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Current transportation fuels derived from petroleum can also

be made from microbial systems. In particular, oleaginous

yeast have naturally evolved high flux pathways for fatty acids

in the form of neutral lipids, which can be converted into a

variety of drop-in fuels. Here, we describe the recent advances

in the use of the four most popular oleaginous yeasts for making

lipids and other potential fuels – Yarrowia lipolytica, Lipomyces

starkeyi, Rhodosporidium toruloides, and Cutaneotrichosporon

oleaginosus. The paper is divided into three major sections

focusing on (1) the important natural complex phenotypes of

each yeast; (2) the development of metabolic engineering tools

for each yeast; and (3) demonstrations of metabolic

engineering in each yeast. At the end of each section, we

provide our assessment, of which yeast is most promising in

the near and long term for bioenergy production.
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Introduction
Fuels produced from biomass feedstocks have the poten-

tial to reduce the net CO2 generation rate from industrial

and transportation combustion processes. Microbial sys-

tems are capable of efficiently utilizing biomass feed-

stocks of varying quality and composition. The most

promising microbes for biofuel production are oleaginous

yeast, characterized by their significant accumulation of

fatty acid in the form of triglycerides, which are useful

precursors for conversion to biodiesel, green diesel, and

jet fuel [1,2]. The naturally high flux pathways for pre-

cursors used in fatty acid biosynthesis can also motivate

metabolic engineering of oleaginous yeasts to produce

non-native molecules that are potentially useful for bio-

fuels and could have better fuel properties (Figure 1).
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Other advantages of oleaginous yeast include a broader

metabolism of different feedstocks and a wider range of

tolerance to operational conditions including pH, inhibi-

tors, and ionic strength. Despite significant efforts to

engineer model conventional yeast Saccharomyces cerevi-
siae to produce large quantities of fatty acids that have

recently been reported [3], oleaginous yeast continues to

outperform engineered non-oleaginous yeast.

This review describes recent advances in the four most

promising oleaginous yeasts: Yarrowia lipolytica, Lipomyces
starkeyi, Rhodosporidium toruloides, and Cutaneotrichosporon
oleaginosus. These yeast are compared to one another

based on critical factors that influence host selection:

(1) the substrates they can natively metabolize, (2) the

availability of genetic engineering tools, and (3) the scope

of biofuel-relevant products that have been reported.

While the nascent nature of these studies precludes

any definitive winners, we will provide our thoughts on

which host is currently most promising. Of course, the

benefits and detractors of any host can and likely will

change as more is learned about the native metabolism of

these organisms and the availability of genetic engineer-

ing tools increases.

Natural metabolic flexibility

Alternative sugars

The majority of bioprocesses use glucose as a feedstock;

however, alternative sugars, such as xylose and arabi-

nose, are economically attractive options over glucose.

This encourages interest robust metabolism of a variety

of different cellulosic and hemicellulosic hydrolysates.

Xylose has received the most attention as it is the major

constituent of hemicellulose. The oleaginous yeasts

have greater metabolic flexibility than S. cerevisiae, with

L. starkeyi and R. toruloides demonstrating more meta-

bolic flexibility than Y. lipolytica; however, C. oleaginosus
clearly has the most diverse sugar metabolism, as is

discussed in other review articles [4,5��] (Table 1). In

particular, the ability of C. oleaginosus to metabolize

xylose without catabolite repression and at rates similar

to glucose give it an advantage over other oleaginous

yeast [5��]. Of the four oleaginous yeast described

herein, only Y. lipolytica does not readily metabolize

xylose as a sole carbon source [6] due it the presence

of cryptic xylose metabolism.

