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Abstract We establish a full A-principle (C-close, relative, parametric) for
the simplification of singularities of Lagrangian and Legendrian fronts. More
precisely, we prove that if there is no homotopy theoretic obstruction to simpli-
fying the singularities of tangency of a Lagrangian or Legendrian submanifold
with respect to an ambient foliation by Lagrangian or Legendrian leaves, then
the simplification can be achieved by means of a Hamiltonian isotopy.
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1 Introduction and statement of results
1.1 Panoramic overview

In this paper we establish a general i-principle for the simplification of sin-
gularities of Lagrangian and Legendrian fronts. The precise formulation is
given in Theorem 1.11 below. Here is a sample corollary of our results, where
7w T*S" — §" denotes the cotangent bundle of the standard n-dimensional
sphere.

Corollary 1.1 Let S C T*S" be any embedded Lagrangian sphere. If n
is even, then there exists a compactly supported Hamiltonian isotopy ¢; :
T*S" — T*S" such that the singularities of the projection 7|y, (s) : ¢1(S) —
S" consist only of folds. An analogous result holds for even-dimensional Leg-
endrian spheres in the 1-jet space J'(S", R) = T*S" x R.

More generally, let S C M be any embedded Lagrangian sphere, where
(M?", @) is a symplectic manifold equipped with a foliation F by Lagrangian
leaves. Denote by T F the distribution of Lagrangian planes tangent to the
foliation F and let V be the restriction of 7F to S. It is easy to see that a
necessary condition for S to be Hamiltonian isotopic to a Lagrangian sphere
whose singularities of tangency with respect to F consist only of folds is that
V is stably trivial as a real vector bundle over the sphere. When 7 is even, our
h-principle implies the following converse.

Corollary 1.2 Suppose that V = T F|s is stably trivial as a real vector bundle
over the sphere. If n is even, then there exists a compactly supported Hamil-
tonian isotopy ¢; : M — M such that the singularities of tangency of ¢1(S)
with respect to the foliation F consist only of folds. An analogous result holds
for even-dimensional Legendrian spheres.

Remark 1.3 As we will see, the assumption that V is stably trivial is automat-
ically satisfied for all even n such that n % 2 mod 8. The simplest example in
which more complicated singularities are necessary occurs when n = 2 and
corresponds to the Hopf bundle on S, where in addition to the ©!° folds we
find that a £ pleat is unavoidable. When n is odd the problem is not as
straightforward due to the fact that m,,(U,) # 0. Nevertheless, we will apply
our h-principle to give a necessary and sufficient condition for the simplifi-
cation of singularities to be possible in terms of the homotopy class of the
distribution of Lagrangian planes V.

As another application of our A-principle, we establish that higher sin-
gularities are unnecessary for the homotopy theoretic study of the space of
Legendrian knots in the standard contact R3. Before we can state our result
we need to set some notation.
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The simplification of singularities of Lagrangian 643

Recall that the front projection R? — R? corresponds to the forgetful map
JYR,R) — JOR,R) where we identify J'(R, R) = R3 and JO(R,R) =
RZ. In coordinates, we have R? = R(g) x R(p) x R(z), R* = R(g) x R(z),
&stqa = ker(dz — pdq) and the front projection is the map (¢, p, z) — (¢, 2).
The front of a Legendrian knot f : §' — R3 is the composition of f with
the front projection, which results in a map S' — R2. Let £ be the space
of all (parametrized) Legendrian knots f : S!' — R3 and let M C L be
the subspace consisting of those Legendrian knots whose front only has mild
singularities, namely cusps and embryos. A cusp of the front corresponds to
a fold type singularity of tangency of f with respect to the foliation given by
the fibres of the front projection. An embryo is the instance of birth/death of
two cusps and corresponds to the familiar Reidemeister Type I move.

The inclusion M < L is not a homotopy equivalence. Indeed, it is easy to
see that o (L, M) # 0. However, by decorating the mild singularities of the
Legendrian knots in M we define a space D, equipped with a map D — M
which forgets the decoration, such that the composition D — M — L
is surjective on mo and restricts to a weak homotopy equivalence on each
connected component. The precise definition of the space D is as follows.

For any k > 0, consider the unordered configuration space Cr(S1) of k
distinct points on the circle S' = R/Z. Define a space Ci(SY) fibered over
Cr(S1) such that the fibre over the configuration {t1, ..., %} C S ! consists of
allunordered collections of closed intervals 11, . . ., I,, C S! whichare disjoint
from the points 71, ..., #x and such that I; N /; # & implies either /; C int(/;)
or I; C int(/;). In the degenerate case where the endpoints of an interval /;
coincide, the interval consists of a point and this is allowed. The topology is
such that an interval /; which contains no other intervals in its interior can
continuously shrink to a point and disappear. Observe therefore that the fibre
of the map F:k(sl) — Cr(SY) is contractible. We give (~3(S1) =Ll ék(Sl)
the disjoint union topology, so that the points #; are not allowed to collide. We
will refer to the elements of C(S ) as decorations.

Let D = ({t;},{1;}) € C(S") be any decoration. We say that a Legendrian
knot f : S! — R3 is compatible with D if its front has cusp singularities at
each of the points 7; and if moreover for each interval /; the following holds.
If I; is not degenerate, then we demand that the front has cusp singularities at
each of the two endpoints of /; and moreover we require that the two cusps
have opposite Maslov co-orientations. If /; is degenerate and thus consists of
a single point, then we demand that the front of f has an embryo singularity
at that point. At all other points of S' we demand that the front is regular.

Define D to be the space of all pairs (f, D) such that f Sl > R¥isa
Legendrian knot compatible with a decoration D € C(S ). Note in particu-
lar that f € M. The composition of the forgetful map D — M given by
(f, D) — f with the inclusion M <« L gives amap D — L. It is easy to
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644 D. Alvarez-Gavela

see that the induced map 7o(D) — mo(L) is surjective but not injective. The
parametric version of our A-principle implies the following result.

Corollary 1.4 The map D — L is a weak homotopy equivalence on each
connected component.

Given a family of Legendrian knots in R? parametrized by a space of arbi-
trarily high dimension, Corollary 1.4 allows us to simplify the singularities of
the corresponding family of fronts so that we end up having only cusps and
embryos. Moreover we have a strong control on the structure of the singularity
locus (in the source) given by the family of configurations decorating the mild
singularities. Proofs of Corollaries 1.1, 1.2 and 1.4, as well as of the claims
made in Remark 1.3 and elsewhere in the above overview will be given in
Sect. 6.

The singularities of Lagrangian and Legendrian fronts, also known as
caustics in the literature, were first extensively studied by Arnold and his
collaborators. See [3] for an introduction to the theory. Today, caustics still
play a central role in modern symplectic and contact topology, both rigid and
flexible. In many situations it is desirable for a Lagrangian or Legendrian front
to have singularities which are as simple as possible. For example the Reide-
meister theorem for Legendrian knots in the standard contact R3 (of which
Corollary 1.4 is a multi-parametric generalization) has allowed for the study
of (L) using combinatorial tools. Another example is Ekholm’s method of
Morse flow-trees [7] for the computation of Legendrian contact homology,
which can only be applied if the caustic of the Legendrian front consists only
of cusps. A rather different situation in which the simplification of caustics
is desirable occurs in the arborealization program for Lagrangian skeleta pio-
neered by Nadler in his papers [35] and [36]. Applications of our i-principle
to the arborealization program have been hinted at in Starkston’s recent paper
[44] as well as in Eliashberg’s review of Weinstein manifold topology [19]
and are the subject of present research.

The simplification of singularities of Lagrangian and Legendrian fronts is of
course not always possible, since there exists a homotopy theoretic obstruction
to removing higher singularities. The main point of this article is to prove that
whenever this formal obstruction vanishes, the simplification can indeed be
achieved by means of an ambient Hamiltonian isotopy. Our Ak-principle is full
in the sense of [14] (C%-close, relative parametric). See Sect. 1.6, where we
state the result precisely, for further details. The key ingredients in the proof
are (1) an explicit model for the local wrinkling of Lagrangian and Legendrian
submanifolds and (2) our holonomic approximation lemma for 1 -holonomic
sections from [1], which is a refinement of Eliashberg and Mishachev’s holo-
nomic approximation lemma [13].
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The simplification of singularities of Lagrangian 645

Our work builds on Entov’s paper [20], where the first s-principle for the
simplification of caustics was proved. See Sect. 1.9 for a discussion of his
results, which consist of an adaptation of Eliashberg’s surgery of singularities
[8,9] to the setting of Lagrangian and Legendrian fronts. Our paper instead
follows the strategy employed by Eliashberg and Mishachev in the proof of
their wrinkled embeddings theorem [15]. The main advantage of the wrinkled
approach is the following. The surgery technique can only be applied to %2-
nonsingular fronts, which are fronts whose singularities have the lowest corank
possible. This condition is not generic except in low dimensions. By contrast,
the wrinkling technique can be applied to any front. By removing the ¥2-
nonsingularity restriction, we extend considerably the range of application of
the h-principle.

Given any smooth manifold equipped with a smooth foliation, there is the
analogous problem in geometric topology of simplifying of the singularities
of tangency of a smooth submanifold with respect to the foliation by means
of an ambient smooth isotopy. This problem also abides by an A-principle
and has been studied by several authors. Gromov’s method of continuous
sheaves [24,26], as well as Eliashberg and Mishachev’s holonomic approxi-
mation lemma [13,14] can be used to simplify the singularities of tangency
when the submanifold is open. Gromov’s theory of convex integration [25,26]
also yields the same result. When the submanifold is closed, neither continu-
ous sheaves nor holonomic approximation seem to work, but there are several
other methods which do work. We have already mentioned two of them, namely
Eliashberg’s surgery of singularities [8,9] and the wrinkling embeddings theo-
rem of Eliashberg and Mishachev [15]. Additionally, Spring showed in [42,43]
that convex integration can be applied to the closed case. See also the approach
of Rourke and Sanderson [38,39].

We should also mention that Corollary 1.4 can be thought of as a Legen-
drian analogue of Igusa’s theorem [28] which states that higher singularities
of smooth functions are unnecessary. The analogy becomes clearer from the
viewpoint of generating functions. Closely related is another result of Igusa
[29] on the high connectivity of the space of framed functions and Lurie’s
improvement in [32] which sketches a proof of the fact that the space of framed
functions is contractible. Eliashberg and Mishachev generalized Igusa’s orig-
inal result in [12] and gave a proof of the contracibility of the space of framed
functions in [16], in both cases using the wrinkling philosophy. There also
exists a folklore approach for proving A-principles using a categorical deloop-
ing technique which was used by Galatius in unpublished work to obtain a
different proof of the contractibility of the space of framed functions. The
approach of Galatius inspired Kupers’ recent paper [31], which provides an
exposition to the delooping technique and includes yet another proof of the
contractibility of the space of framed functions.
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Fig. 1 The singularities of tangency of a Lagrangian embedding f : L — T*B
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1.2 Singularities of tangency

Let g : L — B be any map between smooth manifolds, where we assume
dim(L) < dim(B) for simplicity. A point g € L is called a singularity of the
map g if the differential dg : T;L — Tg(4) B is not injective. The subset of L
consisting of singular points is denoted by ¥ (g). Next, letw : M — B be a
fibration of smooth manifolds and let f : L — M be a smooth embedding.
The singularities of the composition g = m o f : L — B are precisely the
singularities of tangency of the submanifold f(L) C M with respect to the
foliation F of M given by the fibres Fj = 7~ 1(b), b € B. This latter notion
makes sense for arbitrary foliations F not necessarily given by a globally
defined fibration.

Definition 1.5 A singularity of tangency of an embedding f : L — M with
respect to a foliation F of M isapointg € L suchthatdf (T, L)NT s, F # 0.
The subset of L consisting of singular points is denoted by X (f, F).

We will be interested in the special case in which (M, w) is a symplectic
2n-dimensional manifold and F is a foliation of M by Lagrangian leaves.
Such a setup could arise from a Lagrangian fibration w : M — B, where B is
any n-dimensional manifold. A good example to keep in mind is the cotangent
bundle M = T*B with 7 : T*B — B the standard projection (Fig. 1).

We will also consider the analogous notion in contact topology. Here (M, &)
is a (2n + 1)-dimensional contact manifold and F is a foliation of M by
Legendrian leaves. Such a setup could arise from a Legendrian fibration 7 :
M — B, where B is an (n + 1)-dimensional manifold. A good example to
keep in mind is the 1-jet space M = J'(E, R), where E is any n-dimensional
manifold, B = J°(E,R) and 7 : J'(E,R) — JO(E,R) is the forgetful
map (which in the literature is usually referred to as the front projection). We
remark for future reference that J'(E,R) = T*E x R, J%E,R) = E xR
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The simplification of singularities of Lagrangian 647

and that the front projection T*E x R — E x R is the product of the cotangent
bundle projection T*E — E and the identity map R — R.

Suppose that F is induced by a Lagrangian or Legendrian fibrationw : M —
B, so that the singularities of tangency X(f, F) = {g € L : df,(T,L) N
Ty F # 0} coincide with the singularity locus X(p o f) = {g € L :
ker (d(po f)q) # 0} of the smoothmap po f : L — B.Then the composition
p o f is called the Lagrangian or Legendrian front associated to f. The image
of the singularity locus p o f(X) C B is called the caustic of the front.

1.3 The Thom-Boardman hierarchy

To state our results precisely, we first need to recall some notions from the
Thom-Boardman hierarchy of singularities. We do not intend to be thorough
and only discuss the basic facts which are necessary to frame our discussion.
For a detailed exposition to the theory of singularities we refer the reader to
the original papers, including those of Thom [45], Boardman [6] and Morin
[33], as well as to the books [4,5] by Arnold, Gusein-Zade and Varchenko.

Suppose firstthat g : L — B is any smooth map between smooth manifolds,
where dim(L) = n and dim(B) = m. The singularity locus ¥ = X(g) C L
of g can be stratified in the following way.

»y=xluz?u...ux", Zk:{qeL: dim(ker(dgq))=k}.

The Thom transversality theorem implies that generically =¥ is a smooth
submanifold of L, whose codimension equals k(m —n-+ k). In fact, to any
non-increasing sequence / of non-negative integers iy > ip > .-+ > i we
can associate a singularity locus X/ C L. Provided that g is generic enough
so that its k-jet extension jX(g) satisfies a certain transversality condition,
%! is a smooth submanifold whose codimension is given by an explicit com-
binatorial formula. For such g, the locus X/ is determined inductively by
> = pi (glzp D LN B), where I’ denotes the truncated sequence
i1 > iy >--->1ir_1.In particular, >l cxl

We will mainly be interested in the flag of submanifolds &' > =!! >
... > =", where we denote a string of 1’s of length k by 1*. Generically,
¥ is a smooth codimension k submanifold of L, so that dim (X 1k) =n—k.
To understand this flag geometrically it is useful to think of the line field
[ = ker(dg)|x1 C TL, which is defined along »!. Inside ! we have the
secondary singularity ! = £!(g|z1 : =1 — B), which consists of the
set of points ¢ € X! where [ is tangent to X!. Points in the complement
»10 — »l \X 1T where [ is transverse to X!, are called fold points. Similarly,
the singularity ©'!! consists of the set of points ¢ € X!! where [ is tangent
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to = Points in the complement 10 = 1\ =11 where [ is transverse to
¥ ! inside !, are called pleats. And so on. See Fig. 2 for an illustration of
10 and © 19, Each of the singularities 10— 5 1k\E " hasa unique local
model and is easy to understand explicitly. We call them X '-type singularities.

Singularities of type ©*, k > 1 are much more complicated than = !-type
singularities. In particular, there is no finite list of possible local models for the
generic X singularity when k > 1. The situation is in fact much worse: except
in simple cases where the source and target manifolds have low dimension,
the generic singularities of smooth maps have moduli. Furthermore, when the
dimension is sufficiently high the number of moduli is infinite. Whence the
desire to simplify these complicated singularities into singularities which are
at least of type = ! and ideally consisting only of %1° folds.

We now return to the setting where f : L — M is a Lagrangian or Leg-
endrian embedding into a symplectic or contact manifold M equipped with
an ambient foliation F by Lagrangian or Legendrian leaves. We will assume
that the foliation is given by the fibres of a Lagrangian or Legendrian fibration
7w : M — B, indeed there is no harm in doing so since this is always the case
locally. Hence the singularities of tangency X (f; F) of f with respect to F
are the same as the singularities X (g) of the smooth mapping g = 7 o f, the
Lagrangian or Legendrian front of f. Since the map g is constrained by the
condition of being a Lagrangian or Legendrian front, we cannot hope for its
k-jet extension j¥(g) to generically satisfy the transversality condition men-
tioned in the definition of the loci ©/. For example, the generic codimension
of Z%(f; F)in L is k(k + 1)/2, which differs from the formula given above
for the singularities of smooth maps. This point is better understood from the
viewpoint of generating functions, which remove the Lagrangian or Legen-
drian condition in exchange of increasing the jet order by one. However, we
will not pause to discuss this subtlety any further since transversality can be
generically achieved at the level of fronts for the singularities that we will be

@ Springer



The simplification of singularities of Lagrangian 649
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Fig. 3 The standard =10 fold. The Lagrangian submanifold on the left corresponds to the
Legendrian front on the right (in that p; = dz/dq;). The former is the trivial product of a
2

parabola g = p% with R”~! and the latter is the trivial product of a semi-cubical cusp q% =z
with R"~1

AN
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Fig. 4 The standard 110 pleat. The Lagrangian submanifold on the left corresponds to the
Legendrian front on the right (in that p; = 9z/dq;). The former is the birth/death of two
parabolas and the latter is the birth/death of two semi-cubical cusps

interested in: the = !-type singularities. In particular, the generic codimension
of EIk(f; JF)in L is k, just like in the case of smooth mappings.

Figure 3 illustrates the =1 fold and Figure 4 illustrates the X1 pleat, both
in their Lagrangian and Legendrian realizations. Here and below we use the
standard coordinates (¢, p) € R" x R" = T*R" and (¢, p,z) € T*R" xR =
JI(R", R), where the symplectic form on T*R" is dp A dg and the contact
form on J'(R", R) is dz — pdq.

Example 1.6 A Lagrangian or Legendrian front has the following unique local
model in a neighborhood of any fold point g € £'°.

e In the symplectic setting where the Lagrangian fibrationis 7 : T*B — B,
the front 7 o f : L™ — B" is locally equivalent near the point ¢ to the
map (¢1,492-..,qn) > (qlz, q2, - - -, qn) near the origin.

e In the contact setting where the Legendrian fibration is 7 : J!(E, R) —
J 0(E ,R), the front 7w o f : L™ — E™ x R is locally equivalent near the
point g to the map (g1, ..., qn) — (qlz, q2, > qn, qf) near the origin.
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Fig. 5 One half of a double fold. The Lagrangian submanifold on the left corresponds to the
Legendrian front on the right

1.4 The double fold

An example of a singularity locus which will be particularly relevant to our
discussion is the so-called double fold, which we now describe. For an illus-
tration, see Fig. 5. Before we give the definition, observe that near a fold point
g € X0 the Lagrangian or Legendrian submanifold f(L) C M could be
turning in one of two possible directions with respect to F. This direction
can be specified by a co-orientation of the (n — 1)-dimensional submanifold
»! inside L, which is called the Maslov co-orientation and was implicitly
introduced in [2]. Informally, we can view d f (T, L) as a quadratic form over
Ty (4)F whose signature changes by one as g crosses X 10 transversely. The
Maslov co-orientation specifies the direction in which the signature is increas-
ing. This is the same Maslov co-orientation which appears in Entov’s work
[20].

Definition 1.7 A double fold is a pair of topologically trivial (n — 1)-spheres
Sy and S, in the fold locus X '° which have opposite Maslov co-orientations
and such that S1 U S5 is the boundary of an embedded annulus A C L.

By a topologically trivial sphere we mean a sphere which bounds an embed-
ded n-ballin L. We say thgt apair of double folds F = S1USy and F = S1US,
bounding annuli A and A in L are nested if one annulus is contained inside
the other, say A C A, ang furthermore A bounds an n-ball B C L which is
completely contained in A. See Fig. 6 for an illustration.

1.5 Tangential rotations

The Lagrangian Grassmannian of a symplectic manifold (M?", ) is a fibre
bundle IT : A(M) — M whose fibre IT~!(x) over a point x € M consists
of all linear Lagrangian subspaces of the symplectic vector space (Tx M, wy).
To each Lagrangian embedding f : L — M we can associate its Gauss map
Gdf): L — A(M), givenby G(df)(q) = df (Ty;L) C Ty)M. Observe
that IT o G(df) = f, in other words, G (df) covers f.
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720

Fig. 6 A nested double fold

Similarly, given a contact manifold (M?**1, &), where locally & = ker(x)
for some 1-form « such that de is non-degenerate on &, the Lagrangian Grass-
mannian is a fibre bundle IT : A(M) — M whose fibre I~ (x) over a
point x € M consists of all linear Lagrangian subspaces of the symplec-
tic vector space (&, day). To each Legendrian embedding f : L — M
we associate its Gauss map G(df) : L — A(M), given as before by
G(df)(q) =df(TyL) C&r(y)-

The formal analogue of the Gauss map is obtained by decoupling a
Lagrangian or Legendrian embedding from its tangential information.

