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ABSTRACT. We establish a correspondence between trisections of smooth,
compact, oriented 4-manifolds with connected boundary and diagrams
describing these trisected 4-manifolds. Such a diagram comes in the
form of a compact, oriented surface with boundary together with three
tuples of simple closed curves, with possibly fewer curves than the genus
of the surface, satisfying a pairwise condition of being standard. This
should be thought of as the 4-dimensional analog of a sutured Heegaard
diagram for a sutured 3—-manifold. We also give many foundational ex-
amples.

1. INTRODUCTION

In [8], Gay and Kirby defined, and proved existence and uniqueness state-
ments for, trisections of both closed 4-manifolds and compact 4-manifolds
with connected boundary. In the latter, relative case, the trisections restrict
to open book decompositions on the bounding 3—manifolds. In the closed
case, the same paper discusses trisection diagrams; these are diagrams in-
volving curves on surfaces which uniquely determine closed, trisected 4—
manifolds up to diffeomorphism. The aim of this paper is to complete
the story by defining relative trisection diagrams and showing that they
uniquely determine trisected 4—manifolds with connected boundary, as well
as to present a series of fundamental examples.

Before recalling the background definitions in [8], we introduce some basic
definitions and state the main result of the present article.

Definition 1. Two (n + 1)-tuples of the form (¥,a!,...,a"), where each
o' is a collection af = {oﬂl, .. ,a}c} of k disjoint simple closed curves on the
surface X, are diffeomorphism and handle slide equivalent if they are related
by a diffeomorphism between the surfaces and a sequence of handle slides
within each o; i.e. one is only allowed to slide curves from o over other
curves from o, but not over curves from o/ when j # i.

Definition 2. A (g, k;p,b)-trisection diagram (where 2p +b—1 < k <
g+p+b—1)isad-tuple (X,a,3,7), where ¥ is a surface of genus g with
b boundary components and each of «, S and « is a collection of g — p
simple closed curves such that each triple (X, a, ), (3, 8,7), and (2,7, a)
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is diffeomorphism and handle slide equivalent to the triple (¥, d, €) shown in
Figure 1.

g+p+b—1—k k—2p—b+1 p

FIGURE 1. The standard model (X, 6, ¢).

The following theorem, the main result of this paper, references trisections
of 4—manifolds with boundary, but we defer the definition of this concept to
a later section. If this is new to the reader, the main thing to know at the
moment is that a trisection of a 4—-manifold X is a decomposition into three
codimension—0 submanifolds X = X; U X5 U X3, and that in the relative
case a trisection induces an open book decomposition on 0.X.

Theorem 3. For every (g, k; p, b)—trisection diagram (3, c, B,7) there is a
unique (up to diffeomorphism) trisected 4—manifold with connected boundary
X = X1 U Xs U X3 such that, with respect to a fized identification ¥ =
X1 NXoN Xs, the a, B and v curves, respectively, bound disks in X1 N X,
XoNXs and X3NXq. In particular, the open book decomposition on 0X has
b binding components and pages of genus p. Furthermore, any trisected 4—
manifold with connected boundary is determined in this way by some relative
trisection diagram, and any two relative trisection diagrams for the same 4—
manifold trisection are diffeomorphism and handle slide equivalent.

As a consequence, the monodromy of the open book decomposition on 0.X
is also completely determined by the diagram (X, «, 3,v). We now describe
how to read off the monodromy from the diagram.

Definition 4. Given a compact oriented surface ¥, consider a pair (a =
(a1y...,ar),a = (ai,...,a;)), where each a; is a simple closed curve in X,
each a; is a properly embedded arc in ¥, and {a1,...,a,a1,...,q} are
disjoint. We say that another such pair (o/,d’) is handle slide equivalent to
(a,a) if (o, d’) is obtained from (a,a) by a sequence of the following two
operations: (1) Slide one simple closed curve in « over another simple closed
curve in a. (2) Slide one arc in a over a simple closed curve in a.

Note that we do not allow “arc slides”, in which arcs in a slide over other
arcs in a.

We adopt the following notation: Given a surface ¥ and a collection
of simple closed curves «, ¥, denotes the surface obtained by performing
surgery along «. This comes with an embedding ¢, : ¥\ o — X, the image
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of which is the complement of a collection of pairs of points, one for each
component of a.

Theorem 5. A relative trisection diagram (X, «, 3,7) encodes an open book
decomposition on 0X with page given by Y., the surface resulting from X
by performing surgery along the o curves, and monodromy i : Yq — Xa
determined by the following algorithm:

(1) Choose an ordered collection of arcs a on ¥, disjoint from « and
such that its image ¢q(a) in Xq cuts X into a disk.

(2) There exists a collection of arcs a; and simple closed curves ' in
Y. such that (o, ay) is handle slide equivalent to (a,a), 5 is handle
slide equivalent to 3, and a1 and (' are disjoint. (We claim that in
this step we do not need to slide o curves over a curves, only a arcs
over « curves and 3 curves over B curves.) Choose such an ay and
,8/

(3) There exists a collection of arcs as and simple closed curves v in %
such that (B, az) is handle slide equivalent to (8',a1), v is handle
slide equivalent to v, and az and ' are disjoint. (Again we claim
that we do not need to slide 3 curves over ' curves.) Choose such
an as and ~'

(4) There exists a collection of arcs ag and simple closed curves o' in %
such that (7', a3) is handle slide equivalent to (7, az2), o’ is handle
slide equivalent to o, and ag and o' are disjoint. (Again we do not
need to slide v' curves over v curves.) Choose such an a3 and /.