Cellulosic and hemicellulosic hydrolysates

Biomass hydrolysates can be an economical way to

provide high concentrations of sugars if inhibitory
Current Opinion in Biotechnology 2019, 57:73–81
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Figure 1
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Pathways for assimilation of various substrates into fatty acid derived biofuels. Glucose, acetate, xylose, glycerol, and aromatics produce

acetyl-CoA building blocks for fatty acids. De novo fatty acids can be directly shunted from fatty acid biosynthesis or hydrolyzed from

triacylglycerol. Introduction of heterologous enzymes can result in fatty alcohols, alkanes, and fatty esters.
byproducts associated with hydrolysis, such as acetic acid,

furfural, and 5-hydroxymethylfurural (HMF), can either

be avoided or tolerated by microbes. R. toruloides and

C. oleaginosus are capable of metabolizing hydrolysate

feedstocks of various biomass sources without need for

dilution or detoxification [7], unlike L. starkeyi which

showed impacted cell growth even with diluted feedstock

[8]. When utilizing sorghum stalk and switchgrass hydro-

lysates, C. oleaginosus ATCC 20509 cells metabolized

more sugars and accumulated higher lipid and cell titers

than L. starkeyi ATCC 56304 [9]. The latter strain was also

shown to grow on whole bran and corn hydrolysates,

though hydrolysis was optimized to prevent inhibitor

contamination, rather than sugar release [8]. Curiously,

strains of Y. lipolytica were able to use xylose in ammonia

fiber expansion pretreated cornstover hydrolysates but

not as a sole carbon source [10]. Under phosphate-limited

conditions in a membrane bioreactor, C. oleaginosus DSM

11815 cells accumulated more biomass at the same lipid
Current Opinion in Biotechnology 2019, 57:73–81 
content and a better lipid productivity while utilizing

microalgae hydrolysates as compared to cells grown in the

same conditions using a defined medium containing

glucose [11]. R. toruloides NRRL Y-1091 cells were also

able to grow robustly in a two-stage flask culture using

enzyme saccharified dilute acid pretreated switchgrass

hydrolysate to produce 61% lipids per cell, resulting in

26.2 g/L lipid titer. This strain outcompetes several other

strains, including Y. lipolytica in terms of biomass, lipid

titer, and total substrate utilization, despite the presence

of inhibitors [10].

Lignin

Lignin is an underutilized component of lignocellulosic

because of the heterogeneity of lignin structure and its

depolymerized products. In general, few yeasts are able

to grow in the presence of small amounts aromatics

due to their toxicity. Even fewer yeast are able to metab-

olize aromatics. Our recent publication demonstrates
www.sciencedirect.com
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Table 1

Comparison of native metabolic capability and production of lipids for different non-conventional oleaginous yeasts

Strain Substrate Sugar/substrate

concentration

(g/L)

Inhibitor

concentration

(g/L)

Substrate

consumed

(g/L)

Lipid titer

(g/L)

Lipid

accumulation

(%)

Reactor

type

Ref.

Rhodosporidium

toruloides

DSM-4444 DDAP-EH corn stover

hydrolysate

100 n.d. 100 23.3 � 1.8 60.8 � 1.1 B [13]

NRRL Y-1091 Switchgrass hydrolysate 215 5.29a 5.75a 26.2 � 1.4 61.5a F [10]

AS. 2.1389 Acetic acid 20 NA 20 2.1a 48.2 F [57]

CCT 0783 Juice from enzymatically

saccharified sweet

sorghum

140 NA 140 13.77 33.1 F [58]

IFO 0880 Ionic liquid pretreated

corn stover hydrolysate

73.8 NA n.d. n.d. �27 B [12��]

Lipomyces

starkeyi

ATCC 56304 Sorghum stalk

hydrolysate

50 0 48 � 0.7 0.16 � 0.0 44 � 2.0 F [9]

ATCC 56304 Switchgrass hydrolysate 50 0 38 � 0.9 0.17 � 0.0 39 � 0.1 F [9]

CBS 1807 Birch wood

hemicellulose

hydrolysate

42 0.56 42 8.02 51.3 B [7]

NBRC10381 Glucose/xylose mixture 100 NA 100 20.3 83.6 F [59]

NBRC10381 Glucose 50 NA 50 13.6 79.6 F [59]

NBRC10381 Xylose 50 NA 50 13.9 85.1 F [59]

AS 2.1560 Crude glycerol

supplemented with

sodium stearate

70.1a 8.4a 70.1 12.5 42.9 B [60]

ATCC 56304 Whole wheat bran

hydrolysate

n.d. 0 51.3 � 1.6 6.37a 37.3 � 1.3 F [8]

ATCC 56304 Whole corn bran

hydrolysate

n.d. �0.5% 61.7 � 1.9 7.83a 33.3 � 1.1 F [8]

