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Approximating Orthogonal Matrices with Effective Givens Factorization

Thomas Frerix 1 Joan Bruna 2

Abstract

We analyze effective approximation of unitary

matrices. In our formulation, a unitary matrix

is represented as a product of rotations in two-

dimensional subspaces, so-called Givens rota-

tions. Instead of the quadratic dimension depen-

dence when applying a dense matrix, applying

such an approximation scales with the number

factors, each of which can be implemented effi-

ciently. Consequently, in settings where an ap-

proximation is once computed and then applied

many times, such a representation becomes ad-

vantageous. Although effective Givens factoriza-

tion is not possible for generic unitary operators,

we show that minimizing a sparsity-inducing ob-

jective with a coordinate descent algorithm on

the unitary group yields good factorizations for

structured matrices. Canonical applications of

such a setup are orthogonal basis transforms. We

demonstrate numerical results of approximating

the graph Fourier transform, which is the matrix

obtained when diagonalizing a graph Laplacian.

1. Introduction

Unitary operators are ubiquitous in many areas, from

numerical linear algebra to quantum computing and

cryptography. Celebrated applications include the QR-

decomposition and the diagonalization of symmetric matri-

ces (Golub & Van Der Vorst, 2000). Without any assump-

tions on the structure of the matrix, applying a unitary trans-

formation in d dimensions requires O(d2) operations for

the matrix-vector product. In scenarios where a given uni-

tary operator needs to be intensively applied many times,

using approximations that trade-off accuracy with a better

scaling behavior in the dimension is desirable.

In this paper, we develop a method to compute approx-

imations of unitary matrices in the form of Givens fac-

torization (Givens, 1958). Givens rotations are localized
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in a two-dimensional subspace of predefined coordinates.

Therefore, computations with Givens sequences scale with

the number of factors and the computational cost for ap-

plying each factor can be kept low since efficient imple-

mentations are possible (Golub & Van Loan, 2012). Our

main motivation comes from the success story of the Fast

Fourier transform (FFT) (Cooley & Tukey, 1965), which

brought down the computational cost of applying a Fourier

transform to O(d log(d)) operations. This reduction led

to a revolution in signal processing and was recognized by

Sullivan & Dongarra (2000) as one of the most important

algorithms of the 20th century. However, this speed-up re-

lies on the fact that the classical Fourier transform is de-

fined over a periodic grid, which provides many symme-

tries leveraged in the butterfly structure of the FFT.

These symmetries do not carry over to unstructured do-

mains such as graphs and general unitary operators. In fact,

using simple covering bounds, we show that generic unitary

matrices require O(d2/ log d) Givens factors to be effec-

tively approximated. However, the question of approximat-

ing with fewer factors in the presence of structure remains

open: given an element U ∈ U(d), how to produce the best

possible N -term sequence of Givens rotations G1 . . . GN

that minimizes

∥

∥

∥U −∏

j Gj

∥

∥

∥ ?

Due to the combinatorial nature of selecting Givens sub-

spaces, this is an NP-hard optimization problem. In this

paper, we propose a relaxation based on sparsity-inducing

norms over the unitary group. In essence, given a point

U ∈ U(d), we use the gradient flow of a potential function

f : U(d) → R to define a path that links U to its near-

est signed permutation matrix, the sparsest elements of the

group and thus the global minimizers of f . Then, our algo-

rithm tries to approximately follow this path using coordi-

nate descent with the Givens factors acting as generators of

the group.

We validate our algorithm on a family of structured or-

thogonal operators, constructed with a planted random se-

quence of K Givens factors and demonstrate that effective

approximation is possible in the regime K = O(d log d).
Finally, we apply our algorithm to approximate a graph

Fourier transform (GFT), the orthogonal matrix obtained

when diagonalizing a graph Laplacian.
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For ease of exposition, we restrict our discussion to approx-

imating orthogonal group elements. However, this does

not impose a restriction on the outlined approaches, as they

equally apply to the complex unitary group as well as the

real orthogonal group.

2. Related Work

Givens rotations were introduced by (Givens, 1958) to

factorize the unitary matrix that transforms a square ma-

trix into triangular form. The elementary operation of

rotating in a two-dimensional subspace led to numer-

ous successful applications in numerical linear algebra

(Golub & Van Loan, 2012), in particular, for eigenvalue

problems (Golub & Van Der Vorst, 2000). In this context,

a Givens sequence factorizes a unitary basis transform,

which is an operation of paramount importance to signal

processing.

