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Abstract. We extend probabilistic action language pBC+ with the
notion of utility in decision theory. The semantics of the extended pBC+
can be defined as a shorthand notation for a decision-theoretic extension
of the probabilistic answer set programming language LPMLN. Alterna-
tively, the semantics of pBC+ can also be defined in terms of Markov
Decision Process (MDP), which in turn allows for representing MDP in
a succinct and elaboration tolerant way as well as leveraging an MDP
solver to compute a pBC+ action description. The idea led to the design
of the system pbcplus2mdp, which can find an optimal policy of a pBC+
action description using an MDP solver.
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1 Introduction

Many problems in Artificial Intelligence are about what actions to choose to
maximize the agent’s utility. Since actions may also have stochastic effects, the
main computational task is, rather than to find a sequence of actions that leads
to a goal, to find an optimal policy, that states which actions to execute in each
state to achieve the maximum expected utility.

While a few decades of research on action languages has produced several
expressive languages, such as A [5], B [6], C+ [7], BC [8], and BC+ [1], that are
able to describe actions and their effects in a succinct and elaboration tolerant
way, these languages are not equipped with constructs to represent stochastic
actions and the utility of a decision. In this paper, we present an action language
that overcomes the limitation. Our method is to equip probabilistic action lan-
guage pBC+ [11] with the notion of utility and define policy optimization prob-
lems in that language.

Following the way that pBC+ is defined as a shorthand notation of proba-
bilistic answer set programming language LPMLN for describing a probabilistic
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transition system, we first extend LPMLN by associating a utility measure to
each soft stable model in addition to its already defined probability. We call this
extension DT-LPMLN. Next, we define a decision-theoretic extension of pBC+ as
a shorthand notation for DT-LPMLN. It turns out that the semantics of pBC+
can also be directly defined in terms of Markov Decision Process (MDP), which
in turn allows us to define MDP in a succinct and elaboration tolerant way. The
result is theoretically interesting as it formally relates action languages to MDP
despite their different origins, and furthermore justifies the semantics of the
extended pBC+ in terms of MDP. It is also computationally interesting because
it allows for applying a number of algorithms developed for MDP to computing
pBC+. Based on this idea, we design the system pbcplus2mdp, which turns a
pBC+ action description into the input language of an MDP solver and leverages
MDP solving to find an optimal policy for the pBC+ action description.

The extended pBC+ can thus be viewed as a high-level representation of MDP
that allows for compact and elaboration tolerant encodings of sequential decision
problems. Compared to other MDP-based planning description languages, such
as PPDDL [18] and RDDL [13], it inherits the nonmonotonicity of the stable
model semantics to be able to compactly represent recursive definitions and
indirect effects of actions, which can save the state space significantly. Section 5
contains such an example.

This paper is organized as follows. After Sect. 2 reviews preliminaries, Sect. 3
extends LPMLN with the notion of utility, through which we define the extension
of pBC+ with utility in Sect. 4. Section 5 defines pBC+ as a high-level represen-
tation language for MDP and presents the prototype system pbcplus2mdp. We
discuss the related work in Sect. 6.

2 Preliminaries

Due to the space limit, the reviews are brief. We refer the reader to the original
papers [10,11], or the technical report of this paper [15] for the reviews of pre-
liminaries. The technical report also contains all proofs and experiments with
the system pbcplus2mdp.

2.1 Review: Action Language pBC+
Like BC and BC+, language pBC+ assumes that a propositional signature σ is
constructed from “constants” and their “values.” A constant c is a symbol that
is associated with a finite set Dom(c), called the domain. The signature σ is
constructed from a finite set of constants, consisting of atoms c = v for every
constant c and every element v in Dom(c). If the domain of c is {false,true},
then we say that c is Boolean, and abbreviate c=true as c and c=false as ∼c.

