
Under consideration for publication in Theory and Practice of Logic Programming 1

Bridging Commonsense Reasoning and Probabilistic
Planning via a Probabilistic Action Language

(Application Paper)

Yi Wang∗, Shiqi Zhang#, Joohyung Lee∗
∗Arizona State University, USA - # SUNY Binghamton, USA

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

In order to be responsive to dynamically changing real-world environments, an intelligent agent needs to per-
form complex sequential decision-making tasks that are often guided by commonsense knowledge. The previous
work on this line of research led to the framework called interleaved commonsense reasoning and probabilistic
planning (iCORPP). iCORPP used P-log to represent commmonsense knowledge and Markov Decision Processes
(MDPs) or Partially Observable MDPs (POMDPs) for planning under uncertainty. A main limitation of iCORPP

is that its implementation requires non-trivial engineering efforts to bridge the commonsense reasoning and
probabilistic planning formalisms. In this paper, we present a unified framework to integrate iCORPP’s reason-
ing and planning components. In particular, we extend probabilistic action language pBC+ to express utility,
belief states, and observation as in POMDP models. Inheriting the advantages of action languages, the new ac-
tion language provides an elaboration tolerant representation of POMDP that reflects commonsense knowledge.
The idea led to the design of the system PBCPLUS2POMDP, which compiles a pBC+ action description into a
POMDP model that can be directly processed by off-the-shelf POMDP solvers to compute an optimal policy of
the pBC+ action description. Our experiments show that it retains the advantages of iCORPP while avoiding the
manual efforts in bridging the commonsense reasoner and the probabilistic planner.

1 Introduction

Intelligent agents frequently need to perform complex sequential decision making toward achieving
goals that require more than one action, in which the agent’s utility depends on a sequence of deci-
sions. A common task is to find the policy that maximizes the agent’s utility when the environment
is partially observable, i.e., the agent knows only partial information about the current state. Partially
Observable Markov Decision Processes (POMDPs) (Kaelbling et al. 1998) have been widely used for
that purpose. It assumes partial observability of underlying states and can model the nondeterministic
state transitions and local, unreliable observations using probabilities, and plan toward maximizing
long-term rewards under such uncertainties. However, as a very general mathematical framework,
POMDPs are not equipped with built-in constructs for representing commonsense knowledge.

Recent works (Zhang and Stone 2015; Zhang et al. 2015) aim at embracing commonsense knowl-
edge into probabilistic planning. In that line of research, a reasoner was used for state estimation with
contextual knowledge and a planner focuses on selecting actions to maximize the long-term reward.
More recently, probabilistic logical knowledge has been used for reasoning about both the current
state and the dynamics of the world, resulting in the framework called iCORPP (Zhang et al. 2017).
iCORPP builds on two computational paradigms of P-log (Baral et al. 2009) and POMDPs (Kael-
bling et al. 1998) for commonsense reasoning and probabilistic planning respectively. Reflecting the
commonsense knowledge, iCORPP significantly reduces the complexity of POMDP planning while
enabling robot behaviors to adapt to exogenous changes. One example domain in (Zhang et al. 2017)

demonstrates that the MDP constructed by iCORPP includes only 60 states whereas the naive way of
enumerating all combinations of attribute values produces more than 269 states.

Despite the advantages, iCORPP has the limitation that practitioners must spend non-trivial engi-
neering efforts to bridge the gap between P-log and POMDP in its implementations. One reason is
that P-log does not have the built-in notions of utility and partially observable states as in POMDP
models. Thus, the work on iCORPP acquired the transitions and their probabilities by running a P-
log solver, but then the user has to manually add the information about the rewards and the belief
states (Zhang et al. 2017).

In this paper, we present a more principled way to integrate the commonsense reasoning and proba-
bilistic planning components in the iCORPP framework, which serves as the main contribution of this
paper. We extend probabilistic action language pBC+ (Lee and Wang 2018; Wang and Lee 2019) to
support the representation of and reasoning with utility, belief states, and observation as in POMDP
models. Inheriting the advantages of action languages, the new action language provides an elabo-
ration tolerant representation of POMDP that is convenient to encode commonsense knowledge and
completely shield users from the syntax or algorithms of POMDPs.

The second contribution is on the design of the system PBCPLUS2POMDP, which can dynamically
construct POMDP models given an action description in pBC+, and compute action policies using
off-the-shelf POMDP solvers. Unlike iCORPP, the semantics of pBC+ and its reasoning system to-
gether support the direct generation of planning models, which can be further used for computing
action policies using POMDP solvers. Experiments have been conducted using the “tiger” and the
“dialog management” benchmarks, and the results show that our new language (and its supporting
system) retains the advantages of iCORPP while successfully avoiding the manual efforts in bridging
the gap between iCORPP’s commonsense reasoning and probabilistic planning components.

The paper is organized as follows. After reviewing pBC+ and POMDP in Section 2, we extend
pBC+ and show how it can be used to represent POMDP models in Section 3. In Section 4, we show
how we can dynamically generate POMDP models by exploiting the elaboration tolerant representa-
tion of pBC+. We present the system PBCPLUS2POMDP in Section 5 and experimental results with
the system in Section 6. After discussing the related work in Section 7, we conclude in Section 8.

2 Preliminaries

Due to the space limit, the review is brief. We refer the reader to (Lee and Wang 2018; Wang and Lee
2019), or the appendix of this paper for the review of preliminaries.

