
Implementing Logic Programs with Ordered Disjunction Using asprin

Joohyung Lee and Zhun Yang
School of Computing, Informatics and Decision Systems Engineering

Arizona State University, Tempe, USA
{joolee, zyang90}@asu.edu

Abstract

Logic Programs with Ordered Disjunction (LPOD) is an ex-
tension of standard answer set programs to handle preference
using the high-level construct of ordered disjunction whereas
asprin is a recently proposed, general, flexible, and exten-
sible framework that provides low-level constructs for repre-
senting preference in answer set programming. We present an
encoding of LPOD in the language of asprin and the imple-
mentation LPOD2ASPRIN based on the encoding. Unlike the
known method that applies only to a fragment of LPOD via
the translation to Answer Set Optimization (ASO), our trans-
lation is general, direct, and simpler. It also leads to more
efficient computation of LPOD using asprin .1

1 Introduction
Logic Programs with Ordered Disjunction (LPOD) (Brewka
2002) is an extension of standard answer set programs to
handle preference using the high-level construct of ordered
disjunction. asprin (Brewka et al. 2015b) is a recently pro-
posed, general, flexible, and extensible framework for ex-
pressing and computing preferences in answer set program-
ming, and, as such, the preference specification in the lan-
guage of asprin is in a lower level than LPOD. Representing
high-level preference constructs in the language of asprin
could be verbose, and end-users may find it complicated
to use. To alleviate the problem, asprin provides a library
that implements several preference types, such as subset,
less(weight), and ASO. However, LPOD preference
types are not one of them.

In (Brewka, Niemelä, and Syrjänen 2004), LPOD is im-
plemented using SMODELS by interleaving the execution of
two ASP programs—a generator which produces candidate
answer sets and a tester which checks whether a given can-
didate answer set is most preferred or produces a more pre-
ferred answer set otherwise. In principle, the encodings in
(Brewka, Niemelä, and Syrjänen 2004) can be used with
asprin to implement LPOD. However, this method intro-
duces a large number of translation rules and auxiliary atoms

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1A short version of this paper is to appear in the 16th Interna-
tional Conference on Principles of Knowledge Representation and
Reasoning KR 2018. This paper contains more details about the
system LPOD2ASPRIN and includes experimental results.

since it does not utilize the main component of asprin , pref-
erence statements.

In fact, it is known that using preference statements, some
fragment of LPOD can be succinctly represented in the lan-
guage of asprin via the translation into Answer Set Opti-
mization (ASO). Brewka, Niemelä, and Truszczynski (2003)
show how to turn LPOD under Pareto-preference into ASO
programs, and Brewka et al. (2015a) show that ASO pro-
grams can be represented in asprin . By combining the two
results, the fragment of LPOD can be represented in asprin .
It is also mentioned that LPOD under inclusion-preference
can be turned into “ranked” ASO (Brewka et al. 2015a) but
the representation appears quite complicated. Furthermore,
it is not known how the results apply to the other LPOD
preference criteria.

This paper presents a more direct and simpler transla-
tion from LPOD into the language of asprin , handling all
four preference criteria from (Brewka 2005) in a uniform
way. Based on the translation, we implemented the system
LPOD2ASPRIN, which translates LPOD programs into the
input language of asprin and internally invokes the asprin
system. Our experiments show that the system is more scal-
able than the other methods of computing LPOD.

The paper is organized as follows. Section 2 reviews
LPOD and asprin . Section 3 presents a translation that turns
LPOD into the language of asprin . Section 4 presents the
LPOD2ASPRIN system and Section 5 compares its perfor-
mance with other methods of computing LPOD. Section 6
discusses the related work. Selected proofs are given in the
appendix.

2 Review of LPOD and asprin
2.1 Review: LPOD
We review the definition of LPOD by (Brewka 2002). As in
that paper, for simplicity, we assume the underlying signa-
ture is propositional.

Syntax: A (propositional) LPOD Π is Πreg ∪ Πod, where
its regular part Πreg consists of usual ASP rules

Head ← Body

and its ordered disjunction part Πod consists of LPOD rules
of the form

C1 × · · · × Cn ← Body (1)

in which Ci are atoms, n is at least 2, and Body is a con-
junction of atoms possibly preceded by not.2 Rule (1) says
“when Body is true, if possible then C1; if C1 is not pos-
sible then C2; . . . ; if all of C1, . . . , Cn−1 are not possible
then Cn.” It is not the case that none of C1, . . . , Cn is true
when Body is true.

Semantics: For an LPOD rule (1), its i-th option (i =
1, . . . , n) is defined as

Ci ← Body, not C1, . . . , not Ci−1.

A split program of an LPOD Π is obtained from Π by
replacing each LPOD rule in Πod by one of its options. A
set S of atoms is a candidate answer set of Π if it is an
answer set of a split program of Π.
Example 1 (From (Brewka 2002)) The following LPOD
Π1,

a× b ← not c
b× c ← not d,

has four split programs:

a← not c a← not c
b← not d c← not d, not b

b← not c, not a b← not c, not a
b← not d c← not d, not b.

Each of them has the following answer sets respectively,
which are the candidate answer sets of Π1.

{a, b} {c}
{b} {b}, {c}.

A candidate answer set S of Π is said to satisfy rule (1)
• to degree 1 if S does not satisfy Body, and
• to degree j (1 ≤ j ≤ n) if S satisfies Body and j =
min{k | Ck ∈ S}.
The notion of satisfaction degrees are the basis of defining

a preference relation on the candidate answer sets of Π. For
a candidate answer set S, let Si(Π) denote the set of rules in
Πod satisfied by S to degree i. For candidate answer sets S1

and S2 of Π, (Brewka 2005) introduces the following four
preference criteria.
1. Cardinality-Preferred: S1 is cardinality-preferred to
S2 (S1 >c S2) if there is a positive integer i such that
|Si1(Π)| > |Si2(Π)|, and |Sj1(Π)| = |Sj2(Π)| for all j < i.

2. Inclusion-Preferred: S1 is inclusion-preferred to S2

(S1 >i S2) if there is a positive integer i such that
Si2(Π) ⊂ Si1(Π), and Sj1(Π) = Sj2(Π) for all j < i.