In contrast to signal processing on a Euclidean domain, re-

cently there has been increased interest in signal processing

on irregular domains such as graphs (Shuman et al., 2013;

Bronstein et al., 2017). In this setting, Magoarou et al.

(2018) considered a truncated version of the classical Ja-

cobi algorithm (Jacobi, 1846) to approximate the orthog-

onal matrix that diagonalizes a graph Laplacian. Other

notable strategies to efficiently approximate large matri-

ces with presumed structure include multiresolution anal-

ysis (Kondor et al., 2014) and sparsity (Kyng & Sachdeva,

2016).

In quantum computation, approximate representation of

unitary operators is a fundamental problem. Here, a uni-

tary operation that performs a computation on a quantum

state needs to be represented by or approximated with few

elementary single- and two-qubit gates, ideally polynomial

in the number of qubits. In the literature of quantum com-

puting, a Givens rotation is commonly referred to as a two-

level unitary matrix; a generic n-qubit unitary operator can

be factorized in such two-level matrices with O (4n) ele-

mentary quantum gates (Vartiainen et al., 2004).

An alternative viewpoint on Givens sequences was ana-

lyzed by Shalit & Chechik (2014). The authors considered

manifold coordinate descent over the orthogonal group as

sequentially applying Givens factors. Consequently, the

minimizing sequence of this algorithm yields a Givens fac-

torization of the initial orthogonal matrix.

In this work, we analyze information theoretic properties

of approximating unitary matrices via Givens factorization.

We then propose to minimize a sparsity-inducing objective

via manifold coordinate descent in a regime where effec-

tive approximation is possible. Subsequently, we apply this

approach to approximate the graph Fourier transform and

demonstrate that the proposed method can find better se-

quences compared to a truncated Jacobi algorithm. This al-

lows to efficiently transform a graph signal into the graph’s

approximate Fourier basis, an essential operation in graph

signal processing.

3. Givens Factorization and Elimination

Givens matrices represent rotations in a two-dimensional

subspace, while leaving all other dimensions invariant

(Givens, 1958; Golub & Van Loan, 2012). Such a counter-

clockwise rotation in the (i, j)-plane by an angle α can be

written as applying GT (i, j, α), where

G(i, j, α) =



















1 ··· 0 ··· 0 ··· 0
...

. . .
...

...
...

0 ··· cos(α) ··· sin(α) ··· 0

...
...

. . .
...

...
0 ··· − sin(α) ··· cos(α) ··· 0

...
...

...
. . .

...
0 ··· 0 ··· 0 ··· 1



















(1)

The trigonometric expressions appear in the i-th and j-th

rows and columns. Any orthogonal matrix U ∈ R
d×d that

is a rotation, U ∈ SO(d), can be decomposed into a prod-

uct of at most d(d−1)/2 Givens rotations. In general, there

exist many possible factorizations. If U ∈ O(d) \ SO(d),
then it cannot be represented directly by a sequence of

Givens rotations. However, a factorization can be obtained

up to permutation with a negative sign, e.g., by flipping two

columns.

In numerical linear algebra, Givens factors are often used to

selectively introduce zero matrix entries by controlling the

rotation angle. This leads to a constructive factorization al-

gorithm, which demonstrates a d(d−1)/2-factorization. To

this end, we start with the matrix U ∈ SO(d) and introduce

zeros on the lower diagonal column-wise from left to right

and bottom to top within every column. This is achieved by

choosing the rotation subspace (i, j) and a suitable rotation

angle to zero-out the matrix element (i, j). The elimination

order is illustrated for d = 4 by









∗ ∗ ∗ ∗
3 ∗ ∗ ∗
2 5 ∗ ∗
1 4 6 ∗









(2)

After N = d(d − 1)/2 steps, we have GT
N . . . GT

1 U = D,

where D is a diagonal matrix with Dkk = −1 for an even

number of values and Dkk = 1 otherwise. This result can

be reduced to the identity by selecting two subspaces with

values Dii = Djj = −1 and applying a rotation by an

angle α = π. We refer to this algorithm by structured

elimination.