2.1 Review: pBC+ with Utility

We review pBC+ as presented in (Wang and Lee 2019), which extends the language in (Lee and
Wang 2018) by incorporating the concept of utility.

Like its predecessors BC (Lee et al. 2013) and BC+ (Babb and Lee 2015), language pBC+ assumes
that a propositional signature σ is constructed from “constants” and their “values.” A constant c is a
symbol that is associated with a finite set Dom(c), called the domain. The signature σ is constructed
from a finite set of constants, consisting of atoms c= v for every constant c and every element v in
Dom(c). If the domain of c is {FALSE, TRUE}, then we say that c is Boolean, and abbreviate c= TRUE

as c and c= FALSE as ∼c.
There are four types of constants in pBC+: fluent constants, action constants, pf (probability fact)

constants and initpf (initial probability fact) constants. Fluent constants are further divided into regu-
lar and statically determined. The domain of every action constant is restricted to Boolean. An action
description is a finite set of causal laws, which describes how fluents depend on each other statically

2

Fig. 1. Causal laws in pBC+ and their translations into LPMLN

and how their values change from one time step to another. Fig. 1 lists causal laws in pBC+ and their
translations into LPMLN (Lee and Wang 2016). A fluent formula is a formula such that all constants
occurring in it are fluent constants.

We use σfl (σact, σpf , and σinitpf , respectively) to denote the set of all atoms c= v where c is a
fluent constant (action constant, pf constant, initpf constant, respectively) of σ and v is in Dom(c).
For any subset σ′ of σ and any i ∈ {0, . . . ,m}, we use i :σ′ to denote the set {i :A | A ∈ σ′}. For
any formula F of signature σ, by i :F we denote the result of inserting i : in front of every occurrence
of every constant in F .

The semantics of a pBC+ action description D is defined by a translation into an LPMLN program
Tr(D,m) = Dinit ∪Dm. Below we describe the essential part of the translation that turns a pBC+
description into an LPMLN program.

The signature σm of Dm consists of atoms of the form i :c = v such that

• for each fluent constant c of D, i ∈ {0, . . . ,m} and v ∈ Dom(c),
• for each action constant or pf constant c of D, i ∈ {0, . . . ,m− 1} and v ∈ Dom(c).

and atoms of the form utility(v, i, id) introduced by each utility law as described in Fig. 1.
Dm contains LPMLN rules obtained from static laws, fluent dynamic laws, utility laws, and pf

constant declarations as described in the third column of Fig. 1, as well as {0 : c = v}ch for every
regular fluent constant c and every v ∈ Dom(c), and {i : c = TRUE}ch, {i : c = FALSE}ch (i ∈
{0, . . . ,m−1) for every action constant c to state that the fluents at time 0 and the actions at each
time are exogenous.1 Dinit contains LPMLN rules obtained from initial static laws and initpf constant
declarations as described in the third column of Fig. 1. Both Dm and Dinit also contain constraints
asserting that each constant is mapped to exactly one value in its domain. We identify an interpretation
of σm (or σ) that satisfies these constraints with the value assignment function mapping each constant
to its value.

For any LPMLN program Π of signature σ1 and an interpretation I of a subset σ2 of σ1, we say I
is a residual (probabilistic) stable model of Π if there exists an interpretation J of σ1 \ σ2 such that
I ∪ J is a (probabilistic) stable model of Π.

1 {A}ch denotes the choice rule A← not not A.

3

For any interpretation I of σ, by i :I we denote the interpretation of i :σ such that i :I |= (i :c) = v

iff I |= c = v. For x ∈ {act, fl, pf}, we use σxm to denote the subset of σm, which is {i : c = v ∈
σm | c = v ∈ σx}.

A state of D is an interpretation Ifl of σfl such that 0 : Ifl is a residual (probabilistic) stable
model of D0. A transition of D is a triple 〈s, e, s′〉 where s and s′ are interpretations of σfl and e is
an interpretation of σact such that 0:s∪ 0:e∪ 1 : s′ is a residual stable model of D1. A pf-transition
ofD is a pair (〈s, e, s′〉, pf), where pf is a value assignment to σpf such that 0:s∪0:e∪1 : s′∪0:pf

is a stable model of D1.
The following simplifying assumptions are made on action descriptions in pBC+.

1. No concurrent execution of actions: For all transitions 〈s, e, s′〉, we have e |= a= TRUE for
at most one action constant a;

2. Nondeterministic transitions are determined by pf constants: For any state s, any value
assignment e of σact, and any value assignment pf of σpf , there exists exactly one state s′

such that (〈s, e, s′〉, pf) is a pf-transition;
3. Nondeterminism on initial states are determined by initpf constants: For any value as-

signment pfinit of σinitpf , there exists exactly one value assignment fl of σfl such that
0:pfinit ∪ 0:fl is a stable model of Dinit ∪D0.

With the above three assumptions, the probability of a history, i.e., a sequence of states and actions,
can be computed as the product of the probabilities of all the transitions that the history is composed
of, multiplied by the probability of the initial state.

