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Abstract

We analyze effective approximation of unitary
matrices. In our formulation, a unitary matrix
is represented as a product of rotations in two-
dimensional subspaces, so-called Givens rota-
tions. Instead of the quadratic dimension depen-
dence when applying a dense matrix, applying
such an approximation scales with the number
factors, each of which can be implemented effi-
ciently. Consequently, in settings where an ap-
proximation is once computed and then applied
many times, such a representation becomes ad-
vantageous. Although effective Givens factoriza-
tion is not possible for generic unitary operators,
we show that minimizing a sparsity-inducing ob-
jective with a coordinate descent algorithm on
the unitary group yields good factorizations for
structured matrices. Canonical applications of
such a setup are orthogonal basis transforms. We
demonstrate numerical results of approximating
the graph Fourier transform, which is the matrix
obtained when diagonalizing a graph Laplacian.

1. Introduction

Unitary operators are ubiquitous in many areas, from
numerical linear algebra to quantum computing and
cryptography. Celebrated applications include the QR-
decomposition and the diagonalization of symmetric matri-
ces (Golub & Van Der Vorst, 2000). Without any assump-
tions on the structure of the matrix, applying a unitary trans-
formation in d dimensions requires O(d?) operations for
the matrix-vector product. In scenarios where a given uni-
tary operator needs to be intensively applied many times,
using approximations that trade-off accuracy with a better
scaling behavior in the dimension is desirable.

In this paper, we develop a method to compute approx-
imations of unitary matrices in the form of Givens fac-
torization (Givens, 1958). Givens rotations are localized
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in a two-dimensional subspace of predefined coordinates.
Therefore, computations with Givens sequences scale with
the number of factors and the computational cost for ap-
plying each factor can be kept low since efficient imple-
mentations are possible (Golub & Van Loan, 2012). Our
main motivation comes from the success story of the Fast
Fourier transform (FFT) (Cooley & Tukey, 1965), which
brought down the computational cost of applying a Fourier
transform to O(dlog(d)) operations. This reduction led
to a revolution in signal processing and was recognized by
Sullivan & Dongarra (2000) as one of the most important
algorithms of the 20th century. However, this speed-up re-
lies on the fact that the classical Fourier transform is de-
fined over a periodic grid, which provides many symme-
tries leveraged in the butterfly structure of the FFT.

These symmetries do not carry over to unstructured do-
mains such as graphs and general unitary operators. In fact,
using simple covering bounds, we show that generic unitary
matrices require O(d?/logd) Givens factors to be effec-
tively approximated. However, the question of approximat-
ing with fewer factors in the presence of structure remains
open: given an element U € U(d), how to produce the best
possible N-term sequence of Givens rotations G ...Gn

that minimizesHU - 11 GjH ?

Due to the combinatorial nature of selecting Givens sub-
spaces, this is an NP-hard optimization problem. In this
paper, we propose a relaxation based on sparsity-inducing
norms over the unitary group. In essence, given a point
U € U(d), we use the gradient flow of a potential function
f 1 U(d) — R to define a path that links U to its near-
est signed permutation matrix, the sparsest elements of the
group and thus the global minimizers of f. Then, our algo-
rithm tries to approximately follow this path using coordi-
nate descent with the Givens factors acting as generators of
the group.

We validate our algorithm on a family of structured or-
thogonal operators, constructed with a planted random se-
quence of K Givens factors and demonstrate that effective
approximation is possible in the regime K = O(dlogd).
Finally, we apply our algorithm to approximate a graph
Fourier transform (GFT), the orthogonal matrix obtained
when diagonalizing a graph Laplacian.
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For ease of exposition, we restrict our discussion to approx-
imating orthogonal group elements. However, this does
not impose a restriction on the outlined approaches, as they
equally apply to the complex unitary group as well as the
real orthogonal group.