3. Pareto-Preferred: S1 is Pareto-preferred to S2 (S1 >
p

S2) if there is a rule that is satisfied to a lower degree in S1

than in S2, and there is no rule that is satisfied to a lower
degree in S2 than in S1.
2In (Brewka 2002), a usual ASP rule is viewed as a special case

of a rule with ordered disjunction when n = 1 but in this paper, we
distinguish them. This simplifies the presentation of the translation
and also allows us to consider LPOD programs that are more gen-
eral than the original definition by allowing modern ASP constructs
such as aggregates.

4. Penalty-Sum-Preferred: S1 is penalty-sum-preferred to
S2 (S1 >

ps S2) if the sum of the satisfaction degrees of
all rules is smaller in S1 than in S2.
A candidate answer set S of Π is a k-preferred (k ∈

{c, i, p, ps}) answer set if there is no candidate answer set
S′ of Π such that S′ >k S.

When Πod contains m LPOD rules, the satisfaction de-
gree list of a candidate answer set S of Π is (d1, . . . , dm)
where di is the degree to which S satisfies rule i in Πod.

Example 1 (Continued) Recall that Π1 has three candidate
answer sets: {a, b}, {b}, and {c}. Their satisfaction degree
lists are (1,1), (2,1), and (1,2), respectively. One can check
that {a, b} is the only preferred answer set according to any
of the four preference criteria.

The following example shows differences in preferred an-
swer sets depending on the different preference criteria.
Example 2 To illustrate the difference among the four pref-
erence criteria, consider the following LPOD Π2 about pick-
ing a hotel near the Grand Canyon. hotel(1) is a 2 star hotel
but is close to the Grand Canyon, hotel(2) is a 3 star hotel
and the distance is medium, and hotel(3) is a 4 star hotel
but is too far.

close×med× far × tooFar
star4× star3× star2

1{hotel(X) : X = 1..3}1
⊥ ← hotel(1), not close
⊥ ← hotel(1), not star2
⊥ ← hotel(2), not med
⊥ ← hotel(2), not star3
⊥ ← hotel(3), not tooFar
⊥ ← hotel(3), not star4

Π2 has 4×3 split programs but only the following three pro-
grams are consistent (The regular part of Π2 is not listed).

close
star2← not star4, not star3

med← not close
star3← not star4

tooFar ← not close, not med, not far
star4

The candidate answer sets of Π2 and their satisfaction de-
gree lists are

S1 = {hotel(1), close, star2, . . . }, (1, 3)
S2 = {hotel(2),med, star3, . . . }, (2, 2)
S3 = {hotel(3), tooFar, star4, . . . }, (4, 1)

By definition, the cardinality-preferred answer set of Π2 is
S1, the inclusion-preferred answer sets are S1 and S3, the
Pareto-preferred answer sets are S1, S2 and S3, while the
penalty-sum-preferred answer sets are S1 and S2.

2.2 Review: asprin
asprin computes the most preferred answer sets of an ASP
program P according to a preference specification F̂s by re-
peated calls to CLINGO as in Figure 1. First, an arbitrary

Figure 1: asprin Framework

answer set of P is generated as X ′. Second, asprin tries to
find an answer set X of P that is better than (i.e., preferred
to)X ′ by running CLINGO on P ∪Fs∪Ets∪H ′X′∪RA∪C,
each of which is defined below. If CLINGO finds an answer
set, which encodes the answer set X of P that is “better”
than X ′, asprin replaces X ′ by X , and repeats the second
step until CLINGO finds no answer sets, at which point X ′ is
determined to be a most preferred answer set.

1. P is the base program, which consists of usual ASP rules.
The answer sets of P are the “candidate answer sets” to
apply a preference criterion.

2. F̂s is the preference specification consisting of a single
optimization directive of the form

#optimize(s) (2)

and a single 3 preference statement of the form

#preference(s, t){e1; . . . ; en} (3)

where n ≥ 0; and s is the name of the preference state-
ment; and t is its type (i.e., preference criterion). Each ei
is a preference element of the form

φ1 >> · · · >> φm

where m ≥ 1 and each φi is a literal (an atom possi-
bly preceded by not). 4 Intuitively, each index 1, . . . ,m
gives the rank of the corresponding literal. The preference
statement (3) declares a preference relation named s: each
preference element in {e1, . . . , en} gives a ranking of a
set of literals while preference type t determines in which
case one candidate answer set is better than another given
the rankings. The optimization directive (2) tells asprin
to restrict its reasoning mode to the preference relation
declared by the preference statement whose name is s.

3. Fs is obtained from the preference specification F̂s by
turning the optimization directive (2) into an ASP fact

optimize(s)

3asprin allows multiple preference statements in the input but
for simplicity of the presentation we assume a single preference
statement.

4In general, asprin allows for a more general syntax of prefer-
ence specification and preference element. For the purpose of this
paper, it is sufficient to consider this simple fragment.

and turning the preference statement (3) into an ASP fact

preference(s, t)

along with

preference(s, i, j, for(tφj), ())

for each j-th literal φj in the i-th preference element ei
in (3). The term tφj

is defined as a if the literal φj is an
atom a, and is neg(a) if the literal φj is “not a”. 5

4. Ets is the preference encoding for ts, where ts is the type
of the preference statement named s. It defines a reserved
predicate better(s), which is true iff there exists a candi-
date answer set X that is preferred to X ′ according to
preference type ts and the facts in Fs. In Section 3.3,
we show four preference encodings Elpod(c), Elpod(i),
Elpod(p), and Elpod(ps) for each of the four preference
types (i.e., criteria) for LPOD.

5. H ′X′ is the set of ASP facts

{holds′(a) | a ∈ X ′}

which reifies the atoms in X ′ in the form of holds′(·).6

6. RA is the set of ASP rules

{holds(a)← a | a is an atom in P}

which reifies the atoms in any candidate answer set X in
the form of holds(·).