A pBC+ action description defines a probabilistic transition system as follows: A probabilistic
transition system T (D) represented by a probabilistic action description D is a labeled directed
graph such that the vertices are the states of D, and the edges are obtained from the transitions of D:
for every transition 〈s, e, s′〉 of D, an edge labeled e : p, u goes from s to s′, where p = PD1(1 :s′ |
0 :s ∧ 0 :e) and u = E[UD1

(0 :s ∧ 0 :e ∧ 1 :s′)]. 2 The number p is called the transition probability
of 〈s, e, s′〉, denoted by p(s, e, s′), and the number u is called the transition reward of 〈s, e, s′〉,
denoted by u(s, e, s′). The notion of a probabilistic transition system is essentially the same as that
of a Markov Decision Process.

2.2 Review: POMDP

A Partially Observable Markov Decision Processes (POMDP) is defined as a tuple

〈S,A, T,R,Ω, O, γ〉

where (i) S is a set of states; (ii) A is a set of actions; (iii) T : S × A × S → [0, 1] are transition
probabilities; (vi)R : S×A×S → R are rewards; (v) Ω is a set of observations; (vi)O : S×A×Ω→
[0, 1] are observation probabilities; (vii) γ ∈ [0, 1] is a discount factor.

A belief state is a probability distribution over S. Given the current belief state b, after taking action
a ∈ A and observing o ∈ Ω, the updated belief state, b′, can be computed as

b′(s′) = η ·O(o | s′, a)
∑
s∈S

T (s′ | s, a)b(s)

where s ∈ S and s′ ∈ S are the current and next states respectively; b(s) is the belief probability in
b corresponding to s; b′(s′) is the belief probability in b′ corresponding to s′; and η is a normalizer.

2 The utility of an interpretation I under DT-LPMLN program Π (Wang and Lee 2019) is defined as UΠ(I) =
Σutility(u,t)∈I u and the expected utility of a proposition A is defined as E[UΠ(A)] =

∑
I|=A

UΠ(I)× PΠ(I | A).

4

A policy π is a function from the set of belief states to the set of actions. The expected total reward
of a stationary policy π starting from the initial belief state b0 is

V π(b0) =
∑∞
t=0 γ

tE
[
R(st, π(bt), st+1) | b0

]
where bt and st are the belief state and the state at time t. The optimal policy π∗ is obtained by
optimizing the long-term reward: π∗ = argmax

π
V π(b0).

3 Representing POMDP by Extended pBC+

To be able to express partially observable states, we extend pBC+ by introducing a new type of
constants, called observation constants, and a new kind of causal laws called observation dynamic
laws. An observation dynamic law is of the form

observed F if G after H (1)

where F is a formula containing no other constants than observation constants, G is a formula con-
taining no other constants than fluent constants, and H is a formula containing no other constants
than action constants and pf constants. Observation constants can occur only in observation dynamic
laws. An observation dynamic law r of the form (1) is translated into the following LPMLN rule:

α : (i+ 1:F)← (i+ 1:G) ∧ (i :H).

For each observation constant obs, Dom(obs) contains a special value NA (“Not Applicable”). For
each observation constant obs in σobs and v ∈ Dom(obs), we include the following LPMLN rule in
Dm to indicate that the initial value of each observation constant is exogenous:

α : {0 : obs=v}ch

and include the following LPMLN rule in Dm to indicate that the default value of obs is NA:

α : {i : obs=NA}ch (i ∈ {1, . . . ,m}).

For a more flexible representation, we introduce the if clause in the pf constant declarations as

caused c = {v1 : p1, . . . , vn : pn} if F (2)

where c is a pf constant with the domain {v1, . . . , vn}, 0 < pi < 1 for each i ∈ {1, . . . , n},∑
i∈{1,...,n}

pi = 1 and F contains rigid constants only.3 A pf constant declaration (2) is translated

into LPMLN rules

ln(pi) : (i : c) = vj ← F (3)

for j ∈ {0, . . . ,m}. In addition to Assumptions 1–3 above, we add the following assumption:

4. Rigid constants take same value over all stable models: for any rigid constant c, there exists
v ∈ Dom(c) such that I � c = v for all stable model I of Dm.

Under this assumption, the body F in (3) evaluates to either TRUE or FALSE for all stable models of
Dm, meaning that either (3) can be removed from Dm, or F can be removed from the body of (3).
Thus, this is not an essential extension but helps us use different probability distributions by changing
the condition F .

3 A rigid constant is a statically determined fluent constant for which the value is assumed not to change over time
(Giunchiglia et al. 2004).

5

Given a pBC+ action description D, we use S to denote the set of states, i.e, the set of interpreta-
tions Ifl of σfl such that 0 :Ifl is a residual (probabilistic) stable model of D0. We use A to denote
the set of interpretations Iact of σact such that 0 : Iact is a residual (probabilistic) stable model of
D1. Since we assume at most one action is executed each time step, each element in A makes either
only one action or none to be true.

Definition 1
A pBC+ action descriptionD, together with a discount factor γ, defines a POMDPM(D) 〈S,A, P,R,Ω, O, γ〉
where

• the state set S is the same as S and the action set A is the same as A;
• the transition probability P is defined as P (s, a, s′) = PD1

(1 :s′ | 0:s, 0:a);
• the reward function R is defined as R(s, a, s′) = E[UD1

(0 :s, 0:a, 1:s′)];
• the observation set Ω is the set of interpretations o on σobs such that 0 : o is a residual stable

model of D0;
• the observation probability O is defined as O(s, a, o) = PD1

(1 :o | 1:s, 0:a).