(5) The pair (¢!, a3) is handle slide equivalent to (o, as) for some col-
lection of arcs as. Choose such an as. Note that now a and as are
both disjoint from o and thus we can compare ¢q(a) and po(ax) in
Y.

(6) The monodromy p is the unique (up to isotopy) map such that

1(@ala)) = dalax),
respecting the ordering of the collections of arcs.

Of course there are choices in the above algorithm each time we perform
handleslides to arrange disjointness from the next system of curves, but part
of the content of the theorem is that the resulting u is independent of these
choices.

Note that this, together with the existence of trisections relative to given
open books [8], gives us a purely 2-dimensional result, namely that there is
a way to encode mapping classes of surfaces with boundary via trisection
diagrams (on higher genus surfaces).

An alternative definition of a relative trisection diagram includes both
the systems of curves «, 8 and v and the systems of arcs ai, as, as; from
such a definition it is easier to see that a diagram determines a trisected
4-manifold. The nontriviality of both Theorem 3 and Theorem 5 is that



4 NICKOLAS A. CASTRO, DAVID T. GAY, AND JUANITA PINZON-CAICEDO

one does not in fact need the arcs to uniquely determine the 4—manifold and
the open book on its boundary.

2. TRISECTIONS OF CLOSED MANIFOLDS AND THEIR DIAGRAMS

Let Z;, = 15(S! x B3) with Y}, = 07;, = #*(S* x S?). Given an integer
g>k,let Y, =Y, ok Y YJr be the standard genus g Heegaard splitting of Y}
obtained by stablhzlng the standard genus k£ Heegaard splitting g — k times.

Definition 6. A (g, k)-trisection of a closed, connected, oriented 4-manifold
X is a decomposition of X into three submanifolds X = X; U Xo U X3
satisfying the following properties:

(1) For each i = 1,2, 3, there is a diffeomorphism ¢; : X; — Zj.
(2) For each i = 1,2, 3, taking indices mod 3, ¢;(X; N X;41) = Y, ) and
¢1(Xz N Xi—l) = }/g—,’—k

Theorem 7 (Gay-Kirby [8]). Every smooth closed oriented connected 4-
manifold has a trisection.

Definition 8. A (g, k)—trisection diagram is a tuple (X, «v, 3,7) such that ¥
is a closed oriented surface of genus g and each triple (3, «, 5), (X, 58,7) and
(2,7, «) is diffeomorphism and handle slide equivalent to the triple (X, d, €)
shown in Figure 2.

FIGURE 2. The standard model (X, 6, €) in the closed case.

The following result is straightforward, and we present the proof here only
to set the stage for the more subtle relative case.

Theorem 9 (Gay-Kirby [8]). For every (g, k)-trisection diagram (3, c, 3,7)
there is a unique (up to diffeomorphism) closed trisected 4—manifold X =
X1UXoUX3 such that, with respect to a fized identification ¥ = X1NXoNX3,
the o, B and v curves, respectively, bound disks in X1 N Xo, Xo N X3 and
X3NXy. Furthermore, any closed trisected 4-manifold is determined in this
way by some trisection diagram, and any two trisection diagrams for the
same 4—manifold trisection are diffeomorphism and handle slide equivalent.
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Proof. Note that the diagram in Figure 2 is a standard genus g Heegaard
diagram for #*S1 x S? = Y}, describing the standard genus ¢ splitting
Ve =Y, UYL Fix an identification of ¥ with Y, N'Y,f, such that the
curves bound dlSkS in Y ok and the e curves bound disks in Y+

Given a trisected 4— mamfold X = X7 UXoU X3, let ¢Z X, = Zg,
for 1 = 1,2,3, be the diffeomorphisms from Definition 6. The associated
diagram is then (X1 N X2 N X3, 07 (5), 95 (8), ¢3'(6)). Equivalently one
could replace any ¢; 1(6) with qﬁi;ll(e), or in fact any other cut system of g
curves bounding disks in X; N X;1; the resulting diagrams would be handle
slide equivalent [9].

Conversely, given a trisection diagram (X, o, 8,7), let Hy, Hg and H,,
resp., be handlebodies bounded by ¥ determined by «, 8 and ~y, resp. Then
build X by starting with B2 x 3, attaching I x Hy,, I x Hg and I x H, to
0B?x % = S x F, along successive arcs in S ! crossed with ¥. This produces
a 4—manifold with three boundary components, but because each pair of
systems of curves is a Heegaard diagram for #*S1 x 52, each boundary
component is diffeomorphic to #5S! x S?, and hence can be capped off
uniquely with 78St x B3 [11]. O

3. RELATIVE TRISECTIONS

Here we rephrase the definition of relative trisection from [8]. Given
integers (g, k;p,b) withg>pand g+p+b—1>k>2p+b— 1, we begin
as in the closed case with Z, = 15! x B3 and Y, = 07, = #FS! x §2,

but in this case we describe a certain decomposition of Y}, as YY), = Y_ kepb U
YqolC Db uY™ kb needed for the definition. This decomposition is 111119trated

in Figure 3 as a lower dimensional analogue.

Let D be a third of a unit 2-dimensional disk. Namely, use polar coor-
dinates and set D = {(r,0) | r € [0,1],0 € [-7/3,7/3]}. Decompose 0D as
0D =0-D U3 DUt D, where

0D ={rel0,1],0 = —7/3},
(3.1) D = {r=1,0 ¢ [-7/3,7/3]}, and
0D ={rel0,1],0 = n/3}.