There are four types of constants in pBC+: fluent constants, action constants,
pf (probability fact) constants and initpf (initial probability fact) constants. Flu-
ent constants are further divided into regular and statically determined. The
domain of every action constant is restricted to Boolean. An action description
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Fig. 1. Causal laws in pBC+ and their translations into LPMLN

is a finite set of causal laws, which describes how fluents depend on each other
statically and how their values change from one time step to another. Figure 1
lists causal laws in pBC+ and their translations into LPMLN. A fluent formula
is a formula such that all constants occurring in it are fluent constants.

We use σfl (σact, σpf , and σinitpf , respectively) to denote the set of all
atoms c = v where c is a fluent constant (action constant, pf constant, initpf
constant, respectively) of σ and v is in Dom(c). For any subset σ′ of σ and any
i ∈ {0, . . . ,m}, we use i : σ′ to denote the set {i : A | A ∈ σ′}. For any formula
F of signature σ, by i : F we denote the result of inserting i : in front of every
occurrence of every constant in F .

The semantics of a pBC+ action description D is defined by a translation into
an LPMLN program Tr(D,m) = Dinit∪Dm. Below we describe the essential part
of the translation that turns a pBC+ description into an LPMLN program.

The signature σm of Dm consists of atoms of the form i :c = v such that

– for each fluent constant c of D, i ∈ {0, . . . , m} and v ∈ Dom(c),
– for each action constant or pf constant c of D, i ∈ {0, . . . ,m − 1} and v ∈

Dom(c).

Dm contains LPMLN rules obtained from static laws, fluent dynamic laws,
and pf constant declarations as described in the third column of Fig. 1, as well
as {0 : c = v}ch for every regular fluent constant c and every v ∈ Dom(c), and
{i : c = true}ch, {i : c = false}ch (i ∈ {0, . . . , m−1) for every action constant c
to state that the fluents at time 0 and the actions at each time are exogenous.1

Dinit contains LPMLN rules obtained from initial static laws and initpf constant
declarations as described in the third column of Fig. 1. Both Dm and Dinit also
contain constraints asserting that each constant is mapped to exactly one value

1 {A}ch denotes the choice rule A ← not not A.
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in its domain. In the presence of these constraints, we identify an interpretation
of σm with the value assignment function that maps each constant to its value.

For any LPMLN program Π of signature σ1 and an interpretation I of a
subset σ2 of σ1, we say I is a residual (probabilistic) stable model of Π if there
exists an interpretation J of σ1 \ σ2 such that I ∪ J is a (probabilistic) stable
model of Π.

For any interpretation I of σ, by i : I we denote the interpretation of i : σ
such that i : I |= (i : c) = v iff I |= c = v. For x ∈ {act, fl, pf}, we use σx

m to
denote the subset of σm, which is {i :c = v ∈ σm | c = v ∈ σx}.

A state of D is an interpretation Ifl of σfl such that 0 : Ifl is a residual
(probabilistic) stable model of D0. A transition of D is a triple 〈s, e, s′〉 where
s and s′ are interpretations of σfl and e is an interpretation of σact such that
0:s ∪ 0:e ∪ 1 : s′ is a residual stable model of D1. A pf-transition of D is a pair
(〈s, e, s′〉, pf), where pf is a value assignment to σpf such that 0 : s ∪ 0 : e ∪ 1 :
s′ ∪ 0:pf is a stable model of D1.

The following simplifying assumptions are made on action descriptions in
pBC+.

1. No Concurrency: For all transitions 〈s, e, s′〉, we have e |= a=true for at
most one action constant a;

2. Nondeterministic Transitions are Determined by pf constants: For
any state s, any value assignment e of σact, and any value assignment pf of
σpf , there exists exactly one state s′ such that (〈s, e, s′〉, pf) is a pf-transition;

3. Nondeterminism on Initial States are Determined by Initpf con-
stants: For any value assignment pfinit of σinitpf , there exists exactly one
value assignment fl of σfl such that 0 : pfinit ∪ 0 : fl is a stable model of
Dinit ∪ D0.

With the above three assumptions, the probability of a history, i.e., a
sequence of states and actions, can be computed as the product of the prob-
abilities of all the transitions that the history is composed of, multiplied by the
probability of the initial state (Corollary 1 in [11]).