4 Elaboration Tolerant Representation of POMDP

Consider the “dialog management” example from (Zhang et al. 2017): a delivery robot is responsible
for delivering an item i to person p in room r. The robot needs to ask questions to figure out what i,
p, r are. The challenge comes from the robot’s imperfect speech recognition capability. As a result,
repeating questions is sometimes necessary. We use POMDPs to model the unreliability from speech
recognition, and the robot uses observations to maintain a belief state in the form of a probability
distribution. There are two types of questions that the robot can ask:

• Which-Questions: questions about which item/person/room it is, for example, “which item is
it?”

• Confirmation-Questions: questions to confirm whether a(n) item/person/room is the requested
one, for example, “is the requested item coffee?”

Each of the question-asking action has a small cost. The robot can execute a deliver action, which
consists of an item i′, person p′ and room r′ as arguments. A deliver action deterministically leads
to the terminal state. A reward is obtained with deliver action, determined by to what extent i′, p′

and r′ matches i, p and r. For instance, when all three entries are correctly identified in the deliver
action, the agent receives a large reward; when none is correctly identified, the agent receives a large
penalty (in the form of a negative reward). Therefore, the agent has the motivation of computing
action policies to minimize the cost of its question-asking actions, while maximizing the expected
reward by tasking the “correct” delivery action.

This example can be represented in pBC+ as follows. We assume a small domain where Item =

{Coffee,Coke,Cookies,Burger}, Person = {Alice,Bob,Carol}, Room = {R1, R2, R3}.

Notation: i, i′ range over Item, p, p′ ranges over Person, r, r′ ranges over Room, c ranges over {Yes, No}
Observation constant: Domains:

ItemObs Item ∪ {NA}
PersonObs Person ∪ {NA}
RoomObs Room ∪ {NA}
Confirmed {Yes, No, NA}

Regular fluent constants: Domains:
ItemReq Item

6

PersonReq Person
RoomReq Room
Terminated Boolean

Action constants: Domains:
WhichItem, WhichPerson, WhichRoom,
ConfirmItem(i), ConfirmPerson(p), ConfirmRoom(r),
Deliver(i, p, r) Boolean

Pf constants: Domains:
Pf WhichItem(i) Item
Pf WhichPerson(p) Person
Pf WhichRoom(r) Room
Pf ConfirmWhenCorrect, Pf ConfirmWhenIncorrect {Yes, No}

The action Deliver causes the entering of the terminal state:

caused Terminated if >after Deliver(i, p, r).

The execution of Deliver action with the room, the person and the item all correct yields a reward
of r. The execution of Deliver action with a wrong item, a wrong person, or a wrong room yield a
penalty of p1, p2, p3 each.

reward r if ItemReq= i ∧ PersonReq=p ∧ RoomReq=r ∧ Deliver(i, p, r)∧ ∼Terminated,
reward −p1 if ItemReq= i ∧ Deliver(i′, p′, r′)∧ ∼Terminated (i 6= i′),

reward −p2 if PersonReq=p ∧ Deliver(i′, p′, r′)∧ ∼Terminated (p 6= p′),

reward −p3 if RoomReq=r ∧ Deliver(i′, p′, r′)∧ ∼Terminated (r 6= r′).

Asking “which item” question when the actual item being requested is i returns an item i′ as obser-
vation in accordance with the probability distribution defined by pf constant Pf WhichItem(i), shown
below. “Which person” and “Which room” questions are represented in a similar way.

observed ItemObs= i′ if ItemReq= i∧ ∼Terminated after WhichItem ∧ Pf WhichItem(i)= i′,

caused Pf WhichItem(Coffee)={Coffee : 0.7,Coke : 0.1,Cookies : 0.1,Burger : 0.1},
caused Pf WhichItem(Coke)={Coffee : 0.1,Coke : 0.7,Cookies : 0.1,Burger : 0.1},
caused Pf WhichItem(Cookies)={Coffee : 0.1,Coke : 0.1,Cookies : 0.7,Burger : 0.1},
caused Pf WhichItem(Burger)={Coffee : 0.1,Coke : 0.1,Cookies : 0.1,Burger : 0.7},

(4)
When the robot asks the confirmation question “is the item i?”, the human’s answer could be

sometimes mistakenly recognized, and the probability distribution of the answer depends on whether
the item i is indeed what the human asked for. We use two pf constants, Pf ConfirmWhenCorrect and
Pf ConfirmWhenIncorrect to specify the distinct probability distributions depending on whether the
robot’s guess is correct or not. When the robot asks to confirm if the item requested is i, which is
indeed what the human requested:

observed Confirmation=v if ItemReq= i∧ ∼Terminated

after ConfirmItem(i) ∧ Pf ConfirmWhenCorrect=v. (v ∈ {Yes, No})
caused Pf ConfirmWhenCorrect={Yes : 0.8, No : 0.2}.

When the robot asks to confirm if the requested item is i′ whereas the actual item the human requested

7

is i′:

observed Confirmation=v if ItemReq= i∧ ∼Terminated

after ConfirmItem(i′) ∧ Pf ConfirmWhenIncorrect=v (i 6= i′),

caused Pf ConfirmWhenIncorrect={Yes : 0.2, No : 0.8}.