ATCC 58680 Para-hydroxybenzoic

acid

0.5 NA n.d. 4.65a 51.3 � 2.51 F [61]

ATCC 58680 Vanillin 0.5 NA n.d. 3.49a 42.6 � 1.87 F [61]

ATCC 58680 Syringaldehyde 1.0 NA n.d. 2.93a 38.6 � 1.95 F [61]

ATCC 58680 Furfural 0.4 NA n.d. 3.40a 39.1 � 1.83 F [61]

ATCC 58680 HMF 1.0 NA n.d. 4.08a 45.5 � 1.94 F [61]

Cutaneotrichosporon

oleaginosus

ATCC 20509 Untreated waste office

paper

11.89 � 0.21 0.29 � 0.03 n.d. 1.39 � 0.16 22.0 � 0.33 F [62]

ATCC 20509 Treated waste office

paper

24.49 � 0.24 0.14 � 0.04 n.d. 5.75 � 0.21 37.8 � 0.45 F [62]

ATCC 20509 Crude glycerol + 1.4%

(w/v) methanol

62.7 14.0 n.d. 20.78 48.09 B [14]

ATCC 20509 Sorghum stalk

hydrolysate

50 n.d. 45 � 0.7 13.1 � 0.7 60 � 2.5 F [9]

ATCC 20509 Switchgrass hydrolysate 50 n.d. 46 � 1.1 12.3 � 0.2 58 � 2.6 F [9]

ATCC 20509 Volatile fatty acids (ratio

15:5:10)

30 NA 27.45 4.93 56.85 F [63]

DSM 11815 Microalgae hydrolysate 40.6 NA n.d. 30.6 53 MB [11]

ATCC 20509 VFAs derived from rice

straw hydrolysates

8.12 NA n.d. n.d. n.d. F [15]

ATCC 20509 Resorcinol 13 NA 13 1.64 � 0.2 69.5 � 4.0 F [5��]
ATCC 20509 Municipal sludge + crude

glycerol + peptone

70 n.d. n.d. 16.4 40.3 B [64]

ATCC 20509 DDAP-EH corn stover

hydrolysate

100 n.d. 100 21.4 � 3.6 63.1 � 3.7 B [13]

Yarrowia lipolytica

MTYL037 Acetate 50 n.d. n.d. 2a 25.5a B [65]

ATCC 8662 Corn oil 20 n.d. 18 5.4 60 B [66]

A101 Crude glycerol (soap

production waste)

150 11.38a 150a 4.72 20 B [67]

A101 Fructose 100 n.d. n.d. 2.19 13 F [68]

www.sciencedirect.com Current Opinion in Biotechnology 2019, 57:73–81
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Table 1 (Continued )

Strain Substrate Sugar/substrate

concentration

(g/L)

Inhibitor

concentration

(g/L)

Substrate

consumed

(g/L)

Lipid titer

(g/L)

Lipid

accumulation

(%)

Reactor

type

Ref.

W29 Galactose and glucose

(1:1)

20 n.d. n.d. 1.92 17.2 F [69]

S0678 Glucose 30 n.d. n.d. 1.88a 13.6 F [70]

MUCL 28849 Glycerol (40) with acetic,

propionic, and butyric

acid (0.2)

40.2 n.d. n.d. 16.5 40.22 B [71]

ACADC 50109 Industrial waste fat 15 n.d. n.d. 6.8 54 B [72]

W29 Oleic acid 20 n.d. n.d. 2.44a 48.9 � 0.7 F [73]

MUCL 28849 Pure glycerol 80 n.d. n.d. 16.11 38.15 B [71]

Po1g Sugarcane bagasse

hydrolysate

20.02a 0.57a 19a 6.68 58.5 B [74]

NA = Category not applicable.

