrum, we set a
CS value of -5 (a 32-fold reduction in sgRNA abundance) as the lower limit of sgRNAs
considered to be excellent cutters (CS< -5). This threshold was set based on a subpopulation of
sgRNAs whose abundance was reduced to zero after two subculture cycles (4 days), which
corresponded to a CS value of -5 or lower. Two intermediate categories were also defined:
moderate (-5<CS< -1) and poor (-1<CS< 2) cutters. Moderate and poor were separated at a CS of
-1 because this value indicates at least some depletion of the sgRNA after two subculture cycles.
Figure 2A shows the CS distribution of the full library as well as six subpopulations ranked from
best sgRNA per gene (1%) to worst sgRNA per gene (6™). Each subpopulation represents 1-fold
coverage of the genome. The best subpopulation contained an excellent cutter for 94.6% of the
targeted genes, while 82.6% of the genes have at least two excellent cutters. Histograms of each
subpopulation, and the number of excellent cutters per gene are presented (Figures 2B and C,
and Fig. S3).
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Figure 2. Genome coverage and distribution of CRISPR-Cas9 cutting efficiency. (A)
Library and genome coverage by sgRNA classification: Excellent (CS<-5; green; 48% of full
library), Moderate (-5<CS< -1; yellow; 28%), Poor (-1<CS< 2; orange; 18%), and Noncutter
(>2; red; 6%). The sgRNAs for each gene were ranked by CS from 1% to 6™ and separated into
six subpopulations each representing 1-fold genome coverage. (B,C) Histograms of the 1* and
6" sgRNA subpopulations. Mean CS values were determined after two growth cycles (4 days)
from triplicate biological samples.

The analysis of CS across the library revealed several trends in sequence determinants of
active sgRNAs. For example, a total of 1,808 sgRNAs were found to contain a polyT motif (four
or more consecutive “T” bases). This subpopulation had a significantly higher average CS than
the library as a whole (CSyoyt = -1.389, n = 1,808 and CSjiprary = -3.786, n = 46,234, t-test p <
0.0001, t = 30.43, df = 48,040). The apparent inefficiency of sgRNAs containing a polyT motif is
not unexpected, as polyT sequences are known terminators for RNA Pol ITI. As such, it is likely
that sgRNAs containing a polyT motif have poor functional expression causing reduced
CRISPR-Cas9 activity. The effect of RNA secondary structure was also examined, but was
found to be minimal (Fig. S5).

The position of sgRNAs within each chromosome was also found to have an effect.
sgRNAs that target close to chromosomal ends were found to have increased cutting scores in
comparison to the full library (Figure 3A and Fig. S4). Previous studies have reported that genes
near the ends of chromosomes can be transcriptionally silenced by the chromatin structure of
telomeres, thus providing the likely mechanism of reduced CRISPR-Cas9 activity at
chromosomal ends observed here (Doheny et al., 2008; Gottschling et al., 1990).
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Figure 3. Effects of chromosome position and chromatin structure on CRISPR-Cas9
activity. (A) Cutting score of all sgRNAs targeting chromosome C, plotted by position. The
terminal 100 kbp of both ends are shown expanded. Each data point represents the mean and
standard deviation of biological triplicates of CS calculated at day 4. The solid blue line
represents the average CS for the full sgRNA library. The standard deviation of the CS library
average 1s shown as blue dashed lines. Chromosomes A, B, D, E, and F are presented in
Supplementary Fig. 4. (B) Relationship between nucleosome occupancy and cutting score. Each
data point represents the mean CS of biological triplicates at day 4 and the relative average
nucleosome occupancy for each (n=45,247). Pearson’s correlation is 0.223.