2. Related Work

Givens rotations were introduced by (Givens, 1958) to
factorize the unitary matrix that transforms a square ma-
trix into triangular form. The elementary operation of
rotating in a two-dimensional subspace led to numer-
ous successful applications in numerical linear algebra
(Golub & Van Loan, 2012), in particular, for eigenvalue
problems (Golub & Van Der Vorst, 2000). In this context,
a Givens sequence factorizes a unitary basis transform,
which is an operation of paramount importance to signal
processing.

In contrast to signal processing on a Euclidean domain, re-
cently there has been increased interest in signal processing
on irregular domains such as graphs (Shuman et al., 2013;
Bronstein et al., 2017). In this setting, Magoarou et al.
(2018) considered a truncated version of the classical Ja-
cobi algorithm (Jacobi, 1846) to approximate the orthog-
onal matrix that diagonalizes a graph Laplacian. Other
notable strategies to efficiently approximate large matri-
ces with presumed structure include multiresolution anal-
ysis (Kondor et al., 2014) and sparsity (Kyng & Sachdeva,
2016).

In quantum computation, approximate representation of
unitary operators is a fundamental problem. Here, a uni-
tary operation that performs a computation on a quantum
state needs to be represented by or approximated with few
elementary single- and two-qubit gates, ideally polynomial
in the number of qubits. In the literature of quantum com-
puting, a Givens rotation is commonly referred to as a two-
level unitary matrix; a generic n-qubit unitary operator can
be factorized in such two-level matrices with O (4™) ele-
mentary quantum gates (Vartiainen et al., 2004).

An alternative viewpoint on Givens sequences was ana-
lyzed by Shalit & Chechik (2014). The authors considered
manifold coordinate descent over the orthogonal group as
sequentially applying Givens factors. Consequently, the
minimizing sequence of this algorithm yields a Givens fac-
torization of the initial orthogonal matrix.

In this work, we analyze information theoretic properties
of approximating unitary matrices via Givens factorization.
We then propose to minimize a sparsity-inducing objective
via manifold coordinate descent in a regime where effec-
tive approximation is possible. Subsequently, we apply this
approach to approximate the graph Fourier transform and
demonstrate that the proposed method can find better se-

quences compared to a truncated Jacobi algorithm. This al-
lows to efficiently transform a graph signal into the graph’s
approximate Fourier basis, an essential operation in graph
signal processing.

3. Givens Factorization and Elimination

Givens matrices represent rotations in a two-dimensional
subspace, while leaving all other dimensions invariant
(Givens, 1958; Golub & Van Loan, 2012). Such a counter-
clockwise rotation in the (4, j)-plane by an angle « can be
written as applying G (i, j, ), where

ri ... 0 0 - 07
0 Cos.(a) . sin.(a) 0
Gi,j, o) = | Do : M
0 -+ —sin(a) -+ cos(a) -+ 0
o 6 6 il

The trigonometric expressions appear in the i-th and j-th
rows and columns. Any orthogonal matrix U € R%*? that
is a rotation, U € SO(d), can be decomposed into a prod-
uct of at most d(d— 1) /2 Givens rotations. In general, there
exist many possible factorizations. If U € O(d) \ SO(d),
then it cannot be represented directly by a sequence of
Givens rotations. However, a factorization can be obtained
up to permutation with a negative sign, e.g., by flipping two
columns.

In numerical linear algebra, Givens factors are often used to
selectively introduce zero matrix entries by controlling the
rotation angle. This leads to a constructive factorization al-
gorithm, which demonstrates a d(d—1) /2-factorization. To
this end, we start with the matrix U € SO(d) and introduce
zeros on the lower diagonal column-wise from left to right
and bottom to top within every column. This is achieved by
choosing the rotation subspace (i, j) and a suitable rotation
angle to zero-out the matrix element (4, j). The elimination
order is illustrated for d = 4 by

)
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After N = d(d — 1)/2 steps, we have G% ...GTU = D,
where D is a diagonal matrix with Dy, = —1 for an even
number of values and Dj;. = 1 otherwise. This result can
be reduced to the identity by selecting two subspaces with

values D;; = D;; = —1 and applying a rotation by an
angle o = w. We refer to this algorithm by structured
elimination.