(The probability distributions of these pf constants do not have to be complementary.)
The formulations of person- and room-related questions are defined similarly, and omitted from

the paper.
Asking which-questions has a cost of c1; asking confirmation-questions has a cost of c2.

reward c1 if > after WhichItem, reward c2 if > after ConfirmItem(i),

reward c1 if > after WhichPerson, reward c2 if > after ConfirmPerson(p),

reward c1 if > after WhichRoom, reward c2 if > after ConfirmRoom(r).

Finally, all regular fluents in this domain are inertial:

inertial rf (rf ∈ {ItemReq,PersonReq,RoomReq,Terminated}).

We illustrate that the above pBC+ action description is elaboration tolerant through the following
elaborations. It should be noted that using vanilla POMDP methods, manipulating states, actions,
or observation functions requires a lot of engineering efforts, and people frequently have to tune
prohibitively a large number of parameters. iCORPP and this research aim to avoid that through prob-
abilistic reasoning about actions. In this work, we move forward from iCORPP to completely shield
developers from the syntax or algorithms of POMDPs.

4.1 Elaboration 1: Unavailable items

When an item becomes unavailable for delivery, we can simply remove that item from the domains of
relevant constants. For example, when Coke becomes unavailable, we simply replace the pf constant
declarations in (4) with

caused Pf WhichItem(Coffee)={Coffee : 0.78,Cookies : 0.11,Burger : 0.11},
caused Pf WhichItem(Cookies)={Coffee : 0.11,Cookies : 0.78,Burger : 0.11},
caused Pf WhichItem(Burger)={Coffee : 0.11,Cookies : 0.11,Burger : 0.78}.

4.2 Elaboration 2: Reflecting personal preference in reward function

We use a rigid fluent Interchangeable(p, i1, i2) with the integer domain to represent to what degree
the two items i1, i2 are interchangeable for person p. For example, Alice does not mind when the
robot delivers coke while she actually ordered coffee but she does mind when the robot delivers
burger instead of coffee. We add the following elaboration to represent object interchangeabilities.

caused Interchangeable(Alice,Coffee,Coke)=5,

caused Interchangeable(Alice,Coffee,Cookies)=1,

caused Interchangeable(Alice,Coffee,Burger)=−3.

We add the following causal law to reflect the interchageability of the items.

reward x if ItemReq= i ∧ Interchangeable(p, i, i′)=x ∧ PersonReq(p) after Deliver(i′, p′, r′).

Such knowledge can be used to enable the robot to be more conservative in delivering items, such
as burger, due to their low interchangeability to other items.

8

4.3 Elaboration 3: Changing Perception Model

The speech recognition system may have different accuracy depending on the environment. For ex-
ample, when there is background noise, its accuracy could drop. In this case, we can update the
probability distribution for the relevant pf constant, controlled by auxiliary constants indicating the
situation. We introduce a rigid constant called Noise, then we replace (4) with

caused Pf WhichItem(Coffee)={Coffee : 0.7,Coke : 0.1,Cookies : 0.1,Burger : 0.1} unless ab
caused Pf WhichItem(Coke)={Coffee : 0.1,Coke : 0.7,Cookies : 0.1,Burger : 0.1} unless ab
caused Pf WhichItem(Cookies)={Coffee : 0.1,Coke : 0.1,Cookies : 0.7,Burger : 0.1} unless ab
caused Pf WhichItem(Burger)={Coffee : 0.1,Coke : 0.1,Cookies : 0.1,Burger : 0.7} unless ab

(5)

to make them defeasible. We then define the probability distribution to override the original ones
when there is loud background noise.

caused Pf WhichItem(Coffee)={Coffee :
6

10
,Coke :

4

30
,Cookies :

4

30
,Burger :

4

30
} if Noise,

caused Pf WhichItem(Coke)={Coffee :
4

30
,Coke :

6

10
,Cookies :

4

30
,Burger :

4

30
} if Noise,

caused Pf WhichItem(Cookies)={Coffee :
4

30
,Coke :

4

30
,Cookies :

6

10
,Burger :

4

30
} if Noise,

caused Pf WhichItem(Burger)={Coffee :
4

30
,Coke :

4

30
,Cookies :

4

30
,Burger :

6

10
} if Noise.

We add

caused ab if Noise

to indicate that by default there is no background noise. When the robot agent detects that there is
background noise, we add

caused Noise

to the action description to update the generated POMDP to incorporate the new speech recognition
probabilities. It should be noted that the speech recognition component is generally unreliable, though
background noise further reduces its reliability.

5 System PBCPLUS2POMDP

We implemented the prototype system PBCPLUS2POMDP, which takes a pBC+ action description D
as input and outputs the POMDP M(D) in the input language of the POMDP solver APPL 4. The
system uses LPMLN2ASP (Lee et al. 2017) with exact inference on D1 and D0 to generate the com-
ponents of POMDP: all states, all actions, all transitions and their probabilities, all observations and
their probabilities and transition rewards as defined in Definition 1. The system is publicly available
at https://github.com/ywang485/pbcplus2pomdp, along with several examples.