Now let P be a compact surface of genus p with b boundary components
and consider U = D x P. Note that U = §2Pt0=181 » B3 and that the
decomposition (3.1) induces a decomposition of JU as

oU =9"UUudUuaty,

where 0FU = 0D x P and 9°U = (0°D x P) U (D x OP). Similarly,
notice that if we regroup the sets involved in the decomposition of OU into
0~U U d°U and 07U, we obtain the standard genus 2p + b — 1 Heegaard
splitting of #2Ptb=181 x 52,

Next, decompose O(Stx B3) = S'xS? as 07 (St x B3)U0T (S x B?), where
0% (St x B?) = S x 52 and S? are the northern and southern hemispheres.
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boundary connect sum

{—7n/3} x P

boundary connect sum

stabilization

FIGURE 3. Several views of a lower dimensional analog
of the standard model Z; for a sector of a relative trisec-

tion, with the decomposition of the boundary Y3 = Y kepb U
Ygok b Yg kb The page P is represented as a stralght line

segment, in purple.

This is the standard genus 1 Heegaard splitting of S* x S2. For a positive
integer n, let Vj, = §°(S* x B3), with the boundary connect sums all occuring
in neighborhoods of points in the Heegaard surface of each copy of 9(S* x
B3), so that the induced decomposition OV = 9~V U 91V is the standard
genus n Heegaard splitting of #"(S! x S?). Now, given an integer s > n,
let V,, = 07V, U0V, be the result of stabilizing this Heegaard splitting
exactly s times. In what follows, to simplify notation, let V = V,,, where
n=k—2p—b+1,and take stobeg—k+p+b—1.

Finally, identify Z; with UV, with the boundary connect sum connecting
a neighborhood of a point in the interior of ~UNATU with a neighborhood
of a point in the Heegaard surface ;7 V N9 V. The induced decomposition
of Yy, = 0Z; is the advertised decomposition Y = Y_ uY? Gkipb Y Yg A

kp,b NN
To be more specific,

32) Y s = 07UV and
’ 0
Vs =0U

Before presenting the definition of a trisection relative to the boundary, we
make a brief comment on the schematic representation of the stabilization
in Figure 3: The illustration shows a “Heegaard splitting” of a 2-manifold,
not a 3-manifold, in which case “stabilization” corresponds to introducing
a cancelling 0—1-handle pair, or 1-2-pair, depending on your perspective,
and this is of course not as symmetric as stabilization in dimension 3. In
particular, the result is that one half of the splitting becomes disconnected
while the other half remains connected. This is the best representation we
can give when embedding the schematic in R3.
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Definition 10. A (g, k;p,b)—trisection of a compact, connected, oriented
4-manifold X with connected boundary is a decomposition of X into three
submanifolds X = X3 U Xy U X3 satisfying the following properties:

(1) For each i = 1,2, 3, there is a diffeomorphism ¢; : X; — Zj.
(2) For each i = 1,2,3, taking indices mod 3, ¢;(X; N Xi+1) Y,

g,k;p;b
and ¢;(X; N X;_1) =Y. . while ¢;(X; NOX) =

g;k;p,b’ g k ;b

Lemma 11. A (g,k;p,b)-trisection of a compact, connected, oriented 4—
manifold X with connected boundary induces an open book decomposition
on 0X with pages of genus p with b boundary components.

Proof. Each X; N 90X is diffeomorphic to Y, Py k b which is diffeomorphic to
([-7/3,7/3] x P)U (D x OP). These three pieces fit together to form 90X
precisely so that the three copies of [—7/3 x 7/3] x P form a bundle over
S1 with fiber P, and so that the three copies of D x 9P form a B? x 9P, a
disjoint union of solid tori that fill the boundary components of the bundle
as neighborhoods of the binding components of an open book. ]

Theorem 12 (Gay-Kirby [8]). Every smooth, compact, oriented, connected
4-manifold with connected boundary, with a fired open book decomposition
on the boundary, has a trisection inducing the given open book.

4. RELATIVE TRISECTIONS AND SUTURED 3 MANIFOLDS, AND PROOFS OF
THE MAIN THEOREMS

In this section we make several observations about our model (Zg, Yy).
These observations will help us analyze the topology of the corresponding
pieces of a relative trisection X = X7 U Xo U X3 and will allow us to identify
these spaces with more familiar ones.

(1) The intersection Y Y;) j:pp» and hence the triple intersection
X1NXaNXs,is a surface of genus g with b boundary components.
This is schematically illustrated in Figure 3 as a black 1-manifold,
see Figure 4.

(2) The intersection Ygikp nYy? skpb and hence X; N Xiz N OX, is a
surface of genus p with b boundary components, and so diffeomorphic
to P. For i = 1,2, 3, these become three pages of the induced open
book decomposition of 9X. In Figure 3, these appear as the two
gray ends of the “fan” of pages; Figure 4 isolates the schematic
representations of these two surfaces.

(3) The 3-dimensional triple intersection Y gkpb ) Y kpb (1 Yq eop e A0d
hence the 4-dimensional intersection XN Xs ﬂX 3 ﬁBX is a disjoint
union of b circles. These circles are precisely the components of P,
and as such, the binding of the induced open book. This appears

schematically in Figure 4 as a red pair of points.
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(4)

+ 0
Yg,k;p-,b n Y.%k;p,b

- 0
Yg,k;p,b n Y;i,k;n

_l’_
Yg,k‘;p,b n Yg,k;p,b

FIGURE 4. Three “surfaces” in the standard model, as rep-
resented in the lower dimensional schematic. Their common
intersection, here shown as a red S, is really a disjoint union
of b copies of the circle S?.