Given this result, we also elected to study the effect of genome-wide chromatin structure
on sgRNA activity. The CS values of all sgRNAs in the library were compared to experimental
measurements of nucleosome occupancy across the genome (Tsankov et al., 2010). As shown in
Figure 3B, nucleosome occupancy positively correlated with CS. These data reveal that
occupancy provides a stronger correlation to CRISPR-Cas9 activity (Pearson’s, r = 0.223) than
the algorithm used to design the library (Doench et al., 2014) (r = 0.0525) or other algorithms
(Doench et al., 2016; Guo et al., 2018; Labuhn et al., 2018) (r =0.0511; r=0.1431, r=0.0365;
Fig. S6).
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Activity validated CRISPR-Cas9 library improves essential gene analysis

Inactive sgRNAs in CRISPR libraries can produce false negatives in essential gene
screening (Ong et al., 2017). This problem arises when one or more poor cutting sgRNAs mask
the effect of successful disruptions on the FS average for a particular gene. The data on sgRNA
activity provided by the CS experiments can eliminate this issue by focusing analysis on the
validated cutters and excluding inactive sgRNAs. Figure 4A shows the rank-ordered FS
calculated from the full library, which is naive to the effectiveness of each sgRNA and includes
all excellent, moderate, poor, and noncutter sgRNAs for each gene (the naive library). Twelve
nonessential genes and twelve genes that are known to be essential across eukaryotes are shown
as two subpopulations (Figure 4 and Table S2). The two subpopulations partially overlapped and
had closely related FS distributions when calculated from the naive library (Figures 4A and B).
Three of the genes are notable; ACT1, MYOI, and FOL?2 are genes critical to eukaryotic cell
viability, but were not distinguishable from nonessential genes, suggesting that the presence of
poor cutting sgRNAs artificially increased their FS. Analysis with only excellent cutters (the
validated library) resulted in a clear separation between the subpopulations: ACT1, MYO1, and
FOL? clustered as expected with other essential genes, and the difference between FS of the
essential and nonessential subpopulations increased significantly (Figures 4C and D).
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Figure 4. Library validation enhances essential gene identification. (A) Rank-ordered fitness
score (FS) for each gene calculated using the full 6-fold sgRNA library (naive library). Twelve
nonessential (vellow) and putatively essential (red) genes are shown. (B) FS for essential and
nonessential genes using the naive library. Boxes extend from the 25® to 75™ percentiles, the box
line indicates the median, and the whiskers extend from the 10® to the 90™ percentiles, n = 12 for
both nonessential and essential. Comparison between the means was accomplished by two-sided
t-test (t = 3.029 and p = 0.0062). Statistical significance is shown graphically with * indicating
p<0.01 and ** indicating p<0.0001. (C) Rank-ordered FS for each gene calculated using only the
validated excellent sgRNAs (validated library). For the 5.4% of genes that did not have an
excellent sgRNA, the best cutter was included. (D) FS for essential and nonessential gene
subpopulations using the validated library (t = 7.764 and p < 0.0001). (E,F) Comparison of FS to
CS for each of the sgRNAs targeting the 12 selected essential and nonessential genes. Pearson’s
coefficients from linear regression (r) and slopes are shown (n = 72). FS and CS values are the
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mean of three biological replicates, the standard deviations associated with the means are
presented in Fig. S7.

One method of evaluating sgRNA effectiveness is to compare multiple targets to the
same known essential gene (Doench et al., 2016; Xu et al., 2015). By definition, disruptions to
essential genes are fatal (with or without intact DNA repair), which leads to a hypothesis similar
to that of the CS experiments. That is, double strand breaks lead to cell death, therefore viability
in a growth screen can be used as a measure of cutting efficiency. This hypothesis is supported
by the observed trends in the essential and nonessential sgRNA subpopulations (Figures 4E and
F). The regression line of CS/FS data for all 6 of the sgRNAs targeting the curated essential
gene subpopulation has a slope of 0.997 (r = 0.82), suggesting a quantitative correlation between
FS and CS, and providing experimental evidence to support CS as a metric for CRISPR-Cas9
activity. Appropriately, this relationship does not hold for the nonessential gene subpopulation.

The validated library, containing only highly active sgRNAs, identified 1,377 genes as
essential in Y. /ipolytica, which represents 17.5% of coding sequences (Figure 5 and Table S3;
see Methods for essential gene identification methodology). Essential genes were identified by
comparison to known essential and nonessential gene subpopulations. Using the same statistical
tests, the naive library (containing both active and inactive sgRNAs) identified only 4.5% of
genes (359 genes) as essential. Genome-wide knockout collections and extensive experimental
evidence in model yeasts suggest that ~20% of yeast genes are essential (19.5% or 1,268 genes
mn S. cerevisiae (Cherry, 2015) and 26.1% or 1,260 genes in Schizosaccharomyces pombe (Kim
et al., 2010)), indicating that the naive library produced a high number of false negatives in our
Y. lipolytica essential gene screening. A recent transposon-based analysis in Y. /ipolytica
supports our results (Patterson et al., 2018). The transposon screen identified 22.4% of Y.
lipolytica genes as essential, an increase in 586 genes over the CRISPR-based analysis in this
work. The validated CRISPR library implicitly accounts for genomic targets that may be
maccessible due to heterochromatin structure, a known experimental limitation of transposon-
based screens that can cause false positives (Gangadharan et al., 2010). The difference between
these data sets is also likely due to challenges in transposon targeting of short genes (Wang et al.,
2018) (Fig. S8).