Even though we limit the computation to D0 and D1, i.e., at most one step action execution is
considered, the number of stable models may become too huge to enumerate all. Since the transi-
tion probabilities, rewards, observation probabilities are per each action, the system implements a
compositional way to generate the POMDP model by partitioning the actions in different groups and

4 http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/

9

POMDP Generation Time POMDP Solving Time (APPL)

Domain Size PBCPLUS2POMDP PBCPLUS2POMDP γ = 0.9 γ = 0.8 γ = 0.7
(naive) (compo)

2i2p2r
#states = 16
#actions = 18

#observations = 9

49m10.495s 0m13.611s 0m6.123s 0m0.680s 0m0.249s

2i3p2r
#states = 24
#actions = 23

#observations = 10

> 1hr 0m22.723s 4m43.572s 0m21.939s 0m2.294s

3i3p2r
#states = 36
#actions = 30

#observations = 11

> 1hr 0m41.944s > 1hr 8m14.415s 0m37.944s

4i3p2r
#states = 48
#actions = 37

#observations = 12

> 1hr 2m56.652s > 1hr > 1hr 10m50.248s

Table 1. Running Statistics of POMDP Model Generation and Solving in Dialog Example

generating the POMDP model per each group by omitting the causal laws involving other actions and
their pf constants. This “compositional” mode often saves the POMDP generation time drastically.5

6 Evaluation

All experiments reported in this section were performed on a machine powered by 4 Intel(R) Core(TM)
i5-2400 CPU with OS Ubuntu 14.04.5 LTS and 8G memory.

6.1 Evaluation of Planning Efficiency

We report the running statistics of POMDP generation with our PBCPLUS2POMDP system and POMDP
planning with APPL on the dialog example (as described in Section 4) in Table 1. We test domains
with different numbers of items, people and rooms. PBCPLUS2POMDP(NAIVE) generates POMDP
in a non-compositional way while PBCPLUS2POMDP(COMPO) generates POMDP in a composi-
tional way (as described in Section 5) by partitioning actions into {ConfirmItem(i) | i ∈ Item},
{ConfirmPerson(p) | p ∈ Person}, {ConfirmRoom(r) | r ∈ Room}, {WhichItem}, {WhichPerson},
{WhichRoom}, {Deliver(i, p, r) | i ∈ Item, p ∈ Person, r ∈ Room}.
γ is a discount factor. “POMDP solving time (APPL)” refers to the running time of APPL until

the convergence to a target precision of 0.1. The PBCPLUS2POMDP(COMPO) mode is much more
efficient than the PBCPLUS2POMDP(NAIVE) mode for the dialog domain.

6.2 Evaluation of Solution Quality

pBC+ provides a high-level description of POMDP models such that various elaborations on the
underlying action domain can be easily achieved by changing a small part of the pBC+ action de-
scription, whereas such elaboration would require a complete reconstruction of transition/reward/ob-
servation matrices at POMDP level. In Sections 4.1, 4.2 and 4.3, we have illustrated this point with

5 The more detailed description of the algorithm is given in ??.

10

Fig. 2. Impact of Elaboration 1 on Policy Generated

Fig. 3. Impact of Elaboration 2 on Policy Generated
the three example elaborations. In this subsection, we evaluate the impact of the three elaborations
on dynamic planning, in the sense that the low-level POMDP (planning module) can be updated au-
tomatically once the high-level pBC+ action description (reasoning module) detects changes in the
environment to generate better plans. For each of the thee elaborations, we compare the plan gener-
ated from a static POMDP that does not reflect environmental changes, and the one generated from
the adaptive POMDP that is updated by pBC+ reasoning to reflect environmental changes.

Fig. 2 compares the policies generated from the static POMDPs (baseline) and from the POMDP
dynamically generated using pBC+, where the two items of burger and cookies might be unavailable
(Elaboration 1). We have run 1000 simulation trials. The diagram on the left compares them in terms
of average total reward from the simulation runs, and the right is in terms of average QA cost (accu-
mulated penalty by asking questions). In this experiment, the discount factor is 0.95 (which offers the
dialog agent a relatively long horizon), c1 is 4.0, c2 is 2.0, r is 20.0, p2 is 20.0, and p3 is 30.0. Action
policies are generated using APPL in at most 120 seconds. We observe that the adaptive POMDP
(ours) achieves a higher average total reward when the penalty for the wrong item is positive, and
the adaptive POMDPs are able to complete deliveries with less QA cost. It is worth noting that by
reflecting unavailable items, pBC+ reduces the size of the generated POMDP models, resulting in
shorter POMDP-solving time. As can be seen from Table 1, for a domain that contains 2 items, 3

people and 2 rooms, POMDP generation plus POMDP solving takes way less time than POMDP
solving on a domain with 4 items, 3 people and 2 rooms.

Fig. 3 compares the policies generated from the static POMDP and from pBC+ based adaptive
POMDP when item interchangeability is introduced (Elaboration 2). We replaced cookies with pepsi
in the domain, added causal laws to indicate that when coke is being requested, delivering pepsi
yields a reward of 15, delivering coffee yields a reward of 5 and delivering burger yields an addi-
tional penalty of 20 (in the presence of penalty p1). We have run 10000 simulations, and for all of the
simulations, the actual item being requested is fixed to be coke.6 For the static POMDP, 9628 deliv-