Apart from this sign ambiguity, we consider factorizations
in the broader sense up to signed permutation of the result-
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ing matrix columns. To be explicit, the set of signed per-
mutation matrices is defined as Py :== {P € R4 P; €
{=1,0,1}, >, |P;j| = 1 Y4, | Pij| = 1 Vi}. For a ma-
trix U € O(d), to measure approximation quality, we de-
note an approximation by U and use a symmetrized Frobe-
nius norm criterion up to a signed permutation matrix as
follows:

-]

U—UPHF . 3)

‘= min
PePy

F.sym
The range of (3) over the orthogonal group is [0,v/2d)
as the maximum is obtained for the distance be-
tween Hadamard! matrices H(d) and the identity with

[H(d) = 1|| .y /Vd = V2 a5 d — oo, Since||All =

Eqrnr(o,1) {HASE”S} , the criterion measures the average ap-

proximation quality over random Gaussian vectors when
applying U instead of U. The motivation for this defini-
tion is twofold. First, this definition allows us to discuss
Givens factorizations of orthogonal matrices with negative
determinant and henceforth we consider factorization over
the orthogonal group O(d) rather than the special orthogo-
nal group SO(d). Second, it enlarges the class of possible
factorization algorithms to those that cannot distinguish be-
tween signed permutation matrices. Observe that since the
cost of multiplying by a signed permutation matrix is O (d)
(Knuth, 1998), the computational efficiency arguments in
this paper are not affected by the permutation equivalence
class as we are discussing approximations in the regime of
O (dlog(d)) factors.

4. Information Theoretic Rate of Givens
Representation

The elimination algorithm discussed in Section 3 guaran-
tees to factorize any orthogonal matrix in at most d(d—1)/2
Givens factors, which corresponds to the dimension of the
orthogonal group. Since each Givens factor is parametrized
by a single angle, it immediately follows that exact Givens
factorization for arbitrary elements U € O(d) necessarily
requires d(d — 1)/2 factors.

Hence, this leads to the question of approximate factoriza-
tion: if one tolerates a certain error |[U — Ul|p < e, is
it possible to find approximations U= [L,<y Gn with
N = o(d?), ideally with N = O(dlogd)? A covering
argument shows that generic orthogonal matrices in d di-
mensions require at least ©(d?/log(d)) Givens factors to
achieve an e-approximate factorization. We denote by 1 the
uniform Haar measure on the unitary group, which we nor-
malize for each d, u(U(d)) = 1. For notational simplicity,
we carry out the proof for the operator 2-norm. An analo-

' A Hadamard matrix is an orthogonal matrix H whose entries
satisfy |H; ;| = 1/+/d for all 4, j.

gous argument holds by replacing the operator 2-norm with
the Frobenius norm while re-scaling the error by v/d.

Lemma 1. Let HngN G, be a product of Givens factors

with rotation angles v, and G, be the respective perturbed
factors with rotation angles o, + 9, and perturbations 0 <
On < 9. Then,

< 2N§. )

F
Proof. For any orthogonal matrices U, U’, V, V', we have
|\u'v' —uv|, =[|[U+U -U)V' -UV|,
<[[vv’ =)l +I@ =)V
=V =vip+lv' =tz ®
by using the fact that the Frobenius norm is invariant to

orthogonal matrix multiplication. By iterating this relation,
we obtain

11 G- I] G-

n<N n<N

<D G =Gl - ©)
P n<N

Since G,, and G,, rotate in the same subspace,
|Gn = Gal| = 24/1 — cos(6y) - 7

Inequality (4) follows from /1 — cos(d,,) < 0, <J. O

Theorem 1. Let € > 0. If N =o(d?/log(d)), then as
d — oo,

p {U cv@)| int, 10~ [T Gull < } 0.