To further confirm essential gene classification, we repeated the analysis with different
known essential gene subpopulations as training sets. Specifically, we compared essential gene
lists using the validated library (as described above) with a similar analysis using 186 ribosomal
genes as the training set. Using the ribosomal genes as a basis for comparison resulted in a Y.
lipolytica essential gene list of 1,549 genes, an increase of 172 genes over those identified using
the curated 12-gene training set shown in Figure 4. Combing the two training sets resulted in
near identical analysis to the ribosomal-only training set; 1,548 genes were identified as essential
(Table S3). Because of limitations in ribosomal gene identification and uncertainty in the
essentially of genes classified as ribosomal in Y. /ipolytica, here we report the 1,377 genes
defined as essential based on the curated essential subpopulation. The curated set of 12 genes
includes genes with a range of cellular functions that are supported by previously published
experiments (Table S2).
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Figure 5. Y. lipolytica genome map. Y. lipolytica genome map with all nonessential and
essential genes when grown on synthetic minimal media with 2% glucose at 30 °C are shown by
chromosomal position. Nonessential genes (n = 6,477; yellow) are shown in the outer ring, and
essential genes (n = 1,377; red) are shown in inner ring.

Of the 1,377 genes identified as essential for growth of Y. /lipolytica, 961 had a homolog
in S. cerevisiae, 480 of which were found to be essential in both organisms (Fig. S9). One
hundred fifty-one genes essential in Y. /ipolytica are conditionally essential in S. cerevisiae for
respirative growth. Because Y. lipolytica is an obligate aerobe, respiration is essential and
therefore the gene conditionally essential in S. cerevisiae were expected to be essential in Y.
lipolytica. Ninety-five more genes are duplicated in the S. cerevisiae genome, and 69 are
involved in amino acid or nucleotide biosynthesis. Gene ontology (GO) term analysis
(Ashburner et al., 2000) was also performed on all genes that had a S. cerevisiae homolog. Genes
involved in transcription, translation, cellular organization, and cell cycle were found to have
significantly lower FS (Fig. S9).

To complete the essential gene analysis in Y. /ipolytica, we compared the 416 genes that
were found to be essential but had no S. cerevisiae homolog against the genomes of the fission
yeast Schizosaccharomyces pombe and the filamentous fungi Aspergillus nidulans (Table S4).
One hundred and ninety-eight of the 416 genes in this subpopulation have a homolog in S.
pombe, 111 of which are essential to S. pombe viability. The comparison to 4. nidulans was not
as comprehensive because only limited information on the essential genes of this species have
been reported. However, 248 genes (of the 416 gene without a homolog in S. cerevisiae) were
identified in A. nidulans, none of which are known to be essential in 4. nidulans.

Genome-wide screening for growth and nongrowth associated phenotypes

To demonstrate the utility of the CRISPR library, we performed a series of growth and
nongrowth associated screens to identify genes linked to new phenotypes. The validation
experiments described above revealed that over 94% of genes in the genome were targeted by
highly functional sgRNAs (i.e., “Excellent” sgRNAs), thus providing confidence in genome-
wide screening and limiting the likelihood of false negatives. As an initial test, we conducted the
classic genetic screen for canavanine resistance. Canavanine is a molecule that is structurally
similar to arginine and is toxic to yeast unless the CANI gene is disrupted. Ninety-four percent of
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sequenced colonies that survived the canavanine challenge (50 mg/L over 2 days of growth)
harbored an expression vector encoding a CAN/ targeting sgRNA (Figure 6A). The remaining
sgRNA targeted YALI1 E36540g, a vacuolar phosphate transporter. All identified sgRNAs were
excellent cutters.