Definition 1.8 A tangential rotation of a Lagrangian or Legendrian embedding
f L — M is a compactly supported deformation G; : L — A(M),t €
[0, 1], of Go = G(df) such that [To G, = f.

Example 1.9 Inthe previous section we introduced the double fold as an exam-
ple of a singularity locus. Observe that any double fold is homotopically trivial
in the following sense. If f has a double fold on the annulus A C L, then we
can always construct a tangential rotation G, of f supported in a neighborhood
of A such that at time ¢+ = 1 we have G| th F in that same neighborhood. In
other words, there is no formal obstruction to removing a double fold.

The formal analogue of the condition X¥(f; F) = @ is the following.

Definition 1.10 Amap G : L — A(M) is called =¥-nonsingular with respect
to the foliation F if dim(G (q) N Ty F) < kforallg € L, where g = 1o G.
When k£ = 1 we simply say that G is nonsingular, or transverse to F, and write
G F.

Accordingly, we say that a Lagrangian or Legendrian embedding f is Z*-
nonsingular with respect to F when G(df) is S*-nonsingular with respect
to . When the foliation is clear from the context we will simply say X*-
nonsingular and omit the reference to JF. It is easy to see that a necessary
condition for f to be Hamiltonian isotopic to a ¥*-nonsingular embedding
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652 D. Alvarez-Gavela

is the existence of a tangential rotation G, such that G is Ek—nonsingular.
Indeed, if we denote the Hamiltonian isotopy by ¢; and we choose a family
of symplectic bundle isomorphisms ®; : TM| sy — T M|y, () such that
@ = id and such that ®,(TF| (1)) = TFlgor (L), then we can set G, =
D, L. G(d (prof )). The family ®; exists by the homotopy lifting property of
a Serre fibration. Note that in the contact case we must replace the symplectic
bundle (T'M, w) by the symplectic bundle (&, do), but the argument is the
same.

The results we state in the next section assert that this necessary condition is
also sufficient when k& = 2 and is almost sufficient when &k = 1. The ‘almost’
part comes from the necessity of double folds and will be discussed below.

1.6 Main results

We are now ready to state the A-principle. Recall that M is a symplectic or
contact manifold equipped with a foliation F by Lagrangian or Legendrian
leaves. By the singularities of a Lagrangian or Legendrian embedding we mean
its singularities of tangency with respect to F.

Theorem 1.11 Suppose that there exists a tangential rotation G; : L —
A (M) of a Lagrangian or Legendrian embedding f : L — M such that G M
F. Then there exists a compactly supported Hamiltonian isotopy ¢; : M — M
such that the singularities of @1 o f consist of a union of nested double folds.

Remark 1.12 In particular, ¢| o f is X?-nonsingular. Indeed all of its singu-
larities are of the simplest possible type, namely the !0 fold.

Theorem 1.11 is a full A-principle in the sense of [14]. More precisely, the
following C-close, relative and parametric versions of the statement hold.

(C%-close) We can choose the Hamiltonian isotopy ¢, to be arbitrarily C°-
close to the identity. Moreover, we can arrange it so that ¢; =
idy outside of an arbitrarily small neighborhood of f (L) in M.
(relative) Suppose that G; = G(df) on Op(A) C L for some closed
subset A C L, where here and below we use Gromov’s notation
Op(A) for an arbitrarily small but unspecified neighborhood of
A.Then we can arrange it so that ¢; = idy; on Op(f(A)) cM.
(parametric) An analogous result holds for families of Lagrangian or Legen-
drian embeddings parametrized by a compact manifold of any
dimension. The statement also holds relative to a closed sub-
set of the parameter space. For example, it holds for the pair
(D", §"~1) formed by the unit disk and its boundary sphere.

For details see Sect. 6.
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For singularities of type ©2 we have the following A-principle, in which
we don’t have to worry about the presence of double folds since they are
singularities of type X!,

Theorem 1.13 Suppose that there exists a tangential rotation G; : L —
A(M) of a Lagrangian or Legendrian embedding f : L — M such that
G1 is X2-nonsingular with respect to the foliation F. Then there exists a
compactly supported Hamiltonian isotopy ¢; : M — M such that @1 o f is
>2-nonsingular.

In fact, we prove a much stronger version of Theorem 1.13 which allows
for the prescription of any homotopically allowable X !-type singularity locus.
The precise statement is given in Theorem 1.17 below, after we discuss Entov’s
results on the surgery of Lagrangian and Legendrian singularities.

1.7 The homotopical obstruction

Consider the subset £ (M, F) C A(M) which over each point x € M consists
of all planes Py € A(M), such that P, N T, F # 0. We have a stratification
(M, F) =, ZX(M, F), where XX (M, F) = {P, : dim(P,NTF) = k}.
The formal obstruction to X¥-nonsingularity can be understood as follows: is
it possible to smoothly homotope the map G(df) : L — A(M) through maps
G, covering f so that its image becomes completely disjoint from the subset
$X(M, F) C A(M)? This is a purely topological question.

The most obvious cohomological obstruction is given by the higher Maslov
classes. To define them, observe that TX(M,F) = (P, € AM),
dim(P, N T F) = k} is a stratified subset of codimension k(k + 1)/2 inside
the Grassmannian A (M), whose boundary X% (M, F) = U=« >l(M, F)
has dimension strictly less than dim (Ek(M , F )) — 1. We can therefore define
pk = G(df)*mx € HY&DI2(L; 7/2), where my. € HXKD/2(A(M); Z/2)
is Poincaré dual to the cycle [Ek (F )]. The class (g is an obstruction to remov-
ing the singularity X*.

Remark 1.14 Even for orientable M and F, the characteristic class uy lifts
over Z only for k odd (for example, the lift of 11 in H'(L; Z) is the familiar
Maslov class). This can be seen by the following simple argument, which
the author learnt from Givental (private communication). In the homoge-
neous space A, = U(n)/O(n), consider the subset X = {[A] : A €
U(n), dim(AR" NR") = k} C A,. Then it is easy to check that the normal
space to X in A, at [A] € Xk can be identified with the space of quadratic
forms on the intersection AR"” N R". Hence the normal bundle to X; in A,, is
isomorphic to the pullback by the projection £y — Gry, &, [A] — AR" NR”
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of the second symmetric power of the tautological bundle on the (n, k) Grass-
mannian Gr, . When k is even, the generator of 71 (Gr, ;) (which lies in the
image of 1(X) by the above projection) can be easily checked to induce a
change of orientation on this bundle, hence the cycle Xy is not orientable.

More generally, to each multi-index I = (iy > ip > --- > i) there exists
a cohomology class z¢; which obstructs the removal of %/ and which is the
pullback of a universal class in the appropriate jet space. In addition to these
cohomological obstructions there exist subtler homotopical obstructions to the
simplification of singularities.

In certain situations the obstruction to the simplification of singularities can
be straightforwardly seen to vanish. In Sect. 6 we explore a couple of such
cases and are thus able to deduce concrete applications of our A-principle.
However, in general this homotopical problem can be nontrivial. For instance,
consider the setup of the nearby Lagrangian conjecture, so that f : L — T*B
is an exact Lagrangian embedding of a connected closed manifold L into the
cotangent bundle of a connected closed manifold B. Abouzaid and Kragh
showed in [30] that the first Maslov class w1 always vanishes. However, to the
extent of the author’s knowledge it is not known whether the higher Maslov
classes p; must also vanish.

1.8 Strategy of the proof and outline of the paper

The strategy of proof of our main result Theorem 1.11 is an adaptation to
the symplectic and contact setting of the strategy employed in Eliashberg
and Mishachev’s wrinkled embeddings paper [15]. Wrinkled embeddings are
topological embeddings of smooth manifolds which are smooth embeddings
away from a finite union of spheres of codimension 1, called wrinkles, where
the mapping has cusps (together with their birth/deaths on the equator of each
sphere). The rank of the differential falls by one on the wrinkling locus, hence
the map fails to be a smooth embedding near the wrinkles. However, there
is a well-defined tangent plane at every point of the image and so wrinkled
embeddings have Gauss maps just like smooth embeddings. In this paper
we define wrinkled Lagrangian and Legendrian embeddings to be wrinkled
embeddings f into a symplectic or contact manifold M whose Gauss map
G (df) lands in the Lagrangian Grassmannian. The precise definition, together
with all related terminology, is given in Sect. 2.

The point of working with wrinkled Lagrangian and Legendrian embeddings
instead of regular Lagrangian and Legendrian embeddings is the following the-
orem, the proof of which takes up Sects. 3, 4 and 5 (a more precise breakdown
of its proof is given below) (Fig. 7).
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Fig. 7 The strategy of the proof

Theorem 1.15 Any tangential rotation G; of a regular Lagrangian or Legen-
drian embedding f can be C°-approximated by the Gauss maps G (df;) of a
homotopy f; of wrinkled Lagrangian or Legendrian embeddings.

Such a statement is of course false if we demand that the homotopy f;
consists only of regular Lagrangian or Legendrian embeddings. The additional
flexibility provided by Theorem 1.15 trivially implies the following result: if
there exists a tangential rotation G, of a regular Lagrangian or Legendrian
embedding f such that G is transverse to an ambient foliation J, then there
exists a homotopy of wrinkled Lagrangian or Legendrian embeddings f; such
that f; is transverse to F. By a regularization process (which is C° small but
C! large) we can smooth out the wrinkles of Ji_and obtain a homotopy of
regular Lagrangian or Legendrian embeddings f;. The embedding f; is no
longer transverse to F, we must of course pay a price when we pass from fi
to f1. The price is the following: the regularization process causes X' folds
to appear where the embedding used to be wrinkled, with !9 pleats on the
equator of each wrinkle. But these !9 pleats are not necessary, we can use a
surgery of singularities technique to get rid of them. The result of the surgery
is a union of double folds, as in the conclusion of our A-principle. See Fig. 7
for an illustration of the strategy. We formalize the process described in this
paragraph in Sect. 6, where we also present applications of the i-principle.
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The heart of the matter is therefore to prove the C%-approximation result
for wrinkled Lagrangian and Legendrian embeddings stated in Theorem 1.15.
The steps in the proof of this result are roughly as follows.

Step 1 (Section 3) We first restrict the class of tangential rotations under
consideration. A suitable class is that of simple rotations, which are those
that fix a hyperplane field in the tangent space to the embedding, leaving
only one degree of freedom to rotate. The key result we prove is that any
tangential rotation can be C° approximated by a piecewise simple tangential
rotation. By piecewise simple we mean that there is some subdivision of the
time interval [0, 1] such that on each subinterval the Lagrangian plane field
G, always contains a fixed field of isotropic (n — 1)-planes (the field of course
depends on the subinterval). Using this result we reduce to proving Theorem
1.15 for simple tangential rotations, but now allowing for the possibility that
f is wrinkled to start with.

Step 2 (Section 4) We use a refinement of the holonomic approximation
lemma of Eliashberg and Mishachev [13] to construct a homotopy of our
embedding f (which now may have wrinkles!) such that the Gauss map of
the homotopy approximates our simple rotation G; near the wrinkles. This
is achieved by wiggling f via an ambient Hamiltonian isotopy, so no new
wrinkles are needed at this stage. The refinement in question is a version of
the holonomic approximation lemma in which cutoffs are carefully controlled.
We established this refinement in [1]. The control in the cutoffs allows us
to perform the wiggling of f in such a way that the simplicity condition is
preserved up to an error which can be made arbitrarily small.

Step 3 (Section 5) We construct by hand a local relative wrinkling model
which allows us to add wrinkles to the homotopy produced in the previous
step so that the resulting Gauss map globally approximates G; on the whole
submanifold, completing the proof of Theorem 1.15. The simplicity of G,
is essential in order for us to reduce the general problem to an explicit local
model. Our model is analogous to the model used by Eliashberg and Mishachev
in [16] but some care is needed in order to adapt their construction to the
Lagrangian and Legendrian settings without the inevitable cutoffs introducing
uncontrolled error terms.

This completes the outline of the proof. We conclude this introduction with
some brief comments on the techniques of surgery of singularities and wrin-
kling.

1.9 Surgery of singularities
In his thesis [9], Eliashberg developed a technique to modify the singularity

locus of a ¥2-nonsingular map between smooth manifolds by means of a
surgery construction, see Fig. 8 for an example. This technique yields an
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Fig. 8 An example of the surgery of singularities

h-principle for the simplification of singularities of ¥%-nonsingular smooth
maps. Almost thirty years later, Entov adapted this surgery technique to the
setting of Lagrangian and Legendrian fronts, also in his thesis [20]. The main
point in Entov’s construction is to write down the generating functions that
produce Eliashberg’s surgeries, but some additional subtleties arise such as the
Maslov co-orientation. As a consequence of Entov’s results, one obtains an /-
principle for the simplification of singularities of ¥?-nonsingular Lagrangian
or Legendrian fronts, which we now briefly discuss.

Suppose that f : L — M is a ¥?-nonsingular Lagrangian or Legendrian
embedding into a symplectic or contact manifold M equipped with a folia-
tion F by Lagrangian or Legendrian leaves. We recall that X2-nonsingularity
means that dim(df (T,L) N Ty F) < 2 forall ¢ € L, hence 2 = o
The Thom-Boardman stratification of the singularity locus ¥ = X! there-
fore consists of a flag of submanifolds ©! > £ 5 ... 5 £, where
dim(X 1k) = n—k. This flag, together with certain co-orientation data which we
won’t be precise about right now, is called the chain of singularities associated
to the embedding f and the foliation . More generally, given any Lagrangian
distribution D defined along f (L) (not necessarily tangent to an ambient foli-
ation), we say that D is Ez—nonsingular if dim(df(T,L) N D¢(y) < 2 for
all ¢ € L. For such Lagrangian distributions D we can similarly define an
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associated chain of singularities consisting of a flag ! > £ 5 ... 5 1"
together with certain co-orientation data.

We say that two chains of singularities are equivalent if the flags of sub-
manifolds are isotopic in L, with the corresponding co-orientation data also
matching up under the isotopy. Entov’s main result can be phrased as follows.

Theorem 1.16 (Entov) Let f : L — M be a ¥>-nonsingular Lagrangian or
Legendrian embedding into a symplectic or contact manifold M equipped with
a foliation F by Lagrangian or Legendrian leaves. Let D; be a homotopy of
> 2-nonsingular Lagrangian distributions defined along f (L), fixed outside
of a compact subset and such that Dy = TF|y). We moreover assume
that f t F outside of that compact subset. Then there exists a C%-small
compactly supported Hamiltonian isotopy ¢; : M — M such that the chain of
singularities of p10 f with respect to F is equivalent to the chain of singularities
of f with respect to Dy, together with a union of nested double folds.

Suppose that G(df) t Dj. Then the chain of singularities associated to f
and Dy is empty and the conclusion of Entov’s theorem is the same as the one
in our Theorem 1.11. It is no coincidence that both Entov’s result and Theorem
1.11 only work up to a union of double folds. Although homotopically trivial,
one cannot hope to get rid of these double folds in general. The rigidity of
Lagrangian and Legendrian folds was first explored by Entov in [21] and by
Ferrand and Pushkar in [22] and [23]. We note that for singularities of smooth
maps as considered by Eliashberg in [8] and [9] the situation is slightly better:
one can always absorb these double folds into an already existing fold locus
with the only condition that this locus is nonempty.

The main limitation of the surgery technique is that it requires X2-
nonsingularity of the initial embedding to even get started. A generic
Lagrangian or Legendrian embedding is %2-nonsingular only when the
Lagrangian or Legendrian has dimension < 2. This restricts significantly the
possible applications of the surgery 4-principle beyond the case of Lagrangian
or Legendrian surfaces. Even in the 2-dimensional case, ¥%-type singularities
will generically arise in 1-parametric families, preventing a satisfactory para-
metric result from being formulated.

This limitation is not serious in the smooth version of the problem because
one can easily get rid of ¥ %-type singularities by using a different technique,
for example one can use Gromov’s convex integration (the partial differential
relation in question is ample, see Section 2.4 of [26]). Unfortunately, these
techniques seem to be inadequate to get rid of the %2-type singularities of
Lagrangian and Legendrian fronts. We bypass this issue in the present article
by using a different strategy, namely the wrinkling philosophy. Indeed, we will
prove in Sect. 6.3 the following version of Entov’s Theorem 1.16 in which the
condition of ¥%-nonsingularity is dropped.
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Theorem 1.17 Let f : L — M be a Lagrangian or Legendrian embed-
ding into a symplectic or contact manifold M equipped with a foliation F
by Lagrangian or Legendrian leaves. Let D; be a homotopy of Lagrangian
distributions defined along f (L), fixed outside of a compact subset, such that
Do = TF|sw) and such that Dy is X°-nonsingular. We moreover assume
that f M F outside of that compact subset. Then there exists a C°-small
compactly supported Hamiltonian isotopy ¢, : M — M such that ¢1 o f is
Y 2-nonsingular with respect to F and moreover such that the chain of singu-
larities of @1 o f with respect to F is equivalent to the chain of singularities
of f with respect to D1, together with a union of nested double folds.

Remark 1.18 Theorem 1.13, the h-principle for ¥ 2-nonsingular embeddings,
is an immediate consequence of Theorem 1.17.

1.10 The wrinkling philosophy

Many h-principles can be proved by interpolating between local Taylor approx-
imations. To achieve this interpolation near a subset of positive codimension,
one can use the extra dimension to wiggle the subset in and out, creating
extra room. This room ensures that no big derivatives arise when interpolating
from one Taylor polynomial to another. This idea has been present throughout
the history of the A-principle starting with the immersion theory of Smale-
Hirsch-Phillips [27,37,40] and Gromov’s method of flexible sheaves [24,26].
The wiggling strategy was reformulated into a simple but general statement
by Eliashberg and Mishachev in [13, 14] with their holonomic approximation
lemma.

In many cases, however, one wishes to prove a global Ai-principle on the
whole manifold (which might be closed) and there is no extra dimension avail-
able for wiggling. In the absence of additional hypotheses (such as ampleness),
the wrinkling philosophy provides a strategy for proving global Z-principles.
The idea is to wrinkle the manifold back and forth upon itself. One can then
interpolate between local Taylor approximations along the wrinkles. The wrin-
kling process creates the extra room needed so that this interpolation does not
create big derivatives. One pays an unavoidable price, namely the singularities
caused by the wrinkles. However, these are very simple singularities which
can be explicitly understood (Fig. 9).

In their papers [10-12,15-17], Eliashberg and Mishachev exploit this wrin-
kling strategy to prove a number of results in flexible geometric topology.
Together with Galatius, they give a further application in [18]. The theorem
on wrinkled embeddings from [15], which is particularly relevant for our pur-
poses, has gained greater significance after it was used by Murphy in [34] to
establish the existence of loose Legendrians in high-dimensional contact man-
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Fig. 9 The difference between wiggling and wrinkling

ifolds. Our paper provides a different application of the wrinkled embeddings
theorem to flexible symplectic and contact topology.

Warning 1.19 At this point we should alert the reader that Murphy’s wrin-
kled Legendrians are not the same as our wrinkled Lagrangian and Legendrian
embeddings. The two notions should not be confused, despite the terribly sim-
ilar terminology for which the author can only apologize and excuse himself
in the desire to be consistent with the existing literature [15].

To be clear: in Murphy’s wrinkled Legendrians, the wrinkles occur in the
Legendrian front. In the wrinkled Lagrangian and Legendrian embeddings
under consideration in this paper, the wrinkles occur in the Lagrangian or
Legendrian submanifold itself (see Remark 2.5 below).

2 Lagrangian and Legendrian wrinkles
2.1 Wrinkled embeddings

We start by recalling the definition of wrinkled embeddings, from [15].
Throughout we denote a point ¢ € R" by ¢ = (g, qn), where § =

(CII’ ceey Qn—l)-

Definition 2.1 A wrinkled embedding is a topological embedding f : L" —
X"*" which is a smooth embedding away from a disjoint union of finitely many
topologically trivial embedded (n — 1)-spheres S C L, with f equivalent (up
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Fig. 10 One half of a
standard wrinkle

‘

to diffeomorphism) on Op(S) to the local model W, , : Op(S"~!) c R" —
R"*" given by (Fig. 10)

(qlv"',qn) '_) (qlv”-,Qn—l, n907"'909h)’
where 1(q) =g +3 (111> — 1) g, and

qll n 2
h<q>=/0 (1411* + u* — 1)" du.

We recall that by topologically trivial we mean that each sphere is the
boundary § = 9B of an embedded n—ball B C L. We say that f has a
wrinkle along each S. The wrinkle itself is the germ of f in a neighborhood
of S. By definition all the wrinkles are equivalent and the above formula gives
an explicit model.