Both ngk;p’b and Y;:k;p?b, and hence X; N X;41, are 3—dimensional
relative compression bodies starting from a surface ¥ of genus g
with b boundary components and compressing along g — p disjoint
simple closed curves to get to a surface P of genus p with b bound-
ary components. Here, by “relative compression body”, we mean a
cobordism with sides from a high genus surface at the bottom to a
low genus surface at the top, each with the same number of boundary
components, with a Morse function with critical points only of index
2. The schematic representations of these two relative compression
bodies are illustrated side by side in Figure 5(a).

The union Y kpn U Y;rk;p’b =Y\ Y;gk:;p,b’ and hence each 0X; \ 0X,
is a balanced sutured 3—manifold, with suture equal to a disjoint union
of annuli described, in the explicit construction of (Zj, Yy) described
n(3.2),as {r € [0,1],0 = £7/3} x 0P with the first factor asin (3.1).
Thus each 0X; \ 0X is a balanced sutured 3—manifold, with suture T’
equal to a regular neighborhood in 9(0X; \ 0X) of the binding. The
suture divides the boundary into two remaining pieces P~ and P™
which, in our case, are, respectively, {—m/3} x P and {7/3} x P. See
Figure 5(b). Note that, in this paper, annular sutures of a sutured
manifold are considered to be parametrized annuli, i.e. parametrized
as [—1,1] x OP~.

In fact the sutured manifold ngk;p,bUYng;p,b =Y\ Yg?k;pb, and hence

each 0X; \ 0X = (X; N X;—1) U (X; N X;41), is diffeomorphic to
([F1,1] x P)#(#h-2rbH181 x 52),

with suture I' = [~1,1] x P and boundary pieces P* = {#+1} x

o . + — .
P. The decomposition as Y'g’k;p’b U Yng;p’b is the connected sum of
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the decomposition of [—1,1] x P as ([-1,0] x P) U ([0,1] x P) with
a (9 — k+b— 1)-times stabilized standard Heegaard splitting of
#h=20=0+1G61 o 62 This gives a standard genus ¢ sutured Heegaard
splitting of 0X; \ 0X.

(7) There is a diffeomorphism between the surface ¥ in Figure 1 and
\ar » MY iy such that the § curves in Figure 1 bound disks in

9,k;p,
ngpb and the € curves in Figure 1 bound disks in ngpb Thus
(%, 6, €) is a sutured Heegaard diagram for Y, ks Y g ks = Y \ Y0 kpb

(A sutured Heegaard diagram is a triple (Z J, €) such that ¥ is a sur-
face with boundary and each of § and € is a nonseparating collection
of simple closed curves in X; such a diagram determines a sutured
3-manifold, balanced if |§| = |¢|.)

(a) The two relative compression bodies Y pppand Y . p.p» €ach shown with the
high genus “surface” ¥ on the bottom the 51de5 of the cobordism, slanted up and
to the left, and the low genus “page” P on the to}g._'_

r

P
(b) The two relative compression bodies fit together to form a sutured 3—manifold,

depicted here with “sutures” vertical and bent at a 27/3 angle along the core
binding.

FIGURE 5. Diagrams concerning relative compression bodies.

Notice that the decomposition of Y 4., into Y, kb UY b UYg k,p,b can
be modified into a decomposition with pieces Yg7 Yg kip.b and Y 0 k Db by

grouping together the first two pieces. This decompos1tlon is the standard
genus k Heegaard splitting of ##S1 x S2 stabilized g — k + p+ b — 1 times.
Notice also that Ygok,p , can be identified with a collar of the surface P in

Yj g+p+b—1- Thus, we can think of the space Y, 0k, bUYg kipp = Yk \ YO ep.b S
the complement of a surface with boundary i 1n a Heegaard splitting and so it
is only natural to expect arcs to be part of a notion of diagram for Y g b
Y;rk.p ,- However, the last two observations indicate that it is possible to

avoid the arcs. All this sets the stage for our main technical lemma.

Lemma 13. Consider a diffeomorphism

¢ 1 ([—1,1] x P)y#(#'S" x 8%) = ([-1,1] x P)#(#'S" x §?)
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where the domain and range here are equipped with the sutured structure I' =
[~1,1]x 0P and P* = {41} x P discussed above. Suppose that ¢|p p- = id.
Then ¢|p+ is isotopic rel. boundary to the identity function id : P™ — PT.

Proof. To simplify notation, let M = ([—1, 1] x P)#(#!S! x 52) and consider
a properly embedded arc a C P; this gives rise to a simple closed curve
Yo = ({0} x a) U ([0,1] x da) U ({1} x a) C OM. Since ¢|p p- = id, then
d(va) = ({0} x a) U ([0,1] x da) U ({1} x a') for some other arc a’ C P
with the same endpoints as a. Since 7y, bounds a disk in M, so does ¢(v,)
and thus, in fact ¢(v,) is homotopically trivial in [—1, 1] x P. Therefore the
loop 7, = a*(a’)~! obtained by concatenating a and (a’)~! is homotopically
trivial in P. So a and a’ are homotopic rel. endpoints, and thus by a result
of Baer [1], see [6, 3.1], a and ' are actually isotopic. Apply this to a
collection of arcs cutting P into a disk to conclude that ¢|p+ is isotopic rel.
boundary to id : PT — PT. O

In what follows we use this lemma in the following form:

Corollary 14. Consider the model sutured 3—manifold
(([_17 1] X P)#(#ZSI X 52)7F7P77P+)

discussed above, and note that there is an “identity” map id : P~ — P~T
defined by id(—1,p) = (1,p). Given any sutured 3—-manifold

(M, Tar, Py, Pyp)

diffeomorphic to (([—1,1] x P)#(#'S! x §?),T, P~, P*) there is a unique
(up to isotopy rel. boundary) diffeomorphism idy : Py, — PI\—Z such that,
for any diffeomorphism

¢ : (M,Tar, Py, Pifp) = (([=1,1] x P)#(#'S" x §%),T, P, P¥),
we have idy = ¢~ oidog.