n.d. = No data reported.
a Denotes values calculated by reported data.
C. oleaginosus ATCC 20509 cells can tolerate high con-

centrations of 15 different monoaromatic compounds and

accumulate up to 69.5% of dry cell weight as lipids when

grown on lignin-derived aromatics in a shake flask [5��].
The metabolic flexibility, combined with this yeast’s

robust tolerance to many inhibitors, may facilitate use

of non-sterile fermentation conditions and impure, un-

defined depolymerized lignin feedstocks for lower bio-

production costs. R. toruloides DSM-4444 and IFO 0880 is

another yeast that has been shown to metabolize aromatic

monomers found in lignin [12��,13]. A direct comparison

of the two strains shows only R. toruloides DSM-4444

could metabolize the four chosen model lignin monoaro-

matics as sole carbon sources [13]. Little is currently

known about the genetics of aromatic metabolism in

these oleaginous yeasts; however, studies such as these

are important to inform lignin depolymerization efforts

so that one can tailor the organism to the lignin and

depolymerization effort or vice versa.

Industrial by-products

Crude glycerol is a byproduct to the biodiesel industry

requiring valorization to make biodiesel production more

economical. The term crude glycerol refers to glycerol

contaminated with methanol, which severely inhibits

microbial growth. C. oleaginosus ATCC 20509 cells

achieved highest biomass, lipid production, and lipid

content in non-sterilized crude glycerol fermentation

medium diluted to contain 1.4% (w/v) methanol [14].

The same strain grown in volatile fatty acids (VFAs)

derived from rice straw hydrolysates showed lipid accu-

mulation of 28% of its biomass. Specific growth rate of

these cells was 40% higher than those grown in synthetic

blends of VFAs. These cells also produced odd-chain

fatty acids, which are difficult to find naturally [15]. The

authors never state a lipid titer or lipid content for cells

grown on VFAs derived from rice straw hydrolysates;

however, their observations about fatty acid profiles agree
Current Opinion in Biotechnology 2019, 57:73–81 
with another report when different ratios of synthetic

mixtures of acetic, propionic, and butyric acid are fed to

C. oleaginosus ATCC 20509 cells [14]. While most micro-

organisms find the presence of acetic acid, HMF, and

furfural to be lethally toxic, C. oleaginosus has been shown

to both tolerate and metabolize these inhibitors, as was

noted in a previous review [16]. Furfural has been noted

as the most toxic across many organisms, but R. toruloides
and C. oleaginosus both grow better on hydrolysates com-

pared to analogous synthetic defined media, likely due to

metabolism of inhibitors [12��]. Identifying species capa-

ble of tolerating hydrolysate inhibitors is important to

facilitate the use of non-detoxified biomass hydrolysates

as economical feedstocks.

Summary

Totally according to the metabolic flexibility, C. oleagi-
nosus and R. toruloides are both attractive options for

economically favorable biofuel production. In particular,

C. oleaginosus has been most studied for its growth and

lipid accumulation using biomass and lignin hydrolysates,

as well as agro-industrial and municipal waste streams.

Given the complex phenotypes needed for metabolism of

these substrates, C. oleaginosus has great promise for

biofuel production.

Genetic tractability

Genetic modification

Integration of heterologous gene expression is typically

more labor intensive than using episomal plasmids; how-

ever, integration is preferred for stable production strains.

In the absence of episomal replicating plasmids, integra-

tion is the only way to add new genes to oleaginous yeast,

which can be accomplished in either a site specific or

random manner.

Targeted integration facilitates rational and precise

genome engineering that results in comparable
www.sciencedirect.com
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engineered strains. Of the yeasts reported here, Y. lipo-
lytica has the most established set of genetic tools for

targeted integration [17–19]. Recent developments

include a CRISPR-based markerless integration system

that was developed to avoid complications associated with

random integration [20]. Another CRISPR gene editing

tool developed was excision-assisted gene integration,

which exploits the recombination mechanism of homol-

ogy-mediated end joining (HMEJ) to simultaneously

integrate a transgene at a large truncation of several

thousand base pairs at once [21�]. The EasyCloneYALI

system is a markerless gene integration tool taking advan-

tage of CRISPR–Cas9 and non-replicative donor DNA

[22]. L. starkeyi has a recently established method for

homologous recombination based on a ku70 knockout that

inhibits non-homologous end joining required to facilitate

robust homologous recombination [23]. In R. toruloides, a

ku70 knockout enabled targeted integration and marker

recycling through a flippase-mediated system and a

robust, arabinose-inducible cre-lox recombination system

[24�,25]. More recently, targeted knockouts were

achieved in a ku70 knockout with nourseothricin selection

[26��]. Basic transformation procedures for C. oleaginosus
were only recently reported [27��,28], and thus targeted

integration has not yet been reported. Both transforma-

tion methods using Agrobacterium-mediated transforma-

tion (AMT) or electroporation result in random genomic

integrations. Efficiencies were not reported for either;

however, protoplasting was not done either study, which

could dramatically increase transformation efficiencies

and facilitate high throughput screening. Combined with

a ku70 knockout, targeted integration and knockout

should be possible.