The mapping W, , has singularities along S”~!. On the upper and lower
hemispheres sn=In {gn > 0} and sn=1n {gn < 0}, the singularities are semi-
cubical cusps. More precisely, near each point of §"~1\ §”~2, the model W,
is locally equivalent to the following map near the origin, see Fig. 11.

(QIa»CIn)*_) (CII»---’Qn—l’%%aow--,o’qs)-

On the equator $"~2 = §"~!'N{g, = 0}, the singularities are the birth/death
of semi-cubical zig-zags. More precisely, near each point of $”~2, the model
W, r is locally equivalent to the following map near the origin, see Fig. 12.

qn )
(QIa---aQn)*_) (QI,---aQn—laqs_36]14na0,---,0,/ (MZ_QI) du)
0

Warning 2.2 Observe that a wrinkled embedding has singularities along the
wrinkles, but these are not singularities of tangency with respect to any folia-
tion. These are (non-generic) singularities of the smooth map, in other words,
points in the source where the rank of the differential is strictly less than the
possible maximum. Throughout the paper we will be talking about both types
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Fig. 11 A wrinkled
embedding has cusps on the
complement of the equator
of each wrinkle

Fig. 12 A wrinkled
embedding has birth/deaths
of zig-zags on the equator of
each wrinkle

Fig. 13 A wrinkled
embedding has a
well-defined Gauss map
everywhere, including points
in the wrinkling locus

g
>

Y- GENH@ < TspM

of singularities but it should always be clear from the context which type we

are referring to in each case.

A wrinkled embedding has a well defined Gauss map G(df) : L —
Gr,(X),where Gr,(X) is the Grasmannian of n-planesin 7 X. Foreachg € L
there is a unique n-dimensional subspace G(df)(q) C Tr4) X tangentto f(L)
at f(g). At regular points g € L we have of course G(df)(q) = df(T,L),
but G(df)(q) is defined even at singular points, see Fig. 13.

2.2 Wrinkled Lagrangian and Legendrian embeddings

Let (M, w) be a symplectic manifold.
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Definition 2.3 A wrinkled Lagrangian embedding is a topological embedding
f: L" — (M?", ») which is a smooth Lagrangian embedding away from a
disjoint union of finitely many topologically trivial embedded (n — 1)-spheres
S C L, with f equivalent (up to symplectomorphism) on Op(S) C L to the
local model £, : Op(S"™!) ¢ R" — (T*R",dp A dgq) given by

oH an oH
(qlv"'aql’l)}_) q17~--in71a77’__h_’---,
dq1  9q 9qn—1
a
Sy ,h)
0qn—1

3 a2 0 2 2
where n(q) = ¢, +3(Ig!I" — Dqn, h(Q)=/O (1g11* +u” — 1)*du

an
dqn

and H(g) = /qn h(g, u) (G, uw)du.
0

The wrinkled Lagrangian embedding £, is obtained from the wrinkled
embedding W, , in the following way. Let (g, p) be the standard coordi-
nates on T*R" = R"*(q1, ..., qn) X R"(p1, ..., pn). Keeping p, oW, , =h
fixed, for j < n we replace the zero functions p; o W, , = 0 with the only
possible functions (up to initial conditions) which will make the embedding
Lagrangian. Informally, integrate / in the direction 0/0¢,, and differentiate the
resulting function in the directions d/d¢g;, j < n. Note that this construction
produces a Lagrangian object out of a smooth object, independently of which
functions n and & one applies the construction to. Taking 1 and £ to be the func-
tions defining the local model for a wrinkled embedding we obtain the local
model for a wrinkled Lagrangian embedding. The corresponding definition
for Legendrians is entirely analogous. Let (M, &) be a contact manifold.

Definition 2.4 A wrinkled Legendrian embedding is a topological embedding
f: L" — (M**! &) which is a smooth Legendrian embedding away from a
disjoint union of finitely many topologically trivial embedded (n — 1)-spheres
S C L, with f equivalent (up to contactomorphism) on Op(S) C L to the
local model £, : Op(§"~ ') c R* — (JI(R”, R), gs,d) given by

OH  an IH
(41,---,Qn)'_> Ql,---,Qn—l,n,__h—s---,
9q1 9q1 dGn—1
d
—h—" ,h,H)
dgn—1

3 A2 0 2 2
where n(q) = q,, +3(|qlI” — Dgn, h(g) = (gll* +u” — 1)"du,
0
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Fig. 14 The Legendrian front which generates one half of a Legendrian wrinkle. The cusps and
swallowtail have a higher order of tangency than the standard cusps or swallowtails which one
finds in the front projection of a regular Legendrian. To be more precise, the cusps which appear
in the front projection of a Legendrian wrinkle are locally equivalent to y2 = x7, whereas the
standard cusps are locally equivalent to y2 =x3

an
dqn

and H(g) = /qnh(c},u) (G,u)du.
0

We recall that J!(R", R) = T*R"(q, p) x R(z) with the standard contact
structure &,y = ker(dz — pdg). The Legendrian model £, is the Leg-
endrian lift of the Lagrangian model £, under the Lagrangian projection
JYR", R) — T*R", (¢, p,z) — (g, p). Consider also the front projection
JIR",R) - JOR",R) = R" x R, (g, p, 2) + (q,2). It is conceptually
useful to understand the Legendrian front of the model £,,, which is the map
Op(s"~'y ¢ R" — R" x R given by ¢ — ((g,n), H). On each of the
hemispheres in §”~!\$"~2, the front has semi-quintic cusps. On the equator
§"=2 < §"~!, the front has semi-quintic swallowtail singularities. See Fig. 14
for an illustration.

When we need to specify that a Lagrangian or Legendrian embedding f :
L — M is not wrinkled, we will call f regular. Observe that the Gauss map
G(df) of a wrinkled Lagrangian or Legendrian embedding f : L — M
lands in the Lagrangian Grassmannian A (M), just like a regular Lagrangian
or Legendrian embedding.

Warning 2.5 The zig-zags of a wrinkled Legendrian embedding are differ-
ent from the zig-zags which appear in the loose Legendrians and wrinkled
Legendrians of Murphy [34]. Indeed, the zig-zags of Murphy’s wrinkled Leg-
endrians occur in the front projection, whereas the zig-zags of our wrinkled
Legendrian embeddings occur in the Legendrian submanifold itself. Moreover,
the Lagrangian projection of Murphy’s wrinkled Legendrians is not embedded
(there is a Reeb chord in the zig-zag), whereas the Lagrangian projection of
our wrinkled Legendrian is a wrinkled Lagrangian embedding, which is in
particular a topological embedding. Finally, the cusps of Murphy’s wrinkled
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Legendrians are semi-cubic in the front projection whereas the cusps of our
wrinkled Legendrian embeddings are semi-quintic in the front projection. So
the two notions of wrinkled Legendrian are quite different, although of course
they share the feature of exploiting the wrinkling philosophy in the context of
symplectic and contact geometry.

We should also mention that a wrinkled embedding [15] is not a wrinkled
map in the sense of [10], though of course the two are closely related. We
make sure to always include the word ‘embedding’ throughout the text when
referring to our wrinkled Lagrangian and Legendrian embeddings in the hope
of minimizing confusion, but in any case this is the only flavor of wrinkling
that will appear.

2.3 Parametric families of wrinkles

We will also consider families f* parametrized by a smooth compact manifold
Z, possibly with boundary. A family of regular Lagrangian or Legendrian
embeddings f* : L — M parametrized by Z is simply a smooth map Z x
L — M, (z,q) — f*(g), such that for each z € Z the map f* is a regular
Lagrangian or Legendrian embedding. If we allow the embeddings f* to be
wrinkled, then we must allow the wrinkles to appear and disappear as the
parameter z varies. Indeed, in the smooth case considered in [15], Eliashberg
and Mishachev allow wrinkled embeddings to have the following local model
Enr : Op(0) C R" — R"7 near finitely many points. These are embryos of
wrinkles, instances of birth/death.

(q1a~--,Qn)'_) (qlv""qn—lvl’L’O’---yO’e)v

qn
where u(q) = g2 + 311411, and e= [ (411> + u*)du.
0

In the symplectic or contact case, we can deduce corresponding local forms
for Lagrangian or Legendrian embryos by integrating the function e in the
direction 9/0dq, and then differentiating in the directions 9/dq;, j < n, just
like we did in the definition of Lagrangian and Legendrian wrinkles. However,
we wish to be slightly more precise in the way in which we allow wrinkles to
be born or die and so we give the following definition of a family of wrinkled
Lagrangian or Legendrian embeddings. We use the fibered terminology, which
is a convenient language and is largely self-explanatory (the reader who wishes
to see further details may consult for example [15]).

Definition 2.6 A fibered wrinkled Lagrangian embedding f* : L" —
(M?", @) parametrized by an m-dimensional manifold Z is a topological
embedding f : Z x L — Z x M, (z,q9) — (z, f*(g)) such that f is a
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fibered smooth Lagrangian embedding away from a disjoint union of finitely
many topologically trivial embedded (m +n — 1)-spheres S C Z x L, with f
equivalent (up to fibered symplectomorphism) on Op(S) C Z x L to the local
fibered model £7,, : Op(S™™~1) C R™ x R" — R™ x (T*R",dp A dq)
given by

oH
(Z19"'7ZM7q17"'7qﬂ)'_> Zla""zm’ q1»---»CIn—1’ 77, ~
dq1
a oH d
_h_n,,,,, —h il ,h),
BQl BQH—l aQn—l

where  1(z,q) = g2 + 31zl + 1§11* — Dgn,

qn
h(z,q>=f0 UzI> +11g11* + u* — 1)du

0 R
1 (z,q,u)du.
aqn

qn
and H(z,q)=/ h(z,q,u)
0

If we restrict ﬁ,{ . to the half space {z; > 0} we get the local model for the
fibered half-wrinkles near the boundary 0 Z of the parameter space. We can
define fibered wrinkled Legendrian embeddings in the exact same way, with
the local model Zl\nfm = (L], H) : Op(S™™"~1) C R" x R" - R™ x
(J'(R", R), £4). When we talk about families of wrinkled Lagrangian or
Legendrian embeddings parametrized by a compact manifold, we will always

assume that the family is fibered in the sense just described.

2.4 Exact homotopies

Taking Z = [0, 1] in the definition of fibered wrinkled Lagrangian or Legen-
drian embeddings, we obtain the notion of a homotopy of wrinkled Lagrangian
or Legendrian embeddings f; : L — M, t € [0, 1], in which wrinkles are
allowed to be born and to die as time goes by. The notion of exactness for
homotopies of regular Lagrangian embeddings can be extended to the wrin-
kled case in a straightforward way.

Definition 2.7 Let f; : L — M be a homotopy of (possibly wrinkled)
Lagrangian embeddings. We say that f; is exact if the following condition
holds. For the mapping F : L x [0,1] — M defined by (¢,1) — fi(q),
consider the closed form i/, F*w on L x [0, 1]. We demand that this form
is exact when pulled back to L by each of the inclusions L — L x [0, 1],

q — (q,t) (Fig. 15).

Remark 2.8 Recall that if f; : L — M is a homotopy of regular Lagrangian
embeddings, then for small time ¢ > 0 one can interpret f; as a closed 1-
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Mlll o
Wﬂ

exact not exact

Fig. 15 The difference between an exact and a non-exact deformation of the zero section
B <> T*B. On the left, the areas cancel out, whereas on the right they do not. Exactness can
be thought of as an area condition

form «; on L by identifying a neighborhood of the zero section in 7* L with a
Weinstein neighborhood of fo(L) in M. In this case exactness of f; amounts
to asking that «; is exact for every ¢ € [0, 1].

The importance of this definition stems from the following fact. If f; :
L — M is a compactly supported exact homotopy of regular Lagrangian
embeddings, then there exists a (compactly supported) ambient Hamiltonian
isotopy ¢; : M — M suchthat f; = ¢, 0 fo. We will always want to ensure that
all homotopies of Lagrangian embeddings, regular or wrinkled, are exact. In
the contact case, exactness is automatic. For convenience, we shall therefore
refer to all homotopies of Legendrian embeddings, regular or wrinkled, as
exact.

When a homotopy f; is fixed on a closed subset A C L (usually A = L\U
is the complement of an open set U where we are performing some geometric
manipulation), the notions of exactness will be understood relative to Op(A).
In this way, the ambient Hamiltonian isotopy inducing f; can be taken to be
the identity on Op(f(A)) C M.

2.5 Regularization of wrinkles

Wrinkles can be regularized as follows. Consider the local model W, ,,(¢) =
(¢, n,0,...,0,h) introduced in Sect. 2.1. Let ¢ : R" — R be a C*°-small
function such that d¢/dg, > 0 on §"~ ! C R" and such that supp(¢) C

Op(s"1. Leth = h + ¢ and observe that Wn 2(q)=1(q,n,0,...,0, h) isa
smooth regular embedding such that W non = YWy outside of Op(S” 1) see
Fig. 16.

Next, require further that

=0

0
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regulasize
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Fig. 16 Regularization of the standard wrinkle

regulari?.e

sy

Fig. 17 The regularization can be also understood in terms of the front projection. The effect
is to replace the semi-quintic cusps and swallowtails with semi-cubic cusps and swallowtails

whenever ¢ = (4, gn) & supp(¢), and consider the modified integral

0
il (g, u)du.
9Gn

- n
H(él)=/0 h(g,u)

We obtain aregular Lagrangian embedding Ly : Op(S" Y - (T*R", dpn
dq) such that £,, = £, outside of Op(S"~!) by the formula

dH ~ dn dH  ~ o~
@) = (g0 gner s S = S ).
991 991 0qn—1 0qn—1

The Legendrian counterpart of the regularization is the local model (Zn, H ).
See Fig. 17 for an illustration of the regularization process in the front projec-
tion. Given a wrinkled Lagrangian or Legendrian embedding f : L — M, we
can apply this local procedure to every wrinkle and obtain a regular Lagrangian
or Legendrian embedding f. Similarly, a fibered wrinkled Lagrangian or Leg-
endrian embedding f< can be regularized to a fibered regular Lagrangian or
Legendrian embedding f*. If f; : L — M is an exact homotopy of wrinkled
Lagrangian embeddings, then f; : L — M is an exact homotopy of regular
Lagrangian embeddings.

The change in the order of tangency as well as the geometric meaning of
the condition [j" ¢(q, u)aa—ri(c}, u)du = 0 can be better appreciated if we
focus on the complement 0? the equator. See Fig. 18 for an illustration of the
regularization process near a cusp point.
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Fig. 18 Effect of the regularization process away from the equator in both the Lagrangian

and front projections. The equation fo" o(q, u)a{)Tn(c}, u)du = 0 manifests itself as an area
n
condition in the bottom left

Remark 2.9 Observe that the regularization process f > fdepends on the
choice of ¢. However, the space of possible ¢ is convex and therefore f
is well defined up to a contractible choice. Different choices alter f by an
ambient Hamiltonian isotopy supported on a neighborhood of the image of
the wrinkling locus.

Remark 2.10 In the Lagrangian case, let T*R” be foliated by the fibres of the
standard projection 77 : T*R” — R” and in the contact case, let J! (R", R) =
T*R" x R be foliated by the fibres of the front projection 7 xid : T*R" xR —
R" x R. Observe that the standard Lagrangian and Legendrian wrinkles are
transverse to these foliations. Moreover, when we regularize the Lagrangian or
Legendrian wrinkle we obtain a regular Lagrangian or Legendrian embedding
whose singularities of tangency with respect to the corresponding foliation
consist of ©10 folds away from the equator and of X !0 pleats on the equator.

2.6 Sharpening the wrinkles

Let D¥ = {qg € §"!'| £ g, > 0} be the north and south hemispheres of the
unit sphere $"~! € R” and let D"~ be the closed unit disk in R”~!, which
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we think of as sitting in R” via the inclusion R*~! = R"~! x 0 ¢ R”. The
standard Lagrangian wrinkle £, : Op(S"~!) ¢ R” — T*R" is equivalent
on Op(DF)\Op(dD?F) to the following local model C, : R” — T*R" on
Op(D""H\Op@D" ).

C}’l(q17vqn):(ql"vql’l—lvq;%709’qs)

Note that C, is the product of C; : R — T*R and the zero section R s
T*R"~!. Scaling the model C, by any small number & > 0 in the direction of
the cotangent fibres yields a sharpened Lagrangian cusp ¢ C, : R" — T*R".
Explicitly, we set

eCn(qls .-y qn) = (ql,...,qn_l,q,%,o,...,8q3).

Later on it will be useful for us to be able to sharpen the cusps of a Lagrangian
wrinkle at will. This sharpening can be achieved by interpolating between the
two models C, and ¢ C,,. The key property of the sharpening construction is that
the interpolation can be achieved by a C''-small perturbation. The precise result
that we will need is the following, where we recall the notation g = (¢, g»),

g =1(q1,---,qn-1) (Fig. 19).

Lemma 2.11 For §, ¢ > 0 there exists an exact homotopy Cp, ; : R* — T*R"
such that the following properties hold.

e Cho=0Cp.

o Cy: =C, when |q,| > 25 or||g|| > 1—36.

o Ch1 =¢€Cywhen|q,| <Sand||q|| <1—26.

o dist-1(Cy, Cyy) < K6, where K is a constant independent of § and .

The same Lemma also holds for the Legendrian cusp 5,1 =, C):R" —>
T*R" x R = J'(R", R), where C(q) = %q,sl We prove the Lagrangian and
Legendrian versions simultaneously.

i P
shacpeni ng

—VVWL~>

% 79

Fig. 19 Sharpening the Lagrangian cusp. Since we define the sharpening by means of a gen-
erating function, the area condition which is necessary for exactness is automatically satisfied,
as shown on the picture
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Proof Fix A > 1. Given §, ¢ > 0 arbitrarily small, there exists a function
¥ iR x R — [0, 1] satisfying the following properties:

e Y(x,y)=¢for(x,y) € [-6,68] x [—14+265,1—25],

e e < Y(x,y) <1for (x,y) € [-28,28] x [-1 4+ 68,1 —38]\[-6, ] x
[—1+26,1—26],

e Y(x,y)=1for (x,y) ¢ [—2§,25] x [-1+6,1—46].

o [3y/dx|, |dy/dy| < A/S.

o [02y/0x2|, |92y /0xdy|, |92y /0y*| < A/8>.

e 0Y/dy = 0 when |y| <1 —26.

Set Y = (1 =) + 1y and Cr(g) = $V1(qn, 114|)gy. The front g
((c}, q,%), C ,) € R" x R generates the Lagrangian and Legendrian cusps Cj,
and Cp, ; = (Cy s, C;) respectively. To be explicit, we have

. 5 20 A1y
C == 9 27 A 9 An""7
n,1(q) (q n> 3 3y (qn IIqII)Hq||
20y, ~ Qn—lqg 1 0, ~ 4 ~ 3
59y (gn 11911 a5 ox (gn- 111D a, + Vi (qn, l191Da;, | -

The first three properties stated in the Lemma are clearly satisfied. The fourth
property follows from the uniform bounds on the first and second partial deriva-
tives of . O

Next we explain how to sharpen the birth/deaths of zig-zags on the equator
of each wrinkle. The standard Lagrangian wrinkle £, : Op(S"~!) ¢ R* —
T*R" is equivalent on Op(S"~2) C R”" to the following local model G, :
"2 x R? — T*(S" 2 x R?) on Op(S"~2 x 0) C §" 2 x R?.

~ ~ G at
gn(q,anla(In): q’CInfl’fa 07 — 8 8]
dqGn—1 dqGn—1

q= (G qn-1,qn) € " x R xR,
where T(qu_1. ) = 4> — 3qu_1qn.

qn ) )
g(qn—l,qn)=/0 (u” — gn—1)"du

qn 8-[
and  G(gn-1,4n) =/ g(gn-1,u)—(gn—1,u)du.
0 0qn

We remark that G, is the product of G : R? — T*R? with the zero section
§"=2 < T*S§"~2 For any ¢ > 0, the sharpened model £ G, : §"~% x R? —
T*(8"2 x R?) is given by
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shacpening

Fig. 20 Sharpening the Lagrangian birth/death of zig-zags

~ ~ G ot
€gn(q,Qn—1,Qn)= Q5qn—15‘[7098 — 8 » €8 .
0qn—1 0qn—1

The following result allows us to interpolate between G, and ¢ G,, while
maintaining C'! —control throughout the perturbation (Fig. 20).

Lemma 2.12 For any 8, & > O there exists an exact homotopy G, ; : S"~2 x
R? — T*(8"2 x R?) such that the following properties hold.

° gn,O = gn

e Gu.r = Gy when |qn—1| > 26 or |gn| > 24.

® Gn1 = &G, when |q,—1] < 8 and |q,| < 8.

o dist-1(Gy, Gn.1) < K&, where K is a constant independent of § and ¢.

As before, the same Lemma also holds for the Legendrian counterpart ?,1 =
(Gn, G) : S" 2 xR - T*(§" 2 x R?) x R = J'(§" 2 x R2, R) and we
prove both versions simultaneously.