2.2 Review: Markov Decision Process

A Markov Decision Process (MDP) M is a tuple 〈S,A, T,R〉 where (i) S is a set
of states; (ii) A is a set of actions; (iii) T : S × A × S → [0, 1] defines transition
probabilities; (iv) R : S × A × S → R is the reward function.

Given a history 〈s0, a0, s1, . . . , sm−1, am−1, sm〉 such that each si ∈ S (i ∈
{0, . . . , m}) and each ai ∈ A (i ∈ {0, . . . , m − 1}), the total reward RM of the
history under MDP M is defined as

RM (〈s0, a0, s1, . . . , sm−1, am−1, sm〉) =
m−1∑

i=0

R(si, ai, si+1).

The probability PM of 〈s0, a0, s1, . . . , sm−1, am−1, sm〉 under MDP is defined as
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PM (〈s0, a0, s1, . . . , sm−1, am−1, sm〉) =
m−1∏

i=0

T (si, ai, si+1).

A non-stationary policy π : S × ST �→ A is a function from S × ST to A, where
ST = {0, . . . , m − 1}. The expected total reward of a non-stationary policy π
starting from the initial state s0 under MDP M is

ERM (π, s0) = E
〈s1,...,sm〉:

si∈S for i∈{1,...,m}
[RM (〈s0, π(s0, 0), s1, . . . , sm−1, π(sm−1, m − 1), sm〉)]

=
∑

〈s1,...,sm〉:
si∈S for i∈{1,...,m}

( m−1∑

i=0

R(si, π(si, i), si+1)
)

×
( m−1∏

i=0

T (si, π(si, i), si+1)
)
.

The finite horizon policy optimization problem starting from s0 is to find a
non-stationary policy π that maximizes its expected total reward starting from
s0, i.e., argmaxπ ERM (π, s0).

Various algorithms for MDP policy optimization have been developed, such
as value iteration [3] for exact solutions, and Q-learning [16] for approximate
solutions.

3 DT-LPMLN

We extend the syntax and the semantics of LPMLN to DT-LPMLN by introducing
atoms of the form

utility(u, t) (1)

where u is a real number, and t is an arbitrary list of terms. These atoms can
only occur in the head of hard rules of the form

α : utility(u, t) ← Body (2)

where Body is a list of literals. We call these rules utility rules.
The weight and the probability of an interpretation are defined the same as

in LPMLN. The utility of an interpretation I under Π is defined as

UΠ(I) =
∑

utility(u,t)∈I

u.

The expected utility of a proposition A is defined as

E[UΠ(A)] =
∑

I |=A

UΠ(I) × PΠ(I | A). (3)

A DT-LPMLN program is a pair (Π,Dec) where Π is an LPMLN program with
a propositional signature σ (including utility atoms) and Dec is a subset of σ
consisting of decision atoms. We consider two reasoning tasks with DT-LPMLN.
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– Evaluating a Decision. Given a propositional formula e (“evidence”) and
a truth assignment dec of decision atoms Dec, represented as a conjunction
of literals over atoms in Dec, compute the expected utility of decision dec in
the presence of evidence e, i.e., compute

E[UΠ(dec ∧ e)] =
∑

I |= dec∧e

UΠ(I) × PΠ(I | dec ∧ e).

– Finding a Decision with Maximum Expected Utility (MEU). Given
a propositional formula e (“evidence”), find the truth assignment dec on Dec
such that the expected utility of dec in the presence of e is maximized, i.e.,
compute

argmax
dec : dec is a truth assignment on Dec

E[UΠ(dec ∧ e)]. (4)

Example 1. Consider a directed graph G representing a social network: (i) each
vertex v ∈ V (G) represents a person; each edge (v1, v2) represents that v1 influ-
ences v2; (ii) each edge e = (v1, v2) is associated with a probability pe represent-
ing the probability of the influence; (iii) each vertex v is associated with a cost
cv, representing the cost of marketing the product to v; (iv) each person who
buys the product yields a reward of r.