Apart from this sign ambiguity, we consider factorizations

in the broader sense up to signed permutation of the result-
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ing matrix columns. To be explicit, the set of signed per-

mutation matrices is defined as Pd := {P ∈ R
d×d|Pij ∈

{−1, 0, 1},∑i

∣

∣Pij

∣

∣ = 1 ∀j,∑j

∣

∣Pij

∣

∣ = 1 ∀i}. For a ma-

trix U ∈ O(d), to measure approximation quality, we de-

note an approximation by Û and use a symmetrized Frobe-

nius norm criterion up to a signed permutation matrix as

follows:
∥

∥

∥U − Û
∥

∥

∥

F,sym
:= min

P∈Pd

∥

∥

∥U − ÛP
∥

∥

∥

F
. (3)

The range of (3) over the orthogonal group is [0,
√
2d)

as the maximum is obtained for the distance be-

tween Hadamard1 matrices H(d) and the identity with
∥

∥H(d)− I
∥

∥

F,sym
/
√
d →

√
2 as d → ∞. Since‖A‖2F =

Ex∼N (0,I)

[

‖Ax‖22
]

, the criterion measures the average ap-

proximation quality over random Gaussian vectors when

applying Û instead of U . The motivation for this defini-

tion is twofold. First, this definition allows us to discuss

Givens factorizations of orthogonal matrices with negative

determinant and henceforth we consider factorization over

the orthogonal group O(d) rather than the special orthogo-

nal group SO(d). Second, it enlarges the class of possible

factorization algorithms to those that cannot distinguish be-

tween signed permutation matrices. Observe that since the

cost of multiplying by a signed permutation matrix is O (d)
(Knuth, 1998), the computational efficiency arguments in

this paper are not affected by the permutation equivalence

class as we are discussing approximations in the regime of

O
(

d log(d)
)

factors.

4. Information Theoretic Rate of Givens

Representation

The elimination algorithm discussed in Section 3 guaran-

tees to factorize any orthogonal matrix in at most d(d−1)/2
Givens factors, which corresponds to the dimension of the

orthogonal group. Since each Givens factor is parametrized

by a single angle, it immediately follows that exact Givens

factorization for arbitrary elements U ∈ O(d) necessarily

requires d(d− 1)/2 factors.

Hence, this leads to the question of approximate factoriza-

tion: if one tolerates a certain error ‖U − Û‖F ≤ ǫ, is

it possible to find approximations Û =
∏

n≤N Gn with

N = o(d2), ideally with N = O(d log d)? A covering

argument shows that generic orthogonal matrices in d di-

mensions require at least Θ(d2/ log(d)) Givens factors to

achieve an ǫ-approximate factorization. We denote by µ the

uniform Haar measure on the unitary group, which we nor-

malize for each d, µ(U(d)) = 1. For notational simplicity,

we carry out the proof for the operator 2-norm. An analo-

1A Hadamard matrix is an orthogonal matrix Hwhose entries

satisfy |Hi,j | = 1/
√
d for all i, j.

gous argument holds by replacing the operator 2-norm with

the Frobenius norm while re-scaling the error by
√
d.

Lemma 1. Let
∏

n≤N Gn be a product of Givens factors

with rotation anglesαn and Ḡn be the respective perturbed

factors with rotation angles αn+δn and perturbations 0 ≤
δn ≤ δ. Then,

∥

∥

∥

∥

∥

∥

∏

n≤N

Ḡn −
∏

n≤N

Gn

∥

∥

∥

∥

∥

∥

F

≤ 2Nδ . (4)

Proof. For any orthogonal matrices U,U ′, V, V ′, we have

∥

∥U ′V ′ − UV
∥

∥

F
=
∥

∥(U + U ′ − U)V ′ − UV
∥

∥

F

≤
∥

∥U(V ′ − V )
∥

∥

F
+
∥

∥(U ′ − U)V ′
∥

∥

F

=
∥

∥V ′ − V
∥

∥

F
+
∥

∥U ′ − U
∥

∥

F
, (5)

by using the fact that the Frobenius norm is invariant to

orthogonal matrix multiplication. By iterating this relation,

we obtain
∥

∥

∥

∥

∥

∥

∏

n≤N

Ḡn −
∏

n≤N

Gn

∥

∥

∥

∥

∥

∥

F

≤
∑

n≤N

∥

∥Ḡn −Gn

∥

∥

F
. (6)

Since Ḡn and Gn rotate in the same subspace,

∥

∥Ḡn −Gn

∥

∥

F
= 2

√

1− cos(δn) . (7)

Inequality (4) follows from
√

1− cos(δn) ≤ δn ≤ δ.