Genome-scale engineering

While targeted integration is preferred for rational engi-

neering, random integration is still a powerful tool for

genome-scale engineering. Two different transposon-

based random mutation/integration methods have been

developed for Y. lipolytica to facilitate better strain engi-

neering [29,30]. Recently, a genome-wide CRISPR–Cas9

knockout library was developed and used for both func-

tional genomics and strain engineering [31�]. An AMT

based genome-wide insertional screen in R. toruloides IFO

0880 [26��] and ATCC 10657 [32] facilitated identifica-

tion of 150 genes important for lipid biosynthesis and

curation of the genome annotation. Such information is

required for rational genome engineering to create robust

strains for biofuel production. Genome-scale libraries

have not been reported for L. starkeyi or C. oleaginosus.

Promoters

Constitutive promoters allow for continuous heterolo-

gous gene expression and have been developed in all

four of the yeasts discussed in this review. A number of

native and engineered promoters have been published

for Y. lipolytica, as is discussed in several reviews
www.sciencedirect.com 
[33,34]. Constitutive promoters were identified and

characterized for R. toruloides using AMT and hygro-

mycin selection [35]. Only three strong constitutive

promoters were characterized for C. oleaginosus [28]

and only two such promoters were identified for

L. starkeyi [36]; however, the availability of transcrip-

tomic data should make further identification of pro-

moters straightforward.

Inducible promoters allow the control of heterologous

gene expression. In additional to several well character-

ized native inducible promoters (POX2 and LIP2 are

fatty acid inducible; YAT1 is induced by nitrogen limi-

tation; ALK1 is alkane inducible), a strong and fatty acid

inducible hybrid promoter was developed using repeats

of upstream sequences from the POX2 gene [37�]. A

similar approach led to the development of an erythru-

lose and erythritol-inducible promoter [38]. A set of

three strong promoters for R. toruloides inducible by

nitrogen starvation and cell cycle were characterized

[39]. Four minimal inducible promoters were identified

for R. toruloides CBS 14 and characterized using AMT

and an eGFP screen. Each promoter is inducible by a

different substrate at different rates and to different

maxima. NAR1 is only 200 bp, shows the highest levels

of induced expression, and is tightly repressed by glu-

cose and induced by nitrate. ICL1 also showed high

levels of expression when induced with acetate but was

not completely repressed in the presence of glucose.

The CTR3 promoter is strongly repressed by copper and

has a medium level of induction. MET16 has a low level

of expression and dynamic range; however, it is very

tightly repressed by the presence of methionine [40�].
The promoter for the LAD gene was used to control a

Cre-Lox recombination  system in derivatives of

R. toruloides CECT 13085 [24�]. No inducible promoters

have been identified for L. starkeyi and C. oleaginosus;
however, available transcriptomic data will facilitate

promoter identification in various conditions.

Genome-scale metabolic models

By combining multi-omic data with genome-scale mod-

els, a high-level, holistic approach to engineering

Y. lipolytica is possible [41]. Similarly, a genome-scale

model of R. toruloides has been reported [42,43]. No

genome-scale model currently exists for C. oleaginosus
or L. starkeyi. With the exception of Y. lipolytica, the

relative lack of genetic engineering tools for these sys-

tems has limited the use of these genome scale models for

strain engineering.

Summary

With regard to the availability of genetic engineering

tools, it is clear that Y. lipolytica is the most advanced.

R. toruloides has some genetic engineering capabilities,

while L. starkeyi and C. oleaginous are currently underde-

veloped. It is our opinion that genetic engineering tools
Current Opinion in Biotechnology 2019, 57:73–81



78 Energy biotechnology
are becoming straightforward to develop and that they are

less important than the complex phenotypes of these

yeast in host selection.