In a second screen, Y. lipolytica strains with increased lipid staining were isolated from
the CRISPR library using a fluorescent lipid dye and fluorescence activated cell sorting (Figure
6B). sgRNA sequences targeting four different genes were associated with a substantial increase
in lipid staining (defined as 3 standard deviations or more above the mean fluorescence intensity
for the unsorted strain). All hits were produced with sgRNAs classified as “Excellent”. Two of
the four identified genes (YALI1 A22440g and YALI1 F16045g) have known roles in lipid
turnover and growth on fatty acids in other yeast species (Henry et al., 2012; Strijbis et al.,
2009). A third gene (YALI1 F31153g) is likely involved in the enzymatic processing of acyl-
CoA species (Sherman et al., 2004), a function that is often intertwined with lipid metabolism
(e.g., B-oxidation). The final gene (YALI1 F20943g) in the set has no known function or
similarity to a well-annotated sequence, but two different excellent sgRNAs targeting the gene
were isolated from the high lipid staining subpopulation. This redundant sgRNA targeting
supports the validity of the target and demonstrates the utility of the screen for identifying novel
genotype to phenotype relationships.
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Figure 6. Genome-wide CRISPR-Cas9 screens for growth and non-growth associated
phenotypes. (A) Growth screen for canavanine resistance. Cells were grown in the presence of
50 mg L canavanine for 3 days, plated and sequenced. (B) Two populations were stained and
analyzed using fluorescence activated cell sorting (PO1f with library; red in histogram, and PO1f
Cas9 with library; blue in histogram). The PO1f Cas9 strain with library was sorted twice for
high lipid producers to yield a high lipid producing population (2x FACS Pool; yellow in
histogram). Several strains from the high lipid producing population were isolated and compared
to a mock/un-sorted control consisting of cells subjected to the same process but without a
fluorescence sorting cutoff. Comparison between the means was accomplished by two-sided t-
test (n =34, 41; t=6.713; and, p < 0.0001). Statistical significance is shown graphically with *
indicating p<0.01 and ** indicating p<0.0001.
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Discussion

With genome-scale mutagenesis technologies such as MAGE, TRMR, Tn-seq and other
similar approaches, it is now possible to generate and track genome edits and their effects on
native and engineered phenotypes (Si et al., 2017; van Opijnen et al., 2009; Wang et al., 2009;
Warner et al., 2010). Genome-wide CRISPR systems are complementary to these approaches
(Hart et al., 2015; Koike-Yusa et al., 2014; Sidik et al., 2016; Wang et al., 2015) and can have
the added functionality of genome targeted site saturation mutagenesis (Bao et al., 2018; Garst et
al., 2017; Guo, 2018). However, these techniques have not yet been widely translated to non-
model and other industrially and medically relevant organisms. The widespread adoption of
CRISPR—Cas9 promises to enable genome-wide engineering and screening for a vast array of
hosts (Lobs et al., 2017; Lobs et al., 2017; Nodvig et al., 2015; Shan et al., 2013; Sidik et al.,
2016). Here, we designed and applied such a system for functional genomic screening and non-
native phenotype engineering in the yeast Y. /ipolytica. Key to the success of the system was our
ability to functionally disable native nonhomologous DNA repair, which allowed quantification
of the cutting efficiency of each sgRNA-Cas9 complex in parallel and yielded a list of validated
sgRNAs for nearly every gene in the Y. lipolytica genome.

The genome-wide data created by the cutting score (CS) experiments also generates new
mformation that can be used to identify the determinants of CRISPR-Cas9 function, as well as
improve screen accuracy. Our experiments in Y. /ipolytica revealed that 48% of guides in the 6-
fold coverage library were highly active, and that 94.6% of protein coding sequences were
targeted by at least one excellent cutting sgRNA (Figure 2). Similar data has recently been
generated using genome-wide CRISPR-Cas9 systems in E. coli (Guo et al., 2018; Gutierrez et
al., 2018). This bacterium natively lacks DNA repair by NHEJ creating experiments similar to
those conducted here with disrupted KU70 function. Overall, library performance in E. coli was
similar to that observed in Y. /ipolytica; ~44% of E. coli sgRNAs had at least 32-fold depletionn_,
compared with ~48% 1in Y. /ipolytica (Figure 2). However, an sgRNA activity prediction
algorithm derived from the E. coli data had poor correlation with the Y. /lipolytica CS data
(1=0.0365; Fig. S9D) demonstrating that CRISPR-Cas9 activity can vary significantly across
organisms and expression systems(Guo et al., 2018).