The goal is to choose a subset U of vertices as marketing targets so as to
maximize the expected profit. The problem can be represented as a DT-LPMLN

program Πmarket as follows:

α : buy(v) ← marketTo(v).
α : buy(v2) ← buy(v1), influence(v1, v2).
α : utility(r, v) ← buy(v).

with the graph instance represented as follows:

– for each edge e = (v1, v2), we introduce a probabilistic fact ln( pe

1−pe
) :

influence(v1, v2);
– for each vertex v ∈ V (G), we introduce the following rule:

α : utility(−cv, v) ← marketTo(v).

For simplicity, we assume that marketing to a person guarantees that the
person buys the product. This assumption can be removed easily by changing
the first rule to a soft rule.

The MEU solution of DT-LPMLN program (Πmarket, {marketTo(v) | v ∈
V (G)}) corresponds to the subset U of vertices that maximizes the expected
profit.
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For example, consider the directed graph on the
right, where each edge e is labeled by pe and each
vertex v is labeled by cv. Suppose the reward for
each person buying the product is 10. There are
26 = 64 different truth assignments on decision
atoms, corresponding to 64 choices of marketing
targets. The best decision is to market to Alice
only, which yields the expected utility of 17.96.

4 pBC+ with Utility

We extend pBC+ by introducing the following expression called utility law that
assigns a reward to transitions:

reward v if F after G (5)

where v is a real number representing the reward, F is a formula that contains
fluent constants only, and G is a formula that contains fluent constants and
action constants only (no pf, no initpf constants). We extend the signature of
Tr(D,m) with a set of atoms of the form (1). We turn a utility law of the form
(5) into the LPMLN rule

α : utility(v, i + 1, id) ← (i + 1 : F ) ∧ (i : G) (6)

where id is a unique number assigned to the LPMLN rule and i ∈ {0, . . . , m−1}.
Given a nonnegative integer m denoting the maximum timestamp, a

pBC+ action description D with utility over multi-valued propositional sig-
nature σ is defined as a high-level representation of the DT-LPMLN program
(Tr(D,m), σact

m ).
We extend the definition of a probabilistic transition system as follows: A

probabilistic transition system T (D) represented by a probabilistic action descrip-
tion D is a labeled directed graph such that the vertices are the states of D, and
the edges are obtained from the transitions of D: for every transition 〈s, e, s′〉 of
D, an edge labeled e : p, u goes from s to s′, where p = PrD1(1 : s′ | 0 : s ∧ 0 : e)
and u = E[UD1(0 :s ∧ 0 :e ∧ 1 :s′)]. The number p is called the transition proba-
bility of 〈s, e, s′〉, denoted by p(s, e, s′), and the number u is called the transition
reward of 〈s, e, s′〉, denoted by u(s, e, s′).

Example 2. The following action description Dsimple describes a simple proba-
bilistic action domain with two Boolean fluents P , Q, and two actions A and B.
A causes P to be true with probability 0.8, and if P is true, then B causes Q
to be true with probability 0.7. The agent receives the reward 10 if P and Q
become true for the first time (after then, it remains in the state {P,Q} as it is
an absorbing state).
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A causes P if Pf 1
B causes Q if P ∧ Pf 2
inertial P, Q
constraint ¬(Q∧ ∼P )
caused Pf 1 = {true : 0.8, false : 0.2}
caused Pf 2 = {true : 0.7, false : 0.3}

reward 10 if P ∧ Q after ¬(P ∧ Q)
caused InitP = {true : 0.6, false : 0.4}
initially P = x if InitP = x
caused InitQ = {true : 0.5, false : 0.5}
initially Q if InitQ ∧ P
initially ∼Q if ∼P.

The transition system T (Dsimple) is as follows:

4.1 Policy Optimization

Given a pBC+ action description D, we use S to denote the set of states, i.e,
the set of interpretations Ifl of σfl such that 0 : Ifl is a residual (probabilistic)
stable model of D0. We use A to denote the set of interpretations Iact of σact

such that 0:Iact is a residual (probabilistic) stable model of D1. Since we assume
at most one action is executed each time step, each element in A makes either
only one action or none to be true.