7. C is a set of (domain-independent) ASP rules as follows.7

⊥ ← not better(S), optimize(S). (4)
holds(neg(A))← not holds(A),

preference(, , , for(neg(A)),). (5)

holds′(neg(A))← not holds′(A),

preference(, , , for(neg(A)),). (6)

Rule (4) instructs the asprin system to find an answer
set X that is better than X ′ according to the preference
statement S. Rule (5) is about X , which is reified in the
form of holds(·): for the literal of the form “not A” in the
preference statement (3), it says holds(neg(A)) is true if
holds(A) is false in the reified X (i.e., X 6|= A). Simi-
larly, rule (6) is about X ′, which is reified in the form of
holds′(·).

Given a program P and a preference specification F̂s, we
say an answer set X of P is a preferred answer set of P
w.r.t. F̂s if P ∪ Fs ∪Et ∪H ′X ∪RA ∪C has no answer set,
where t is the type of the preference statement s declared
in F̂s.

5The last term is empty because we consider φj as a non-
weighted formula.

6Note that this is based on the definition of H ′
X , which is the

set of ASP facts {holds′(a) | a ∈ X}.
7In general, C contains more rules such as the rule to define

holds(or(A,B)). They are omitted because they are not related to
our translation.

3 Representing LPOD in asprin
Let Π be an LPOD where Πod consists of m propositional
rules as follows.

1 : C1
1 × · · · × C

n1
1 ← Body1
. . . (7)

m : C1
m × · · · × Cnm

m ← Bodym

where 1, . . . ,m are rule indices; ni ≥ 2 for 1 ≤ i ≤ m.
In the following subsections, we present the component

programs of asprin that encode LPOD Π, namely, P , F̂s,
Ets . The other components, Fs, H ′X , RA and C are gener-
ated as described above.

3.1 Base Program P

For the LPOD program Π = Πreg ∪ Πod, the base program
P contains all rules in Πreg and, for each LPOD rule

C1
i × · · · × C

ni
i ← Bodyi

in Πod, P contains

bodyi ← Bodyi (8)

{C1
i } ← bodyi (9)
. . .

{Cni−1
i } ← bodyi, not C1

i , . . . , not Cni−2
i (10)

Cni
i ← bodyi, not C1

i , . . . , not Cni−1
i (11)

Rule (8) defines the case when the body of rule i is true.
Rules (9)–(10) say that if the body of rule i is true and each
Cji is false (j ∈ {1, . . . , k − 1}), then Cki is possibly true.
Rule (11) says that if the body of rule i is true andCji is false
for all j ∈ {1, . . . , ni − 1}, then Cni

i must be true.
The above method of generating candidate answer sets us-

ing choice rules is from (Cabalar 2011). It is not difficult to
check that the answer sets of this program P are the candi-
date answer sets of LPOD Π (ignoring bodyi atoms).

Proposition 1 For any LPOD Π and any set X of atoms
in Π, X is a candidate answer set of Π iff X ∪ {bodyi |
X satisfies the body of rule i in Πod} is an answer set of P .

Example 2 (Continued) For LPOD Π2, the P -component
of the asprin program is as follows.

body_1.
{close} :- body_1.
{med} :- body_1, not close.
{far} :- body_1, not close, not med.
tooFar :- body_1, not close, not med, not far.

body_2.
{star4} :- body_2.
{star3} :- body_2, not star4.
star2 :- body_2, not star4, not star3.

1{hotel(X): X=1..3}1.
:- hotel(1), not close. :- hotel(1), not star2.
:- hotel(2), not med. :- hotel(2), not star3.
:- hotel(3), not tooFar. :- hotel(3), not star4.

The answer sets of the P -component are

{hotel(1), close, star2, body1, body2}
{hotel(2), med, star3, body1, body2}
{hotel(3), tooFar, star4, body1, body2}

which are exactly the unions of the candidate answer sets of
Π and {body1, body2}.

3.2 Preference Specification F̂s

F̂s contains an optimization directive

#optimize(s)

and a preference statement

#preference(s, lpod(s)) {
not body1 >> C1

1 >> · · · >> Cn1
1 ;

. . . (12)

not bodym >> C1
m >> · · · >> Cnm

m

}
where s ∈ {c, i, p, ps} denotes one of the four preference
criteria for LPOD, and each line of (12) is associated with
each LPOD rule. Intuitively, to check the satisfaction degree
of an LPOD rule i, we check the truth value of the literals
in the order specified in the i-th preference element. We first
check whether not bodyi is true. If not bodyi is true, i.e., the
body of rule i is false, the satisfaction degree must be 1 and
we do not have to check further; and if it is not the case,
check whether C1

i is true, and so on.

Example 2 (Continued) For LPOD Π2 which contains
LPOD rules

close×med× far × tooFar
star4× star3× star2

to find its cardinality-preferred answer sets, we set the pref-
erence criterion s to c, and let F̂s be the following.

#optimize(c).

#preference(c, lpod(c)) {
not body_1 >> close >> med >> far >> tooFar ;
not body_2 >> star4 >> star3 >> star2

}.

asprin internally turns F̂s into Fs as follows.

optimize(c).

preference(c, lpod(c)).

preference(c, 1, 1, for(neg(body_1)), ()).
preference(c, 1, 2, for(close), ()).
preference(c, 1, 3, for(med), ()).
preference(c, 1, 4, for(far), ()).
preference(c, 1, 5, for(tooFar), ()).

preference(c, 2, 1, for(neg(body_2)), ()).
preference(c, 2, 2, for(star4), ()).
preference(c, 2, 3, for(star3), ()).
preference(c, 2, 4, for(star2), ()).

The facts optimize(c) and preference(c, lpod(c)) as-
sert that we optimize according to the preference state-
ment c of type lpod(c) (inclusion preference). The fact
preference(c, 2, 1, for(neg(body 2)), ()) asserts that the
first literal of the second preference element of the prefer-
ence statement c is “not body 2”.

3.3 Preference Encoding Ets

The aim ofEts is to find an answer setX (reified in the form
of holds(·)) that is better than (i.e., preferred to) the current
answer set X ′ (reified in the form of holds′(·)) with respect
to the preference type ts.

We introduce the preference encodings Ets for each ts ∈
{lpod(c), lpod(i), lpod(p), lpod(ps)}. Each Ets contains
the common rules Deg as defined below.