We are finally ready to prove the main results of this paper, namely
Theorem 3 and Theorem 5. We include the statements of both theorems
again to make it easier for the reader to follow our proofs.

Theorem 3. For every (g, k; p, b)—trisection diagram (3, c, B,7) there is a
unique (up to diffeomorphism) trisected 4—manifold with connected boundary
X = X1 U Xs U X3 such that, with respect to a fized identification ¥ =
X1 NXoN Xs, the a, B and v curves, respectively, bound disks in X1 N X,
XoNXs and X3NXq. In particular, the open book decomposition on 0X has
b binding components and pages of genus p. Furthermore, any trisected 4—
manifold with connected boundary is determined in this way by some relative
trisection diagram, and any two relative trisection diagrams for the same 4—
manifold trisection are diffeomorphism and handle slide equivalent.

Proof of Theorem 3. We parallel as much as possible the proof of Theorem 9.
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As mentioned above, the diagram (X, 0, €) in Figure 1 is a sutured Heegaard
diagram for Y;rkmb UY, epp = Y \ Y?k;p’b. Fix an identification of ¥ with
ngk;p’bﬁYgJ’rk; ob such that the § curves bound disks in ngk; ob and the e curves

bound disks in Ygfk;pyb.

Given a trisected 4-manifold X = X3 U X9 U X3, for i = 1,2,3, let
i : X; — Zy, be the diffeomorphisms from Definition 10. As before, the as-
sociated diagram is then (X1NX2N X3, ¢77(8), 63 (8), ¢3(9)). Equivalently
one could replace any (151-_1(5) with gb;rll(e), or in fact any other complete
non-separating system of curves bounding disks in X; N X;11; the resulting
diagrams would again be handle slide equivalent [9, 2].

Conversely, given a relative (g, k; p, b)—trisection diagram (X, a, 3,7), let
Ca, Cg and C,, resp., be relative compression bodies built by starting with
I x ¥ and attaching 3-dimensional 2-handles along «, 5 and ~, resp. The
boundary of C,, for example, is naturally identified with X U (I x 93) UX,,
where X, is the result of surgery applied to X along a. Let P =X, =Yg =
.

Build X by starting with B2 x ¥, attaching I x C,, I x Cg and I x C., to
0B? x ¥ = S! x ¥ along the product of successive arcs in S' with ¥. This
produces a 4-manifold with boundary naturally divided into B? x 3, three
copies of (I x P)U(I x I x OP) and three sutured 3-manifolds diffeomorphic
to (([~1,1] x P)#(#'S' x §2),T, P~, PT). The three sutured manifolds are
as advertised because each of (X, a, ), (X, 8,7) and (X,~, «) is handle slide
and diffeomorphism equivalent to the standard sutured Heegaard diagram
(X, 6, ¢) discussed above. This is illustrated in Figure 6. Using Corollary 14,

FIGURE 6. B? x ¥ with Ix three relative compression bodies.

there is a unique way to glue ([—1,1] x P)U (D x 9P), that is one third of
an open book, to each of these sutured 3—manifolds. Thickening the three
pieces we have glued on to be 4-dimensional, we get a 4-manifold with
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four boundary components: one on the “outside”, equal to an open book
decomposition with page P, and three “inside” boundary components each
diffeomorphic to ##S1 x S2. This is illustrated in Figure 7, in which at
the last stage we only see the outer boundary. Cap off each of the inside
boundary components with 7¥S x B3 (uniquely, by [11]). The end result is
our trisected 4-manifold X = X;U XU X3. (Each X is the union of a third
of B? x ¥, half of I cross one relative compression body, half of I cross the
next relative compression body, the thickened copy of ([—1, 1] x P)U(D x9P)
glued in to this third, and the corresponding copy of 1*S* x B3.)

weoo

FIGURE 7. Gluing on three groups of pages and closing up.

O

Theorem 5. A relative trisection diagram (X, «, B,7) encodes an open book
decomposition on 0X with page given by Y., the surface resulting from X
by performing surgery along the o curves, and monodromy p : ¥, — g
determined by the following algorithm:

(1) Choose an ordered collection of arcs a on X, disjoint from « and
such that its image ¢o(a) in Lo cuts Xy into a disk.

(2) There exists a collection of arcs a1 and simple closed curves 3’ in
Y such that (o, ay1) is handle slide equivalent to (a,a), 5 is handle
slide equivalent to 8, and a1 and B’ are disjoint. (We claim that in
this step we do not need to slide o curves over a curves, only a arcs
over a curves and [ curves over [ curves.) Choose such an a; and
,8/

(3) There exists a collection of arcs ag and simple closed curves v in X
such that (8, az2) is handle slide equivalent to (8',a1), +' is handle
slide equivalent to v, and az and ' are disjoint. (Again we claim
that we do not need to slide 3’ curves over 3’ curves.) Choose such
an as and ~'

(4) There exists a collection of arcs ag and simple closed curves o in ¥
such that (v',a3) is handle slide equivalent to (v',az2), &' is handle
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slide equivalent to o, and ag and o' are disjoint. (Again we do not
need to slide v' curves over v curves.) Choose such an a3 and /.
(5) The pair (¢!, a3) is handle slide equivalent to (o, as) for some col-
lection of arcs as. Choose such an as. Note that now a and as are
both disjoint from « and thus we can compare ¢q(a) and o (ax) in

Ya-
(6) The monodromy p is the unique (up to isotopy) map such that

M(¢a(a)) = ¢a(a*)-/

respecting the ordering of the collections of arcs.