Library validation also substantially improved essential/nonessential gene classification
(Figures 4 and 5) by significantly reducing false negatives that arise from analysis with all active
and 1nactive guides in the library. A nongrowth associated screen was also successful in
identifying novel gene disruptions for high lipid accumulation (Figure 6). Correlation of CS data
with nucleosome occupancy and several sgRNA scoring algorithms revealed that occupancy was
a stronger predictor of function than in silico design (Figure 3; see Refs. (Doench et al., 2016;
Doench et al., 2014; Horlbeck et al., 2016; Labuhn et al., 2018; Tsankov et al., 2010)). We also
observed that chromosomal ends were difficult to target. Current scoring algorithms have been
limited by training set quality and size, relying on subsets of essential genes and/or high
expression reporters to learn about the relationships between guide RNA sequence and resultant
Cas9 activity (Doench et al., 2016; Doench et al., 2014; Xu et al., 2015). The genome-wide
activity measurements obtained in the CS experiments provide a substantially richer data set for
correlating guide sequence parameters to system-level characteristics. We envision that our
experiments in Y. /ipolytica may also be possible in other eukaryotes by genetically disrupting or
chemically mhibiting native nonhomologous DNA repair. As such, the approach described here
not only resulted in a new validated screening tool for Y. /lipolytica, but also represents a
generalizable methodology for enhancing CRISPR-based screens in other organisms.
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Materials and Methods
Strains and media

All strains were derived from Yarrowia lipolytica strain PO1f (MatA, leu2-270, ura3-
302,xpr2-322, axp-2). The PO1f Cas9 strain was constructed by markerless integration of a
UASI1B8-TEF(136)-Cas9-CycT expression cassette into the A08 site (Blazeck et al., 2011;
Schwartz et al., 2017¢). The PO1f Cas9 ku70 strain was constructed by disrupting KU70 using
CRISPR-Cas9 as previously described (Schwartz et al., 2016).

Yeast culturing was done at 30 °C, unless specifically noted otherwise. Yeast strains were
grown in YPD (1% Bacto yeast extract, 2% Bacto peptone, 2% glucose) for nonselective growth.
Cells transformed with sgRNA-expressing plasmids were selected in media deficient in leucine
(SD-leu; 0.67% Difco yeast nitrogen base without amino acids, 0.069% CSM-leu (Sunrise
Science, San Diego, CA), and 2% glucose). For canavanine resistance screening, 50 (lg/mL was
added to SD-leu. For lipid overproduction experiments, SDL-leu (0.67% Difco yeast nitrogen
base without amino acids, 0.069% CSM-leu, and 8% glucose) was used for outgrowth.

Plasmid construction

For integration of Cas9, pIW1009 (UAS1B8-Cas9 integration into A08 site) was
constructed. pHR _A08 hrGFP (Addgene #84615) was digested with BssHII and Nhel, and Cas9
was inserted via Gibson Assembly after PCR via Cr 1250 and Cr_1254 from pCRISPRyl
(Addgene #70007). To facilitate cloning of the library of sgRNAs, pIW771 (SCR1’-tRNA-Avrll
site) was generated by digesting pCRISPRyl with BamHI and HindIII and circularizing.

sgRNA library design

Custom Matlab scripts were used to design each sgRNA in the library based on a recent
assembly of the Y. lipolytica PO1f parent strain genome, W29 (Magnan et al., 2016). sgRNAs
were designed for all non-redundant protein coding sequences. The top 6 sgRNASs, as ranked by
on target efficiency score(Doench et al., 2014) that met the following criteria were selected for
each gene: (1) uniqueness of target sequence and PAM (protospacer adjacent motif; final 12 bp +
NGG) in genome, (2) located within first 300 bp of gene, and (3) target sequence present in both
genome and mRNA sequence (to avoid targeting introns). Four hundred eighty sgRNAs of
random sequence, confirmed to not target in the genome using the same methodology as was
used for checking for uniqueness of designed sgRNAs, were included as nontargeting controls.
All designed sgRNAs and corresponding data are available in Supplementary Table 1.