Theorem 1. Let ǫ > 0. If N =o
(

d2/ log(d)
)

, then as

d → ∞,

µ





{

U ∈ U(d)

∣

∣

∣

∣

inf
G1...GN

‖U −
∏

n

Gn‖2 ≤ ǫ

}



 → 0 .

Proof. Consider an ǫ-covering of the unitary group, i.e., a

discrete set X such that infX∈X ‖U − X‖2 ≤ ǫ for all

U ∈ U(d). Since the manifold dimension of the unitary

group is d(d − 1)/2, we need |X | = Θ(ǫ−d(d−1)/2) many

balls for that cover. Let N := N(d) be the number of avail-

able Givens factors for approximation at dimension d, and

AN = {X ∈ U(d)| infG1...GN
‖X−∏

n≤N Gn‖2 ≤ ǫ/2}
denote the set of unitary operators which can be effectively

approximated with N Givens terms. Now, suppose that

µ(AN ) ≥ c > 0, i.e., the set of group elements admitting

an ǫ/2-approximation has positive measure. This implies

that any ǫ-cover of AN must be of size Θ(ǫ−d(d−1)/2). Let

us build such an ǫ-cover.

If we discretize the rotation angle to a value δ > 0, then

there are (d(d − 1)/2δ) many different quantized Givens

factors, denoted by Ḡi, and consequently (d(d − 1)/2δ)N
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many different sequences. It follows that if δ := ǫ
4N , the

discrete set Y = {∏n≤N Ḡin} containing all possible se-

quences of length N of quantized Givens rotations is an

ǫ-cover of AN . Indeed, by using Lemma 1 and the fact that

the operator 2-norm is bounded by the Frobenius norm, we

have ∀X ∈ AN ,

‖X−
∏

n≤N

Ḡn‖2 ≤ ‖X−
∏

n≤N

Gn‖2+2Nδ ≤ ǫ

2
+

ǫ

2
= ǫ .

Since |Y| =
(

2d(d−1)N
ǫ

)N

, it follows that

(

2d(d− 1)N

ǫ

)N

= Θ(ǫ−d(d−1)/2) ,

which implies N = O
(

d2/ log d
)

.

An immediate consequence of Theorem 1 is that generic

effective approximation, i.e., with a number of factors

N = O (d log d), is information theoretically impossible.

However, the situation may be entirely different for struc-

tured distributions of unitary operators. For that purpose,

we develop an algorithm to obtain effective approximations

based on sparsity-inducing norms.

5. Givens Factorization and Coordinate

Descent on O(d)

In this section, we offer an alternative viewpoint presented

by Shalit & Chechik (2014) that interprets Givens factor-

ization as manifold coordinate descent on the orthogonal

group over a certain potential energy.

The orthogonal group O(d) is a matrix Lie group with as-

sociated Lie algebra o(d) = Skew(d) = {X ∈ R
d×d|X =

−XT}, the set of d × d skew-symmetric matrices (Hall,

2003). The tangent space at an element U is TUO(d) =
{XU |X ∈ Skew(d)} and the Riemannian directional

derivative of a differentiable function f in the direction

XU ∈ TUO(d) is given by

DXf(U) = d
dα f(Exp(αX)U)

∣

∣

∣

∣

∣

α=0

, (8)

where Exp : o(d) → O(d) is the matrix exponential. If we

choose the basis {Xij = eie
T
j − eje

T
i |1 ≤ i ≤ j ≤ d}

for the tangent space, then DXij
f(U) represents the direc-

tional derivative in such a coordinate direction. A coordi-

nate descent algorithm uses a criterion to choose coordi-

nates (i, j) and a step size (rotation angle) α to iteratively

update

Uk+1 = Exp(−αXij)U
k . (9)

A greedy criterion determines the best descent on f by a

search over all possible coordinate directions {Xij}i≤j≤d

with the optimal step size obtained by a line search.