Proof. Consider an e-covering of the unitary group, i.e., a
discrete set X' such that infxecx ||U — X|2 < € for all
U € U(d). Since the manifold dimension of the unitary
group is d(d — 1)/2, we need |X| = ©(¢~¥4=1)/2) many
balls for that cover. Let N := N(d) be the number of avail-
able Givens factors for approximation at dimension d, and
An = {X S U(d)| infGlmGN HX_HnSN GnH2 < 6/2}
denote the set of unitary operators which can be effectively
approximated with N Givens terms. Now, suppose that
w(An) > ¢ > 0, i.e., the set of group elements admitting
an e/2-approximation has positive measure. This implies
that any e-cover of A must be of size ©(e~4(4=1)/2), Let
us build such an e-cover.

If we discretize the rotation angle to a value § > 0, then
there are (d(d — 1)/25) many different quantized Givens
factors, denoted by G, and consequently (d(d — 1)/28)N
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many different sequences. It follows that if § := ;%, the
discrete set Y = {[],, .y Gi, } containing all possible se-
quences of length N of quantized Givens rotations is an
e-cover of Ay . Indeed, by using Lemma 1 and the fact that
the operator 2-norm is bounded by the Frobenius norm, we
have VX € Ay,

X=T[ Gulo < IX= [ Gula+2N6 < =4 —¢.
1= TT Gele < 1X= ] Gl :

€

2
. 2d(d-1)N\ N .

Since |Y| = (f) , it follows that

(M)N _ g(edtd-1/2)

€

which implies N = O (d?/logd). O

An immediate consequence of Theorem 1 is that generic
effective approximation, i.e., with a number of factors
N = O (dlogd), is information theoretically impossible.
However, the situation may be entirely different for struc-
tured distributions of unitary operators. For that purpose,
we develop an algorithm to obtain effective approximations
based on sparsity-inducing norms.

5. Givens Factorization and Coordinate
Descent on O(d)

In this section, we offer an alternative viewpoint presented
by Shalit & Chechik (2014) that interprets Givens factor-
ization as manifold coordinate descent on the orthogonal
group over a certain potential energy.

The orthogonal group O(d) is a matrix Lie group with as-
sociated Lie algebra o(d) = Skew(d) = {X € R¥™4|X =
-X T}, the set of d x d skew-symmetric matrices (Hall,
2003). The tangent space at an element U is TyO(d) =
{XU|X € Skew(d)} and the Riemannian directional
derivative of a differentiable function f in the direction
XU € TyO(d) is given by

Dx f(U) = 5 f(Exp(aX)U)| (8)

a=0

where Exp : 0(d) — O(d) is the matrix exponential. If we
choose the basis {X;; = eie;r —ejelll <i<j<d}
for the tangent space, then D, f(U) represents the direc-
tional derivative in such a coordinate direction. A coordi-
nate descent algorithm uses a criterion to choose coordi-
nates (¢, j) and a step size (rotation angle) « to iteratively

update

UM = Exp(—aX; ) U* . 9)

A greedy criterion determines the best descent on f by a
search over all possible coordinate directions { X, }i<j<d
with the optimal step size obtained by a line search.

A Givens factor can be interpreted as a coordinate descent
step over the orthogonal group. This follows from the rela-
tion

Exp(—aXy;) = G (i, j, ) . (10)

In d = 3, an explicit example of the correspondence be-
tween Lie algebra and Lie group elements is

00 O 1 0 0
0 0 —a | — | 0 cos(a) —sin(e)
0 a O 0 sin(a) cos(a)

Y

Suppose we want to minimize a function f over the orthog-
onal group,

i (U (12)
Then minimizing (12) with manifold coordinate descent it-
erations (9) yields a Givens factorization of the initial point
U°. A truncated sequence leads to an approximate factor-
ization. From this viewpoint, the quality of a Givens fac-
torization can be controlled by properties of the function
f. In the following, we construct an objective function that
results in approximate factorization with less than O(d?)
factors.