6 The item is fixed to be coke only during simulation, not during policy generation.

11

Fig. 4. Impact of Elaboration 3 on Policy Generated

eries were correct, and for the adaptive POMDP, 9270 deliveries were correct. Note that although the
static POMDP achieves more correct deliveries, the dynamically generated POMDPs (our approach)
achieved higher average total reward by asking fewer questions. The policy generated from the static
POMDP gives similar numbers of deliveries for each item that is not coke, while the policy generated
from the adaptive POMDP delivered pepsi the most and burger the least, which is aligned with our
setting of interchangeability. The discount factor for this experiment is set to be 0.99. c1 is 6, c2 is 4,
r is 5, p1 is 5, p2 is 20 and p3 is 30. Policies from both POMDPs are generated by APPL with 120

seconds.
Fig. 4 compares the policies generated from the static POMDP and from pBC+ based adaptive

POMDP when there is a background noise (Elaboration 3). To reflect environmental noise, we low-
ered the observation probability of correct answers by 0.1 (and the remaining answers are uniformly
distributed). We have run 1000 simulations. The diagram on the left compares them in term of aver-
age total reward from the simulation runs, and the diagram on the right compares them in terms of
average QA cost (accumulated cost from questions asked) from the simulation runs. In this experi-
ment, c1 is 4, c2 is 2, r is 20, p2 is 20 and p3 is 30. Policies from both POMDPs are generated by
APPL with 120 seconds. It can be seen from the diagrams that while the average total reward of both
POMDPs decreases as the discount factor increases, the adaptive POMDP achieves higher average
total reward by asking fewer questions.

7 Related Work

Intelligent agents need the capabilities of both reasoning about declarative knowledge, and prob-
abilistic planning toward achieving long-term goals. A variety of algorithms have been developed
to integrate commonsense reasoning and probabilistic planning (Hanheide et al. 2017; Zhang et al.
2015; Zhang and Stone 2015; Sridharan et al. 2019; Chitnis et al. 2018; Zhang et al. 2017; Amiri
et al. 2018), and some of them, such as (Sridharan et al. 2019) and (Amiri et al. 2018), also include
non-deterministic dynamic laws for observations. Although the algorithms use very different compu-
tational paradigms for representing and reasoning with human knowledge (e.g., logics, probabilities,
graphs, etc), they all share the goal of leveraging declarative knowledge to improve the performance
in probabilistic planning. In these works, the hypothesis is that human knowledge potentially can be
useful in guiding robot behaviors in the real world, while the challenge is that human knowledge
is sparse, incomplete, and sometimes unreliable. In this research, we share the same goal of utiliz-
ing contextual knowledge from people to help intelligent agents in sequential decision-making tasks
while accounting for the uncertainty in perception and action outcomes.

Among the algorithms that integrate commonsense reasoning and probabilistic planning paradigms,
iCORPP enabled an agent to reason with contextual knowledge to dynamically construct complete
probabilistic planning models (Zhang et al. 2017) for adaptive robot control, where P-log was used

12

for logical-probabilistic reasoning (Baral et al. 2009). Depending on the observability of world
states, iCORPP uses either Markov Decision Processes (MDPs) (Puterman 2014) or Partially Ob-
servable MDPs (POMDPs) (Kaelbling et al. 1998) for probabilistic planning. As a result, iCORPP has
been applied to robot navigation, dialog system, and manipulation tasks (Zhang et al. 2017; Amiri
et al. 2018). In this work, we develop a unified representation and a corresponding implementation
for iCORPP, where the entire reasoning and planning system can be encoded using a single pro-
gram, and practitioners are completely shielded from the technical details of formulating and solving
(PO)MDPs. In comparison, iCORPP requires significant engineering efforts (e.g., using Python or
C++) for “gluing” the computational paradigms used by the commonsense reasoning and probabilis-
tic planning components.

Recently, researchers have developed algorithms to incorporate knowledge representation and rea-
soning into reinforcement learning (RL) (Sutton and Barto 2018), where the goal is to provide the
learning agents with guidance in action selections through reasoning with declarative knowledge. No-
table examples include (Leonetti et al. 2016; Yang et al. 2018; Jiang et al. 2018; Lu et al. 2018; Lyu
et al. 2019; Kim et al. 2019). In this research, we assume the availability of world models, including
both states and dynamics, in a declarative form. In case of world models being unavailable, incom-
plete, or dynamically changing, there is the potential of combining the above “knowledge-driven RL”
algorithms, particularly the ones using model-based RL such as (Lu et al. 2018), with our new repre-
sentation to enable agents to simultaneously learn and reason about world models to compute action
policies.

In an earlier work (Tran and Baral 2004), the authors show how Pearl’s probabilistic causal model
can be encoded in a probabilistic action language PAL (Baral et al. 2002).

8 Conclusion and Future Work

In this paper, we present a principled way of integrating probabilistic logical reasoning and proba-
bilistic planning. This is done by extending probabilistic action language pBC+ (Lee and Wang 2018;
Wang and Lee 2019) to be able to express utility, belief states, and observation as in POMDP mod-
els. Inheriting the advantages of action languages, the new action language provides an elaboration
tolerant representation of POMDP that is convenient to encode commonsense knowledge.

One of the well known problems limiting applications of POMDPs is sensitivity of the optimal
behavior to the small changes in the reward function and the probability distribution. Because of this
sensitivity care must be taken in choosing the reward function as well as the probability distribution.
The choice of these, and especially of the latter is a non-trivial problem, which is outside of the scope
of the paper. POMDP algorithms perform poorly in scalability in many applications. Although the
language and system developed in this paper can potentially alleviate this issue, we believe this is a
challenging problem that deserves more effort, and we leave it to future work.