A Givens factor can be interpreted as a coordinate descent

step over the orthogonal group. This follows from the rela-

tion

Exp(−αXij) = GT (i, j, α) . (10)

In d = 3, an explicit example of the correspondence be-

tween Lie algebra and Lie group elements is





0 0 0
0 0 −α
0 α 0



 −→





1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)



 .

(11)

Suppose we want to minimize a function f over the orthog-

onal group,

min
U∈O(d)

f(U) . (12)

Then minimizing (12) with manifold coordinate descent it-

erations (9) yields a Givens factorization of the initial point

U0. A truncated sequence leads to an approximate factor-

ization. From this viewpoint, the quality of a Givens fac-

torization can be controlled by properties of the function

f . In the following, we construct an objective function that

results in approximate factorization with less than O(d2)
factors.

6. Sparsity-Inducing Dynamics

To factorize a matrix U ∈ O(d) one may choose it as an

initial value to problem (12) when minimizing a suitable

potential function f with manifold coordinate descent. We

want to find a factorization up to signed permutation of the

matrix columns. As the signed permutation matrices are

the sparsest orthogonal matrices, we consider an energy

function that quickly enforces sparsity, the element-wise

L1-norm of a matrix,

f(U) := d−1‖U‖1 = d−1
d

∑

i,j=1

∣

∣Uij

∣

∣ . (13)

Although f is convex in R
d2

(since it is a norm), due to the

non-convexity of the domain, the problemminU∈O(d) f(U)
is non-convex . The landscape of f characterizes the class

of orthogonal matrices that admit effective Givens approxi-

mation. It is easy to see that the global minima of f in O(d)
consist of signed permutation matrices, with min f(U) =
1, and the global maxima are located at Hadamard matrices,

with max f(U) =
√
d. A more involved question concern-

ing the presence or absence of spurious local minima of f
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is of interest. The following proposition partially addresses

this question by showing that critical points of f are neces-

sarily located at U ∈ O(d) with some of its entries set to

zero.

Proposition 1. Let x ∈ R
2×d and let

R(α) :=

[

cos(α) − sin(α)
sin(α) cos(α)

]

(14)

be a counter-clockwise rotation in the plane by an angle

α. Consider the function g(α) :=
∥

∥R(α)x
∥

∥

1
. Then, at

every local minimum α∗ of g there exist indices k, l such

that
(

R(α∗)x
)

kl
= 0.

Proof. We show equivalently that any stationary point α∗

with
(

R(α∗)x
)

kl
6= 0 ∀k, l is a local maximum. At any

such point the function g is twice continuously differen-

tiable and the second derivative is

∂2g

∂α2

∣

∣

∣

∣

α=α∗

= −g(α∗) < 0 . (15)

Consequently, any stationary point under this assumption

must be a local maximum.

Proposition 1 implies that for a given subspace (i, j), the

best rotation angle can be found by checking all axis tran-

sitions for the 2D points (uik, ujk), k ∈ {1, . . . d} and se-

lecting the angle that most minimizes the objective among

them. It also implies that any local minimum of f must cor-

respond to an orthogonal matrix with at least d zeros placed

at specific entries, such that no two rows or columns have

the same support. Indeed, Proposition 1 implies that there

exists a continuous path t 7→ U(t) = G(i, j, α(t)) with

α(0) = 0, generated by a Givens rotation of angle α(t),
such that f(U(t)) is non-increasing at t = 0, provided one

can find two rows or columns of U with the same support.

However, this result does not exclude the possibility that

f has spurious local minima at matrices U with the above

special sparsity pattern. In fact, we conjecture that the land-

scape of f does have spurious local minima.

A manifold coordinate descent on the objective function

f is explicitly stated in Algorithm 1. The crucial step in-

volves optimizing this objective in the rotation angle α for

a given subspace (i, j), which is a non-convex optimization

problem. Nevertheless, the global optimum can be found as

stated by Proposition 1. In d dimensions, this step requires

d operations. Consequently, due to the squared dimension

dependence of the double for-loop, a naive implementation

of Algorithm 1 would requireO
(

d3
)

operations . However,

applying the selected Givens factor in each step changes

only two rows of the matrix; thus, in the subsequent iter-

ation, only those pairs of rows that involve the previously

modified ones need to be re-computed. These are O (d)
rows and altogether the runtime of an iteration is O

(

d2
)

.