A (non-stationary) policy π (in pBC+) is a function π : S×{0, . . . ,m−1} �→ A
that maps a state and a time step to an action (including doing nothing). By
〈s0, s1 . . . , sm〉t (each si ∈ S) we denote the formula 0:s0∧1:s1∧· · ·∧m :sm, and
by 〈s0, a0, s1 . . . , sm−1, am−1, sm〉t (each si ∈ S and each ai ∈ A) the formula

0:s0 ∧ 0:a0 ∧ 1:s1 ∧ · · · ∧ m − 1:am−1 ∧ m :sm.

We say a state s is consistent with Dinit if there exists at least one probabilis-
tic stable model I of Dinit such that I |= 0:s. The Policy Optimization problem
from the initial state s0 is to find a policy π that maximizes the expected utility
starting from s0, i.e., π with

argmax
π is a policy

E[UTr(Π,m)(Cπ,m ∪ 〈s0〉t)]

where Cπ,m is the following formula representing policy π:
∧

s∈S, π(s,i)=a, i∈{0,...,m−1}
i :s → i :a.

We define the total reward of a history 〈s0, a0, s1, . . . , sm〉 under the action
description D as

RD(〈s0, a0, s1, . . . , sm〉) = E[UTr(D,m)(〈s0, a0, s1, a1, . . . , am−1, sm〉t)].
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Although it is defined as an expectation, the following proposition tells us
that any stable model X of Tr(D,m) such that X |= 〈s0, a0, s1, . . . , sm〉 has
the same utility, and consequently, the expected utility of 〈s0, a0, s1, . . . , sm〉 is
the same as the utility of any single stable model that satisfies the history.

Proposition 1. For any two stable models X1,X2 of Tr(D,m) that satisfy a
history 〈s0, a0, s1, a1, . . . , am−1, sm〉, we have

UTr(D,m)(X1) = UTr(D,m)(X2) = E[UTr(D,m)(〈s0, a0, s1, a1, . . . , am−1, sm〉t)].

It can be seen that the expected utility of π can be computed from the
expected utility from all possible state sequences.

Proposition 2. Given any initial state s0 that is consistent with Dinit, for any
non-stationary policy π, we have
E[UT r(D,m)(Cπ,m ∧ 〈s0〉t)] =

∑

〈s1,...,sm〉:si∈S

RD(〈s0, π(s0), s1, . . . , π(sm−1), sm〉) × PT r(D,m)(〈s0, s1, . . . , sm〉t | 〈s0〉t ∧ Cπ,m).

Definition 1. For a pBC+ action description D, let M(D) be the MDP
〈S,A, T,R〉 where (i) the state set S is S; (ii) the action set A is A; (iii) transi-
tion probability T is defined as T (s, a, s′) = PD1(1 : s′ | 0 : s ∧ 0 : a); (iv) reward
function R is defined as R(s, a, s′) = E[UD1(0 : s ∧ 0 : a ∧ 1 : s′)].

We show that the policy optimization problem for a pBC+ action description
D can be reduced to the policy optimization problem for M(D) for the finite
horizon. The following theorem tells us that for any history following a non-
stationary policy, its total reward and probability under D defined under the
pBC+ semantics coincide with those under the corresponding MDP M(D).

Theorem 1. Given an initial state s0 ∈ S that is consistent with Dinit, for any
non-stationary policy π and any finite state sequence 〈s0, s1, . . . , sm−1, sm〉 such
that each si in S (i ∈ {0, . . . , m}), we have

– RD(〈s0, π(s0), s1, . . . , π(sm−1), sm〉) = RM(D)(〈s0, π(s0, ) . . . , π(sm−1), sm〉)
– PTr(D,m)(〈s0, s1, . . . , sm〉t | 〈s0〉t ∧ Cπ,m) = PM(D)(〈s0, π(s0, ) . . . , π(sm−1), sm〉).

It follows that the policy optimization problem for pBC+ action descriptions
coincides with the policy optimization problem for MDP with finite horizon.