The current prototype implementation is not highly scalable when the number of transitions be-
comes large. For a more scalable generation of the POMDP input using the LPMLN system, we could
use the sampling method in LPMLN inference, which we leave for future work.

References

AMIRI, S., WEI, S., ZHANG, S., SINAPOV, J., THOMASON, J., AND STONE, P. 2018. Multi-modal predicate
identification using dynamically learned robot controllers. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence.

BABB, J. AND LEE, J. 2015. Action language BC+. Journal of Logic and Computation, exv062.
BARAL, C., GELFOND, M., AND RUSHTON, J. N. 2009. Probabilistic reasoning with answer sets. Theory and

Practice of Logic Programming 9, 1, 57–144.

13

BARAL, C., TRAN, N., AND TUAN, L.-C. 2002. Reasoning about actions in a probabilistic setting. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 507–512.

CHITNIS, R., KAELBLING, L. P., AND LOZANO-PÉREZ, T. 2018. Integrating human-provided information
into belief state representation using dynamic factorization. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 3551–3558. IEEE.

GIUNCHIGLIA, E., LEE, J., LIFSCHITZ, V., MCCAIN, N., AND TURNER, H. 2004. Nonmonotonic causal
theories. Artificial Intelligence 153(1–2), 49–104.

HANHEIDE, M., GÖBELBECKER, M., HORN, G. S., PRONOBIS, A., SJÖÖ, K., AYDEMIR, A., JENSFELT, P.,
GRETTON, C., DEARDEN, R., JANICEK, M., ET AL. 2017. Robot task planning and explanation in open and
uncertain worlds. Artificial Intelligence 247, 119–150.

JIANG, Y., YANG, F., ZHANG, S., AND STONE, P. 2018. Integrating task-motion planning with reinforcement
learning for robust decision making in mobile robots. CoRR abs/1811.08955.

KAELBLING, L. P., LITTMAN, M. L., AND CASSANDRA, A. R. 1998. Planning and acting in partially observ-
able stochastic domains. Artificial intelligence 101, 1-2, 99–134.

KIM, B., KAELBLING, L. P., AND LOZANO-PEREZ, T. 2019. Adversarial actor-critic method for task and
motion planning problems using planning experience. In AAAI Conference on Artificial Intelligence (AAAI).

LEE, J., LIFSCHITZ, V., AND YANG, F. 2013. Action language BC: Preliminary report. In Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI).

LEE, J., TALSANIA, S., AND WANG, Y. 2017. Computing LPMLN using ASP and MLN solvers. Theory and
Practice of Logic Programming, 17(5-6):942-960.

LEE, J. AND WANG, Y. 2016. Weighted rules under the stable model semantics. In Proceedings of International
Conference on Principles of Knowledge Representation and Reasoning (KR), pp. 145–154.

LEE, J. AND WANG, Y. 2018. A probabilistic extension of action language BC+. Theory and Practice of Logic
Programming 18(3–4), 607–622.

LEONETTI, M., IOCCHI, L., AND STONE, P. 2016. A synthesis of automated planning and reinforcement
learning for efficient, robust decision-making. Artificial Intelligence 241, 103–130.

LU, K., ZHANG, S., STONE, P., AND CHEN, X. 2018. Robot representing and reasoning with knowledge from
reinforcement learning. CoRR abs/1809.11074.

LYU, D., YANG, F., LIU, B., AND GUSTAFSON, S. 2019. Sdrl: Interpretable and data-efficient deep reinforce-
ment learning leveraging symbolic planning. In AAAI.

PUTERMAN, M. L. 2014. Markov decision processes: discrete stochastic dynamic programming. John Wiley
& Sons.

SRIDHARAN, M., GELFOND, M., ZHANG, S., AND WYATT, J. 2019. REBA: A refinement-based architecture
for knowledge representation and reasoning in robotics. Journal of Artificial Intelligence Research 65, 87–
180.

SUTTON, R. S. AND BARTO, A. G. 2018. Reinforcement learning: An introduction. MIT press.
TRAN, N. AND BARAL, C. 2004. Encoding probabilistic causal model in probabilistic action language. In

Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 305–310.
WANG, Y. AND LEE, J. 2019. Elaboration tolerant representation of markov decision process via decision

theoretic extension of action language pbc+. In LPNMR.
YANG, F., LYU, D., LIU, B., AND GUSTAFSON, S. 2018. Peorl: integrating symbolic planning and hierarchical

reinforcement learning for robust decision-making. In Proceedings of the 27th International Joint Conference
on Artificial Intelligence, pp. 4860–4866.

ZHANG, S., KHANDELWAL, P., AND STONE, P. 2017. Dynamically constructed (PO)MDPs for adaptive robot
planning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017,
San Francisco, California, USA., pp. 3855–3863.

ZHANG, S., SRIDHARAN, M., AND WYATT, J. L. 2015. Mixed logical inference and probabilistic planning for
robots in unreliable worlds. IEEE Transactions on Robotics 31, 3, 699–713.

ZHANG, S. AND STONE, P. 2015. CORPP: Commonsense reasoning and probabilistic planning, as applied to
dialog with a mobile robot. In Twenty-Ninth AAAI Conference on Artificial Intelligence.

14