Algorithm 1 Coordinate descent on the L1-criterion

Input: initial value U0 ∈ O(d), f(U) =‖U‖1
repeat

for i = 1 to d do

for j = 1 to d do

if α∗
ij not up-to-date then

α∗
ij = argminα f(GT (i, j, α)Uk)

end if

end for

end for

i∗, j∗ = argmini,j f(G
T (i, j, α∗

ij)U
k)

Uk+1 = GT (i∗, j∗, α∗
i∗j∗)U

k

until
∥

∥Uk+1 − I
∥

∥

F,sym
< ε or maxIter is reached

7. Numerical Experiments

7.1. Planted Models

Theorem 1 shows that we cannot expect to find good

approximations to Haar-sampled matrices with less than

O
(

d2/ log(d)
)

Givens factors. Therefore, we focus on a

distribution for which we can control approximability. We

use the uniform distribution over the set {U ∈ SO(d)|U =
G1 · · ·GK , Gk = G(ik, jk, αk)}, where each Gk is ob-

tained by first sampling a subspace uniformly at random

(with replacement), and then sampling the corresponding

angle uniformly from (0, 2π). We denote the resulting dis-

tribution by the K-planted distribution νK . While this dis-

tribution may be sparse in the number of Givens factors for

K ≪ d(d − 1)/2, this does not imply that the resulting

matrices are sparse. In fact, products of Givens matrices

become dense quickly. It follows from the Coupon Col-

lector’s Lemma that matrices generated with Θ(d log2(d))
Givens factors are already dense with high probability. To

visualize this effect, Figure 1 shows the L0-norm as a func-

tion of planted Givens factors.

We compare the following factorization algorithms. A

greedy baseline iteratively finds the Givens factor that most

minimizes the objective (3). The structured elimination al-

gorithm described in Section 3 yields a sequence of Givens

factors that eliminate matrix entries in the order (2) and is

guaranteed to find a perfect factorization with d(d − 1)/2
factors. Our sparsity-inducing algorithm minimizes the L1-

criterion (13) via a manifold coordinate descent scheme.2

In an initial experiment, we demonstrate the approximation

effectiveness of these algorithms; the results are shown in

Figure 2. They indicate that minimizing the L1-criterion

improves over directly minimizing the Frobenius norm

(greedy baseline). Next, we analyze the approximability

2An implementation of these algorithms can be found at
https://github.com/tfrerix/givens-factorization
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Figure 1. Average sparsity based on 100 samples of matrices

drawn from the K-planted distribution over SO(d) for increas-

ing K. Standard deviation is negligible and not shown. Matrices

become dense quickly as the number of planted Givens factors

grows. In particular, matrices sampled from the d log
2
(d)-planted

distribution are already dense.

of samples drawn from the K-planted distribution νK as

a function of K . To obtain a Givens sequence, we factor-

ize these samples with manifold coordinate descent on the

L1-objective (13). Along the optimization path, we define

Nǫ(U) as the number of Givens factors for which the nor-

malized approximation error (3) is smaller than ǫ = 0.1,

i.e.,

Nǫ(U) := min

{

N

∣

∣

∣

∣

‖U −G1 . . .GN‖F,sym√
d

< ǫ

}

(16)

We refer to a Givens sequence with such Nǫ(U) factors as

an ǫ-factorizing sequence of U . In Figure 3, the sample

average Nǫ = n−1
∑n

i=1 Nǫ(Ui) for n = 10 samples is

shown as a function of K . We are interested in the rate at

which Nǫ grows for increasing K . The data in Figure 3

show that for K = αd log2(d) and Nǫ = βd log2(d), the

ratio β/α is not independent of d. For the shown dimension

regime this implies that for K = O
(

d log(d)
)

, Nǫ grows

polynomial in d, albeit with small rate for few planted fac-

tors. To make this relation more precise, we extract the

exponent η of a model Nǫ ∼ dη . Figure 4 shows that the

growth is slightly superlinear in the few-factor regime and

becomes quadratic towards K = d log2(d). Analytically

characterizing such growth is left for future work.