Theorem 2. For any nonnegative integer m and an initial state s0 ∈ S that is
consistent with Dinit, we have

argmax
π is a non-stationary policy

E[UTr(D,m)(Cπ,m ∧ 〈s0〉t)] = argmax
π is a non-stationary policy

ERM(D)(π, s0).

Theorem 2 justifies using an implementation of DT-LPMLN to compute opti-
mal policies of MDP M(D) as well as using an MDP solver to compute optimal
policies of the pBC+ descriptions. Furthermore, the theorems above allow us to
check the properties of MDP M(D) by using formal properties of LPMLN, such
as whether a certain state is reachable in a given number of steps.
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5 pBC+ as a High-Level Representation Language
of MDP

An action description consists of causal laws in a human-readable form describing
the action domain in a compact and high-level way, whereas it is non-trivial to
describe an MDP instance directly from the domain description in English. The
result in the previous section shows how to construct an MDP instance M(D)
for a pBC+ action description D so that the solution to the policy optimization
problem of D coincide with that of MDP M(D). In that sense, pBC+ can be
viewed as a high-level representation language for MDP.

As its semantics is defined in terms of LPMLN, pBC+ inherits the nonmono-
tonicity of the stable model semantics to be able to compactly represent recur-
sive definitions or transitive closure. The static laws in pBC+ prune out invalid
states to ensure that only meaningful value combinations of fluents will be given
to MDP as states, thus reducing the size of state space at the MDP level.

Example 3. Robot and Blocks There are two rooms R1, R2, and three blocks
B1, B2, B3 that are originally located in R1. A robot can stack one block on top
of another block if the two blocks are in the same room. The robot can also
move a block to a different room, resulting in all blocks above it also moving if
successful (with probability p). Each moving action has a cost of 1. What is the
best way to move all blocks to R2?

The example can be represented in pBC+ as follows. x, x1, x2 range over
B1, B2, B3; r, r1, r2 ranges over R1, R2. TopClear(x), Above(x1, x2), and
GoalNotAchieved are Boolean statically determined fluent constants; In(x) is a
regular fluent constant with Domain {R1, R2}, and OnTopOf (x1, x2) is a Boolean
regular fluent constant. MoveTo(x, r) and StackOn(x1, x2) are action constants
and Pf Move is a Boolean pf constant. In this example, we make the goal state
absorbing, i.e., when all the blocks are already in R2, then all actions have no
effect.

Moving block x to room r causes x to be in r with probability p:

MoveTo(x, r) causes In(x) = r if Pf Move ∧ GoalNotAchieved
caused Pf Move = {true : p, false : 1 − p}.

Successfully Moving a block x1 to a room r2 causes x1 to be no longer underneath
the block x2 that x1 was underneath in the previous step, if r2 is different from
where x2 is:

MoveTo(x1, r2) causes ∼OnTopOf (x1, x2)

if Pf Move ∧ In(x1) = r1 ∧ OnTopOf (x1, x2) ∧ GoalNotAchieved (r1 	= r2).

Stacking a block x1 on another block x2 causes x1 to be on top of x2, if the top
of x2 is clear, and x1 and x2 are at the same location:

StackOn(x1, x2) causes OnTopOf (x1, x2)
if TopClear(x2) ∧ At(x1) = r ∧ At(x2) = r ∧ GoalNotAchieved(x1 �= x2).
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Stacking a block x1 on another block x2 causes x1 to be no longer on top of the
block x where x1 was originally on top of:

StackOn(x1, x2) causes ∼OnTopOf (x1, x) if TopClear(x2) ∧ At(x1) = r ∧ At(x2) = r∧
OnTopOf (x1, x) ∧ GoalNotAchieved (x2 	= x, x1 	= x2).

Two different blocks cannot be on top of the same block, and a block cannot be
on top of two different blocks:

constraint ¬(OnTopOf (x1, x) ∧ OnTopOf (x2, x)) (x1 �= x2)
constraint ¬(OnTopOf (x, x1) ∧ OnTopOf (x, x2)) (x1 �= x2).