sgRNA library cloning

Four oligo pools (Supplementary Table 4) consisting of 25% of the designed sgRNAs
each were ordered from Twist Bioscience. Equal volumes of the oligo pool (1 uM) and a
complementary primer (5 uM) were mixed together and annealed using the Thermo annealing
advanced protocol and the calculated Tm (melting temperature) of the complementary primers
using IDT’s OligoAnalyzer 3.1. For libraries 1 and 3, second strand synthesis reactions were
completed using T4 DNA polymerase (NEB) and sgRNA-Rev2, gel extracted, and purified using
Zymo Research Zymo-Spin 1 columns. Libraries 2 and 4 were amplified via Q5 DNA
polymerase (NEB) using 60mer_pool-F and spacer-Aarl.rev or pLeu-mock-sgRNA.fwd and
sgRNA-Rev2 with 0.2 picomoles of DNA as template for 7 cycles and column purified.

For libraries 1, 3, and 4, Gibson Assembly HiFi HC 1-step Master Mix (SGI-DNA) were
used to clone into pIW771 digested with Aarl. Library 2 was digested with Aarl and cloned into
pIW771 digested with Aarl with a GoldenGate reaction using T4 DNA ligase (NEB). Cloned
DNA was transformed into NEB 10-beta E. coli and plated. Sufficient electroporations were
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performed for each library to yield a >10-fold excess colonies for the number of library variants,
and the plasmid library was isolated. Errors in sequence were found to have arisen primarily due
to oligo synthesis (approximately 1 in 500 bp, as reported by the vendor) and were not dependent
on cloning method.

Yeast transformation and screening

Transformation of Y. lipolytica with the sgRNA plasmid library was done using a
previously described method, with slight modifications (Schwartz et al., 2016). Two mL of YPD
was inoculated with a single colony of the strain of interest and grown in a 14 mL tube with
shaking at 200 RPM for 24-30 h. Then, 1.5 mL of cells were washed with transformation buffer
(0.1 M LiAc, 10 mM Tris (pH=8.0), 1 mM EDTA) via centrifugation at 4,000 g and resuspended
mn 600 uL transformation buffer. To these cells, 18 uLL of ssDNA mix (8 mg/mlL Salmon Sperm
DNA, 10 mM Tris (pH=8.0), 1 mM EDTA), 90 uL of B-mercaptoethanol mix (5% [3-
mercaptoethanol, 95% triacetin), and 4 ug of plasmid library were added, mixed via pipetting,
and incubated. After incubation at room temperature for 30 min, 900 uL. of PEG mix (70% w/v
PEG (3,350 MW)) was added and mixed via pipetting, and incubated at room temperature for 30
min. Cells were then subjected to heat shock for 25 min at 37 °C, washed with 10 mL H,O, and
used to inoculate 25 mL of SD-leu media for outgrowth experiments. Dilutions of the
transformation were plated on solid SD-leu media to calculate transformation efficiency.
Transformations were pooled as necessary to ensure adequate diversity to maintain library
representation and to minimize the effect of plasmid instability (100x coverage, 5 x 10° total
transformants per biological replicate).

Outgrowth was allowed to proceed in 25 mL of liquid media in a 250 mL baffled flask.
After 2 days, cells reached confluency (optical density at 600 nm (ODggo) > 10), and
approximately 150 uL (at least 200-fold library coverage) were used to inoculate 25 mL of fresh
media as desired. Also at each timepoint, 1 mL of culture was taken, DNase I (New England
Biolabs) and the corresponding buffer were added, and the mix was incubated for 1 h at 30 °C to
digest any plasmid DNA in the media. Pellets were then frozen and stored at -80 °C for future
analysis. Each growth cycle from inoculation to sampling represented approximately 7 cell
doublings.

Library isolation and sequencing

Pellets were thawed and resuspended in 1 mL H,O. Cells were split into 5 samples of 200
uL, and plasmid was isolated using a Zymo Yeast Miniprep Kit (Zymo Research). Samples from
a single pellet were pooled, and plasmid copy number was quantified using real time quantitative
PCR (RT-qPCR) with M13 F and M13 R and SsoAdvanced Universal SYBR Green Supermix
(Biorad) and verified to be higher than 1 x 10”.