6. Sparsity-Inducing Dynamics

To factorize a matrix U € O(d) one may choose it as an
initial value to problem (12) when minimizing a suitable
potential function f with manifold coordinate descent. We
want to find a factorization up to signed permutation of the
matrix columns. As the signed permutation matrices are
the sparsest orthogonal matrices, we consider an energy
function that quickly enforces sparsity, the element-wise
L1-norm of a matrix,

d
Oy =a U, =d Y Uy . (a3)

7,j=1

Although f is convex in R4 (since it is a norm), due to the
non-convexity of the domain, the problem mingcoq) f(U)
is non-convex . The landscape of f characterizes the class
of orthogonal matrices that admit effective Givens approxi-
mation. It is easy to see that the global minima of f in O(d)
consist of signed permutation matrices, with min f(U) =
1, and the global maxima are located at Hadamard matrices,
with max f(U) = v/d. A more involved question concern-
ing the presence or absence of spurious local minima of f
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is of interest. The following proposition partially addresses
this question by showing that critical points of f are neces-
sarily located at U € O(d) with some of its entries set to
Zero.

Proposition 1. Let 2 € R?>*? and let

— sin(a)
cos()

cos(a)
sin(«)

R(a) = (14)
be a counter-clockwise rotation in the plane by an angle
a. Consider the function g(a) = HR(a)le. Then, at
every local minimum o™ of g there exist indices k,l such

that (R(a*)x) w =0

Proof. We show equivalently that any stationary point o*
with (R(a*)z) w 7 0 Vk,lis alocal maximum. At any
such point the function g is twice continuously differen-
tiable and the second derivative is
9?%g
da? |, _

=a*

=—g(a®)<0. (15)

Consequently, any stationary point under this assumption
must be a local maximum. O

Proposition 1 implies that for a given subspace (¢, j), the
best rotation angle can be found by checking all axis tran-
sitions for the 2D points (w, ujk), k € {1,...d} and se-
lecting the angle that most minimizes the objective among
them. It also implies that any local minimum of f must cor-
respond to an orthogonal matrix with at least d zeros placed
at specific entries, such that no two rows or columns have
the same support. Indeed, Proposition 1 implies that there
exists a continuous path ¢ — U(t) = G(1, j, a(t)) with
a(0) = 0, generated by a Givens rotation of angle «(t),
such that f(U(t)) is non-increasing at t = 0, provided one
can find two rows or columns of U with the same support.
However, this result does not exclude the possibility that
f has spurious local minima at matrices U with the above
special sparsity pattern. In fact, we conjecture that the land-
scape of f does have spurious local minima.

A manifold coordinate descent on the objective function
f is explicitly stated in Algorithm 1. The crucial step in-
volves optimizing this objective in the rotation angle « for
a given subspace (i, j), which is a non-convex optimization
problem. Nevertheless, the global optimum can be found as
stated by Proposition 1. In d dimensions, this step requires
d operations. Consequently, due to the squared dimension
dependence of the double for-loop, a naive implementation
of Algorithm 1 would require O (d?) operations . However,
applying the selected Givens factor in each step changes
only two rows of the matrix; thus, in the subsequent iter-
ation, only those pairs of rows that involve the previously
modified ones need to be re-computed. These are O (d)
rows and altogether the runtime of an iteration is O (d?).