Proof Fix A > 1. Given §, & > 0 arbitrarily small there exists a function
¢ : R? — [0, 1] satisfying the following properties.

o $(x,y) =& for (x,y) €[5, 8],

o & < ¢(x,y) < lfor(x,y) €[-28,261*\ [, 8],
e ¢(x,y) =1for (x,y) ¢ [-25,28]°.

o |9¢/dx], |0¢/dy| < A/S.

o |0%¢/0x|, |9%¢/0xdy], |9%¢/dy*| < A/82.

e 0¢p/dy = 0 when |y| < §.

Set ¢, = (1 —t) + t¢; and G,(q) = ¢1(qu_1.¢x)G(q). The front g
((3, qn—1,T), G,) generates the Lagrangian and Legendrian birth/deaths of

zig-zags G, ; and C//\n + = (Gn.1, G;) respectively. To be explicit, we have

~ ~ G

gn,t(q,LIn—l,CIn): <q,Qn—l, T507 8 !

dn—1

8¢t G ot 8¢t G
(b)) g
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The first three properties stated in the Lemma are clearly satisfied. The fourth
property follows from the uniform bounds on the first and second partial deriva-
tives of ¢. O

Remark 2.13 The sharpening construction can also be applied to a family of
wrinkled Lagrangian or Legendrian embeddings. To do this, one needs to
work instead with the local model for the fibered wrinkle and repeat the above
construction in the fibered setting. The proofs only differ in notation.

3 Lagrangian and Legendrian rotations
3.1 Tangential rotations

In Sect. 1.5 we introduced the notion of a tangential rotation, which decou-
ples a Gauss map G(df) : L — A (M) from its underlying Lagrangian or
Legendrian embedding f : L — M. We repeat the definition below for con-
venience. Recall that [T : A(M) — M denotes the Lagrangian Grassmannian
of a symplectic or contact manifold M.

Definition 3.1 A tangential rotation of a regular Lagrangian or Legendrian
embedding f : L — M is a compactly supported deformation G; : L —
AM),t €]0,1],0of Go = G(df) suchthat 1o G, = f.

We will also need to consider tangential rotations of wrinkled Lagrangian
and Legendrian embeddings. As in the unwrinkled case, a tangential rotation of
a wrinkled Lagrangian or Legendrian embedding f : L — M is a compactly
supported deformation G; : L — A(M),t € [0, 1], of Gg = G(df) such that
[MToG;=f.

3.2 Simple tangential rotations

LetG; : L — A(M)beatangential rotation of a possibly wrinkled Lagrangian
or Legendrian embedding f : L — M. A priori, the one-parameter family of
Lagrangian planes G;(g) could rotate around wildly inside T'r ;) M. It will be
useful for us to restrict these rotations to be of a particularly simple type. See
Fig. 21 for an illustration of the desired simplicity.

Definition 3.2 A tangential rotation G; : L — A (M) of a possibly wrinkled
Lagrangian or Legendrian embedding f : L — M is simple if there exists
a field of (n — 1)-dimensional isotropic planes H"~! ¢ TM defined along
some open subset O C M such that

e on £~ (O) we have H C im(G;) for all ¢t € [0, 1].
e on L\ f~1(O) the rotation G, is constant.
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a tanoential rotation 0 Stenple -)m\%enﬁa\ cotodion

Fig. 21 The difference between a non-simple tangential rotation and a simple tangential rota-
tion. Observe that in the simple case, the rotating planes G, are constrained so that the (n — 1)
directions contained in H are kept fixed, leaving only one degree of freedom

We say that G; is simple with respect to H.

If f is regular, then we can think of H C df (T L) as a hyperplane field in
T L. When f is wrinkled we need to be a little bit careful near the wrinkling
locus so it will be best to think of H as an ambient (n — 1)-plane field in T M.

Remark 3.3 Our definition of simple tangential rotations is slightly more
restrictive than what one might expect by comparing with the definition given
by Eliashberg and Mishachev in [15] for the smooth analogue of this notion.
This is the case because the Lagrangian or Legendrian wrinkling model that
we are able to construct below is somewhat more restrictive than the model
used in their proof.

We will also need the notion of piecewise simplicity. A tangential rotation
G, of aregular Lagrangian or Legendrian embedding f is piecewise simple if
we can subdivide the time interval 0 = 79 < - - - < f; = 1 so that the following
property holds. We demand that there exist (n — 1)-dimensional isotropic plane
fields H/ C im(Gy;), which extend over open subsets O; C M, such that for
all ¢ € [tj,1j41] we have G; = Gy; outside of f‘l((’)j) and H/ C im(G;)
on f~1(O ). We will prove below that any tangential rotation of a regular
Lagrangian or Legendrian embedding can be C%-approximated as accurately
as desired by a piecewise simple tangential rotation. In order to do this we first
translate the notion of a tangential rotation into the language of jet spaces.

3.3 Rotations of 2-jets

Let f : L — M be a regular Lagrangian embedding. Fix once and for all
a Riemannian metric on L. For § > 0 small enough, the Weinstein theorem
guarantees the existence of a symplectomorphism @ between a neighborhood
N of f(L)in (M, ) and (T{"L,dp A dq), where T{'L = {(q, p) € Tq*L :
[Ip]| < 8}. We call ® the Weinstein parametrization (Fig. 22). The zero section
L < T L corresponds under ® to the embedding f : L — M. More
generally, for any open subset U C L and any function & : U — R such
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Fig. 22 A Weinstein neighborhood N of f(L) in M
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that [|dh|| < §, the section dh : U — T L corresponds under @ to a regular
Lagrangian embedding fj, : U — M which is graphical over f|y.

Similarly, if f : L — M is a regular Legendrian embedding, then for
some 6 > 0 small enough there exists a contactomorphism & between a
neighborhood N of f(L) in (M, &) and Jal (L,R) = T§"L x (=6, 8), which
is equipped with the standard contact structure. We still call ® the Weinstein
parametrization. For any open subset U C L and any function 4 : U — R
such that |#| < § and ||dh|| < 8, we obtain a regular Legendrian embedding
fn : U — M which is graphical over f|y. The embedding fj corresponds
under @ to the section jl(h) U — st1 (L, R).

In order to capture the tangential information contained in 1-jets we must
consider 2-jets. The Riemannian metric fixed on L induces the following triv-
ialization of the 2-jet space J2(L, R).

JHL,R) ={(q,2,p,Q), q€L, zeR, p:T,L >R, Q:T,L— R},

where p is a linear form and Q is a quadratic form. Explicitly, given
a germ of a function 7 : Op(q) C L — R, we set j2(h)(q) =
(q, h(q),dhy, Hess(h)q) € J%(L, R). We obtain a vector bundle J2(L, R) —
L, where the linear structure is induced by the above trivialization.

Example 3.4 When L = R" with the standard Euclidean metric and standard
coordinates ¢ = (q1, . . ., qn), we have a canonical identification 7, R" ~ R"
for each ¢ € R”". Under this identification, dh(v) = Z;’:l(ah /dqi)v; and
Hess(h)(v) = Z;szl(a%/aq,-aqj)viv, forallv = (vy,...,v,) € R".

Definition 3.5 A 2-jet rotation of L is a compactly supported deformation
st L — JZ(L, R), ¢ € [0, 1], of the zero section sg = 0 which is of the form
si(q) = (q, 0,0, Q,(q)) for some family of quadratic forms Q; : TL — R.

In other words, a 2-jet rotation is a deformation of the zero section whose 1-jet
component is zero at all times. The corresponding notion of simplicity for 2-jet
rotations is the following.

Definition 3.6 A 2-jet rotation s, : L — J2(L, R) is simple if there exists a
hyperplane field H C T L defined along an open subset U C L containing
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Fig. 23 The difference between a non-simple 2-jet rotation and a simple 2-jet rotation

supp(s;) such that H C ker(Q;) for all + € [0, 1]. We say that s; is simple
with respect to H.

Remark 3.7 Observein particular that Q; hasrank < 1. However, the condition
of simplicity is stronger, we demand that the kernel always contains a fixed (n —
1)-dimensional distribution. See Fig. 23 for an illustration of 2-jet simplicity.

In the same vein, we say that a 2-jet rotation s; : L — J2(L, R) is piecewise
simple if there exists a subdivision 0 = #y < --- < #x = 1 of the time interval

[0, 1] such that on each subinterval [z, 7; 1] we have s; = s, ;T r,J for some

simple 2-jet rotation rtj : L — J*(L,R).

Remark 3.8 The proper language for this discussion would naturally extend
our definitions to include the concepts of /- and L -holonomic sections of the
r-jet bundle associated to any fibre bundle. These ideas were introduced by
Gromov in [26] in the context of convex integration. We explore these notions
further in the context of holonomic approximation in our paper [1], the results
of which will be crucially used below.

Given a regular Lagrangian or Legendrian embedding f : L — M, a
Weinstein parametrization @ of a neighborhood N of f(L) in M and a 2-jet
rotation s, : L — J2(L,R), we can define a tangential rotation G (D, s;) :
L — A(M) of f associated to ® and s;. Explicitly, we set G (D, s;)(q) =
G(dfp,)(q) at each point ¢ € L, where h; : Op(q) C L — R is any
function germ such that jz(h,)(q) =s:(q) and fp, : Op(q) C L — M is the
Lagrangian or Legendrian embedding corresponding to /; under ®. Observe
that if s; is simple, then G (P, s;) is also simple.

Conversely, given a regular Lagrangian or Legendrian embedding f : L —
M, a Weinstein parametrization ® and a tangential rotation G; : L — A (M) of
f, there exists a unique 2-jet rotation s; : L — J 2(L, R) such that G(®, s;) =
G;. To be more precise, s; might only be defined in a small time interval
[0, e] C [0, 1], since the Lagrangian planes G;(g) could at some point stop
being graphical over df (T, L) with respect to ®, see Fig. 24.
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Fig. 24 The difference between a graphical and a non-graphical tangential rotation

Definition 3.9 When s, is defined forall ¢ € [0, 1], we say that G, is graphical.

The Weinstein parametrization & is implicit in the definition. Observe again
that if G, is simple, then s; is also simple. The notions of piecewise simplicity
also coincide under this correspondence.

3.4 Approximation by simple rotations

Let I"" = [—1, 1]"* denote the unit n-dimensional cube. The following lemma
will allow us to replace any tangential rotation of a Lagrangian or Legendrian
embedding by a piecewise simple tangential rotation.

Lemma 3.10 Ler s, : I" — J2(R", R) be a 2-jet rotation such that s; = 0
on Op(d1"™). Then there exists a piecewise simple 2-jet rotation ry : 1" —
J2(R", R) which is C%-close to s; and such that r, = 0 on Op(dI™).

Lemma 3.10 is an immediate consequence of a more general approximation
result which we prove in [1]. For completeness we present below the outline of
the argument in our concrete setting. The idea goes back to Gromov’s iterated
convex hull extensions in [26], which used similar decompositions into so-
called principal subspaces. Indeed, in convex integration one is also forced to
work one pure partial derivative at a time. These decompositions are studied
carefully in Spring’s book [41].

For our purposes, we only need to remark that any homogeneous degree 2
polynomial can be written as a sum of squares of linear polynomials. Explicitly,
we have the polynomial identity X; X ; = %((X,- + Xj)2 — Xi2 — Xf) We can
think of a 2-jet rotation as a parametric family of Taylor polynomials which
are homogeneous of degree 2. By applying the above identity we obtain a
decompositions; = Y r;”/, where the 2-jet rotation r,"’ is simple with respect
to the integrable hyperplane field 7; ; = ker(dg; + dgq;) and the sum is taken
over all 1 <i < j < n. Moreover, it follows that if s, = 0 on Op(d1"), then
r;) =0o0n Op(dI™) for all i, j (Fig. 25).

Once we have this decomposition, we can subdivide the interval [0, 1] very
finely and add a fraction of each 7,/ at a time to obtain the desired piecewise
simple approximation of s,. The parametric version is proved in the exact same
way. The statement reads as follows.
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Fig. 25 Decomposing a homogeneous degree 2 polynomial into a sum of squares of linear
polynomials

Lemma 3.11 Let s; : I" — J2(R",R) be a family of 2-jet rotations
parametrized by a compact manifold Z such that s; = 0 on Op(dI") and
such that s; = 0 for z € Op(dZ). Then there exists a family of piecewise
simple 2-jet rotations rf : I — J>(R", R) which is C%-close to s, such that
ri =0o0n Op(d1") and such that r{ =0 forz € Op(3Z).

To be more precise, for the piecewise simple family we demand that there
exists a single subdivision 0 = 7y < --- < # = 1 of the time interval [0, 1]
such that every r/ is simple on each piece [7;, 7;41]. We can translate Lemmas
3.10 and 3.11 from the world of jet spaces back into the world of symplectic
and contact topology. The precise consequence that we wish to extract is the
following.

Proposition 3.12 Let G, : L — A(M) be a tangential rotation of a reg-
ular Lagrangian or Legendrian embedding f : L — M. Then we can
CO-approximate G, as much as desired by a piecewise simple tangential rota-
tion Ry : L - A(M).

Proof By using a partition of unity and a fine enough subdivision 0 = 7y <

- < 1 = 1 of the inlerval [0, 1], we can localize in space and time to obtain
a tangential rotation G, : L — A(M) which is C O_close to G; and such that
on each subinterval [7;, ;1] the rotation G, is constant outside of some ball
Bj C L. In the Lagrangian case, let ®; be a symplectic isomorphism of the
symplectic vector bundle (Tle(Bj), w) — Bjsuchthat ®;-G(df) = G,j .In
the Legendrian case, we ask that @ ; satisfies the same property but is instead a
symplectic isomorphism of the symplectic vector bundle (§| ¢(p;), do) — Bj,
where & = ker(a) on the ball B;.

Consider the tangential rotation St] = (<I>j)_1 . ét, t € [tj,tj41]. Observe
that S/ = G(df)on Op(dB ;7). By further subdividing the time interval if nec-
essary and picking new isomorphisms ® ;, we may assume that S/ is graphical.
In other words, S; corresponds to a 2-jet rotation s; : B = J 2(B j» R) such
that stj = 0on Op(0B;). Lemma 3.10 asserts the existence of a piecewise sim-

ple 2-jet rotation / : B i—J 2(B j» R) whichis C O_close to s{ and such that

@ Springer



The simplification of singularities of Lagrangian 679

r, =0on 0 p(0B;). We obtain a corresponding piecewise simple tangential
rotation R : Bj — A(M) whichis CO-close to Sj and such that Rtj = G(df)

on Op(dBj). Set tR; = @ Rtj,t € [tj, tj+1] on B;. Outside of B; we extend
by setting R; = G,, Wthh is constant for 7 € [z}, ¢ J+1] This piecewise defini-
tion yields a tangential rotation R; : L — A (M), t € [0, 1], where each piece
Rilit;,1;,11 18 itself a piecewise simple tangential rotation. Hence R; is also a
piecewise simple tangential rotation. Moreover, R; is everywhere C O_close to
G,, hence also to G;. O

Remark 3.13 From the proof we can also deduce the relative version of Propo-
sition 3.12. If G; = G(df) on Op(A) for some closed subset A C L, then we
can arrange it so that R, = G(df) on Op(A).

The parametric version is proved in the same way. The corresponding rela-
tive version also holds. As in the case of 2-jet rotations, by a family of piecewise
simple tangential rotations we mean a family of tangential rotations such that
for some subdivision 0 = #p < --- < fx = 1 of the time interval [0, 1], every
tangential rotation of the family is simple on each subinterval [¢;, 7;11]. The
precise statement that we will need reads as follows.

Proposition 3.14 Let G; : L — A(M) be a family of tangential rotations of
regular Lagrangian or Legendrian embeddings f* : L — M parametrized by
a compact manifold Z such that G; = G(df*) for z € Op(3dZ). Then we can
CO-approximate the family G; as much as desired by a family of piecewise
simple tangential rotations R; : L — A(M) such that R; = G(df*) for
7€ 0OpdZ).

Remark 3.15 Although we won’t need this fact, we note that the piecewise
simple rotations produced by our approximation process are all piecewise
simple with respect to integrable hyperplane fields.

4 Wiggling embeddings
4.1 Regular approximation near the (n — 1)-skeleton

Let G; : L — A(M) be a tangential rotation of a regular Lagrangian or
Legendrian embedding f : L — M. It is in general impossible to globally
CV-approximate G, by the Gauss maps G (df;) of an exact homotopy of regular
Lagrangian or Legendrian embeddings f; : L — M, fo = f. However, it is
always possible to achieve this approximation in a wiggled neighborhood of
any reasonable subset of L which has positive codimension, see Fig. 26. For
simplicity, we will restrict ourselves to the following class of stratified subsets.
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Fig. 26 We can always approximate G; by Gauss maps G(df;) in a neighborhood of any
reasonable subset K C L of positive codimension

Definition 4.1 A closed subset K C L is called a polyhedron if it is a sub-
complex of some smooth triangulation of L.

In [1] we prove several refinements of the holonomic approximation lemma.
The following result is a straightforward application of our holonomic approx-
imation lemma for /-holonomic sections.

Theorem 4.2 Let K C L be a polyhedron of positive codimension and let G :
L — A(M) be a tangential rotation of a regular Lagrangian or Legendrian
embedding f : L — M. Then there exists an exact homotopy of regular
Lagrangian or Legendrian embeddings f; : L — M, fo = f, such that
G(df;) is CO-close to G, on Op(K) C L.

Remark 4.3 We can arrange it so that f; is C°-close to f on all of L and so
that f; = f outside of a slightly bigger neighborhood of K in L. Moreover,
the result also holds in relative and parametric forms.

Remark 4.4 As far as the author can tell, Theorem 4.2 is not an immediate
consequence of Eliashberg and Mishachev’s holonomic approximation lemma
[14] or of any of the other standard 4 -principle techniques. However it does fol-
low immediately from the holonomic approximation lemma for /-holonomic
sections which we established in [1]. The subtlety stems from the pervasive
danger of cutoffs in symplectic topology. .

In Sect. 5 we will prove that any tangential rotation G, can be globally C°-
approximated by the Gauss maps G (df;) of an exact homotopy of wrinkled
Lagrangian or Legendrian embeddings f;. This is the main technical ingredient
in the proof of the A-principle for the simplification of singularities in Sect. 6
below. In the course of the proof of this global C%-approximation theorem
we will need to use a result of the same flavour as Theorem 4.2, taking K
to be the (n — 1)-skeleton of a triangulation of L. The idea is to construct
the homotopy f; by first wiggling f near the (n — 1)-skeleton. Then one can
apply a wrinkling construction in the interior of each of the top dimensional
simplices to complete the approximation.

@ Springer



The simplification of singularities of Lagrangian 681

However, on the nose Theorem 4.2 is not quite sufficient for our purposes.
The issue is that the local wrinkling model which we construct in Sect. 5 can
only be applied if the tangential rotation is simple. Initially this is not a problem
because we can use Proposition 3.12 to first approximate any given rotation
by a piecewise simple rotation. We can then attempt to deal with each simple
piece in the decomposition separately, working step by step. Unfortunately
the following additional difficulty arises. Suppose that at a given step we
apply Theorem 4.2 near the (n — 1)-skeleton of L. We might find that our
fixed decomposition is no longer piecewise simple from the viewpoint of the
freshly wiggled embedding. If this is the case, then we cannot continue on to
the next step, because the local wrinkling model can only be applied to simple
rotations. To fix this issue we need a stronger version of Theorem 4.2 which
allows us to control the wiggles with respect to any fixed simple tangential
rotation. We state and prove this stronger version in the next section.

4.2 Keeping things simple

The precise result that we need is the following application of our holonomic
approximation lemma for _L-holonomic sections from [1]. The choice of a
Riemannian metric on L and a Weinstein parametrization of a neighborhood
of f(L) in M is implicit throughout. We use the language of 2-jet rotations
introduced in Sect. 3.3.

Theorem 4.5 Let K C L be a polyhedron of positive codimension and let G :
L — A(M) be a graphical simple tangential rotation of a regular Lagrangian
or Legendrian embedding f : L — M. Then there exists a graphical simple
tangential rotation Ry, : L — A(M) of f and an exact homotopy of regular
Lagrangian or Legendrian embeddings f; : L — M, fo = f, such that the
following properties hold.

G(df,) is CO-close to G; on Op(K) C L

G(df;) is CO-close to R; on all of L.

R; is simple with respect to the same hyperplane field as G;.

ft = f and Ry = G(df) outside of a slightly bigger neighborhood of K
in L.

Remark 4.6 Tthe second property implies that f; is everywhere C%-close to
f-

Remark 4.7 The relative form of Theorem 4.5 also holds. If G; = G(df) on
Op(A) for some closed subset A C L, then we can arrange it so that f; = f
and R, = G(df)on Op(A) C L.