Proof of Theorem 5. The fact that each of (X, «, 8), (£, 8,7) and (X, v, a) is
handle slide and diffeomorphism equivalent to the sutured Heegaard diagram
(X,6,¢) in Figure 1 tells us that we can in fact find the collections of arcs and
sequences of slides advertised. Each time we find a collection of arcs which
is disjoint from, for example, both 8 and +, this describes a diffeomorphism
from X3 to X, which is the “identity” map coming from Corollary 14. Thus
we have the following steps:

(1) Note that ¢, (a) is isotopic to ¢ (a1) in X, because a; was produced
from a by sliding over a: curves.
(2) Map X, to X so as to send ¢q(ai) C X4 to ¢pgr(ar) C Xgr.
(3) Note that ¢g(a1) is isotopic to ¢a/(az) in X because ay was pro-
duced from a; by sliding over 3’ curves.
(4) Map Yg to Xy so as to send ¢gr (a2) C g to oy (a2) C X
(5) Note that ¢,/ (az) is isotopic to ¢-/(a3) in X,/ because az was pro-
duced from ag by sliding over 4’ curves.
(6) Map X, to X so as to send ¢./(az) C Xy to ¢ (az) C L.
(7) Map X, to X, so as to send ¢y (as) to dq(as).
The fact that each of the maps in the above sequence of maps is indepen-
dent of the choices is a restatement of Corollary 14, and thus we see the

monodromy expressed as a composition Y, — Mg — X — My — .
d

5. EXAMPLES

5.1. Disk Bundles over the 2-sphere S2. Consider p : E, — S? the
oriented disk bundle over S? with Euler number n. Decompose S? as the
union of three wedges Bj, B2, Bjs that intersect pairwise in arcs joining
the north and south pole and whose triple intersection consists precisely
of the north and south poles as shown in Figure 8. Ideally, we would just
lift this trisection of S? to get a trisection for E,. However, although each
p~Y(B;) is in fact a 4-dimensional 1-handlebody, the triple intersection of
these pieces is not connected and so this naive decomposition of FE,, is not
really a trisection. To fix this, for i, = 1,2,3 let ¢; : B; x D?> — p~Y(B;)
be a trivialization over B; and let g;; : B; N Bj — SO(2) be the transition
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function for cp[l o ;. Next, parametrize each arc B;NB;;1 by t € [0, 1] and
use the cocycle condition to set

2mint

(5.1) gi2,gos3:t— 1, and g31 : t — €

o [ cos(f) —sin(0)
~\ sin(f)  cos(6)
notion of cocycle condition from [41]. In addition, choose sections o; over
B; (i = 1,2,3) disjoint from one another and so that at each point b € B;,
o;(b) lies in the interior of the fiber p~1({b}). Let v; = B; x N; be a tubular
neighborhood of o; (B;) in p~!(B;), and also assume that these tubular
neighborhoods are pairwise disjoint and that at each point b € B;, the
vertical direction of v; at b lies in the interior of p~!(b). Finally, set

Xi=p H(B)\vi U  wvig,
©ioP; 1y

Here we are using the identification e

> and the

where the gluing is done via ¢; o 901'_+11 s v NP H(By) — v Np~H(By).
Notice that since v; is a 2-handle, removing it from p~!(B;) results in a
space diffeomorphic to S' x B3. In addition, since v;,; is attached along
vir1 Np~1(B;) and this set is a 3-ball, attaching v;41 does not change the
diffeomorphism type and thus X; is diffeomorphic to S* x B3.

FIGURE 8. Decomposition of S? = B; U By U B3

For the X;’s to define a trisection of E,,, we need to check that the inter-
sections between them behave in the way stipulated in Definition 10. With
this in mind, consider first the pairwise intersection X;_; N X; and notice
that this intersection is such that

Xz'—l M Xz = (p_l (Bi—l N Bz) \ (Vi—l U VZ))

(52) U 0w U (N (Bis).
Pi—10¥; Pi%Pi11

Here (p_l (Bi—1 N B;) \ (-1 U 1/1)) is diffeomorphic to a 3-ball with two 2-
handles removed, and v;11 N p~*(B;_1) is a 1-handle. Moreover, the set
Oiv; = B; x ON;, the boundary of v; as a subspace of p~!(B;), is a solid
torus attached to the 3-ball with two 2-handles removed along a cylinder
in its boundary and thus is simply a thickening of one of the holes left by
the 2-handles. We can then conclude that X;_; N X; is diffeomorphic to a
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handlebody of genus 3. An extension of the previous argument then shows
that the triple intersection is given by

XlﬂXgﬂXg:pfl(BlﬁBQﬁBg)\(VlUVQUV:),)

3
(5.3) u_ U Ovi Np  (Bit1) |
¥i © Pit i=1
i=1,2,3

where p~t (B1 N By N Bs) \ (11 U Uvs) consists of the disjoint union of
two 2-disks with three interior disks removed, and each 9;v; N p~!(B;y1) is
diffeomorphic to the cylinder B; N B;4+1 X ON; and is glued to the first space
in such a way that it joins internal boundary components of the two different
disks. From this it follows that the triple intersection is a twice punctured
genus two surface. The last intersections to consider are those that involve
the boundary, namely, X; N E,, and X; 1 N X; NOE,. In this case we have

X;NOE, =0p Y(B;)\p *(0B;) = B; x 0D?,
and
X 1NX;NOE, = 8p71(Bi_1 N Bz) \pil(aBi_l N 8BZ) = B;,_1NB; x oD?.