Degree The aim of Deg is to find the satisfaction degree
to which each LPOD rule R is satisfied by X or X ′. 8

Deg consists of the following two rules.

degree(R,D)← optimize(S), preference(S, lpod()),

preference(S,R, I, ,), D = #max{1; I − 1},
I = #min{J : holds(A), preference(S,R, J, for(A),)}.

(13)

degree′(R,D)← optimize(S), preference(S, lpod()),

preference(S,R, I, ,), D = #max{1; I − 1},
I = #min{J : holds′(A), preference(S,R, J, for(A),)}.

(14)
Rule (13) records the degree D to which rule R is satisfied
by X (X is reified in the form of holds(·)). It asserts that
if we want to optimize according to preference statement S
whose type is one of the four lpod(·) types, then we need
to calculate the satisfaction degree D for each rule R: D is
the maximum value of 1 and I − 1 where I is the index of
the first literal in the preference element R that is true in
X . Rule (14) is similar to rule (13) except that it finds the
satisfaction degree D of rule R for X ′.

Cardinality-Preferred Elpod(c) containsDeg and the fol-
lowing two rules:

worse2degree(S,D)← optimize(S), preference(S, lpod(c)),

degree′(, D),

#sum{ 1, R : degree(R,D);

− 1, R : degree′(R,D)} < 0. (15)
better(S)← optimize(S), preference(S, lpod(c)),

degree(, D),

#sum{ 1, R : degree(R,D);

− 1, R : degree′(R,D)} > 0,

not worse2degree(S, J) : J = 1..D − 1. (16)

Rule (15) defines the case when X is worse than, i.e., less
preferred to, X ′ at degree D: X satisfies less LPOD rules
to degree D than X ′. In this case, there must be at least

8Note that each preference element denotes an LPOD rule. We
use symbol R to denote the index of the preference element in pred-
icate “preference(S,R, I, ,)” because R is also the index of the
denoted LPOD rule.

one LPOD rule that is satisfied to degree D by X ′, which
is guaranteed by degree′(, D). Rule (16) says that X is
better than X ′ according to the preference type lpod(c) if
there exists a degree D such that X is preferred to X ′ at
degree D (i.e., X satisfies more rules to degree D than X ′)
and X is not worse than X ′ at all lower degrees. Note that
“not worse2degree(S, J) : J = 1..D − 1” is a condi-
tional literal, and is equivalent to the conjunction of literals
“not worse2degree(S, J)” for all J ∈ {1, . . . , D − 1}.
Inclusion-Preferred Elpod(i) containsDeg and two rules:
prf2degree(S,D)← optimize(S), preference(S, lpod(i)),

degree(, D),

#count{J : degree(J,D), not degree′(J,D)} > 0,

degree(J,D) : degree′(J,D). (17)
better(S)← preference(S, lpod(i)),

prf2degree(S,D),

degree(R, J) : degree′(R, J), J < D. (18)
Rule (17) defines the case when X is preferred to X ′ at de-
greeD: (i)X satisfies at least one rule to degreeD; (ii) there
is a rule J that is satisfied by X , but not by X ′, to degree D;
and (iii) all rules J that are satisfied by X ′ to degree D are
also satisfied by X to the same degree. Rule (18) says that
X is better than X ′ according to preference type lpod(i) if
there exists a degree D such that X is preferred to X ′ at
degree D, and any rule R that is satisfied by X ′ to a lower
degree than D should also be satisfied by X to the same
degree.

Pareto-Preferred Elpod(p) contains Deg and two rules:
equ(S)← optimize(S), preference(S, lpod(p)),

D1 = D2 : degree(R,D1), degree′(R,D2). (19)
better(S)← optimize(S), preference(S, lpod(p)),

not equ(S),

D1 ≤ D2 : degree(R,D1), degree′(R,D2). (20)
Rule (19) defines that X and X ′ are “equivalent” if they
satisfy each LPOD rule to the same degree. Rule (20) says
thatX is better thanX ′ according to preference type lpod(p)
if X is not “equivalent” to X ′, and X satisfies each LPOD
rule R to a degree that is the same or lower than the degree
to which X ′ satisfies R.

Penalty-Sum-Preferred Elpod(ps) contains Deg and one
rule:

better(S)← optimize(S), preference(S, lpod(ps)),

#sum{D,R : degree(R,D);

−D,R : degree′(R,D)} < 0. (21)
Rule (21) says that X is better than X ′ according to pref-
erence type lpod(ps) if the sum of the degrees to which the
LPOD rules are satisfied by X is lower than the sum of the
degrees to which the LPOD rules are satisfied by X ′.
Theorem 1 For any LPOD Π, X is an s-preferred answer
set (s ∈ {c, i, p, ps}) of Π in the sense of LPOD iff X ∪
{bodyi | X satisfies the body of rule i in Πod} is a preferred
answer set of P w.r.t. F̂s in the sense of asprin , where P and
F̂s are obtained from Π as above.

4 LPOD2ASPRIN System
We implement system LPOD2ASPRIN as in Figure 2. The
system first translates an LPOD program Π into a base pro-
gram P and a preference specification F̂s in the language
of asprin as described in Sections 3.1 and 3.2, which are
fed into the asprin system along with other component pro-
grams. We put the encodings Elpod(c), Elpod(i), Elpod(p),
and Elpod(ps) in the asprin library. The encodings are ex-
actly the same as those in Section 3.3 except that we elimi-
nate the use of #min and #max by replacing rule (13) (and
rule (14) accordingly) with

degree(R,1) :- preference(S, lpod(_)),
preference(S,R,1,for(A),_), holds(A).

degree(R,D-1) :- preference(S, lpod(_)),
preference(S,R,D,for(A),_), holds(A), D>1,
not holds(B): preference(S,R,J,for(B),_), 0<J, J<D.

The reason for this change is because our experiments show
significant speed-up with the alternative encoding.

Finally, an s-preferred answer set of Π is obtained from
the output of asprin by removing the auxiliary atoms bodyi.