Algorithm 1 Coordinate descent on the L -criterion
Input: initial value U° € O(d), f(U) =||U]|,
repeat

for i = 1toddo
for j = 1toddo
if a;; not up-to-date then
ay; = argmin, f(G7 (i, j,a)U")
end if
end for
end for
i*,j* = argmin, ; f(GT (i, ,a};)U")
Uk-l—l — GT(i*,j*, a;ﬁ*j*)ka
until | U+ — IHF_Sym < ¢ or maxlter is reached

7. Numerical Experiments
7.1. Planted Models

Theorem 1 shows that we cannot expect to find good
approximations to Haar-sampled matrices with less than
O (d?/log(d)) Givens factors. Therefore, we focus on a
distribution for which we can control approximability. We
use the uniform distribution over the set {U € SO(d)|U =
G1---Gg,Gy = G(ig, jr, ax)}, where each Gy is ob-
tained by first sampling a subspace uniformly at random
(with replacement), and then sampling the corresponding
angle uniformly from (0, 27). We denote the resulting dis-
tribution by the K -planted distribution vg. While this dis-
tribution may be sparse in the number of Givens factors for
K <« d(d — 1)/2, this does not imply that the resulting
matrices are sparse. In fact, products of Givens matrices
become dense quickly. It follows from the Coupon Col-
lector’s Lemma that matrices generated with ©(d log,(d))
Givens factors are already dense with high probability. To
visualize this effect, Figure 1 shows the Ly-norm as a func-
tion of planted Givens factors.

We compare the following factorization algorithms. A
greedy baseline iteratively finds the Givens factor that most
minimizes the objective (3). The structured elimination al-
gorithm described in Section 3 yields a sequence of Givens
factors that eliminate matrix entries in the order (2) and is
guaranteed to find a perfect factorization with d(d — 1)/2
factors. Our sparsity-inducing algorithm minimizes the L-
criterion (13) via a manifold coordinate descent scheme.?

In an initial experiment, we demonstrate the approximation
effectiveness of these algorithms; the results are shown in
Figure 2. They indicate that minimizing the Lq-criterion
improves over directly minimizing the Frobenius norm
(greedy baseline). Next, we analyze the approximability

2 An implementation of these algorithms can be found at

https://github.com/tfrerix/givens—factorization
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Figure 1. Average sparsity based on 100 samples of matrices
drawn from the K -planted distribution over SO(d) for increas-
ing K. Standard deviation is negligible and not shown. Matrices
become dense quickly as the number of planted Givens factors
grows. In particular, matrices sampled from the d log, (d)-planted
distribution are already dense.

of samples drawn from the K -planted distribution vg as
a function of K. To obtain a Givens sequence, we factor-
ize these samples with manifold coordinate descent on the
L;-objective (13). Along the optimization path, we define
N.(U) as the number of Givens factors for which the nor-
malized approximation error (3) is smaller than € = 0.1,
ie.,

U-G1...G )
N(U) = min{N}” ! N”F’bym < e} (16)

Vd

We refer to a Givens sequence with such N,(U) factors as
an e-factorizing sequence of U. In Figure 3, the sample
average N. = n~' Y7 | N.(U;) for n = 10 samples is
shown as a function of K. We are interested in the rate at
which N, grows for increasing K. The data in Figure 3
show that for K = adlog,(d) and N, = fdlog,(d), the
ratio 3/« is not independent of d. For the shown dimension
regime this implies that for K = O (dlog(d)), N. grows
polynomial in d, albeit with small rate for few planted fac-
tors. To make this relation more precise, we extract the
exponent 7 of a model N, ~ d". Figure 4 shows that the
growth is slightly superlinear in the few-factor regime and
becomes quadratic towards K = dlog,(d). Analytically
characterizing such growth is left for future work.

That said, our initial results suggest the existence of a
computational-to-statistical gap for the recovery (or detec-
tion) of sparse planted Givens factors. Indeed, Theorem
1 proves that recovery with K = O (d2 /log d) planted
factors is information-theoretically possible, whereas
our greedy recovery strategy is only effective for

Vd
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IU = Ullpsym /!
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— L structured elimination === greedy baseline

Figure 2. Average Frobenius norm approximation error in
d = 1024 dimensions when factorizing 10 samples drawn from
the dlog,(d)-planted distribution over SO(d) with d(d — 1)/2
factors. Shaded area denotes standard deviation.