From this we see that X; N E,, is diffeomorphic to I x X;_1 N X; NIE, with
the space 01 x X;_1 N X; NOE, identified, or, using the terminology of (3.1)
that X;NFE,, is diffeomorphic to 3° D x (X;_1NX;NIE,)UD xd(X1NX2NX3).

In sum, the previous paragraphs describe a (2, 1;0,2) relative trisection
of E, whose relative trisection diagram (X, «, 3,) has yet to be exhibited.
To this end, notice that by (5.3), ¥ is a surface decomposed as the union of
two copies of a three times punctured disk with three cylinders joining the
punctures of the two disks. To finish the description of the diagram, it is
enough to find three sets of curves in F' = X; N XN X3 that bound disks in
the double intersections X;_1NX;, and draw their images in 3. For example,
in X3 N X1, the 1-handle v5 N p~!(B3) has the cylinder dove N p~1(B3) as
its boundary and so the central circle in the latter is one of the curves
in the collection . A similar argument applied to the other two pairwise
intersections shows that the central circle in dzv3 Np~1(By) is a curve in a
and Oyv; N p~1(By) is a curve in B. Next, consider the disk D in X3 N X3
constructed as the union of a disk in p~!(B3 N By) \ v3Uw; that lies between
the holes left by v3, 1 with a meridional disk in Osv3. Then, the curve 9D
can be realized as the union of:

(i) a properly embedded arc in d3v3Np~1(By) with one endpoint in each
boundary component,
(ii) a properly embedded arc in 0yv1Np~!(Bz) with one endpoint in each
boundary component, and
(iii) two horizontal arcs that lie in different components of the disjoint
union of disks (p_1 \ 1 Urg U Vg) (B1 N Ba N Bs).
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This curve 9D is the second curve in the collection v and to draw it in X we
have to proceed with caution since by assumption the gluing map ¢3 o <p1_1
depends on n. Indeed, using (5.1) we see that the two disks that make
up D align only if the second one is twisted. Thus, the arc described in
(ii) appears in d1v; N p~1(By) as an arc with n-twists. Lastly, to get the
remaining curves in « and [, we proceed in a similar manner noticing that
in these cases the gluing maps are trivial and thus the analogous arcs to
the one from (ii) are not twisted. This shows that the trisection diagram
corresponding to the decomposition F,, = XU XsUXj3 can be obtained from
the one shown in Figure 9 by replacing the single left handed twist on the
green curve appearing in the right, with n full twists around the cylinder.

FIGURE 9. A (2,1;0,2) relative trisection diagram for the
disk bundle over S? corresponding to the integer -1. The
monodromy of the open book in the boundary is a left handed
twist

5.2. Local modifications of diagrams, Lefschetz fibrations and Hopf
plumbings. Throughout this section, suppose that we are given a relative
trisection diagram (X, a, 8, ) for a trisected 4-manifold X = X3 U X, U X3,
with induced open book on X with page P = 3, and monodromy px : P —
P.

Lemma 15. Let ¥/ D X be the result of attaching a 2-dimensional 1-
handle to ¥ along some S° C 0X. Then the tuple (X', a, B,7) is a relative
trisection diagram for a trisected 4-manifold X' = X{ U X5 U X3 such that
X' is the result of attaching a 4-dimensional 1-handle H to X along the
same SV C 0%, seeing 0¥ C 0X as the binding of the open book on 0X.
Furthermore, H = HyUHsU Hs, where each H; is a 4—dimensional 1-handle
attached to X; to form X|. The open book on X' has page P' = P Uh, the
result of attaching the 2—dimensional 1-handle h to P, and monodromy 1’
equal to v extended by the identity across h.

Proof. Let h be the 2—dimensional 1-handle attached to ¥ to form ¥'. In
the construction of X and X', we see that X is naturally a subset of X’ and
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that X'\ X is precisely a 1-handle H = B? x h. Splitting B? into three
thirds B? = D U Dy U D5 gives the three 1-handles H; = D; x h. ]

Lemma 16. Consider a simple closed curve C C % disjoint from o and
transverse to B and . Let (XF,a*, 3%, 7F) be the result of removing a
cylinder neighborhood of C, together with the B and v arcs running across
this meighborhood, and replacing it with a twice-punctured torus as in Fig-
ure 10 with B and v arcs as drawn, and with one new a, [ and 7y curve
as drawn. Then (E“—L,ai,ﬁi,’yi) is a relative trisection diagram for a tri-
sected 4-manifold X' = X] U X5 U X5 such that X' is the result of attaching
a 2-handle to X along C' C P with framing F1 relative to P, and such that
the open book on X' has page P with monodromy Tgl o, where 1o is a
right-handed Dehn twist about C'.

—

FIGURE 10. Local modification of (3, a, 3,7) near a curve
C disjoint from « and transverse to 8 and . The gray trans-
verse arc represents a collection of parallel 5 and « arcs.