Let us explain the difference between Theorems 4.2 and 4.5 and how this
difference deals with the difficulty discussed at the end of Sect. 4.1. Denote by
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H C TL the hyperplane field with respect to which G; is simple. First note
that the Gauss map G (df;) of the exact homotopy f; produced by Theorem
4.2 is an arbitrarily good approximation of G; near K, but we have no control
on G(df;) away from K. Compare with the Gauss map G (df;) of the exact
homotopy f; produced by Theorem 4.5, which is not only an arbitrarily good
approximation of G, near K, but everywhere on L only differs from G (df) by
arotation which is simple with respect to H (up to an error which can be made
arbitrarily small). Hence the lack of global control on G (df;) is restricted to
the one degree of freedom completementary to H in 7' L. We don’t know what
G (df;) does within this one degree of freedom, but we record it and give it a
name: R;. The upshot is that from the viewpoint of f; the rotation G; is still
simple with respect to the same hyperplane field H (up to an error which can
be made arbitrarily small). This will allow us to complete the approximation
of G, by the introduction of wrinkles on f; which are parallel to H and of
magnitude G, — R;. This discussion will be made precise when it is time for
us to wrinkle. In the meantime, we proceed to wiggle.

Proof of Theorem 4.5 Fix a Riemannian metric on L. By definition of graph-
icality, we can think of G, as a 2-jet rotation s; : L — J2(L,R) which is
simple with respect to some hyperplane field H C T L. We can therefore
apply the (1-parametric) holonomic approximation lemma for | -holonomic
sections from [1] to s;. The output is a family of functions h; : L — R, hg =0
and an isotopy F; : L — L such that the following properties hold.

j%(h;) is CY-close to s; on Op(F,(K)) C L.

jl(ht) is C%-small on all of L.

Hess(h;)| g is C%-small on all of L.

F; is CY-small.

FH is CO-close to H.

h; = 0 and F; = idy outside of a slightly bigger neighborhood of K in L.

The C'-smallness of #; allows us to think of dh, o F, : L — T*L (in
the Lagrangian case) or of jl(h,) oF, : L — JY(L,R) (in the Legendrian
case) as an exact homotopy of regular Lagrangian or Legendrian embeddings
ft + L — M. We define the simple tangential rotation R; : L — A(M)
by specifying its corresponding simple 2-jet rotation r; : L — J>(L,R) as
follows. Write r,(¢) = (¢,0,0, Q:(¢q)) € J*(L,R) for O, : TL — Ra
family of quadratic forms and set Q;(q) = Hess(h¢)|f,)op: TL — Rto
obtain the desired R,, where p : TL — T L is the orthogonal projection with
kernel H. Note that Hess(/,) |, (4) does not define a quadratic form on T, L,
but rather a quadratic form on T, (4) L, so let us explain more carefully what we
mean by Q;(q). With respect to our fixed Riemannian metric, a quadratic form
on T, L which vanishes on H, is determined by a co-orientation of H, and a
non-negative number, namely its norm. Since F; is C°-small a co-orientation of
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H, induces co-orientation of HF, ). Therefore Q;(q) is uniquely determined
by demanding that it vanishes on H, and that its norm is equal to the norm of
Hess(h)|F,(g) © p (Which is a quadratic form on TF, ;)L with kernel Hp, )).

All the properties listed in Theorem 4.5 can now be easily checked to hold.
The only property which may need clarification is the third one. To verfity it
observe that the C%-smallness of Hess(h;) on H implies that Hess (%), g) is
CY-close to Hess(/;) |F,(q)op-ButHess(hy)|F,g)opis CY-closeto 0:(q),since
they both have the same norm and their kernels, Hp, ;) and H, respectively,
are C%-close (the degree of accuracy determined by how C%-close F; is to the
identity).

Finally, we observe that the C°-approximation bounds satisfied by the result-
ing G(df;) and R; can be improved as much as desired by demanding the
corresponding degree of C°-approximation in the invokation or our holonomic
approximation lemma for | -holonomic sections. Note that the R; produced
by the proof will depend on the desired degree of C%-approximation. O

Remark 4.8 The condition that F*H is C-close to H was not used in this
proof but we include it for the sake of intuition given that in our construction
of the refined holonomic approximation [1] it is crucial to have the wiggles be
almost parallel to H.

The above argument also works for families. In the parametric case, we note
that the polyhedron K may also vary with the parameter. To be more precise,
we have the following definition.

Definition 4.9 A closed subset K C Z x L is called a fibered polyhedron
if it is a subcomplex of a smooth triangulation of Z x L which is in general
position with respect to the fibres z x L, z € Z.

More precisely, the requirement is that the n-plane field V C T(Z x L)
tangent to the fibres of the projection Z x L — Z is transverse to each k-
simplex o in the triangulation when k > n and that V + T ¢ T(Z x L)k
has dimension n 4+ k when k < n. The crucial consequence of this definition
is that for every z € Z the subset K* C L givenby K N (z X L) = z x K*
is a polyhedron in L. If K has positive codimension in Z x L, then K% has
positive codimension in L for all z € Z. The more restrictive notion of general
position considered by Thurston in [46] is not necessary for our purposes but
we can also ask for it if we want to since we will rely on his existence result for
triangulations in general position to foliations, which he proves in this stronger
sense.

The parametric version of Theorem 4.5 is proved in the same way, by adding
aparameter in the notation everywhere and invoking our parametric holonomic
approximation lemma for 1 -holonomic sections from [1]. The statement reads
as follows. We note that the relative version also holds, as in Remark 4.7.
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Theorem 4.10 Let K C Z x L be afibered polyhedron of positive codimension
and let G; : L — A (M) be a family of graphical simple tangential rotations
of regular Lagrangian or Legendrian embeddings f* : L — M parametrized
by a compact manifold Z such that G; = G(df*) for z € Op(3Z). Then
there exists a family of graphical simple tangential rotations Ry : L — A(M)
of f* and a family of exact homotopies of regular Lagrangian or Legendrian
embeddings f : L — M, f5 = f*, such that the following properties hold.

G(dfF) is CO-close to G¢ on Op(K?) C L.

GdfF) is CO-close to R? on all of L.

R} is simple with respect to the same hyperplane field as Gj.

f = f2and Ry = G(df*) outside of a slightly bigger neighborhood of
K%in L.

o 7= f“and R; = G(df*) forz € Op(d2).

4.3 Wiggling the wrinkles

In this section we extend Theorems 4.5 and 4.10, which were stated for regular
Lagrangian or Legendrian embeddings, to the case of wrinkled Lagrangian or
Legendrian embeddings. In the wrinkled case, we cannot invoke our holonomic
approximation lemma for | -holonomic sections from [1] directly because a
wrinkled Lagrangian or Legendrian embedding is not regular near the wrinkles.
The sharpening construction described in Sect. 2.6 will allow us to resolve
this issue, since the sharper the wrinkles, the better they can be approximated
locally by a regular Lagrangian or Legendrian submanifold.

Given a wrinkled Lagrangian or Legendrian embedding f : L — M, recall
that the subset on which f is wrinkled consists of a disjoint union W = |_J i S
of finitely many (n — 1)-dimensional embedded spheres S; C L. Each sphere
S has an (n — 2)-dimensional equator E; C S; on which f has birth/deaths
of zig-zags. The complement S;\ E; consists of two hemispheres on which f
has cusps.

We say that a polyhedron K C L is compatible with the wrinkles of f if the
following condition holds. We demand that the wrinkling locus W = [ J iSj
is contained in the (n — 1)-skeleton of K and that the union of the equators
U i E; is contained in the (n — 2)-skeleton of K. In the same way we can
define what it means for a fibered polyhedron K C Z x L to be compatible
with the fibered wrinkles of a family f*: L — M of wrinkled Lagrangian or
Legendrian embeddings parametrized by a compact manifold Z.

We now prove the analogue of Theorem 4.5 for wrinkled Lagrangian and
Legendrian embeddings. The precise statement is the following.

Theorem 4.11 Let K C L be a polyhedron of positive codimension which
is compatible with the wrinkles of a wrinkled Lagrangian or Legendrian
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embedding f : L — M. Let G; : L — A(M) be a graphical simple tan-
gential rotation of f. Then there exists a graphical simple tangential rotation
Ry : L — A(M) of f and a family of exact homotopies f; : L — M,
fo = f, of wrinkled Lagrangian or Legendrian embeddings such that all of
the properties listed in Theorem 4.5 hold.

Proof Consider first a single wrinkle S in the wrinkling locus W C L of f.
The wiggling on S is performed in two steps. First we will wiggle f near the
equator £ C S and then we will wiggle f near the remaining part of S. In both
cases this wiggling is achieved by replacing the singular Lagrangian or Leg-
endrian submanifold f(L) with a regular approximation to which holonomic
approximation can be applied. We then use the resulting ambient Hamilto-
nian isotopy to induce a wiggling of f. We will restrict our attention to the
Lagrangian case for the sake of concreteness, but the Legendrian case is no
different.

In Sect. 2.6 we introduced the Lagrangian local model G,, for the birth/death
of zig-zags. Recall that G, : §"72 x R? — T*(8"~2 x R?) is given by

~ ~ G at
gn(q,Qn—laCIn): q,9n—-1, T, 07 — 8 8]
dgn—1 dgn—1

q=1(q,qn-1.qn) € §"2 x R x R.

where t(gn—1,qn) = 6]3 —3qn-14qn,
4qn 2 5

g(Gn-1,qn) = (u” — gn—1)"du
0

ot
(Qn—l ’ l/l) dl/l.
aqn

q)l
and G(qn—1,qn)=/ g(qn-1,u)
0

Near the equator £ C S, our wrinkled Lagrangian embedding f : L — M
is locally equivalent to G, near S"~2 x 0 C §"~2 x R2. Working in this local
model, we can think of G, as a tangential rotation of G,, which is simple with
respect to an (n — 1)-plane field H C T(T*(S"_2 X Rz)). Consider the zero
section Z : §"7% x R? — T*(5"2 x R?), which is a Lagrangian cylinder.
Observe that Z|gn—2,0 = Gnlgn-240, and moreover that G(dZ)|gn-2,( =
G(dGn)|gn-2 - Extend G| g2, 10 S; : S"72 x R? — A(T*(S" 72 x R?)),
a tangential rotation of Z which is simple with respect to H.

Let§ > Oandset N = §"2 x (=6, 8)2 C §"~2 x R2. Apply Theorem 4.5
to the regular Legendrian embedding Z, the simple tangential rotation S; and
the stratified subset $"~2 x 0 C §”~2 x R2. We obtain an exact homotopy of
regular Legendrian embeddings Z; : §"72 x R — T*(5"~2? x R?) which we
may assume is constant outside of V. Recall that G(d Z;) is C O_close to G,
near §”~2 x 0. Recall also that G (d Z;) is everywhere C%-close to a tangential
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Fig. 27 The sharpening construction applied to the equator

rotation R; which is also simple with respect to H and which is supported on
N.

Write Z; = ¢; o Z for an ambient Hamiltonian isotopy ¢; which we may
assume constant outside of Op(N) C T*(S" 2 xRR?).Lete > 0and consider
the sharpening G, ; of G, described in Sect. 2.6 with respect to the parameters
8 and ¢ (Fig. 27). Recall that dist1(G,, G, ;) < Aé for some constant A > 0
independent of § and &, so by taking § > 0 small enough we may replace
G, with G, 1 from the onset up to an error which is proportional to §. Recall
also that sharpening is supported on $"~2 x (—28,28)? and is -sharp on
N = §""2 x (8, 8). For details see Sect. 2.6.

Consider now ¢; o G, 1. Note that on Op(S"_2 x 0) the Gauss map of this
composition is C%-close to G;. Indeed, G, 1 and Z are tangent along S =2 x 0
and when we invoke Theorem 4.5 to construct Z; we can demand as much
accuracy in the approximation as we want. Next, observe that Z; is supported
on N and on that neighborhood G(d Z;) is C°-close to a tangential rotation
which is simple withrespect to H. Let 7 : T*(S" 72 xR?) — §"~2xR? denote
the standard projection. As ¢ — 0 in the sharpening G, |, for each ¢ € N/
the tangent plane G(dG, 1)(q) converges to the horizontal plane tangent to
the zero section at the point 7 (g), and hence G(d (¢r 0 Q,,,l))(q) converges
to G(dZ,)(n(q)). It follows that by taking ¢ > 0 as small as is necessary,
we can use R; to exhibit a tangential rotation of G, 1 which is simple with
respect to H and which is arbitrarily CO-close to G(d (¢r 0 g,,,l)) on all of L.
We have therefore achieved the required global approximation up to an error
which is proportional to §. Since we can take § > 0 to be arbitrarily small, this
completes the wiggling near the equator.

Once we have wiggled f near the equator £ we proceed to wiggle f on
the two hemispheres DT of the complement S\ E. Near the interior of each
of the two disks DT and D~ the map f is equivalent to the local model
Cp : R" = T*R" on Op(D"~")\Op(dD"~), where we recall from Sect. 2.6
that

Cn(Ql,,Qn):(QIasQn—lsq,%,O,,qg)
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Our input this time is a simple tangential rotation G, of the local model
Cp| pn—1 Which we assume to be constant on Op(d D"~!). The strategy is the
same as before. Consider the zero section Z : R” — T*R" and extend G, | pn-1
to a simple tangential rotation S; of Z. Then apply (the relative version of) The-
orem4.5to Z, S; and D"~ to obtain an exact homotopy of regular Lagrangian
embeddings Z, which is induced by an ambient Hamiltonian isotopy ¢; fixing
the boundary. For a suitable choice of parameters § and ¢, the concatenation of
the sharpening homotopy C, ; described in Sect. 2.6 followed by the isotopy
@ 0 Cy 1 gives the required wiggling on S\ E.

This process can now be repeated on all wrinkles S until we have achieved
the desired wiggling on the locus W where f fails to be a regular Lagrangian
embedding. The proof of Theorem 4.11 is completed by applying (the relative
version) of Theorem 4.5 on the regular locus. O

The analogue of the parametric Theorem 4.10 for families of wrinkled
Lagrangian or Legendrian embeddings also holds, where we demand that the
fibered polyhedron K C Z x L is compatible with the wrinkles. The proof
only differs in notation and the precise statement reads as follows.

Theorem 4.12 Let K C Z x L be afibered polyhedron of positive codimension
which is compatible with the wrinkles of a family of wrinkled Lagrangian or
Legendrian embeddings f* : L — M parametrized by a compact manifold
Z. Let G; : L — A(M) be a family of graphical simple tangential rotations
of f* such that G; = G(df?) for z € Op(3dZ). Then there exists a family of
graphical simple tangential rotations R; : L — A(M) of f* and an exact
homotopy of wrinkled Lagrangian or Legendrian embeddings f; : L — M,
fo = f7, such that all of the properties listed in Theorem 4.10 hold.

Remark 4.13 Observe that no wrinkles appear or disappear in the homotopies
of wrinkled Lagrangian or Legendrian embeddings produced by Theorems
4.11and 4.12. In [15], Eliashberg and Mishachev refer to the analogous smooth
homotopy as an isotopy of wrinkled embeddings. We call the process ‘wiggling
embeddings’.

5 Wrinkling embeddings
5.1 Wrinkled approximation on the whole manifold

As we already mentioned, we cannot in general hope to globally C°-
approximate a tangential rotation G; : L — A (M) of aregular Lagrangian or
Legendrian embedding f : L — M by the Gauss maps G (d f;) of a homotopy
fi of regular Lagrangian or Legendrian embeddings. In the previous section,
we showed that the approximation can nevertheless be achieved by such a reg-
ular homotopy in a small neighborhood of any polyhedron K C L of positive
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Fig. 28 The wrinkling theorem in action

codimension. In this section we show that the approximation can be globally
achieved on the whole manifold L if we allow the homotopy f; to be wrinkled.
See Fig. 28 for an illustration. More, precisely we have the following theorem,
which is the main result of this section.

Theorem 5.1 Let G; : L — A(M) be a tangential rotation of a regular
Lagrangian or Legendrian embedding f : L — M. Then there exists a
compactly supported exact homotopy of wrinkled Lagrangian or Legendrian
embeddings f; : L — M, fo = f such that G(df;) is C°-close to G;.

By Proposition 3.12 we can reduce Theorem 5.1 to the following statement.

Theorem 5.2 Let G, : L — A (M) be a graphical simple rotation of a wrin-
kled Lagrangian or Legendrian embedding f : L — M. Then there exists a
compactly supported exact homotopy of wrinkled Lagrangian or Legendrian
embeddings f, : L — M, fo = f such that G(df,) is C°-close to G,.

The parametric version of Theorem 5.1 reads as follows.

Theorem 5.3 Let G; : L — A(M) be a family of tangential rotations of
regular Lagrangian or Legendrian embeddings f* : L — M parametrized
by a compact manifold Z such that G; = G(df*) for z € Op(dZ). Then
there exists a family of compactly supported exact homotopies of wrinkled
Lagrangian or Legendrian embeddings f : L — M, f5 = f* such that
G(dff) is CV-close to Gt and such that {7 = f* forz € Op(dZ).

As in the non-parametric case, by Proposition 3.14 we can reduce Theorem
5.3 to the following statement.

Theorem 5.4 Let G : L — A(M) be a family of graphical simple rotations
of wrinkled Lagrangian or Legendrian embeddings f* : L — M parametrized
by a compact manifold Z such that G; = G(df*) for z € Op(dZ). Then
there exists a family of compactly supported exact homotopies of wrinkled
Lagrangian or Legendrian embeddings f° : L — M, fi = f* such that
G(dfF) is CO-close to G¢ and such that f* = f* forz € Op(dZ).
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The proof of Theorems 5.2 and 5.4 consists of two steps. The first step is
the construction of a local wrinkling model, which we carry out in Sect. 5.2.
The second step is to combine this local wrinkling model with the wiggling
results established in Sect. 4 to obtain the desired global approximation. We
carry out this second step in Sect. 5.3.

5.2 Local wrinkling model

We begin by describing the local model for the oscillating function that will
generate the wrinkles. This is essentially the same local model used by Eliash-
berg and Mishachev in [15]. In fact, our local wrinkling model for Lagrangians
and Legendrians is obtained from theirs by simply integrating and differenti-
ating the formulae, just like we did in Sect. 2 with the definition of wrinkled
Lagrangian and Legendrian embeddings.

The basic geometric idea behind the construction is quite straightforward.
One wishes to wrinkle the Lagrangian or Legendrian submanifold back and
forth so that the wrinkles are parallel to the rotating planes G;(g). Since we
model the wrinkles on a highly oscillating function, the Gauss map of the
resulting wrinkled embedding gives an arbitrarily good approximation of G;,.
There is a delicate part of the construction regarding the embryos of the zig-
zags because the oscillating function is forced to have a derivative with the
‘wrong sign’ in some neighboring region. However, we will impose bounds
on the size of this bad derivative to ensure that its effect is not significant.

Construction 5.5 (The oscillating function) First, we fix some notation. We
will localize our problem from a general n-dimensional manifold L to the unit
cube I" = [—1, 1" C R*". Apointg = (q1, ..., qn) € 1" will be written as

q = (g, qn), where ¢ = (q1, ..., gn—1). We will consider rotations which are
simple with respect to the (constant) hyperplane field H"~! ¢ T 1" spanned
by the vectors d/dqi, ..., d/9qg,—1. Hence the last coordinate ¢, will play a

special role in our discussion. We will also need a time parameter, which will
be denoted by . Sometimes it will be convenient to consider time as another
spatial parameter, in which case we will think of the domain of our local model
as [0, 1] x I"™.

Consider the family of curves Z; C R?, s € R, given by parametric equa-
tions

Xy (u) = 2 / M<w2 —5)2dw,  ys(u) = l(u3 — 3su).
8 Jo 2

The curve Z; is a graph of a continuous function z; : R — R which
is smooth for s < 0 and smooth on R\{—SS/Z, s5/2} for s > 0, where we
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Fig. 29 The family of curves Z; gives the local model for the birth/death of semi-cubical
zig-zags
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Fig. 30 The family ¢;. Observe that for s = O the derivative d{y/dx blows up near zero but is
everywhere bounded below by —«, where the parameter « can be taken to be arbitrarily small.
This lower bound also holds everywhere for s < 0 and outside of [—ass/ 2, osd/ 2] fors > 0

note that x,(2./s) = #s/2. See Fig. 29 for an illustration. We note that the
constants 15/8 and 1/2 are chosen for convenience in the calculation but are
otherwise immaterial.

Remark 5.6 Observe that the composition y, (1) = z (x; (1)) is smooth for all
s € R.

Let 0, > 0 be small and choose an odd 1-periodic family of functions
¢ R — R, s € [—1, 1], illustrated in Fig. 30, which satisfies the following
properties.
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= Zs(f;) forx € Op ([ — o052, O’SS/Z]) ,s €10, 1],
= zs(f;) forx € Op(0),s € [—1,0],
&) >0 forx e [—%,—%], s e[—1,1],
<0 forx €3, 5].se[-1,1].
de < —(% forx € (—o,0),
d—l(x)< >1 forx €[—20, —0)U (0, 20],
* e[1,2]forx €[-%, —20]U[20, 1.
<-2  forx e (—0s¥? 055?),5 € (0, 1],
dﬁ(x) | for x € [20, —0s7/?) U (652,201, s € (0, 1],
dx > —«a forx € [-20,20],s € [—1,0],
€ [~a, 2] forx € [-3, —20]U[20, 3].5 € [-1, 1].
Let D" = {x € R" : ||x||] < 1} denote the closed unit n—dimensional

disk. We now use the family ¢; to define a model £ = &5 4,5.5,5 : D" (¢, §) X
[—1, 1](gn) — R which like ¢; depends on o, o > 0 but also depends on three
more parameters y, 8 > 0 and N € N. The parameters o, «, y, §, 1/N are all
taken to be small (in particular we demand that they are all < 1), but it is the
relative smallness between the parameters that will play a crucial role in what
follows.