That said, our initial results suggest the existence of a

computational-to-statistical gap for the recovery (or detec-

tion) of sparse planted Givens factors. Indeed, Theorem

1 proves that recovery with K = O
(

d2/ log d
)

planted

factors is information-theoretically possible, whereas

our greedy recovery strategy is only effective for
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Figure 2. Average Frobenius norm approximation error in

d = 1024 dimensions when factorizing 10 samples drawn from

the d log
2
(d)-planted distribution over SO(d) with d(d − 1)/2

factors. Shaded area denotes standard deviation.

K = O (d log d). The mathematical analysis of our co-

ordinate descent algorithm in the regime where effective

approximation is feasible is beyond the scope of the present

paper. In particular, proving that Nǫ = O (d log d) is suffi-

cient when K . d log d remains an open question.

7.2. Application: Graph Fourier Transform

The method introduced in this paper is useful in situations

where one at first computes an approximation to a uni-

tary operator, which is subsequently applied many times.

Hence, the trade-off between initial computation and ap-

proximation on the one hand and efficient application on

the other hand is in favor of the latter. Canonical examples

for this scenario are orthogonal basis transforms. In this

paper, we draw motivation from the FFT, which yields a

speed-up of applying a Fourier transformation over a regu-

lar grid domain from O(d2) to O(d log(d)) time complex-

ity (Cooley & Tukey, 1965). However, these speed-ups do

not carry over when the domain is unstructured, such as

general graphs. Here, we compute an effective approxima-

tion of the graph Fourier transformation (GFT). Consider

a simple, undirected graph with degree matrix D and ad-

jacency matrix A. The unnormalized graph Laplacian is

defined as L := D − A, which is a positive semi-definite,

symmetric matrix. The GFT is represented by the orthogo-

nal matrix that diagonalizes L.

A baseline for our method is the Jacobi algorithm (Jacobi,

1846), which diagonalizes a symmetric matrix L by greed-
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Figure 3. Average number of Givens factors necessary to factorize

a K-planted matrix in d ∈ {256, 512, 1024} dimensions up to

desired accuracy as a function of K. Here, ǫ = 0.1 is the accuracy

as defined in expression (16). Note that the x-axis is shown with

unequal spacing to highlight the relevant regime of the data. The

inset plot shows a zoom of the first data points.

ily minimizing the off-diagonal squared Frobenius norm,

off(L) :=‖L‖2F −
d

∑

k=1

L2
kk . (17)

This is achieved by zeroing-out the largest matrix element

in absolute value at every iteration. To this end, a Givens

matrix similarity transformation with a suitably chosen ro-

tation subspace and rotation angle is applied. However, the

Jacobi algorithm does not guarantee factorization in a fi-

nite number of steps; in particular, it may take more than

N = d(d−1)/2 iterations. In fact, the algorithm converges

linearly (Golub & Van Loan, 2012),

off(Lk+1) ≤
(

1− 1

N

)

off(Lk) . (18)

If the iteration number k is large enough, quadratic conver-

gence was shown by Schönhage (1964). Hence, the method

is ineffective for small iteration numbers and in high di-

mensions. A truncated version of this algorithm was used

by Magoarou et al. (2018) to obtain an approximation to

the GFT. The objective (17) of the Jacobi method is mo-

tivated by approximating the spectrum of the symmetric

matrix through the Gershgorin circle theorem (Gershgorin,

1931). However, we argue here that a criterion focused

on approximating the eigenbasis of the symmetric matrix

directly yields a more effective approximation to this or-

thogonal basis transformation. We consider the eigende-

composition L = UΛUT and compute an approximation

of the orthogonal matrix U with the algorithms outlined in

Section 7.1. We demonstrate this procedure on Barabási-

Albert random graphs and several real world graphs.

.1 .15 .2 .25 .3 .35 .4 .45 .5 .75 1

1.2

1.4

1.6

1.8

2

K/d log2(d)

η

Figure 4. Polynomial growth rate η of the model Nǫ ∼ dη as a

function of the number of planted factors estimated from d ∈
{256, 512, 1024}. Note that the x-axis is shown with unequal

spacing to highlight the relevant regime of the data.