K = O/(dlogd). The mathematical analysis of our co-
ordinate descent algorithm in the regime where effective
approximation is feasible is beyond the scope of the present
paper. In particular, proving that N, = O (dlogd) is suffi-
cient when K < dlogd remains an open question.

7.2. Application: Graph Fourier Transform

The method introduced in this paper is useful in situations
where one at first computes an approximation to a uni-
tary operator, which is subsequently applied many times.
Hence, the trade-off between initial computation and ap-
proximation on the one hand and efficient application on
the other hand is in favor of the latter. Canonical examples
for this scenario are orthogonal basis transforms. In this
paper, we draw motivation from the FFT, which yields a
speed-up of applying a Fourier transformation over a regu-
lar grid domain from O(d?) to O(dlog(d)) time complex-
ity (Cooley & Tukey, 1965). However, these speed-ups do
not carry over when the domain is unstructured, such as
general graphs. Here, we compute an effective approxima-
tion of the graph Fourier transformation (GFT). Consider
a simple, undirected graph with degree matrix D and ad-
jacency matrix A. The unnormalized graph Laplacian is
defined as L := D — A, which is a positive semi-definite,
symmetric matrix. The GFT is represented by the orthogo-
nal matrix that diagonalizes L.

A baseline for our method is the Jacobi algorithm (Jacobi,
1846), which diagonalizes a symmetric matrix L by greed-
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Figure 3. Average number of Givens factors necessary to factorize
a K-planted matrix in d € {256,512,1024} dimensions up to
desired accuracy as a function of K. Here, e = 0.1 is the accuracy
as defined in expression (16). Note that the x-axis is shown with
unequal spacing to highlight the relevant regime of the data. The
inset plot shows a zoom of the first data points.

ily minimizing the off-diagonal squared Frobenius norm,

d
off (L) = LIz = Y Liy, - a7
k=1

This is achieved by zeroing-out the largest matrix element
in absolute value at every iteration. To this end, a Givens
matrix similarity transformation with a suitably chosen ro-
tation subspace and rotation angle is applied. However, the
Jacobi algorithm does not guarantee factorization in a fi-
nite number of steps; in particular, it may take more than
N = d(d—1)/2 iterations. In fact, the algorithm converges
linearly (Golub & Van Loan, 2012),

off(L*+1) < (1 - %) off(L*) . (18)

If the iteration number k is large enough, quadratic conver-
gence was shown by Schonhage (1964). Hence, the method
is ineffective for small iteration numbers and in high di-
mensions. A truncated version of this algorithm was used
by Magoarou et al. (2018) to obtain an approximation to
the GFT. The objective (17) of the Jacobi method is mo-
tivated by approximating the spectrum of the symmetric
matrix through the Gershgorin circle theorem (Gershgorin,
1931). However, we argue here that a criterion focused
on approximating the eigenbasis of the symmetric matrix
directly yields a more effective approximation to this or-
thogonal basis transformation. We consider the eigende-
composition L = UAUT and compute an approximation
of the orthogonal matrix U with the algorithms outlined in
Section 7.1. We demonstrate this procedure on Barabasi-
Albert random graphs and several real world graphs.

1.8 4

Figure 4. Polynomial growth rate 7 of the model N. ~ d" as a
function of the number of planted factors estimated from d €
{256,512,1024}. Note that the x-axis is shown with unequal
spacing to highlight the relevant regime of the data.