Fix a non-increasing function 7 : [0, 1] — R such that

e n(x) =1forx €[0,1 —26],
e n(x) =—-46forx e[l —6,1].

Fix a non-increasing cutoff function p : [0, 1] — R such that

e p(x) =1forx € [0,1—§]
e p(x) = 0 for x near 1.

Fix also another non-increasing cutoff function ¢ : [0, 1] — [0, 1] such that

o Y(x)=1lforx e[0,1— 5]
e Y (x) = 0 for x near 1.

We define our oscillating model £ by the following formula, see Fig. 31 for an
illustration.

A 2N +1
)=y p(1C.DI) ¥ (14nl) Zoicirn) ( 5 qn),

(t,q) e D", q, €[-1,1].
Givent € [0,1],g € I"and b, c > 0,1let C = C(t, q, b, ¢) denote the box

C=(t,q)+ (bD") x [—c,c] C R"™(t, 4, qn)
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E: 0%l R

€Yo A ‘

qn
Fig. 31 One-half of the oscillating function &

which is a copy of D" x [—1, 1] centered at (¢, ¢g) and scaled by b and ¢
in the (z,g) and g, directions respectively. Let v : C — D" x [—1,1]
be the obvious diffeomorphism obtained by translating and rescaling. Define
E&c = £ oy : C — R. The oscillating function &c also depends on the
parameters o, «, ¥, § and N. We will call ! (D" X 1) and ! (D" X —1)
the top and bottom of the box C respectively. We will also need to consider
the slightly smaller boxes

~ 1
= 1-8)b,(1—
Cc C(t,q,( ),< 4N+2>C)CC
~ 1 ~
and C=C(t,q,(1—28)b, (1— >c> cC.

4N +2

Observe that £¢ has wild oscillations on C which die out on C \5 , so that
&c is smooth on C\é and §c =0on Op(9C).

Finally, we modify our local model & to make it Lagrangian. We do this
by integrating and differentiating as in the definition of wrinkled Lagrangian
embeddings. Define £ : D" (¢, q) x[—1, 11(gn) — T*R"(q, p) by the formula

0K 0K
E(LQ): ql, -« -sqny, —— 5+ ag )
GQI a%z—l
4n

where K(t,q) = @, q,u)du (1)
1

Observe that ¢ is defined in terms of &€, hence also depends on the parameters
o,a,y,6 and N. Observe also that £ is odd in the g, variable, hence K = 0
on Op(a(D” x [—1, 1])). It follows that ¢ has a Legendrian lift (¢, K) which
agrees with the zero section on Op(3(D" x [—1, 1])).

Given any box C we can similarly define a translated and scaled version
£ of £ which has support in C. This completes the construction of our local
wrinkling model.
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lﬂ

VT
a7y
i

H=R""x o
~7 C?n

Fig. 32 A tangential rotation which is quasi-graphical and simple with respect to H

Remark 5.7 The function & is not smooth and hence £ is also not smooth.
However, & can be smoothly reparametrized and therefore so can £. We will
revisit this nuance later on but it will not cause us any trouble.

We are now ready to state and prove the local wrinkling lemma. Note
that a tangential rotation G, : I" — A(T*I") of the inclusion of the
zero section i : I" — T*I" is simple with respect to the hyperplane field
H = span(d/9dqi, ..., d/dq,—1) C TI" if it can be written as

G (a ) <x>8+'(x>a>
=span| —, ..., ——, cos sin
! P g1 0gn—1 ! qn ! Opn

for some angle function ; : I — R. According to our previous definition
we say that G is graphical when im(X;) C (—m /2, w/2). We will say that G;
is quasi-graphical when im(X;) C (—m, ) (Fig. 32).

Lemma 5.8 (Local wrinkling for Lagrangians) Let G, : I" — A(T*I") be a
tangential rotation of the zero sectioni : I — T*I" which is quasi-graphical
and simple with respect to H and such that G, = G(di) on Op(d1™). Then
there exists an exact homotopy of wrinkled Lagrangian embeddings f; : 1" —
T*I", fo = i, such that the following properties hold.

e G(dfy) is CO-close to G,.
e fi=ionOp@I").

Proof Let T > 0 be small. We will be precise about exactly how small we
need 7 to be later on. Wrinkling is dangerous and unnecessary where A; is
close to zero, so we will first use our oscillating model ¢ to define a similar
model which does not oscillate on the subset of [0, 1] x I” in which |A;| < .

Remark 5.9 Although we want to think of time as a spatial parameter, observe
that A; # 0 on the boundary face 1 x 1" C 9([0, 1] x I""), so we are not
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quite in the relative setting. To remedy this, we extend the time interval from
[0, 1] to [0, 2] by setting A; = Ao—; for t € [1,2]. We can then work with
the box [0, 2] x I" as our local model, which has the advantage that A; = 0
on Op (8([0, 2] x 1 ")). We can later restrict back to only considering times
t € [0, 1] and forget about the rest.

Let Q; = {(t,q) € [0,2] x I"" : |x(q)| > 7}. We call a box C =
C(t,q,b,c) C [0,2] x I" special if |X;(q)| < 2t for (¢, q) near the top
and bottom of C. Choose special boxes C1y, .. . C, C LO, 2] x I which are
contained in 2; and such that the smaller boxes Cy, . . ., C,, are still special and
cover 2. This can be achieved if § is sufficiently small and N is sufficiently
big. Write y; for the parametrizing diffeomorphisms ¢; : C; — D" x[—1, 1]
as above. We can assume that the sets 1,0;1 (D” x ([—1, 11N Q)) C [0,2] x I"
are disjoint. Therefore for each integer N there exists a number o (N) > 0
such that for all 0 < ¢ (N) the subsets

ot ([ 25 2k _ 4o N o<k <N
/ X\ — 0, 75— o ’ O =", - )
J 2N+1 2N+1 2N + 1 =" =

are also disjoint. When we let N — oo below, we will let o — 0 accordingly
so that we always have o < o (N).

For each box C; C €2, we have an oscillating Lagrangian model £c;. Let
sign(j) = sign(A;|c;) € {£1}. Define the Lagrangian oscillating model w;
adapted to G; by setting w;(g) = Zj sign(j)ﬁcj (t, q). More precisely, we
set

OH, H,
dq1 7 0qn-1

wi(@) = | q1: -+ qn, . Y sign(éc; |
J

4qn
where H;, = 2/1 sign(j)éc;(t, g, u)du
—J-

Observe that w; = 0 and H; = 0 outside of ;. At this point we can restrict
back to the time interval [0, 1] C [0, 2], which is all that we really cared about.

Consider the function F;(q, p) = %cot (A (q))p2. For each t € [0, 1]
we consider F; as an autonomous Hamiltonian function. Therefore F; yields
a Hamiltonian isotopy ¢; : T*Q; — T*R" such that the vector field
X; = 059} (q)|s=0 is the symplectic dual of dF;(q) = cot (A(q)) padpn —
%cosec2 (2 (q))p2dr;(q). Hence we have

X:(q, p) = cot (A(q)) 9 lcosecz(k( ) Ph ” P 0
\q, p t\q Pnaqn ) t(q pnj:1 34, apj.
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TR dQ "

T>TaT> IR R®
NS

Fig. 33 Along the zero section R” C T*R" we have de;(3/9g,) = 9/9q, and dg;(3/3pp) =
cot(A1)d/dqn + 9/0pn

It follows by explicit computation that

01 (q, p) = (4, qn +cot (A () pus . P1

1 oA
+zcosec (M(q))p,%—ts N

— A .
+5cosec (M) Py aqns>

We set ¢, = go,l, which is well defined for all ¢ € [0, 1] on Op(2;) C T*R".
Note that ¢ is itself a Hamiltonian isotopy. Note also that ¢; = id on Q; C
T*Q, since pi, ..., pn = 0 on the zero section. Note moreover that on
we have (Fig. 33)

7 d dpr 0

=— forj=1,...,n, — =— forj<n
dqj  9q; dpj  9pj

0 0 0
and ¢ = cot(A ,)

9Pn qn Bpn

Hence in particular on ©2; we have

(0 (e 70 2)
dos | span| —, ..., , —— = G;.
BQI 86111—1 opn

Set fi = ¢ o wy. We recall from Remark 5.7 that each £¢; is not smooth,
hence w; is not smooth, hence the same is true for f;. However we can pre-
compose w; with a reparametrization of the domain so that w; and hence also
fi 1s smooth. Note moreover that this reparametrization can be taken to be
C"-smal and supported in an arbitrarily neighborhood of the wrinkles. Note
finally that reparametrizing f; doesn’t change the image of f; and therefore
it also doesn’t change the image of the Gauss map G (df;), which is what we
actually care about. By abusing notation we will also use f; to denote the
reparametrized smooth map whenever this is convenient. See Figs. 34 and 35
for an illustration of f;.
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ﬂzf: ;.»‘*t\)z—}
(=3 Ilse}

Fig. 34 The p;-coordinate of the map f;. The cusps are semi-cubic

\ 1 39

Fig. 35 The z-coordinate of the Legendrian lift of f;. In other words, this is the Legendrian
front of f;. The cusps are semi-quintic

Claim 5.10 For any ¢ > 0 we can choose parameters t, 5,0, «, y and N so
that dist-o(G(df;), Gy) < e.

We recall the parameters at play. The game is all about controlling the different
rates at which the parameters tend to zero or infinity, so it will be important
to be precise in the interdependence of the parameters and in the order of
quantifiers.

e 7 is the cutoff angle of G, under which we will perform no wrinkling.

e § is proportional to the width of the shell between a box C and the smaller
box C.

e 1/o is the order of magnitude of ¢ on the regions where it is large and
negative (inside the wrinkles).

e « controls the magnitude of the ‘bad’ negative derivative £, when the wrin-
kles die out.

e y is the height of the oscillating model &.

e N is proportional to the number of wrinkles in &.
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We begin by fixing ¢ > 0 arbitrarily small. To choose 7, observe that

d(a—i-ﬁa) 9 <t<x 3) BeRr
= co
¢r oqn apn dqn apn

and hence if sign() = sign(A;), then the scalar product of d/dg, and
dg:(0/9q, + Bd/dp,) is positive and moreover we have

d 0 0
4(—, d%( )) < udl.
qn 9qn opn

Recall that on the subset 2;\Q; we have t < |A;] < 2t. Suppose that
T < g¢/4. It follows that if sign(8) = sign(};), then

(L ag (221 2t < S on@\Q
— <27 < — on .
aqn Pt aqn apn ) T 2t

Once T < ¢/4is fixed, we choose § small enough so that the construction of
wy =Y. jsign(j)€c; (which depends implicitly on 7) is possible. The other
parameters must be chosen somewhat more judiciously. Our first task is to
understand the geometry of the initial local model (s, u) +— (xs (n), ys (u))
in order to control the error produced when we modify the model to make it
Lagrangian.

Consider the Lagrangian version in T*R? = ]R4(q| ,q2, P1, p2) given by
the formula

ms, ) = (s, %), 750, 3, (0)) € TR,
rs(u) = /O s (ys(”))au (xs(u)) — Oy (ys(u))as (xs(u))du

where we recall that

15

3 / (w —s) dw, vs(u) = %(u3 — 3su).

xs(u) =
We also have the corresponding scaled version
myv (s = (5. 3. Lr. ) e TE2
V’ N N

Ify > 0and N — oo in such a way that Ny — oo, then the Gauss map
G(dm, y) converges (on compact subsets of the (s, u) plane) to the distri-
bution spanned by the vectors d/dg; = (1,0,0,0) and 9/dp> = (0, 0,0, 1).
The proof is the following explicit computation.
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It will we convenient to carry out our calculations in terms of the function
F(s,u) = %(u3 — 3su) and its derivative F, (s, u) = u? — s. Note that the
zero set { F,, = 0} is precisely the wrinkling locus of m. We compute:

15 15
Au(xs(w)) = gFj, 3 (xs(w)) = o
3 3
(yv(u)) 5 Fuy, 05 (yv(u)) = _Eu
au(rs(u)) = ?Fu( — %uFu + 3F) = —EFM(M3 + 3su).
omy, N

N _ (L v
= (1 ), G (@), 73 ()
— (1,0,0,0) as y—)O N — oo,

Py N _ (o, =22, Y2 3su)F,. y-F,

u ( Ng'u N16(u +3su)Fu Vz )
- F(o LV S )
- V u ’N)/ Us N16u Su

and hence provided that Ny — oo we have

omy, N 0my N 0 0
span(—, —) — span( )
ds du dq1” dp2

With some minor modifications we can extend our computations to the
scaled n—dimensional model for the Lagrangian wrinkle as it appears in £
(see equation 1).

« )}_)( ax,,(qn) oyry(gn) 3l1(, Q)lln/
DAL SN IN L ag
ayry(gn) 9|, @)l o

T e, ,,(n>)

where n = n(||(t, (})||). Indeed, the only difference comes from the terms
djn = n'o i11(t, @)|| for j < n and their partial derivatives, which give an error
that tends to zero as y — 0 and N — oo. The conclusion is that provided we
have Ny — oo, the Gauss map converges to the distribution

d d d
V = span< e, ,—).
dq1’ dqgn—1 Opn

Recall that we must ensure o < o (V) so that the singularity loci X (¢¢ j) C
[0, 1] x I" are disjoint. Hence if we let N — oo, then we must also allow for
o — 0. But this only helps us in the above computation so there is no issue.
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Consider next the oscillating model ¢ defined above. Let ¥ C [—1, 1] x I"
be the locus on which ¢ is not smooth. The set X consists of a disjoint union
of spheres with cuspidal equators. Let E be the compact region bounded by
. Ify > 0and N — oo so that Ny — oo, then the above computations
show that on Op(FE) the Gauss map of £ converges to the distribution V. In
the complement of Op(E), the model ¢ is smooth and for j < n we have
0¢/0g; — 90/dq; as y — 0.Onthe subset B = [—1+ 26, 1 —25]" x [—1 +
ﬁ, 1— ﬁ] the Gauss map of ¢ converges to V, indeed on the remaining
part B\ Op(E) the derivative dp, (0£/0q,) = 0&/0dq, is strictly positive and
scales by Ny while dp(9¢/9q,) scales by y for j < n.On I"\ B we cannot
control d¢/dq, so precisely but we assert that outside of Op(E) there still
holds the following lower bound:

dpu(9€/9q,) = 08§/3qy, > —(N + Dya.

To confirm this assertion, we compute

3 ~f . , 2N +1
=yp(t, q)(Slgn(qn)w (|Qn|)§n(t,(})<—Qn)

oqn 2
2N —I— 1 2N +1
+ ‘/I(|q”|)§n(t Q) <—2 qn>>.
Since ¥’ < 0 and sign({n(,’q)(%qn)) = —sign(g,) in the region where

Y’ # 0, the first term is always non-negative. For the second term we use our
assumption that {; > —« and the desired inequality follows.

We deduce from this inequality that if we let y,« — 0 and N — 00 so
that Ny — oo and Nya — 0, then on the complement of Op(E) we have
liminf dp, (3€/3q,) > 0. Of course we also still have dg;(9¢/dqg,) = O for
Jj <n,dg,(3t/9g,) = 1anddp;(9¢/dq,) — Oasy — 0.

Next we proceed to study the model w; = Z sign(j)€c; which is adapted
to our rotation G. Assume first for simplicity that Ar > 0, so that sign(j) = 1
for all j. Let T C [0, 1] x I" be the non-smooth locus of w;. The set 5
is again a disjoint union of spheres which have cuspidal equators. Let E be
the compact subset bounded by T. Note that E C ;. On QQ,\E all the
derivatives déc; /dgy are bounded below by a positive constant times —N y«
and at each point there is at least one of them which is bounded below by
a constant times Ny . This last assertion holds because the boxes C C Cj
cover $2;. Inside E all the derivatives 9&c;/9q, are bounded above by a
positive constant times Ny and at each point there is exactly one derivative
d&c;/9qn for which is bounded above by a constant times —Ny /o. This
last derivative corresponds to the {¢; whose non-smooth locus bounds the

component of E containing the point we’re looking at. We recall that we are
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letting 0 — 0 with the only requirement that o < o (N). Hence if N — o0
and y, &, 0 — 0in such a way that this condition holds and if additionally we
have Ny — oo and Nya — 0, then on the region Q,; U Op(E) the Gagss
map of w, converges to the distribution V and on and on £\ (22 U Op(E))
we know that dw,/dg; — d/dq; for j < n and that dw,/dg, gets arbitrarily
close to the sector

9 d
+8

C = span :
P {aQn pn

B> O} C T(T*R")|gn.

Consider next the general case where we don’t assume that sign(j) = 1 for
all j. Since Q; = {A; > 1} U {A; < —t} is a disjoint union, we can repeat the
above reasoning on each component and reach the same conclusion, provided
that we modify that definition of the subset C as follows

0 ad
C:span{ + 8

: sign(f) = Sign()»t)} C T(T*R"Y|q,.
dqn Opn

We now return to the wrinkled Lagrangian embedding f; = ¢; o w;. Recall
that along the zero section the linear symplectic isomorphism d¢; is the map
which sends

0 d . d 0 )
— > — j=1,...,n, — > —, j<n
dq;  9q; dpj  Opj
ad
and — cot(X;) + ,
Opn ' 9qn pn
so that dg;(V) = G, along the zero section. Recall also that we chose

T = 1(¢) so that on Q;\Q; we have £(d¢;(v),d/dg,) < &/2 for all
v € C. Under the above convergence assumptions it follows that we have
lim sup £(3f;/9qn, 8/9gn) < €/2 on Q:\(Q2; U Op(E)) and hence also
limsupdist(G(df;), TR") < /2. Therefore limsupdist(G(df;), G;) <
dist(G(df,), TR") +dist(TR", G;) < &/2+2t < e on Q2 /(Qr UOp(E)).
Outside of 2; we have dist(G(df,), G;) = dist(TR", G <t <e Ifwe
assume that on 2, U O p(g ) the Gauss map of w; converges to the distribution
V, then for f; we have

G(df;) — dg,(V) =G, on Qa; U Op(E).

Therefore to conclude the proof of Claim 5.10, and hence also of Lemma
5.8, it suffices to show that we can arrange that y, « — 0 and N — oo in such
away that Ny — oo and Nya — 0. This is clearly possible, for instance we
cansety = N~ V2 anda = N~2/3. O
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The analogous result for Legendrians is stated and proved in the same
way. Observe as in the Lagrangian case that a tangential rotation G, : I" —
A(J'(I",R)) of the inclusion of the zero sectioni : I" < J'(I", R)issimple
with respect to the hyperplane field H = span(d/dqi,...,0d/dgy—1) C TI"
if it can be written as

G; = span(9/9qi., ..., 3/0qn—1, cos(r;)d/dg, + sin(A)d/dpy)

for some function A; : I" — R. According to our previous definition we
say that G, is graphical when im(A;) C (—mx/2, w/2). We will say that G; is
quasi-graphical when im(A;) C (—m, ).

Lemma 5.11 (Local wrinkling for Legendrians) Let G, : I — A(J Lam, ]R))
be a tangential rotation of the zero section i : 1" < J'(I",R) which is
quasi-graphical and simple with respect to H and such that G; = G(di)
on Op(d1™). Then there exists an exact homotopy of wrinkled Legendrian
embeddings f; : I" — J'(I",R), fo = i, such that the following properties
hold.

e G(dfy) is CO-close to G,.
e fi=ionOp@I").

Proof We proceed exactly like we did in the proof of Lemma 5.8. The Leg-
endrian model is simply given by the Legendrian lift £ = (¢, K) of the
Lagrangian model ¢ which exists because of the exactness condition K = 0
on[—1,1] x Op(dI"). O

The parametric versions read as follows. Note that we also localize the
problem from a general m-dimensional parameter space Z to the unit cube
I =[-1, 17"

Lemma 5.12 (Parametric local wrinkling for Lagrangians) Let G; : I" —
A(T*I") be afamily of tangential rotations of the zero sectioni : I" < T*I"
parametrized by the unit cube 1™ which are all quasi-graphical and simple with
respect to H, such that G; = G(di) on Op(31"™) and such that G; = G(di)
for z € Op(01™). Then there exists a family of exact homotopies of wrinkled
Lagrangian embeddings f : 1" — T*1", f§ = i, such that the following
properties hold.

o G(df¥) is CO-close to G*.
o ff=ionOp@I").
o ff =1iforze OpdIm).