Table 1. Construction of Barabási-Albert graphs. An n-vertex

graph is constructed by choosing n0 = mk initial vertices, then

adding vertices and connecting them to mk of already existing

ones with a probability proportional to the degree of these ver-

tices. mk is chosen such that the number of resulting edges is

approximatly k · 0.25n(n − 1)/2.

n 64 128 256 512 1024

m1 54 109 218 437 874

m2 36 69 136 267 528

The Barabási-Albert model starts with n0 unconnected ver-

tices and iteratively adds vertices to the graph, which are

connected to a number m of already existing ones with

a probability proportional to the degree of these vertices.

This construction is known as preferential attachment and

induces a scale-free degree distribution found in real world

graphs (Barabási & Albert, 1999). The details of gener-

ating these graphs are described in Table 1. We approx-

imate the corresponding graph Laplacians with n log2(n)
factors leading to the results shown in Figure 5. While our

sparsity-inducing algorithm yields better factorizations in

most cases, there exist scenarios, where the greedy base-

line results in better approximations (d ∈ {512, 2014} for

∼ 0.25n log2(n) edges). Finally, we demonstrate approx-

imate factorization of the graph Laplacian of various real

world graphs listed in Table 2. Our L1-algorithm yiels the

best factorization for the Minnesota, HumanProtein, and

EMail graphs, while the greedy baseline algorithm is supe-

rior for the Facebook graph.

A simple strategy to improve the performance of our L1

greedy method with mild computational overhead is to per-
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Figure 5. Approximate factorization of the graph Laplacian of n-

vertex Barabási-Albert graphs with n log
2
(n) factors. Data points

are averages of 10 samples, vertical lines denote standard de-

viation. The solid (–) lines show factorizations of graphs with

∼ 0.5n(n − 1)/2 edges, while the dashed (- -) lines show factor-

izations of graphs with ∼ 0.25n(n − 1)/2 edges.

Table 2. GFT approximation for real world graphs with n vertices

and ne edges.

n ne

MINNESOTA 2642 3304
(Defferrard et al.)

HUMANPROTEIN 3133 6726
(Rual et al., 2005)

EMAIL 1133 5451
(Guimerà et al., 2003)

FACEBOOK 2888 2981
(McAuley & Leskovec, 2012)

form beam-search, which is beyond the scope of this paper.

Overall, it remains an open question to more closely charac-

terize the graphs for which our sparsity-inducing algorithm

yields effective approximations of the GFT.

8. Discussion

We analyzed the problem of approximating orthogonal ma-

trices with few Givens factors. While a perfect factoriza-

tion in O
(

d2
)

is always possible, an approximation with

fewer factors is advantageous if the orthogonal matrix is

applied many times. We showed that effective Givens fac-

torization of generic orthogonal matrices is impossible and

inspected a distribution of planted factors, which allows

us to control approximability. Our initial results suggest

that sparsity inducing factorization is promising beyond the

sparse matrix regime. However, it remains an open prob-
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Figure 6. Approximate factorization of the graph Laplacian of var-

ious n-vertex real world graphs with n log
2
(n) factors.

lem to further characterize the matrices that admit effective

factorization using manifold coordinate descent on an L1-

criterion.

This work opens up questions we believe are important

both from a theoretical and an applied perspective. On

the theory side, important problems arising from our anal-

ysis are: (i) a complete description of the landscape of

f(U) = ‖U‖1 over the orthogonal and unitary groups, (ii)

a precise classification of the detection threshold K(d) be-

low which it is possible to discriminate a K-planted sample

from a Haar sample in polynomial time, and (iii) a guaran-

tee that the proposed sparse Givens coordinate descent al-

gorithm requires N = Θ(d log d) terms for K ≤ Cd log d
for some constant C > 0. These questions suggest a learn-

ing approach whereby our sparsity promoting potential f
would be replaced by a classifier fθ trained to discriminate

between K-planted and Haar distributions. From an ap-

plied perspective, the method allows to approximately in-

vert a time-varying symmetric linear operator H(t). Sim-

ilar to the Woodbury formula for low-rank updates of an

inverse, one could set up an approximate Givens factoriza-

tion of the eigenbasis of H(t0), and update it efficiently at

subsequent times. If successful, this could dramatically im-

prove the efficiency of second-order optimization schemes,

where H(t) is the Hessian of a loss function.
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