Figure 2: LPOD2ASPRIN System Overview

The LPOD2ASPRIN system homepage is

http : //reasoning.eas.asu.edu/lpod2asprin/

which contains the source code, the tutorial, examples and
some experimental results.

To find an s-preferred (s ∈ {c, i, p, ps}) answer set of an
LPOD Π, one may execute the command

python lpod2asprin.py − i input.txt − type s

where
• input.txt stores the LPOD Π written in the input for-

mat of CLINGO except that the symbol >> is used to
denote the ordered disjunction symbol; and

• s is one of the preference criteria in {c, i, p, ps}.
Example 2 (Continued) In the language of LPOD2ASPRIN,
Π2 is written as

dom(1..3).

1{hotel(X): dom(X)}1.
:- hotel(1), not close.
:- hotel(1), not star2.
:- hotel(2), not med.
:- hotel(2), not star3.

:- hotel(3), not tooFar.
:- hotel(3), not star4.

close >> med >> far >> tooFar.

star4 >> star3 >> star2.

If we save this program in file hotel.txt and want to find the
i-preferred answer set of Π2, we can execute

python lpod2asprin.py -i hotel.txt -type i

which outputs

Input LPOD program: hotel.txt
Type of LPOD preference criterion: i

asprin version 3.0.2
Reading from /asprin-3.0.2/asprin/lpod.lp ...
Solving...
Answer: 1
dom(1) dom(2) dom(3) hotel(3) tooFar star4
OPTIMUM FOUND
Answer: 2
dom(1) dom(2) dom(3) hotel(1) close star2
OPTIMUM FOUND

Models : 2
Optimum : yes
Optimal : 2

The output says that asprin finds two i-preferred
answer sets of Π2: {hotel(1), close, star2, . . . } and
{hotel(3), tooFar, star4, . . . }, which is as expected.

5 Experiments
Since there is no benchmarks available in the existing lit-
erature for LPOD, we designed two benchmarks and com-
pare the run-time of LPOD2ASPRIN with two other methods:
PSMODELS from (Brewka, Niemelä, and Syrjänen 2004) and
using asprin via reduction to ASO (Brewka et al. 2015a).
The latter method does not have a dedicated solver for
LPOD, so we manually translate the LPOD programs into
ASO programs and then into the input language of asprin .
We only compare w.r.t. Pareto preference because it is not
known how the asprin via ASO method can be used to rep-
resent cardinality preference and penalty-sum preference,
and the representation for inclusion preference appears to
be complicated.

5.1 Benchmark: abc
This benchmark is used to test how the system
LPOD2ASPRIN performs with an increasing number of
LPOD rules.

The abc example, as shown below, contains n LPOD
rules, each of which contains two atoms in its head. The
program generates one or two a(i) and one or two c(i)
(i ∈ {1, . . . , n}), and restricts that a(i) is true iff b(i) is
false for any i ∈ {1, . . . , n}. There is also a preference of
a(i) over b(i) if c(i) is true.

n PSMODELS asprin via ASO LPOD2ASPRIN
(2004) (2015a)

10 1.244s 3.977s 3.432s
15 10.088s 14.282s 11.374s
20 47.689s 45.860s 34.677s
25 2m47.842s 2m6.501s 1m32.202s
30 8m12.839s 5m1.220s 3m40.439s
35 18m26.952s 10m39.620s 7m42.605s
40 42m6.830s 20m25.556s 14m41.012s

Table 1: Experiment on the abc Example

dom(1..n).
1{a(X): dom(X)}2. 1{c(X): dom(X)}2.
b(X) :- dom(X), not a(X). :- a(X), b(X).

a(X) >> b(X) :- c(X).

Table 1 shows the run-time comparison of finding Pareto-
preferred answer sets of this program with different values
of n. We compare LPOD2ASPRIN with the implementation
from (Brewka, Niemelä, and Syrjänen 2004) and the method
via ASO reduction from (Brewka et al. 2015a) as we men-
tioned earlier.

In comparison, asprin using the reduction via ASO is
more scalable than PSMODELS. However, since the seman-
tics of ASO programs is analogous to the semantics of
LPOD under Pareto preference, the reduction of LPOD into
ASO programs is only straightforward under this preference.
On the other hand, the LPOD2ASPRIN system works for any
of the four preference criteria and scales better than the other
methods.

5.2 Benchmark: n-Hotel
The n-Hotel example is about choosing a hotel from n can-
didate hotels based on the preferences over the prices, dis-
tances, and ratings of services. The input program contains
three LPOD rules, each of which has n atoms in the head.
The program is automatically generated with a parameter n,
denoting the number of candidate hotels. Below is a pro-
gram generated when n = 4 with random orders of price,
distance, and service.

1{hotel(X): dom(X)}1.

:- hotel(X), price(Y), X!=Y, dom(X), dom(Y).
:- hotel(X), distance(Y), X!=Y, dom(X), dom(Y).
:- hotel(X), service(Y), X!=Y, dom(X), dom(Y).

dom(1..4).

price(3) >> price(4) >> price(1) >> price(2).

distance(4) >> distance(3) >> distance(1) >>
distance(2).

service(2) >> service(1) >> service(3) >> service(4).

The run-time of finding the Pareto-preferred answer sets
of this program for different values of n is shown in Table 2.

n PSMODELS (2004) LPOD2ASPRIN
10 0.060s 0.438s
50 2.485s 1.961s
60 4.825s 1.788s
70 Terminate with No Result 3.147s
100 Terminate with No Result 6.730s
200 Terminate with No Result 47.868s
300 Terminate with No Result 1m45.006s

Table 2: Experiment on the n-Hotel Example

9

As we see, the LPOD2ASPRIN system is much more scal-
able than the original LPOD implementation. Besides, the
original LPOD implementation cannot find any answer set
if the number (n) of atoms in the head of an LPOD rule ex-
ceeds 70 whereas our system can find the preferred answer
set even when n = 800 (800 is not an upper bound for our
system, but is the biggest number we have tested).

In summary, the experimental results on the benchmarks
show that the LPOD2ASPRIN system is more scalable than
PSMODELS (Brewka, Niemelä, and Syrjänen 2004). In com-
parison with the method via ASO reduction, the method is
more general to cover all preference types, and the encoding
is more compact leading to more scalable computation.