Lemma 5.13 (Parametric local wrinkling for Legendrians) Let Gy : I" —
A (]1 ", R)) be a family of tangential rotations of the zero sectioni : I"" —
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JY(I", R) parametrized by the unit cube 1™ which are all quasi-graphical and
simple with respect to H, such that G; = G(di) on Op(d1") and such that
G; = G(di) forz € Op(dI'™). Then there exists a family of exact homotopies
of wrinkled Legendrian embeddings f{ : I" — J L1, R), fo =i, such that
the following properties hold.

o G(df¥) is CO-close to G*.
o ff=ionOp@I").
o ff=1iforze OpdIM).

Lemmas 5.12 and 5.13 are proved in the same way as Lemmas 5.8 and
5.11, adapting our construction to the fibered case as in [15]. To be more
precise, in the local model for the oscillating function & we replace the box
D"(t,q) x [—1, 11(g,) by the box D"(t, g) x [—1, 1]1(g,) x D™(z) and set

. 2N +1
S(l,CI»Z)=VP(||Z||)P(||(I,CI)||)I/f(lqnl)é“n(|(t,5,)||)( > qu>a

(t,g) € D", g, € [—1,1], z€ D™.

The rest of the proof can then be repeated carrying the parameter z € D™
along for the ride.

5.3 Wrinkling the wiggles

We are now ready to prove that tangential rotations can be globally approxi-
mated by Gauss maps of wrinkled embeddings (Fig. 36).

Proof of Theorem 5.2 For simplicity we spell out the details only for the
Lagrangian case, but the Legendrian case is entirely analogous. Let G; : L —
A (M) be a graphical simple rotation of a wrinkled Lagrangian embedding
f : L — M. Fix a Riemannian metric on L. Let A be a triangulation of L
which is compatible with the wrinkles of f as in Sect. 4.3.

Set K = A"~ ! the (n — 1)-skeleton of A. By Theorem 4.11, there exists an
exact homotopy of wrinkled Lagrangian embeddings f; : L — M, fo = f,

wigale \ \ corinkle
e AAY ¢ S VAS )

Fig. 36 The two-step process applied to a given simplex D. First we wiggle, then we wrinkle
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(which is in fact an isotopy in the sense of Remark 4.13) and a tangential
rotation R; : L — A (M) of f such that the following properties hold.

e G(dfy) is C'close to G, on Op(K).

e G(df;)is COclose to R, on all of L.

e R; is graphical and simple with respect to the same hyperplane field H as
G;.

° f; = f and R; = G(df) outside of a slightly bigger neighborhood of K
in L.

Take an open n-simplex D in A", so that j?; Ip : D — M is an exact
homotopy of regular Lagrangian embeddings. Suppose first that 9 D is disjoint
from the wrinkling locus of f and take a slightly larger disk D > D in L. With
respect to a Weinstein parametrization of a tubular neighborhood of f (D) in M,
the graphical homotopy f;|p corresponds to ahomotopy dh;oF; : D — T*D.
Here F; : D — D is an isotopy (which may wiggle D outside of itself but by
CY-smallness can be assumed to satisfiy F;(D) C D) and h; : F;(D) - R
is a homotopy of real valued functions. The reader can review the proof of
Theorem 4.5 (to which Theorem 4.11 reduces away from the wrinkling locus)
to see where F; and /; come from. ~

We can assume that the hyperplane field H is almost constant along D,
in the following sense. For any ¢ > 0, there exists a § > 0 for which we
can cover the compact subset where G; is not identically G (df) with a finite
union of radius § metric balls B; = Bs(q;), q; € L, such that in exponential
coordinates from g ; the hyperplane field H |, is ¢-close to being constant (in
other words, the angle between H at different points varies by less than ¢). For
balls which intersect the wrinkling locus of f (along which the hyperplane
field H may jump discontinuously) we demand that the restriction of each
hyperplane field is e-close to being constant. For that fixed ¢ > 0 we can
from the onset subdivide the triangulation A fine enough so that every n-
simplex is contained in one of the balls B;. We can then use the exponential
coordinates on B; to replace the hyperplane field H with a constant hyperplane
field, modifying G, and R, accordingly, at the cost of a C°-error uniformly
proportional to . Since we were free to choose & > 0 arbitrarily small, we can
ensure that the error resulting from straightening out H is arbitrarily small and
in particular smaller than whatever C%-accuracy is desired in the conclusion
of Theorem 5.2. Henceforth we shall use these coordinates for D and H on
Bj, composed with an inclusion 1nto the unit cube /" = [—1, 1]" by a linear
Euclidean isometry so that we have D C I"and H = R"~! x 0 as in our local
wrinkling model. Since our local model is a relative construction, we won’t
really care about the precise way that D sits in [".

With respect to our Weinstein parametrization, G;|p and R;|p correspond
to simple 2-jet rotations g; and r;, which we recall are maps D — J>(D, R).
Consider the difference g; — r;. Observe from the conclusion of Theorem 4.5
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that near 9 D this difference is CO-small. Let s, be the composition (g; — /) o
F on F(D) C D but cut off so that s, = 0 near dF; (D). We precompose by
F~ ! to account for the reparametrization F; used to construct ft NOthC that
even after the cutoff we have that s; is C%-close to (gt —r1)o Ft on Fy(D),
with the degree of C%-closeness determined by how much Cf—closeness we
demanded in the invokation of Theorem 4.5 which produced f;. Equivalently,
St(Ft(CI)) is CY-close to g;(q) — r;(q).

We are now ready to wrinkle. We will produce a wrinkling of the zero section
to approximate s; and then add this wrinkling to the graph of d i; to approximate
st + ry ~ g:. Apply the local wrinkling Lemma 5.8 to the simple rotation of
I"" C T*I" determined by the 2-jet rotation s; : I" — J Z(B”, R). The result
is an exact homotopy of wrinkled Lagrangian embeddings f; : I" — T*I" as
in the statement of the Lemma. Note in particular that f; is the inclusion of the
zero section in the complement of F; (D) C I". NQW cgnsider the following
addition of the two Lagrangian embeddings f; = f; + f;. We define an exact
homotopy of wrinkled Lagrangian embeddings D — T*D by means of the
formula

g+ f(F(@)+dh(7o f,(F()), qeD,

where 7 : T*D — D is the cotangent bundle projection and the addition sign
corresponds to the fibrewise addition of cotangent vectors based at the same
point.

Note that in the invokation of our local wrinkling lemma we can demand
that 77 o f be arbitrarily C%-close to the identity, so 7 o f;(F;(q)) is arbitrarily
CO-close to F; (¢) and hence the Lagrangian plane tangent to the graph of dh;
over the point o f (F ¢ (q)) is C%-close to r;(¢). Note also that each Lagrangian
plane tangent to ft over that same point is C%-close to s; (F, (q)) Hence the
Lagrangian plane tangent to f; at the point f;(g) is C°-close to the Lagrangian
plane corresponding to r;(q) + s¢(F;(¢)), which is itself C%-close to G,(q),
as required.

In remains to explain how to adapt the proof when the n-simplex D has
boundary intersecting the wrinkling locus of f. The issue is that any larger
disk D D D would necessarily intersect the wrinkling locus. However, this is
straightforward to fix: take a smooth Lagrangian disk A C M which contains
f(D) in its interior and such that f;(D) is graphical over A with respect to a
Weinstein parametrization of a tubular neighborhood of A. A quick look at the
proof of Theorem 4.11 is sufficient to convince oneself of the existence of this
disk. Then with respect to this Weinstein parametrization we can still write f;
as acomposition dh; o F; for F; : f(D) — A anisotopy and h; : F;(D) - R
a homotopy of real valued functions. The rest of the proof now proceeds as
before. m|
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Fig. 37 One-half of a regularized wrinkle. In this picture, the ambient foliation should be
thought of as being vertical

The proof of the parametric Theorem 5.4 follows the same outline, using
the parametric Theorem 4.10 instead of Theorem 4.5 and using the parametric
Lemmas 5.12 and 5.13 instead of Lemmas 5.8 and 5.11. The only essential
difference is that in order to localize the parameter space from an arbitrary
m-dimensional manifold Z to the unit cube Z = I we need to choose a
triangulation A of Z x L with sufficiently small simplices, which is compatible
with the wrinkles of f and which is in general position with respect to the fibres
zx L C Z x L,z e Z. The existence of such a triangulation was proved by
Thurston in [46]. Once we know that such a triangulation exists, we can take
the fibered polyhedron K = A"*"~! < Z x L and work simplex by simplex.

6 The simplification of singularities
6.1 Wrinkles, swallowtails and double folds

We now return to the setting described in Sect. 1. Let M be a symplectic or
contact manifold and let F be a foliation of M by Lagrangian or Legendrian
leaves. Suppose that f : L — M is a wrinkled Lagrangian or Legendrian
embedding which is transverse to . We can apply the regularization procedure
described in Sect. 2.5 to f* and obtain a regular Lagrangian or Legendrian
embedding f : L — M. We already observed in Remark 2.10 that f only has
¥ !-type singularities with respect to F, see Fig. 37 for an illustration. More
precisely, 2 (f, F) consists of a disjoint union of regularized wrinkles, which
are defined as follows.

Definition 6.1 A regularized wrinkle of a regular Lagrangian or Legendrian
embedding g : L — M with respect to a foliation F is a connected compo-
nent of the singularity locus (g, F) which consists of a topologically trivial
codimension 1 sphere S C L such that we can decompose S = D1 U E U Dy
into two hemispheres D and D; and an equator E satisfying the following.

e the equator E consists of £!19 pleats.
e the disks D; and D, consist of =10 folds.
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For a concrete local model, one can take the standard Lagrangian or Legen-
drian wrinkle defined in Sect. 2.2, after regularizing as described in Sect. 2.5.
In the Lagrangian case, the foliation F of the cotangent bundle is given by the
fibres of the standard projection 7 : T*R” — R". In the Legendrian case, the
foliation F of the 1-jet space J!(R", R) = T*R" x R is given by the fibres
of the front projection 7 x id : T*R" x R — R" x R.

Remark 6.2 If the foliation F is induced by a Lagrangian fibration 7 : M>" —
B", then for any regular Lagrangian embedding f : L" — M?>" the following
two conditions are equivalent.

e the singularities of tangency of g with respect to F consist of a union of
regularized wrinkles.

e the front 7 o g : L" — B" is a generalized wrinkled mapping in the sense
of [15].

In the contact case where 7 : M?"*! — B"+! is a Legendrian fibration
(which we think of as the front projection), we can think of regularized wrinkles
in the following way. The singularities of tangency of a regular Legendrian
embedding consist of a union W = [ ;S of regularized wrinkles if and
only if the front of the embedding has cusps on each sphere §; together with
swallowtails on the equator E; of each §;.

Regularized wrinkles are also close relatives of the double folds introduced
in Sect. 1.3. We recall the definition for convenience.

Definition 6.3 A double fold is a pair of topologically trivial (n —1)-spheres S
and S, in the fold locus X !° C L which have opposite Maslov co-orientations
and such that S; U S5 is the boundary of an embedded annulus A C L.

Indeed, the Entov surgery of [20] can be used to open up a regularized
wrinkle along its equator, producing a double fold. This is achieved by taking
one of the two hemispheres of a regularized wrinkle S C L and pushing it
slightly away from S while keeping it fixed on the equator £. We obtain an
embedded disk D C L contained in an arbitrarily small neighborhood of Sin L
suchthatd D = E andint(D)NS = &. In fact, we require that int(D) is outside
of the n-ball B C L bounded by S. The surgery construction removes the X !1°
pleats from E and trades them for X !° folds on two parallel copies of D. One
of these two parallel copies of D is surgered onto one of the hemispheres of
S and the other parallel copy is surgered onto the other hemisphere, so that
the end result consists of a disjoint union of two parallel spheres on which the
embedding has % !0 folds. The Maslov co-orientations on the two resulting
spheres are opposite of each other. Hence we end up with the desired double
fold. See [20] for the details of the surgery construction and see Fig. 38 for an
illustration.
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Fig. 38 Opening up a wrinkle into a double fold. The upper picture corresponds to the
Lagrangian projection and the lower picture to the front projection

The precise statement that we will need is the following. Given a regular
Lagrangian or Legendrian embedding g : L — M and given S C X(g, F)
a regularized wrinkle, there exists a C%-small ambient Hamiltonian isotopy
¢r : M — M such that ¢; = idy outside of an arbitrarily small neighborhood
of g(S) in M and such that inside this neighborhood the regularized wrinkle
of g is replaced by a double fold of ¢; o g. If g = f is the regularization
of a wrinkled Lagrangian or Legendrian embedding f : L — M, then the
wrinkles S of f will typically be nested. By this we mean that the ball B C L
bounded by any wrinkle S of f may contain other wrinkles of f. Hence when
we apply the surgery construction on each regularized wrinkle of g = f, we
obtain a regular Lagrangian or Legendrian embedding ¢ o g whose singularity
locus consists of a disjoint union of double folds which are nested in the sense
of Sect. 1.3.

Remark 6.4 We could of course have worked with double folds all along with-
out ever mentioning wrinkles. Instead of defining wrinkled Lagrangian and
Legendrian embeddings as we did, we could have defined ‘doubly cusped’
Lagrangian and Legendrian embeddings to be topological embeddings which
are smooth Lagrangian or Legendrian embeddings away from a finite union of
pairs of parallel spheres, where the embedding has cusps of opposite Maslov
co-orientation (the cusps are semi-quintic in the ambient symplectic or con-
tact manifold and semi-cubic in the front projection). Our C%-approximation
result for a tangential rotation G, would also hold for the class of doubly
cusped Lagrangian and Legendrian embeddings. Moreover, the regularization
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of a doubly cusped Lagrangian or Legendrian embedding which is transverse
to afoliation F is aregular Lagrangian or Legendrian embedding whose singu-
larities of tangency with respect to F consist of double folds. The A-principle
for the simplification of singularities proved below then follows with the same
proof. We have chosen to work with wrinkles instead to draw the parallel with
the smooth wrinkled embeddings theorem [15].

Suppose next that % : L — M is a family of wrinkled Lagrangian or
Legendrian embeddings parametrized by a compact manifold Z. We can also
in this case regularize and obtain a family of regular Lagrangian or Legendrian
embeddings f<: L — M.If f* is transverse to F, then the singularities of
tangency of the family f* with respect to F consist of fibered regularized
wrinkles. In particular, for some values of the parameter z € Z the regular
Lagrangian or Legendrian embedding f* will have regularized embryos in
addition to regularized wrinkles. Regularized embryos are non-generic X !-
type singularities of tangency which occur at the instance of birth/death of a
regularized wrinkle. One can of course give a concrete local model for the
regularized embryo, however it is simpler to think about families as a single
object using the fibered terminology. For a concrete local model, one can take
the standard fibered Lagrangian or Legendrian wrinkle defined in Sect. 2.3,
after regularizing as described in Sect. 2.5. The foliation F is given as in the
non-parametric case.

Remark 6.5 If the foliation F is induced by a Lagrangian fibration 7 : M>" —
B", then for any family of regular Lagrangian embeddings g : Z™ x L" —
M?" the following two conditions are equivalent.

e the singularities of tangency of g with respect to F consist of a union of
fibered regularized wrinkles.

e the fibered front po g : Z™ x L" — Z™ x B" is a fibered generalized
wrinkled mapping in the sense of [15].

In the Legendrian case one can of course reinterpret what fibered regularized
wrinkles mean in the front projection in terms of cusps and swallowtails. Note
that one can also use the Entov surgery in families to replace fibered regularized
wrinkles with fibered double fold singularities. The embryos of regularized
wrinkles will become embryos of double folds. An embryo of a double fold is
anon-generic locus of X !-type singularities of tangency consisting of a single
codimension 1 sphere from which the two parallel spheres of folds can either
be born or die, see Fig. 39.
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Fig. 39 One-half of the birth/death of a double fold. The picture on the left corresponds to the
Lagrangian projection and the picture on the right corresponds to the front projection

6.2 The h-principle for the simplification of singularities

We are now ready to establish the flexibility of singularities of Lagrangian
and Legendrian fronts. As above, F denotes a foliation by Lagrangian or
Legendrian leaves of a symplectic or contact manifold M.

Theorem 6.6 Suppose that there exists a tangential rotation G; : L — A (M)
of a regular Lagrangian or Legendrian embedding f : L — M such that
G1 M F. Thenthere exists a compactly supported ambient Hamiltonian isotopy
¢r : M — M such that the singularities of ¢1 o f consist of a union of nested
regularized wrinkles.

Proof Apply the wrinkling Theorem 5.1 to G; and f. We obtain a compactly
supported exact homotopy of wrinkled Lagrangian or Legendrian embeddings
ft + L — M such that G(dfy) m F. Next, apply the regularization process
described in Sect. 2.5 to the homotopy f;. We obtain a compactly supported
exacthomotopy of regular Lagrangian or Legendrian embeddings f; : L — M
such that the singularity locus X(f1, ) C L consists of a disjoint union of
regularized wrinkles. Finally, since the homotopy f; is exact and compactly
supported, we can write f; = ¢; o f for some compactly supported ambient
Hamiltonian isotopy ¢; : M — M. O

To deduce the version with double folds stated in Theorem 1.11, we simply
apply the Entov surgery construction of [20] to open up each of the wrinkles
as described in the previous section.
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Remark 6.7 At each stage of the proof, when we apply Theorem 5.1, the
regularization of Sect. 2.5 and the Entov surgery, we can always ensure that
the resulting homotopy of embeddings is C°-close to f. Hence Theorem 6.6
also holds in C%-close form, where we demand that the Hamiltonian isotopy
@1 is CO-close to the identity idy;. Moreover, we can also ensure that ¢, = idy,
outside of a neighborhood of f(L) in M.

Remark 6.8 Suppose that G; = G(df) on Op(A) for some closed subset A C
L. At each stage of the proof, when we apply Theorem 5.1, the regularization
of Sect. 2.5 and the Entov surgery, we can always ensure that the resulting
homotopy of embeddings agrees with f on Op(A). Hence Theorem 6.6 also
holds in relative form. More precisely, we can demand that ¢; = idys on

0p(f(4)) c M.

The parametric version reads as follows, and is proved in exactly the same
way. At each stage we just need to invoke the parametric versions of each of
the ingredients of the proof. The corresponding C°-close and relative versions
also hold, for the same reasons as in the non-parametric case.

Theorem 6.9 Suppose that there exists a family of tangential rotations G; :
L — A(M) of regular Lagrangian or Legendrian embeddings f* : L — M
parametrized by a compact manifold Z such that Gy t F for all z € Z
and such that G; = G(df*) for z € Op(3dZ). Then there exists a family of
compactly supported ambient Hamiltonian isotopies ¢; : M — M such that
the singularities of i o f* consist of a union of fibered nested regularized
wrinkles and such that ¢; = idy for z € Op(dZ).

As in the non-parametric case we can open up the fibered regularized wrin-
kles into fibered double folds using the Entov surgery construction [20].

Remark 6.10 Observe that in the case n = 1 there is no need to resolve a
wrinkle into a double fold. Indeed a 1-dimensional regularized wrinkle consists
of nothing more than a pair of points where the embedding has folds of opposite
Maslov co-orientation. For fibered regularized wrinkles the two folds die as
in the Legendrian Reidemeister I move. We explore the case n = 1 further in
Sect. 6.5 below.

6.3 The h-principle for the prescription of singularities

We next prove a strengthened version of Entov’s Theorem 1.16. More precisely,
we apply our -principle Theorem 6.6 to drop the X%-nonsingularity restriction
from his result. As an application we establish some concrete results for the
simplification of the caustics of spheres in Sect. 6.4 below.
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Fig. 40 The chain of singularities associated to the x110 pleat, which is a swallowtail in the
front projection. A flip of the Legendrian front in the z direction would reverse the Maslov
co-orientation vq and fix vy

Consider f : L — M a Lagrangian or Legendrian embedding and let D
be a Lagrangian distribution in 7 M defined along f(L). In the symplectic
case, D consists of linear Lagrangian subspaces of (7'M, ») and in the contact
case D consists of linear Lagrangian subspaces of (&, do), where locally & =
ker() C TM.

When dim(df(T,;L) N D)) < 2 for all ¢ € L we say that D is »2-
nonsingular. In this case, the structure of the singularity locus ¥ = {g € L :
df(TyL) N Dy(g # 0} is quite simple. Indeed, for generic ¥2—nonsingular
D the locus X is a codimension 1 submanifold which is naturally stratified as
aflag ¥ = o2l 5... 5 2! as described in Sect. 1.3. Moreover, the
flag comes equipped with certain co-orientation data which we hinted about
in Sect. 1.9 and which more precisely consist of the following.

e Unit vector fields v, k > 1, where each vy is defined on Elk\ZlkJrl , 18
normal to £ in £ and cannot be extended (as such a unit normal
vector field) to any subset C C »!“ which has a nontrivial intersection
with o1

e An additional unit vector field v| defined on the whole of X which is normal
to X in L. This vector field is called the Maslov co-orientation.