Engineered products

Substantial work has recently been completed to

enhance the lipid production, metabolism, and genome

annotation of R. toruloides. Several studies have modified

endogenous gene expression to enhance lipid biosyn-

thesis [24�,39,44,45]. Overexpression of ACC1 under the

GAPDH promoter and DGA1 under the ACL promoter

resulted in high lipid production of 61.1% and 43.4%,

respectively, on a dry cell weight basis from 70 g/L

glucose and 70 g/L xylose. This is a marked improve-

ment over the wild type strain transformed with an

empty vector, which produced 31.3% lipids on a dry

cell weight basis [45]. Additional overexpression of malic

enzyme (ME), pyruvate carboxylase (PYC1), glycerol-3-

P dehydrogenase (GPD), and stearoyl-CoA desaturase

(SCD), and knockout of PEX10 to impair b-oxidation
resulted in 75.6% lipid accumulation [45]. Overexpres-

sion of DGAT1 and SCD1 genes under control of the

native xylose reductase (XYL1) promoter coupled to

adaptive evolution facilitated better tolerance to growth

inhibitors and improved xylose consumption [24�]. Fed-

batch cultivation of this engineered strain in a 7 L

bioreactor resulted in the highest lipid production in

R. toruloides with non-detoxified wheat straw hydrolysate

to date [24�]. An engineered R. toruloides strain was able

to accumulate up to 261 mg/L of bisabolene, a terpene

precursor to the biofuel bisabolane, using a novel bio-

compatible ionic liquid-treated corn stover hydrolysate

on the bench scale. The same strain accumulated

680 mg/L bisabolene in a high-gravity fed-batch biore-

actor using an alkaline pretreated corn stover hydroly-

sate [12��].

UV-mutagenesis coupled to screening with ethanol,

hydrogen peroxide or cerulenin resulted in a strain of

R. toruloides with improved lipid production titer (1.25 g/L

over 0.94 g/L) and rate (51.2 mg/L/h over 9.8 mg/L/h)

compared to the original strain. Transcriptional analysis

showed overexpression of isocitrate dehydrogenase and

malate dehydrogenase, which may enhance lipid produc-

tion by generating NADPH, a key reducing agent [46].

Only two instances of metabolic engineering have been

reported for C. oleaginosus due to its lack of genetic

engineering tools. In the first, AMT was utilized to

produce omega-3 fatty acids and conjugated linolenic

acid. While the products are outside the scope of this

review, it is a good demonstration of genetic manipulation

for non-native fatty acid production and can be applied for

production of relevant biofuels. In a recent publication, a

set of three exogenous genes were introduced to the yeast

genome using electroporation. A metabolic model based

on Y. lipolytica predicted that the pyruvate dehydrogenase
Current Opinion in Biotechnology 2019, 57:73–81 
(PDH) bypass was incomplete. Combinatorial genomic

integration of acetaldehyde dehydrogenase, pyruvate

decarboxylase, and acetyl-CoA synthetase completed

the PDH bypass and ultimately resulted in a yield of

0.27 g TAG/g xylose, nearing theoretical maximum yield

[28]. This suggests alternate, successful methods to

improve lipid production in this yeast.

Y. lipolytica is the most well-studied oleaginous yeast.

This non-conventional, model oleaginous yeast is a

prolific producer of lipids and has been engineered to

funnel that flux into a number of lipid-derived com-

pounds, such as fatty alcohols [47��], alkanes [47��,48],
and ketones [49]. Lipids can be produced by Y. lipolytica
at industrially useful rates, in some cases exceeding 1.2 g/

L/hour [50�]. Lipids can be readily converted into

methyl or ethyl fatty acid esters through chemical trans-

esterification. Resultant biodiesel mixtures have already

been shown to function well in existing diesel engines

[51]. Alternative chemical processing of lipids from

biomass results in renewable or green diesel, which is

no different than petroleum diesel. The critical point is

that the leap between lipids and directly usable fuel

products is larger than desired, often requiring many

engineering steps. This suggests that one possible

approach to biofuel production may be a combination

of biological and traditional chemical processes, such as

bioproduction of lipids and traditional transesterification

or cracking.