6 Related Work and Conclusion
We already mentioned the method of (Brewka et al. 2015a)
works under the Pareto preference. However, the reduction
under inclusion preference requires a translation from LPOD
to “ranked” ASO programs, which further requires a more
complex reduction to asprin . Besides, the reductions from
LPOD to ASO programs under cardinality and penalty-sum
preferences were not shown. In comparison, our method re-
duces LPOD directly to asprin , which yields a simpler and
uniform method that applies to all preference criteria for
LPOD.

Asuncion et al. (2014) present a first-order semantics of
logic programs with ordered disjunction by a translation into
second-order logic.

Lee and Yang (2018) show a reduction from LPOD to an-
swer set programs, where the semantics of each preference
type is also represented by standard ASP rules. Their reduc-
tion is one-pass: the preferred answer sets are computed by
calling an answer set solver one time by generating all can-
didate answer sets to which preference criteria are applied.
The computation is not as scalable as LPOD2ASPRIN which
makes iterative calls to CLINGO.

asprin has a library of built-in preference types, but
LPOD preference is not one of them. Our preference en-
codings may be included in the asprin library to benefit the
end-users.

Acknowledgments: We are grateful to the anonymous ref-
erees for their useful comments. This work was partially

9We did not test the asprin via ASO reduction because we did
not implement a compiler for this method while a manual transla-
tion takes too much efforts.

supported by the National Science Foundation under Grants
IIS-1526301 and IIS-1815337.

References
Asuncion, V.; Zhang, Y.; and Zhang, H. 2014. Logic pro-
grams with ordered disjunction: first-order semantics and
expressiveness. In Proceedings of the Fourteenth Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning, 2–11. AAAI Press.
Brewka, G.; Delgrande, J.; Romero, J.; and Schaub, T.
2015a. Implementing preferences with asprin. In Inter-
national Conference on Logic Programming and Nonmono-
tonic Reasoning, 158–172. Springer.
Brewka, G.; Delgrande, J. P.; Romero, J.; and Schaub, T.
2015b. asprin: Customizing answer set preferences without
a headache. In AAAI, 1467–1474.
Brewka, G.; Niemelä, I.; and Syrjänen, T. 2004. Logic pro-
grams with ordered disjunction. Computational Intelligence
20(2):335–357.
Brewka, G.; Niemelä, I.; and Truszczynski, M. 2003. An-
swer set optimization. In IJCAI, volume 3, 867–872.
Brewka, G. 2002. Logic programming with ordered disjunc-
tion. In AAAI/IAAI, 100–105.
Brewka, G. 2005. Preferences in answer set programming.
In CAEPIA, volume 4177, 1–10. Springer.
Cabalar, P. 2011. A logical characterisation of ordered dis-
junction. AI Communications 24(2):165–175.
Lee, J., and Yang, Z. 2018. Translating LPOD and CR-
Prolog2 into standard answer set programs. Journal of The-
ory and Practice of Logic Programming (TPLP), 18(3–4):
589–606.

Appendix: Proof of Theorem 1
Let X be a set of atoms and let σ be a signature. By X|σ ,

we denote the projection of X onto σ.

Lemma 1 Let Π be an answer set program, let X be an
answer set of Π, and let constraint be a rule of the form
“⊥ ← Body”. If X � constraint, X is an answer set of
Π ∪ {constraint}.
Lemma 2 Let Π be an answer set program of signature σ.
Let X be a set of atoms in σ, let Body be a conjunction of
atoms (possibly preceded by not) in σ, and let a be an atom
not in σ. X is an answer set of Π iff X ∪ {a | X � Body}
is an answer set of Π′ ∪ {a← Body}, where Π′ is obtained
from Π by replacing the occurrence of Body in the body of
some (i.e., from zero to all) rules in Π with a.

Theorem 1 For any LPOD Π and any set X of
atoms in Π, X is an s-preferred answer set (s ∈
{c, i, p, ps}) of Π according to LPOD iff X ∪ {bodyi |
X satisfies the body of rule i in Πod} is an s-preferred an-
swer set of P according to asprin , where P is the base
program obtained from Π. In other words, (let φ(X) be
X ∪ {bodyi | X satisfies the body of rule i in Πod})

(a) X is a candidate answer set of Π and

(b) there is no candidate answer setX ′ of Π that is s-preferred
to X according to LPOD

iff
(c) φ(X) is an answer set of P and
(d) P ∪ Fs ∪ Ets ∪H ′φ(X) ∪RA ∪ C has no answer set.

Proof. (→) Let Π be an LPOD of signature σ with m
LPOD rules. Let X be a candidate answer set of Π such that
there is no candidate answer setX ′ of Π that is s-preferred to
X according to LPOD. By Proposition 1, φ(X) is an answer
set of P .

Assume for the sake of contradiction that P ∪Fs ∪Ets ∪
H ′φ(X)∪RA∪C has an answer set S. Let σ′ be σ∪{bodyi |
i ∈ {1, . . . ,m}}. Note that σ′ is the signature of P . By the
splitting theorem, S|σ′ is an answer set of P . By Proposi-
tion 1, S|σ is a candidate answer set of Π. We will prove that
S|σ is s-preferred to X , which contradicts with bullet (b).

Let a be an atom in σ. Here we list some facts that will be
used in the proof.

1. By RA, S � holds(a) iff S|σ′ � a. Since a is an atom in
σ, S � holds(a) iff S|σ � a.

2. By H ′φ(X), S � holds′(a) iff φ(X) � a. Since a is an
atom in σ, S � holds′(a) iff X � a.

3. By Fs, S satisfies optimize(s) and S satisfies
preference(s, lpod(s)).

4. By Fs, S satisfies preference(s, r, j, for(a), ()) iff the
(j − 1)-th atom (j ≥ 2) in the head of LPOD rule r
is a; S satisfies preference(s, r, 1, for(neg(bodyr)), ())
iff Π contains an LPOD rule r.

5. By rules (5) and (6) in C, for i ∈ {1, . . . ,m}, S satisfies
holds(neg(bodyi)) iff S does not satisfy holds(bodyi);
S satisfies holds′(neg(bodyi)) iff S does not satisfy
holds′(bodyi).