To prepare samples for next generation sequencing, isolated plasmid was subjected to
PCR using forward (Cr_1665-1668) and reverse primers (Cr_1669-1673 and Cr_1709-1711)
containing all necessary sequences and barcodes (Joung et al., 2017) (Supplementary Table 4).
At least 1 x 107 plasmids were used as template, and PCR reactions were not allowed to go to
completion to avoid biased amplification. PCR product at 250 bp was gel extracted, samples
were pooled at equimolar amounts, and submitted for sequencing on a NextSeq500 at the UCR
IIGB core facility.

Next generation sequencing results were demultiplexed and mapped to each sgRNA
using custom scripts. A total of 453 sgRNAs were not present in the sequencing data. In
addition, 440 sgRNAs had only a very low number of reads (less than 10) in the untransformed
library or were erroneously designed, and were excluded from downstream analysis. Pairwise
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comparison between normalized read abundances for biological replicates were done to verify
consistency (Fig. S10).

Cutting and fitness score analysis

To calculate fitness score (FS) and cutting score (CS) for each replicate, the number of
reads for each sgRNA in each sequencing sample was normalized to the total number of reads,
with a pseudo-count of 0.5 added when no reads were mapped to a given sgRNA for a given
biological replicate. Normalized read counts for biological triplicates were then averaged
together. The log, for each abundance was then taken, and then the FS was calculated by
subtracting the PO1f log, abundance from the PO1f Cas9 log; abundance. CS was calculated in
analogous way, but with PO1f Cas9 replaced with PO1f Cas9 ku70.

sgRNA analysis

Analysis of sgRNA characteristics was done using a range of publicly available tools and
data. Nucleosome occupancy was determined by mapping sgRNAs to previously published
nucleosome occupancy data (Tsankov et al., 2010), adding the occupancy for each base pair in
the target sequence, and dividing by 20. The scoring for predicting on-target activity for each
sgRNA was carried out using previously published algorithms (Doench et al., 2016; Doench et
al., 2014; Labuhn et al., 2018). Secondary structure was predicted using the default settings for
RNA using Quikfold on the DINAMelt web server (http:/unafold.rna.albany.edu/) (Zuker,
2003). polyT sequences were identified by searching each sgRNA sequence for 4 consecutive
“T”. sgRNAs at chromosome ends were annotated as the 50 sgRNAs nearest either end of each
chromosome, except for the end of chromosome A (84 sgRNAs), the beginning of chromosome
C (126 sgRNAs), and the end of chromosome E (71 sgRNAs). Ends of chromosomes
determinations were informed by where sgRNA cutting scores increased.

Essential gene identification

Essential genes were identified based on FS at day 4. A two-sided t-test was used to
determine which genes had a FS different than the 12 putative nonessential genes (p<0.05). A
second two-sided t-test was also used to determine genes with a FS lower than a numerical cutoff
defined by the average FS of the 12 essential gene training set plus two standard deviations (1.02
for naive library, -1.57 for validated library; see Tables S2 and S3). Multiple comparisons were
accounted for using a Bonferroni correction as necessary. Genes found to be significant by both
tests were classified as essential genes. The essential gene analysis was repeated for the validated
library using ribosomal genes in place of the 12 essential gene training set (cutoff for t-test = -
0.87), and combining ribosomal genes with the 12-gene training set (cutoff for t-test =-0.91).

Essential gene comparison to S. cerevisiae

Mapping of all Y. /ipolytica genes to S. cerevisiae genes was carried out using BLAST
(E<107°). Essential genes in S. cerevisiae were those annotated as being “inviable” null mutants
(Cherry et al., 2012).