By default, the top of a block x is clear. It is not clear if there is another block
x1 that is on top of it:

default TopClear(x)
caused ∼TopClear(x) if OnTopOf (x1, x).

The relation Above between two blocks is the transitive closure of the relation
OnTopOf : A block x1 is above another block x2 if x1 is on top of x2, or there
is another block x such that x1 is above x and x is above x2:

caused Above(x1, x2) if OnTopOf (x1, x2)
caused Above(x1, x2) if Above(x1, x) ∧ Above(x, x2).

One block cannot be above itself; two blocks cannot be above each other:

caused ⊥ if Above(x1, x2) ∧ Above(x2, x1).

If a block x1 is above another block x2, then x1 has the same location as x2:

caused At(x1) = r if Above(x1, x2) ∧ At(x2) = r. (7)

Each moving action has a cost of 1:

reward − 1 if 
 after MoveTo(x, r).

Achieving the goal when the goal is not previously achieved yields a reward of
10:

reward 10 if ∼GoalNotAchieved after GoalNotAchieved .

The goal is not achieved if there exists a block x that is not at R2. It is achieved
otherwise:

caused GoalNotAchieved if At(x) = r (r �= R2)
default ∼GoalNotAchieved .

At(x) and OnTopOf (x1, x2) are inertial:

inertial At(x),OnTopOf (x1, x2).

Finally, we add a1∧a2 causes ⊥ for each distinct pair of ground action constants
a1 and a2, to ensure that at most one action can occur each time step.

It can be seen that stacking all blocks together and moving them at once
would be the best strategy to move them to R2.
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In Example 3, many value combinations of fluents do not lead to a valid
state, such as {OnTopOf (B1, B2),OnTopOf (B2, B1), ...}, where the two blocks
B1 and B2 are on top of each other. Moreover, the fluents TopClear(x) and
Above(x1, x2) are completely dependent on the value of the other fluents. There
would be 23+3×3+3+3×3 = 224 states if we define a state as any value combination
of fluents. On the other hand, the static laws in the above action description
reduce the number of states to only (13 + 9) × 2 = 44.2

Furthermore, in this example, Above(x, y) needs to be defined as a transitive
closure of OnTopOf (x, y), so that the effects of StackOn(x1, x2) can be defined in
terms of the (inferred) spatial relation of blocks. Also, the static law (7) defines
an indirect effect of MoveTo(x, r).

We implemented the prototype system pbcplus2mdp, which takes an action
description D and time horizon m as input, and finds an optimal policy by
constructing the corresponding MDP M(D) and invoking an MDP solver mdp-
toolbox.3 The current system uses LPMLN 1.0 [9] (http://reasoning.eas.asu.
edu/lpmln) for exact inference to find states, actions, transition probabilities,
and transition rewards. The system is publicly available at https://github.com/
ywang485/pbcplus2mdp, along with several examples. The current system is
not quite scalable because generating exact transition probability and reward
matrices requires enumerating all stable models of D0 and D1.

6 Related Work

There have been quite a few studies and attempts in defining factored represen-
tations of (PO)MDP, with feature-based state descriptions and more compact,
human-readable action definitions. PPDDL [18] extends PDDL with constructs
for describing probabilistic effects of actions and reward from state transitions.
One limitation of PPDDL is the lack of static causal laws, which prohibits
PPDDL from expressing recursive definitions or transitive closure. This may
yield a large state space to explore as discussed in Sect. 5. RDDL (Relational
Dynamic Influence Diagram Language) [13] improves the expressivity of PPDDL
in modeling stochastic planning domains by allowing concurrent actions, contin-
uous values of fluents, state constraints, etc. The semantics is defined in terms of
lifted dynamic Bayes network extended with influence graph. A lifted planner can
utilize the first-order representation and potentially achieve better performance.
Still, indirect effects are hard to be represented in RDDL. Compared to PPDDL
and RDDL, the advantages of pBC+ are in its simplicity and expressivity origi-
nating from the stable model semantics, which allows for elegant representation
of recursive definitions, defeasible behaviors, and indirect effects.