6. By rule (13) in Ets , S satisfies degree(R,D) iff S|σ sat-
isfies LPOD rule R to degree D. This is because for any
LPOD rule r, in case S � degree(r, 1),
• S � degree(r, 1)

iff (by rule (13), bullet 3, and bullet 4)
• in the case when I = 1:
– S � preference(s, r, 1, for(neg(bodyr)),), and
– S � holds(neg(bodyr))

• or in the case when I = 2: there exists an atom a such
that

– S � preference(s, r, 2, for(a)),), and
– S � holds(a), and
– S 6� holds(neg(bodyr))

iff (by bullets 4 and 5)
• in the case when I = 1:

– Π contains an LPOD rule r, and
– S does not satisfy holds(bodyr)
• or in the case when I = 2: there exists an atom a such

that
– the 1-st atom in the head of LPOD rule r is a, and

– S � holds(a), and
– S � holds(bodyr)

iff (by bullet 1 and rule (8))
• in the case when I = 1:
– S|σ does not satisfy the body of LPOD rule r
• or in the case when I = 2:
– S|σ satisfies the first atom in the head of LPOD rule
r, and

– S|σ satisfies the body of LPOD rule r
iff (by definition)
• S|σ satisfies LPOD rule r to degree 1;

and in case S � degree(r, d) where d is greater than 1,
• S � degree(r, d), d ≥ 2

iff (by rule (13), bullet 3, and bullet 4)
• there exists an atom a such that

– S � preference(s, r, d+ 1, for(a)),), and
– S � holds(a), and
• S 6� holds(b) for any b and d′ such that S �
preference(s, r, d′ + 1, for(b)),) and d′ < d

iff (by bullet 4)
• there exists an atom a such that

– the d-th atom in the head of LPOD rule r is a, and
– S � holds(a), and
• S 6� holds(b) for any d′-th atom b in the head of LPOD

rule r where d′ < d

iff (by bullet 1)
• S|σ satisfies the d-th atom in the head of LPOD rule r,

and
• S|σ does not satisfy the d′-th atom in the head of LPOD

rule r for any d′ < d

iff (by definition)
• S|σ satisfies LPOD rule r to degree d.

7. Similarly, by rule (14) in Ets , S satisfies degree′(R,D)
iff X satisfies LPOD rule R to degree D. The proof is
analogous to that in bullet 6.

Now, we will prove that S|σ is s-preferred to X for
s ∈ {i, p, ps}. The proof for the case when s is c (cardinally
preference) is not shown due to the limit of space.

• Inclusion-Preferred By bullet 3, S satisfies
optimize(i) and preference(i, lpod(i)). Since S
satisfies rule (4), S must satisfy better(i). Besides,
– S � better(i)

iff (by rule (18))
– there exists an integer d such that
∗ S � prf2degree(i, d), and
∗ for any LPOD rule r ∈ {1, . . . ,m} and any degree
j such that j < d, if S � degree′(r, j), then S �
degree(r, j)

iff (by rule (17))

– there exists an integer d such that
∗ there exists at least one LPOD rule j such that
S � degree(j, d) and S 6� degree′(j, d), and for
any LPOD rule j, if S � degree′(j, d), then S �
degree(j, d), and

∗ for any LPOD rule r ∈ {1, . . . ,m} and any degree
j such that j < d, if S � degree′(r, j), then S �
degree(r, j)

iff (by bullet 6 and bullet 7)

– there exists an integer d such that
∗ the set of LPOD rules that are satisfied to degree d by
X is a proper subset of the set of LPOD rules that are
satisfied to degree d by S|σ , and

∗ for any degree j such that j < d, the set of LPOD
rules that are satisfied to degree j by X is a subset of
the set of LPOD rules that are satisfied to degree j by
S|σ

iff (by definition)

– S|σ is i-preferred to X according to LPOD.

So S|σ is i-preferred toX according to LPOD. Contradic-
tion.

• Pareto-Preferred Since S satisfies rule (4), and satisfies
optimize(p) (in Fs), S must satisfy better(p). Besides,

– S � better(p)

iff (by rule (20))

– S 6� equ(p), and
– for any LPOD rule r ∈ {1, . . . ,m}, if S �
degree(r, d1) and S � degree′(r, d2) for any d1 and
d2, then d1 ≤ d2

iff (by rule (19))

– it is not the case that for all LPOD rule r ∈ {1, . . . ,m},
S � degree(r, d) iff S � degree′(r, d) for any d, and

– for any LPOD rule r ∈ {1, . . . ,m}, if S �
degree(r, d1) and S � degree′(r, d2) for any d1 and
d2, then d1 ≤ d2

iff (by bullet 6)

– there is an LPOD rule that is satisfied to a lower degree
in S|σ than in X , and there is no rule that is satisfied to
a lower degree in φ(X) than in S|σ

iff (by definition)

– S|σ is p-preferred to X according to LPOD.

So S|σ is p-preferred to X according to LPOD. Contra-
diction.

• Penalty-Sum-Preferred Since S satisfies rule (4), and
satisfies optimize(ps) (in Fs), S must satisfy better(ps).
Besides,

– S � better(ps)

iff (by rule (21))

–
∑
R:S�degree(R,D)D <

∑
R:S�degree′(R,D)D

iff (by bullet 6)
– the sum of the satisfaction degrees of all rules is smaller

in S|σ than in X
iff (by definition)
– S|σ is ps-preferred to X according to LPOD.
So S|σ is ps-preferred to X according to LPOD. Contra-
diction.

(←) Let X ′ be a set of atoms in σ such that φ(X ′) is an
answer set of P , and P ∪ Fs ∪Ets ∪H ′φ(X′) ∪RA ∪C has
no answer set. By Proposition 1, X ′ is a candidate answer
set of Π.