Canavanine screen

Glycerol stocks of the transformed library taken from day 2 cultures were grown in SD-
leu for 2 days, and then used to inoculate SD-leu with 50 pg/ml canavanine. Cultures were then
allowed to grow to confluency and plated on solid SD-leu. Single colonies were subjected to
colony PCR using Cr_1742 and Cr_1743 to identify the sgRNA expressed in each colony.
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LipidTOX Deep Red Staining, Fluorescence Activated Cell Sorting (FACS), and Flow
Cytometry Confirmation

CRISPR libraries were cultivated for FACS in media and conditions that were previously
established for Y. lipolytica lipid characterization(Wagner et al., 2018). Specifically, cultures
were started from frozen glycerol stocks (PO1f with CRISPR library and PO1f Cas9 with
CRISPR library, starting from day 2 stocks) by inoculating 50 mL of SD-leu media in a 250 mL
baffled shake flask, followed by 2 days of outgrowth at 28°C. The resulting inoculum cultures
were then used to start 50 mL lipid production cultures in SDL-leu media (initial optical density
of 0.1) with 80 g/LL glucose in 250 mL shake flasks. These shake flask cultures were grown using
air-permeable plugs by shaking for 3 days at 28°C and 225 RPM in a shaking incubator (New
Brunswick Scientific I 26). HCS LipidTOX Deep Red (Thermo Fisher Scientific) was then used
to fluorescently stain lipids according to the manufacturer-recommended protocol: cells were
pelleted, all culture media was removed, and then the cell pellet was re-suspended in 100 pLL of a
1:200 dilution of lipid stain in phosphate buffered saline (PBS). Two successive rounds of
fluorescence activated cell sorting (FACS) were performed on a BD FACS Aria III using the
APC laser/filter set. For high lipid sorting, the top 0.3% of 3x10° APC™ cells and the top 3% of
1x10° APC" cells were collected. After the first APC sort, the collected cells were outgrown in
SD-leu to saturation (3 days) and glycerol stocked. Fresh cultures were then started from the
frozen glycerol stock by inoculating 50 mL of SD-leu media in a 250 mL baffled shake flask,
followed by 2 days of outgrowth at 28°C. The resulting inoculum culture was then used to start
a 50 mL lipid production culture in SDL-leu media with 80 g/L. glucose (initial optical density of
0.1) in a 250 mL shake flask. This shake flask culture was grown using air-permeable plugs by
shaking for 3 days at 28°C and 225 RPM in a shaking incubator (New Brunswick Scientific I 26)
until ready for the second sort. After the second APC sort, the collected cells were outgrown in
SD-leu to saturation (3 days) and glycerol stocked again. A mock-sorted / un-sorted pool was
also generated in parallel throughout this double sorting process by passing the same pool of
cells through the same FACS process/conditions without applying the sorting gate (i.e., all cells
were collected, regardless of APC fluorescence).

From the 2X sorted (2X FACS) glycerol stock and mock/un-sorted glycerol stock,
mndividual colonies were then isolated on SD-leu plates to isolate individual strains. 48 colonies
from the 2X FACS and 48 colonies from the mock/un-sorted plates were then subjected to
colony PCR and Sanger sequencing of the sgRNA cassette. Clones with sgRNAs that were
successfully colony PCR amplified, sequenced, and identified as cutters (see cutting and fitness
score analysis above) were subsequently re-screened to establish a lipid staining mean
fluorescence intensity for individual clones (41 from 2X FACS, 34 from mock/unsorted) using
the same procedure as for FACS, but with a BD LSRII Fortessa analytical flow cytometer for
quantifying APC channel fluorescence.

Statistical Analysis

Data is shown as mean + standard deviation, with n values indicated in the figure
legends. P values were generated using the statistical approach described in the figure legends
using either Graphpad Prism 7 or R 3.3.2. To determine the correlation between different
sgRNA metrics (such as nucleosome occupancy or design algorithm score), Graphpad Prism 7
was used to calculate the Pearson’s correlation. Comparisons between FS from essential and
nonessential genes determined from the two different sgRNA libraries was done using a two-
sided t-test, implemented in Graphpad Prism 7. Essential genes were identified by using a two-
sided t-test to compare the FS of each gene to a nonessential gene reference group (to identify
those which were significantly different). A second two-sided t-test was used to compare the FS
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of each gene to a numerical cutoff, which was determined by the FS of a known essential gene
reference group. Multiple comparisons were accounted for using Bonferroni correction.
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Highlights

- A library of highly functional Cas9 sgRNA for >94% of Y./ipolytica genes was identified
- Disruption of native DNA repair enabled quantitative analysis of sgRNA function

- Chromatin structure and chromosomal position significantly influenced sgRNA activity

- Validation of sgRNA function improved essential gene classification

- Functional genomic screening revealed 4 gene knockouts for lipid overproduction