Table 1. Construction of Barabasi-Albert graphs. An m-vertex
graph is constructed by choosing ng = my initial vertices, then
adding vertices and connecting them to my of already existing
ones with a probability proportional to the degree of these ver-
tices. my is chosen such that the number of resulting edges is
approximatly k - 0.25n(n — 1)/2.

n 64 128 256 512 1024
mp 54 109 218 437 874
me 36 69 136 267 528

The Barabasi-Albert model starts with ng unconnected ver-
tices and iteratively adds vertices to the graph, which are
connected to a number m of already existing ones with
a probability proportional to the degree of these vertices.
This construction is known as preferential attachment and
induces a scale-free degree distribution found in real world
graphs (Barabdasi & Albert, 1999). The details of gener-
ating these graphs are described in Table 1. We approx-
imate the corresponding graph Laplacians with nlog,(n)
factors leading to the results shown in Figure 5. While our
sparsity-inducing algorithm yields better factorizations in
most cases, there exist scenarios, where the greedy base-
line results in better approximations (d € {512,2014} for
~ 0.25nlog,(n) edges). Finally, we demonstrate approx-
imate factorization of the graph Laplacian of various real
world graphs listed in Table 2. Our L;-algorithm yiels the
best factorization for the Minnesota, HumanProtein, and
EMail graphs, while the greedy baseline algorithm is supe-
rior for the Facebook graph.

A simple strategy to improve the performance of our L,
greedy method with mild computational overhead is to per-
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Figure 5. Approximate factorization of the graph Laplacian of n-
vertex Barabdsi-Albert graphs with n log, (n) factors. Data points
are averages of 10 samples, vertical lines denote standard de-
viation. The solid (-) lines show factorizations of graphs with
~ 0.5n(n — 1)/2 edges, while the dashed (- -) lines show factor-
izations of graphs with ~ 0.25n(n — 1)/2 edges.

Table 2. GFT approximation for real world graphs with n vertices
and n. edges.

n Ne
MINNESOTA 2642 3304
(Defferrard et al.)

HUMANPROTEIN 3133 6726
(Rual et al., 2005)

EMAIL 1133 5451
(Guimera et al., 2003)

FACEBOOK 2888 2981

(McAuley & Leskovec, 2012)

form beam-search, which is beyond the scope of this paper.
Overall, it remains an open question to more closely charac-
terize the graphs for which our sparsity-inducing algorithm
yields effective approximations of the GFT.

8. Discussion

We analyzed the problem of approximating orthogonal ma-
trices with few Givens factors. While a perfect factoriza-
tion in O (d?) is always possible, an approximation with
fewer factors is advantageous if the orthogonal matrix is
applied many times. We showed that effective Givens fac-
torization of generic orthogonal matrices is impossible and
inspected a distribution of planted factors, which allows
us to control approximability. Our initial results suggest
that sparsity inducing factorization is promising beyond the
sparse matrix regime. However, it remains an open prob-
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Figure 6. Approximate factorization of the graph Laplacian of var-
ious n-vertex real world graphs with nlog, (n) factors.

lem to further characterize the matrices that admit effective
factorization using manifold coordinate descent on an L;-
criterion.

This work opens up questions we believe are important
both from a theoretical and an applied perspective. On
the theory side, important problems arising from our anal-
ysis are: (i) a complete description of the landscape of
f(U) = ||U||1 over the orthogonal and unitary groups, (ii)
a precise classification of the detection threshold K (d) be-
low which it is possible to discriminate a K -planted sample
from a Haar sample in polynomial time, and (iii) a guaran-
tee that the proposed sparse Givens coordinate descent al-
gorithm requires N = O(dlogd) terms for K < Cdlogd
for some constant C' > 0. These questions suggest a learn-
ing approach whereby our sparsity promoting potential f
would be replaced by a classifier fy trained to discriminate
between K -planted and Haar distributions. From an ap-
plied perspective, the method allows to approximately in-
vert a time-varying symmetric linear operator H (t). Sim-
ilar to the Woodbury formula for low-rank updates of an
inverse, one could set up an approximate Givens factoriza-
tion of the eigenbasis of H (ty), and update it efficiently at
subsequent times. If successful, this could dramatically im-
prove the efficiency of second-order optimization schemes,
where H (t) is the Hessian of a loss function.
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