Alkanes represent the most direct petroleum replace-

ments as the major constituents of gasoline, diesel, and

jet fuel are saturated alkanes. Y. lipolytica has been used

to produce a number of different alkane species by

heterologously expressing different enzymes that can

exploit the abundant fatty acid (FA) species present in

the yeast. In one case, expression of a lipoxygenase from

the soybean plant was used to cleave naturally occurring

linoleic acid into pentane and 13-oxo-cis-9,trans-11-tride-
cadienoic acid [48]. While this was not an efficient use of

carbon, it did represent a proof of concept that Y. lipo-
lytica will tolerate the shunting of its native FA species

toward heterologous enzymes. A different approach

incorporated both a fatty-acyl-CoA reductase and an

aldehyde deformylating oxygenase in a two-step reaction

to produce a distribution of alkanes from Y. lipolytica’s
native pool of fatty-acyl-CoAs [47��]. When employing

this strategy, the alkane profile produced closely mir-

rored the chain-length distribution of fatty acids within

the yeast. Depending on application, this may be seen as

an advantage or disadvantage. Alternatively, choosing

enzymes with preferred chain-length specificities can

alter the final product profile, as has been done in the

production of fatty alcohols [52].

Fatty alcohols, longer chain alkyl alcohols of greater than

approximately six carbons, represent another potential
www.sciencedirect.com
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biofuel source due to their compatibility with existing

infrastructure and high energy density [53]. Fatty alco-

hols have been synthesized in Y. lipolytica by taking

advantage of existing fatty-acyl-CoA pools. When

expressed in Y. lipolytica, fatty acyl-CoA reductases

(FAR) from species such as Marinobacter aquaeolei
(MaFAR), Tyto alba (TaFAR), and Mus musculus
(MmFAR), are capable of reducing acyl-CoAs to alde-

hydes and then to fatty alcohols [47��,54]. A single

cytosolic fatty acyl-CoA synthetase targeted to the cyto-

sol enhanced the available acyl-CoA pool, resulting in

over 200 mg/L total fatty alcohol from a single copy of

MaFAR [47��]. Approximately 690 mg/L of hexadecanol

was achieved through integration of five copies of

TaFAR1 in a DDGADFAO1 background strain [54]. Even

with such an improvement, the production rate still falls

short of that which is necessary for industrial-scale

production and replacement of petroleum fuels [55].

By contrast, higher titers and yields was achieved with

less engineering in L. starkeyi by expressing MmFAR1.

Batch cultivation in a bioreactor with glucose resulted in

1.7 g/L fatty alcohols, a 28 mg/g yield. A majority of the

fatty alcohol was 1-hexadecanol and 95% secretion. This

strain was able to metabolize glycerol and xylose for fatty

alcohol production, though this was not tested in the

bioreactor [56].

Summary

While Y. lipolytica is clearly a well-established organism,

the other yeasts discussed in this review naturally produce

higher lipid titers and metabolize recalcitrant, heteroge-

neous, non-conventional feedstocks. Their limited

genetic tractability inhibits their broad use in industry;

however, their potential to out-produce the industrial

standard, Y. lipolytica, outweighs the work required to

develop novel organisms. While heterologous pathway

engineering is challenging, it is becoming more routine.

As genetic engineering tool development continues, less

tractable organisms will become viable hosts for bioe-

nergy and other products. Prime evidence of this is shown

for R. toruloides and L. starkeyi, where significant advan-

tages are realized compared to Y. lipolytica.

Conclusion
It is easy to let the progress made in model systems

influence our judgments of future promise for biofuels

production. Significant progress has been made using

Y. lipolytica due to the availability of genetic engineering

tools. While Y. lipolytica is a better host for fatty acid-

based biofuels than S. cerevisiae, we propose other oleagi-

nous yeast may be better suited for biofuels production

from various low-value feedstocks. Indeed, the other

oleaginous yeast described in this paper have a wider

appetite for feedstocks and tolerance to inhibitors. The

few examples of engineered products show the great

promise for non-model oleaginous hosts. Continued

development of genetic engineering tools for these
www.sciencedirect.com 
systems are likely to pay dividends and lead to more

efficient biofuel processes.
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