Proof. Since (X, a, 3,7) is a trisection diagram, we know that there is an
arc A connecting C to 0X avoiding « and transverse to 8 and ~; we draw a
neighborhood of C'U A as on the left in Figure 11. In this picture there are
two groups of 8 and y arcs: those transverse to C' and those transverse to A.
The modification drawn in Figure 10 is then redrawn in Figure 11 so that we
see the new genus in ¥/ as arising from X by attaching two 2-dimensional 1—
handles h1 and hy. The 8 and  arcs that were transverse to A avoid the new
a, 3 and 7 curves by running parallel to 9¥'. Note that we can slide these
boundary-parallel 5 and « arcs over the new 8 or, respectively, v curve to
get Figure 12. (Each S, resp. =, arc slides twice over the 3, resp. =, curve.)
Thus we can take Figure 12 to be the modification of the trisection diagram
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which we work with; i.e. (X%, a*, 3%,7%) is obtained from (X, a, 3,v) by
replacing the figure on the left in Figure 11 with Figure 12.

~ < -

FIGURE 11. A different perspective of the local modification
of (¥, a, B,7), taking into account an arc A connecting C' to
0Y.. Again, the gray arcs represent collections of parallel
and ~ arcs; now one collection of such arcs is transverse to

the closed curve C and one collection is transverse to the arc
A.

FIGURE 12. After some handle slides.

Now, recalling the construction of X from the diagram (X, «, 3,v) and
of X' from (X%, at, p%,7%), we see that X’ is naturally built by adding
two 4-dimensional 1-handles to X (as in Lemma 15) followed by three 4
dimensional 2-handles, one along the new « curve in X/, one along the new
0B curve in E’ﬂ and one along the new v curve in Eﬁ,, with O—framings relative
to the pages in which they sit. The 8 and v 2-handles each, topologically,
cancel one of the new 1-handles, and when this cancellation is performed,
we see that the a curve now sits in X, with framing equal to +1 with respect
to Xa.
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Figure 13 shows a local implementation of the algorithm from Theorem 5
to show the effect of the new monodromy on a single arc transverse to C,
thus completing the proof of the lemma.

5@ &
|
| |
N u (L
, el

FI1GURE 13. Local effect on the monodromy.

0

Note that the roles of a, 8 and « in Lemma 16 can obviously be cyclically
permuted; in some of the following applications, v will play the role that «
plays here.

Notice also that if (3, «, 5, y) is a relative trisection diagram for a (g, k; p, b)
trisection, then the tuple (X', o, 3,7) from Lemma 15 is a relative trisection
diagram of a (9 +1,k+1;p+1,b) trisection or a (g, k+ 1;p, b+ 1) trisection
depending on wether the chosen 0-sphere S° C 9% is contained in different
components of 9% or in the same one. Similarly, the tuple (X%, o, g+, 4%)
from Lemma 16 is a relative trisection diagram of a (¢ + 1, k; p, b) trisection.

We have two immediate corollaries. The first describes a stabilization
operation on trisection diagrams corresponding to Hopf plumbing on the
bounding open book decomposition, and is the diagrammatic version of the
construction described in section 3.3 of [3].

Corollary 17. Suppose that X has a trisection T with induced open book
decomposition D on X, and that D" (resp. D~ ) is an open book decompo-
sition of 0X obtained from D by plumbing a left-handed (resp. right-handed)
Hopf band along a properly embedded arc A in a page P of the open book D.
If T is described by the relative trisection diagram (X, «, 3,7) such that P is
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identified with X, consider the new diagram (E,i,ai,ﬁi,'yi) obtained by
first attaching a 2—dimensional 1-handle to ¥ at the end points of A, as in
Lemma 15, producing (X', o, B,7) and then modifying this as in Lemma 16 in
a neighborhood of the curve C obtained by attaching the core of the 1-handle
to the arc A. Then (E/i, o, Bt yF) is again a trisection of X inducing the
open book decomposition D on 0X.

We leave the proof of this corollary to the reader.

For the next corollary, let P be a smooth orientable surface with boundary
and for ¢ a curve embedded in P, denote by 7. the right handed twist of
P along c. Given a 3—manifold Y with open book decomposition given by
(P, i) with p factored as pp = 757 o...o7¢! with ¢; € {—1,1}, and ¢; a curve
in P,i=1,...,n it is well known that Y is the boundary of a 4-manifold
X admitting an achiral Lefschetz fibration over D? with vanishing cyles
C1,--+,Cn. Moreover [10], X admits a handle decomposition diffeomorphic
to the result of attaching n 2-handles h?, ..., h2, to D? x P along the circles
{1} X ¢; with framing given by the surface framing minus e;.

Corollary 18. Let 7 : X — D? be an achiral Lefschetz fibration with reg-
ular fiber a surface P of genus p and b boundary components, and with n
vanishing cyles. The manifold X admits a (p+mn,2p+b—1;p,b) trisection.

Proof. Build X and its trisection beginning with the standard (0,0;0,1)
trisection of B* and attaching 1-handles as in Lemma 15 to produce P x D?
with a trisection inducing the standard open book on P x S! with page P
and identity monodromy. At this stage the central surface X9 is P, and
there are no «, 8 or 7 curves. Attach a 2-handle along c¢; as in Lemma 16
to get a new (X', al, 81, 41), such that each of a!, 8! and v' consists of a
single curve, and P is identified with Z(lll. Now, as i goes from 2 to n repeat
the following process: Pull ¢; back from P to ¥¢~!, using the fact that P
is identified with ZZ}I, and then apply Le<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>