Assume for the sake of contradiction that there is a can-
didate answer set X of Π that is s-preferred to X ′ accord-
ing to LPOD. By Proposition 1, φ(X) is an answer set of
P . We will prove that P ∪ Fs ∪ Ets ∪ H ′φ(X′) ∪ RA ∪ C
has some answer set S, which contradicts with bullet (d).
Since φ(X) is an answer set of P , it is sufficient to prove
Hφ(X)∪Fs∪Ets∪H ′φ(X′)∪C has some answer set S, where
Hφ(X) reifies the atoms in φ(X) into the form of holds(·).

First, let Πcur be Hφ(X) ∪ Fs ∪ H ′φ(X′), and consider
the answer set of Πcur. Let a(Hφ(X)) be {holds(a) | a ∈
φ(X)}, let a(H ′φ(X′)) be {holds′(a) | a ∈ φ(X ′)}, and let
a(Fs) denote all the atoms in Fs. It is obvious that S1 =
a(Hφ(X)) ∪ a(Fs) ∪ a(H ′φ(X′)) is the only answer set of
Πcur.

Second, let’s include rule (5) and rule (6) in C into
Πcur. By Lemma 2, S2 = S1 ∪ {holds(neg(bodyr)) |
r ∈ {1, . . . ,m}, holds(bodyr) 6∈ a(Hφ(X))} ∪
{holds′(neg(bodyr)) | r ∈ {1, . . . ,m}, holds′(bodyr) 6∈
a(H ′φ(X′))} is the only answer set of Πcur.

Third, let’s include Deg (i.e., rule (13) and rule (14))
into Πcur. By Lemma 2, S3 = S2 ∪ {degree(R,D) |
S2 satisfies the body of rule (13)} ∪ {degree′(R,D) |
S2 satisfies the body of rule (14)} is the only answer set of
Πcur. Indeed, analogous to bullet 6 and bullet 7 in the pre-
vious direction (→) of the proof, S3 satisfies degree(R,D)
iff X satisfies LPOD rule R to degree D; S3 satisfies
degree′(R,D) iff X ′ satisfies LPOD rule R to degree D.
In other words, S3 = S2∪ {degree(r, d) | r ∈ {1, . . . ,m},
X satisfies rule r to degree d} ∪ {degree′(r, d) | r ∈
{1, . . . ,m}, X ′ satisfies rule r to degree d} is the only
answer set of Πcur.

Fourth, let’s include the rules in Ets (i.e., Elpod(s) in
Section 3.3) into Πcur for each preference criterion s ∈
{i, p, ps}. The proof for the case when s is c is not shown
due to the limit of space.
• Inclusion-Preferred Let’s include the first rule (17) in
Elpod(i) into Πcur. SinceX is i-preferred toX ′ according
to LPOD, there exists an integer d such that
– the set of LPOD rules that are satisfied to degree d by
X ′ is a proper subset of the set of LPOD rules that are
satisfied to degree d by X , and

– for any degree j such that j < d, the set of LPOD rules
that are satisfied to degree j by X ′ is a subset of the set
of LPOD rules that are satisfied to degree j by X .

In other words,there exists an integer d such that
– there exists at least one LPOD rule j that is satisfied by
X to degree d but is not satisfied byX ′ to degree d, and
for any LPOD rule j′, if it is satisfied by X ′ to degree
d, it must be satisfied by X to degree d, and

– for any degree j such that j < d, if an LPOD rule is
satisfied by X ′ to degree j, it must by satisfied by X to
degree j.

Since S3 satisfies degree(R,D) iffX satisfies LPOD rule
R to degree D, and S3 satisfies degree′(R,D) iff X ′ sat-
isfies LPOD rule R to degree D, there exists an integer d
such that

(i) there exists at least one LPOD rule j such that S3 �
degree(j, d) and S3 6� degree′(j, d), and for any
LPOD rule j′, if S3 � degree′(j′, d), then S3 �
degree(j′, d), and

(ii) for any LPOD rule r ∈ {1, . . . ,m} and any degree
j such that j < d, if S3 � degree′(r, j), then S3 �
degree(r, j)

Since S3 satisfies all atoms in a(Fs), according
to the translation, S3 satisfies optimize(i) an
preference(i, lpod(i)). By rule (17) and bullet (i)
above, S3 satisfies the body of rule (17) (where S is i and
D is d). By Lemma 2, S3 ∪ {prf2degree(i, d)} is an
answer set of Πcur.
Let’s include the second rule (18) in Elpod(i) into Πcur.
By Lemma 2 and bullet (ii) above, S4 = S3 ∪
{prf2degree(i, d), better(i)} is an answer set of Πcur.
Let’s include rule (4) into Πcur. It is easy to see that S4

satisfies rule (4). By Lemma 1, S4 is an answer set of
Hφ(X) ∪ Fs ∪ Ets ∪H ′φ(X′) ∪ C. Contradiction.

• Pareto-Preferred Let’s include the first rule (19) in
Elpod(p) into Πcur. Since X is p-preferred to X ′ accord-
ing to LPOD, there is an LPOD rule that is satisfied to a
lower degree in X than in X ′, and there is no rule that is
satisfied to a lower degree in X ′ than in X . By rule (19),
S3 does not satisfy the body of rule (19) (where S is p).
By Lemma 2, S3 is an answer set of Πcur.
Let’s include the second rule (20) in Elpod(p) into Πcur.
By Lemma 2, S4 = S3 ∪ {better(p)} is an answer set of
Πcur.
Let’s include rule (4) into Πcur. It is easy to see that S4

satisfies rule (4). By Lemma 1, S4 is an answer set of
Hφ(X) ∪ Fs ∪ Ets ∪H ′φ(X′) ∪ C. Contradiction.

• Penalty-Sum-Preferred Let’s include Elpod(ps)
into Πcur. Since X is ps-preferred to X ′ accord-
ing to LPOD, the sum of the satisfaction degrees
of all rules is smaller in X than in X ′. Thus∑
R:S3�degree(R,D)D <

∑
R:S3�degree′(R,D)D. By

Lemma 2, S4 = S3 ∪ {better(ps)} is an answer set of
Πcur.
Let’s include rule (4) into Πcur. It is easy to see that S4

satisfies rule (4). By Lemma 1, S4 is an answer set of
Hφ(X) ∪ Fs ∪ Ets ∪H ′φ(X′) ∪ C. Contradiction.