Zhang et al. [19] adopt ASP and P-Log [2] which respectively produces a
refined set of states and a refined probability distribution over states that are
then fed to POMDP solvers for low-level planning. The refined sets of states
2 This can be verified by counting all possible configurations of 3 blocks with 2 loca-

tions.
3 https://pymdptoolbox.readthedocs.io.

http://reasoning.eas.asu.edu/lpmln
http://reasoning.eas.asu.edu/lpmln
https://github.com/ywang485/pbcplus2mdp
https://github.com/ywang485/pbcplus2mdp
https://pymdptoolbox.readthedocs.io
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and probability distribution over states take into account commonsense knowl-
edge about the domain, and thus improve the quality of a plan and reduce
computation needed at the POMDP level. Yang et al. [17] adopts the (deter-
ministic) action description language BC for high-level representations of the
action domain, which defines high-level actions that can be treated as deter-
ministic. Each action in the generated high-level plan is then mapped into more
detailed low-level policies, which takes stochastic effects of low-level actions into
account. Similarly, Sridharan et al. [14] introduce a framework with planning
in a coarse-resolution transition model and a fine-resolution transition model.
Action language ALd is used for defining the two levels of transition models.
The fine-resolution transition model is further turned into a POMDP for detailed
planning with stochastic effects of actions and transition rewards. While a pBC+
action description can fully capture all aspects of (PO)MDP including transi-
tion probabilities and rewards, the ALd action description only provides states,
actions and transitions with no quantitative information. Leonetti et al. [12], on
the other hand, use symbolic reasoners such as ASP to reduce the search space
for reinforcement learning based planning methods by generating partial policies
from planning results generated by the symbolic reasoner. The exploration of the
low-level RL module is constrained by actions that satisfy the partial policy.

Another related work is [4], which combines ASP and reinforcement learning
by using action language BC+ as a meta-level description of MDP. The BC+
action descriptions define non-stationary MDPs in the sense that the states
and actions can change with new situations occurring in the environment. The
algorithm ASP(RL) proposed in this work iteratively calls an ASP solver to
obtain states and actions for the RL methods to learn transition probabilities
and rewards, and updates the BC+ action description with changes in the envi-
ronment found by the RL methods, in this way finding optimal policy for a
non-stationary MDP with the search space reduced by ASP. The work is similar
to ours in that ASP-based high-level logical description is used to generate states
and actions for MDP, but the difference is that we use an extension of BC+ that
expresses transition probabilities and rewards.

7 Conclusion

Our main contributions are as follows.

– We presented a decision-theoretic extension of LPMLN, through which we
extended pBC+ with the language constructs for representing rewards of tran-
sitions;

– We showed that the semantics of pBC+ can be equivalently defined in terms
of the decision-theoretic LPMLN or MDP;

– We presented the system pbcplus2mdp, which solves pBC+ policy optimiza-
tion problems with an MDP solver.

Formally relating action languages and MDP opens up interesting research
to explore. Dynamic programming methods in MDP can be utilized to compute
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action languages. In turn, action languages may serve as a formal verification
tool for MDP as well as a high-level representation language for MDP that
describes an MDP instance in a succinct and elaboration tolerant way. As many
reinforcement learning tasks use MDP as a modeling language, the work may
be related to incorporating symbolic knowledge to reinforcement learning as
evidenced by [12,17,19].

DT-LPMLN may deserve attention on its own for static domains. We are
currently working on an implementation that extends LPMLN system to handle
utility. We expect that the system can be a useful tool for verifying properties
for MDP.

The theoretical results in this paper limit attention to MDP in the finite
horizon case. When the maximum step m is sufficiently large, we may view it as
an approximation of the infinite horizon case, in which case, we allow discount
factor γ by replacing v in (6) with γi+1v. While it appears intuitive to extend
the theoretical results in this paper to the infinite case, it requires extending
the definition of LPMLN to allow infinitely many rules, which we leave for future
work.
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