Adapting Eliashberg’s terminology from [9], Entov defined in [20] the chain
of singularities associated to f and D to consist of the flag =! > =1 5 ... >
1" together with vector fields vy as above. The vy are uniquely determined
by the geometry of the singularity. See Fig. 40 for an illustration. Two chains
of singularities are said to be equivalent if there exists an isotopy of L that
transforms one into the other, including the co-orientation data. We can now
state and prove an h-principle which allows for the prescription of any homo-
topically allowable chain of singularities. The result also holds in C%-close
and relative forms.

Theorem 6.11 Let f : L — M be a regular Lagrangian or Legendrian
embedding into a symplectic or contact manifold M equipped with a foliation
F by Lagrangian or Legendrian leaves. Let D; be a homotopy of Lagrangian
distributions defined along f(L), fixed outside of a compact subset, such
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that Dy = T F| ) and such that f is > 2-nonsingular with respect to the
distribution Dy. We moreover assume that f M F outside of that compact
subset. Then there exists a C°-small compactly supported Hamiltonian iso-
topy ¢; © M — M such that | o f is ©%-nonsingular with respect to F and
moreover such that the chain of singularities of ¢1 o f with respect to F is
equivalent to the chain of singularities of f with respect to Dy, together with
a union of nested double folds.

Proof We restrict our attention to the Lagrangian case for concreteness, the
Legendrian analogue is no different. Let ¥ C L be the singularity locus of f
with respect to D;. By abusing notation, we will also denote by X the chain
of singularities which encodes the flag & = £! > =1 5 ... 5 ©!" and the
corresponding co-orientation data. Let @, be a homotopy of linear symplectic
isomorphisms of 7'M defined along f (L) such that &y = id and ®,- Do = D;.
Set G, = (&,)~ - G (df), a tangential rotation of f.

Our plan will be the following. We will first apply our holonomic approx-
imation lemma for 1—holonomic sections to G; to make f transverse to F
near a parallel copy X, of . Then we will introduce by hand a cancelling
pair of singularity loci X and X, in Op(X2) such that X5 is equivalent to X
and such that ¥ U ¥; bounds an embedded annulus which is disjoint from .
Formally, ¥ and X; can be cancelled via a rotation R; which is fixed on ¥,
and hence by our relative 7 —principle for the simplification of singularities we
are able to keep the singularity locus X, and fill in the rest of the Lagrangian
submanifold with double folds. See Fig. 41 for an illustration of the strategy.

Let! = (df Yy~1(Dy), which is a line field on 7 L defined along X. Extend
[ to a tubular neighborhood /' >~ ¥ x (—1, 1) of ¥ in L so that with respect
to this parametrization / is constant in the (-1, 1) direction. Denote by X1 >
the parallel copy ¥ x % of ¥ in N. Apply Theorem 4.2 to the tangential
rotation G, and the stratified subset K = X 2. We obtain an exact homotopy
of regular Lagrangian embeddings f; : L — M such that G(df;) is C°-
close to G; on Op(X;,2). In particular, f; M F on a neighborhood U =
X x(1/2—¢, 1/2+¢)of Xy .

Along f1(U), the Lagrangian distributions df1(TU) and T F|y ) are
transverse. We can therefore choose a symplectic isomorphism 7(T*U)|y =~
T M| f,(v) such that the horizontal distribution 7 U (which s tangent to the zero
section) is mapped to d f1 (T U) using d f1 and such that the vertical distribution
VU (which is tangent to the cotangent fibres) is mapped to T'F| 7, (v). Choose
an (n — 1)-dimensional complement P for / in TU. Set [* = PN VU and
P* =[N VU, where L denotes orthogonality with respect to the symplectic
formdp Adg.Let ¢ : [1/2 —e,1/2 4+ ¢] — R be a function satisfying the
following properties.

e ¢(s) =0forsnear1/2 +¢.
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Fig. 41 The plan for our proof of Theorem 6.11

e ¢(s) = m for s near 1/2.
o ¢'(s) >0fors € (1/2—¢,1/2]and ¢'(s) <O0fors € [1/2,1/2 + ¢).

Fix nonzero vector fields v € / and w € [*. Define ahomotopy of Lagrangian
distributions V; C T(T*L) defined alongU = ¥ x (1/2—¢, 1/2+¢) by the
formula

Vi(e, s) = span(sin (1¢(s))v + cos (t¢ (s))w) & P*,
e.s) S x(1/2—¢ 1/24¢).

Note that Vy = VU, that V; = VU on dU and thatdim(V,NTU) < 1 forall
t € [0, 1]. The singularities of tangency of V| with respect to the zero section
U < T*U consist of two parallel copies ¥’ and ¥ of X, for concreteness say
3’ is between X and . Along these singularitiy loci we have Vi N TU = [.
The two corresponding chains of singularities, which we also denote by ¥’
and ", have opposite Maslov co-orientations but are otherwise equivalent.
Replacing the function ¢ by the function —¢ if necessary, we may assume that
the chain of singularities X" is equivalent to the chain X.
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At this point we wish to use V; to insert by hand a cancelling pair of singu-
larities modelled on X. The explicit formulas that we need are written down
in Entov’s paper [20]. We could use these formulas to write down a con-
crete model for the creation of the cancelling pair, but we can make our life
even easier by directly applying Entov’s Theorem 1.16 to V;. The output of
Entov’s theorem is an exact homotopy of regular Lagrangian embeddings
g : U — T*U such that g is the inclusion of the zero section U — T*U,
such that g; is fixed on Op(dU) and such that the singularities of tangency
of g1 with respect to VU are equivalent to those of gg with respect to Vi,
together with a union of nested double folds. Furthermore, the homotopy g,
can be assumed to be C%-small, so by taking an appropriate Weinstein neigh-
borhood we can think of this homotopy as happening inside M. The result is
an exact regular homotopy f; : L — M of fo = fi suchthatalong U C L the
singularities of tangency of f1 with respect to F consistof aunion X1UX,UF,
where the chain X; is equivalent to ¥, the chain ¥, is equivalent to ¥ and
F is a union of nested double folds. Moreoever, > U X bounds an annulus
A C L which is disjoint from 3.

Claim 6.12 There exists a tangential rotation R; : L — A(M) of fi which is
fixed on Op(Zy) and such that Ry  F away from X.

Once this claim is established we are done, since we can apply the relative
version of Theorem 6.6 to construct an exact homotopy of regular Lagrangian
embeddings which is fixed on Op(%;) and such that at the end of the homotopy
the singularities of tangency away from X consist of a union of nested double
folds, which is exactly what we wanted to prove.

To justify the claim, we first observe that there exists a tangential rotation
S; : L — A(M) of f1 suchthat S; is fixed on Op(XZ1UX»), suchthat S| = G
outside of U and such that S; h F away from X; U 3, U X. To define S,
choose 81 < 87 < & such that the annuli U; = ¥ x (1/2—-6;,1/2+68;) c U
contain x| U Xy U F. Inside of U;, we let S; kill the double folds of F so
that the only remaining singularities are X; U X. On the rest of L (where we
may assume that f; = f] provided that §; and &, are close enough to ¢), we
construct S; in three steps.

e First, rotate G(d fl) = G(dfy) to a distribution W which equals G (dfp)
away from U and which interpolates between G (d fo) and G (df1) on U\U»
by means of G(df;).

e Since G(df;)is C O_close to G, on U, we can then rotate W to a distribution
W’ which equals Go = G(dfp) away from U, which interpolates between
Go and G| on U\U; by means of G; and which then interpolates between
G and G(df1) on Up\Uj.

e We can then rotate W’ to a distribution W” which equals G outside of
U» and which interpolates between G| and G (df1) on U;\Uj. The distri-
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bution W” = §; satisfies the required properties and the rotation S; is the
concatenation of the three steps.

Consider now the annulus A C L with boundary 0A = X U X;. The
intersection A = im(S1) N TF C T M consists of two line fields defined over
the images of ¥ and X;. We claim that they extend to a line field . C im(S})
defined over the image of the whole annulus A.

Indeed, the chain of singularities of X; is equivalent to that of ¥ up to
Maslov co-orientation. But the isotopy class of the line field which arises from
a X !-type singularity locus is completely dictated by the flag ©! > =11 5

. > 1" together with the non-Maslov co-orientation data. Hence the line
fields are isotopic in 7' L. It follows that we can find a line field/ C T'L defined
along A such that /|y, = dfl_l(k) and such that /|y = df_1 o®di(N).

Suppose that there exists a family of symplectic isomorphisms W; of TM
such that Wy = id, such that V; - G(df) = S;, such that V| o df = d~f1 near
Y1 and such that V| = CDI_I near X. Then the line field A = Wy odf (I) is the
required extension. It remains to confirm that the family W, exists. We need
to define W, over A x [0, 1], where ¢ € [0, 1] and we have prescribed ¥; over
A x QU (dA x [0, 1]). Furthermore, we also have prescribed the image of
W, under the map ¥; — W, - G(df) over all of A x [0, 1]. Since this map
is a Serre fibration, it follows that we can find a lift to all of A x [0, 1]. This
completes the proof of the existence of the line field A C im(S!).

Next we observe that the distribution 1 : A — A (M) satisfies S1(0A) C
MM, F) = Ugep W € A(M), : dim(W N T F) = 1} and S (int(A)) C
ANM, F) = UsemtW € AM), : WN T, F = 0}. Pick a complement
Q c im(S!) to 1. Set A* = Q+ N TF and Q* = A+ N TF. Pick nonzero
vector fields v € A and w € A* such that w(v, w) > 0 on int(A) and define a
rotation R; : A — A(M) starting at Ry = S| by the formula

R; = span(cos(/2)v + sin(wt/2)w) ® Q, 1 € [0, 1].

Observe that on dA we have A* = XA and hence R; = S; for all r € [0, 1].
Hence we can extend R; outside of A by letting it equal S1 elsewhere. Observe
also that Ry N TF = A* along A and hence im(R1)|4 C ! (M, F). Recall
that ©1 (M, F) is a two-sided hypersurface of A (M), so thatif © C A(M, F)
is a small enough neighborhood of im(R;)| 4, then O\ = (M, F) has exactly
two connected components. The fact that the Maslov co-orientations of X and
3 are opposite means precisely thatim(S1)|opa)\ 4 lies in the same connected
component of O\X!(M, F). Hence we can push the image of R; entirely off
of Z1(M, F)bya small deformation which is fixed outside of Op(A). The
result is a rotation R, L — A (M) starting at Ro = 8 such that R =8
on Op(%,) and such that RihF away from 3. This completes the proof of
Claim 6.12, hence also of Theorem 6.11. O

@ Springer



716 D. Alvarez-Gavela

NN

Fig. 42 Take X to be the equatorial sphere £ C S". The vector bundle Tg S™ can be visualized
as the tangent bundle of a singular surface S as illustrated above

6.4 Application: the caustics of spheres

We now return to the first example considered in Sect. 1.1. Our goal is to
study the extent to which it is possible to simply the caustic of an embedded
Lagrangian or Legendrian sphere S C M, where M is a symplectic or contact
manifold equipped with a foliation F by Lagrangian or Legendrian leaves. For
greater clarity of the exposition we will restrict our discussion to the Lagrangian
version of the problem, but the Legendrian analogue is no different.

First we observe that by the Weinstein neighborhood theorem we can imme-
diately reduce to the case where M = T*S" and S is the image of the zero
section §" — T*S§", which we will also denote by S”. Note that for n = 1
the problem is uninteresting because the generic caustic consists only of folds,
so the simplification of singularities can be trivially achieved. We assume
n > 1 in what follows. Let V be the restriction to S of the distribution 7 F
of Lagrangian planes tangent to F. We begin with the following topological
obstruction to the simplification of singularities.

Proposition 6.13 If S” is Hamiltonian isotopic to a Lagrangian sphere whose
singularities of tangency with respect to F consist only of folds, then V is stably
trivial as a real vector bundle over the sphere.

We precede the proof with some notation. Let ¥ C S” be any compact
hypersurface. Following [17], it is conceptually useful to introduce a real n-
dimensional vector bundle 75 S” which is obtained from 7'S” by regluing along
3 with a fold. More precisely, write " = X U Y for X, Y C S§” two compact
n-dimensional submanifolds whose common boundary dX = X NY = dY
is the hypersurface X. Fix also an identification 758" |y >~ TX & &, where
¢ denotes the trivial line bundle. Define 75 S" to be the real n-dimensional
vector bundle over S” given by gluing the disjoint union 7X [ [ TY over the
intersection X NY = ¥ via the isomorphism (Fig. 42)

nu=idd(-1):TEx®e—>TX Pes.
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Fig. 43 The rotating line field / C T(T*(—1, 1))

The bundle T S” can be realized as a distribution of Lagrangian planes Vy,
in T7*S" defined along the zero section §" — T*S§" whose singularities of
tangency with respect to the zero section S” consist of folds along X. In order
to do this, we fix a co-orientation of X, which will agree with the Maslov
co-orientation induced by Vy.Let ¥ x (—1, 1) ~ N C S" be a tubular neigh-
borhood of X such that the canonical orientation of the interval (—1, 1) induces
the chosen co-orientation of . The Lagrangian Grassmannian A (T* (-1, 1))
is the trivial circle bundle 7*(—1, 1) x S'. We use the canonical coordinates
(q.p) € (=1, 1) x R=T*(—1,1). Let! : (—1,1) - A(T*(—1, 1)) be the
rotating line field defined over the zero section (—1, 1) < T*(—1.1) by the
formula (Fig. 43)

J 0 ' 0
l4 = span (cos <7r%> 97 + sin (71%) 5) C Tq0)(T* (=1, 1)).

Define Vy : N — A(T*N) to be the distribution of Lagrangian planes
defined over the zero section NV < T*N which corresponds to the product
of the cotangent fibres of 7*X and the line field / under the isomorphism
T*N ~ T*X x T*(—1, 1). The distribution Vy extends to the complement
of A/ in S” by letting it consist of the cotagent fibres of 7*S" on S"\N. The
real vector bundle underlying Vs, is isomorphic to 75 S".

Proof of Proposition 6.13 We first consider the special case where S” itself
has only fold singularities with respect to F. Then the caustic ¥ = X (5", F)
is an embedded hypersurface in S” co-oriented by the Maslov co-orientation.
A direct consequence of the local model for the £ fold is that V and Vs
are homotopic in the space of Lagrangian distributions. Since the real vector
bundle underlying Vy is isomorphic to Tx S", it remains to show that 7x S” is
stably trivial. To see this, observe that 75, S” & ¢ is obtained from 7' X @ ¢ and
TY & ¢ by using the gluing u d (1) =id ® (—1) ® (1) along X NY = X,
where we still think of 7 S" |y, as T X @¢. Nothing changes if instead we use the
gluing = id ® (1) ® (—1), since the two linear isomorphims of R? given by
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(x,y) — (—x, y)and (x, y) — (x, —y) arein the same connected component
of GL(2,R). We can therefore define a bundle map TxS" @ —> TS" @ ¢
by sending 7X & ¢ — TS" @ ¢ via the inclusion id & (1), by sending
TY ®e — TS" ® ¢ via the map id & (—1) and by gluing the two pieces
into a global map 75 S" @ ¢ — T S" @ ¢ using 5. This glued up map is an
isomorphism, hence Ts S" @ ¢ ~ TS" @ ¢ ~ &"t!, as claimed.

Consider now the general case where ¢, : T*S" — T*S" is a Hamiltonian
isotopy such that ¢ ($") only has fold singularities with respect to . Equiva-
lently, S” only has fold singularities with respect to the pullback foliation ¢}
From the special case already considered it follows that the restriction V' to
S" of the distribution T (¢} F) must be stably trivial as a real vector bundle
over the sphere. But V and V' are homotopic as distributions of Lagrangian
planes and therefore isomorphic as real vector bundles. Hence V is also stably
trivial. m|

We now use our h-principle for the prescription of singularities to show
that for n even, the necessary condition for the simplification of singularities
provided by Proposition 6.13 is also sufficient.

Corollary 6.14 Assume that n is even and that V. = T F|g is stably trivial
as a real vector bundle over the sphere. Then there exists a compactly sup-
ported Hamiltonian isotopy ¢; : T*S" — T*S" such that the singularities of
tangency of ¢1(S™) with respect to F consist only of folds. Moreover, we can
take @; to be CO-close to the identity and supported on an arbitrarily small
neighborhood of the zero section.

Remark 6.15 From the proof we can also extract a precise description of the
permissible fold loci ¥ = X (¢1(S"), F) as hypersurfaces of S§” in terms of
the Euler number e(V) of V. The locus ¥ can be arranged to consist of the
boundary dY of any n-dimensional compact submanifold ¥ C S” of Euler
characteristic x(Y) = 1 £ %e(V), together with a disjoint union of nested
double folds.

Proof If B C §" is a closed embedded n—ball, it is readily seen that Ty S" is
the trivial bundle. Fix a trivialization Vyg >~ S xR". We obtain a trivialization
T(T*S")|sn >~ S" x C" by identifying both bundles with V3 ® C. Suppose
that B is chosen so that F is transverse to S” along Op(B). Then with respect
to this trivialization the distribution V determines a class o« € m,,(A,), where
A, = U, /0O, is the Grassmannian of linear Lagrangian subspaces of C" and
we choose any b € int(B) as a basepoint. Let 8 € m,_1(0,) be the image
of « under the map 7,(A,) — m,—1(0,) given by long exact sequence in
homotopy groups associated to the fibration O, — U, — A,. Observe that
is the clutching function corresponding to the real vector bundle underlying the
distribution V. Note that the choice of ball B induces a choice of orientation
on V, which is encoded in the class .
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The stable triviality of V means that 8 is in the kernel of the map
Tn—1(0p) = m,—1(0), where O = limg Oy is the stable orthogonal group.
However, ,—1(Or) — m;,—1(Ok41) is an isomorphism as soon as k > n, and
therefore B € ker (7,-1(0n) = Tn—1(On41)) = im(7,(S") = 7,—1(On)),
where the map is given by the long exact sequence in homotopy groups
associated to the fibration O, — 0,41 — §". Recall that under this map
the fundamental class 1 € Z =~ m,(S") is sent to the clutching function
y € 1m,—1(0y) corresponding to the tangent bundle 7' S". We can therefore
write 8 = ky for some k € Z.

Let E C §" by any compact hypersurface disjoint from B. Let X and Y
be as in the construction of TgS”, sothat S" = X UY and X NY = E. We
choose the labels so that B C X, and then we agree to orient TgS" so that
the inclusion TX < TgS" is orientation preserving. It is straightforward to
compute the Euler class e(Tg S") = 2—2x (Y) using for example the Poincaré-
Hopf index theorem. Since e(V) = 2k, if we choose the hypersurface E so
that x (Y) = 1 —k, then it follows that 7r S" and V are isomorphic as oriented
real vector bundles.

Using the same construction as above, we can exhibit Tg S" as a distribution
VE of Lagrangian planes in 7*S" defined along the zero section S — T*S".
Observe that the singularities of tangency of the zero section S” with respect
to the distribution Vg consist of X! folds along E.

Since n is even, 7, (U,) = 0 and hence we have an injection 7, (A;) —
m,—1(0y). Observe that the homotopy classes in 7,(A,) determined by the
distributions Vg and V have the same image B under this map. It follows
that Vg and V are homotopic in the space of Lagrangian distributions. The /-
principle for the prescription of singularities Theorem 6.11 applies to produce
a C%-small Hamiltonian isotopy ¢, : T*S" — T*S” supported in a neigh-
borhood of the zero section such that the singularities of tangency of ¢;(S")
with respect to F are equivalent to those of §” with V' together with a union
of nested double folds, which completes the proof. O

In fact, the assumption that V is stably trivial is automatically satisfied for
all even n such that n = 2 mod 8. One can argue in the following way. Choose
aclass B € m,—1(0y), which we think of as the clutching function of a real
vector bundle. By exactness of the long exact sequence in homotopy groups
associated to the fibration O, — U, — A,, it is equivalent to ask that g is
in the image of the map ,, (A,) — m,—1(0,,) or to ask that it is in the kernel
of the map m,,—1(0,,) — m,—1(U,). The first condition says that the vector
bundle can be realized as a distribution of Lagrangian planes in 7*S" defined
along the zero section S” < T*S", while the second condition says that the
complexification of the vector bundle is trivial. Suppose that j is such a class
and let S(B) € m,—1(0p+1) be the image of B under the stabilization map S
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induced by the inclusion O,, C O,1. By commutativity of the diagram below,
observe that S(8) lies in the kernel of the map 7,1 (O, 4+1) = T—1(Up+1).

nn—l(on) — ”n—l(Un)

| |

TTn—1 (0n+l) — Tp—1 (Un—l—l)

However, ker (nn_1(0n+1) — 7Tn—1(Un+1)) ~ ker (71,,_1(0) —
-1 (U )), since both homotopy groups lie in the stable range. This kernel
can be computed from Bott periodicity. Indeed, Q(U/O) >~ Z x B O implies
that 7 (U/O) =~ mr_>(0) and therefore the groups appearing in the exact
sequence 7, (U/O) — m,_1(0) — m,—1(U) depend on the residue class of
n mod 8 as follows.

n mod 8 mn(U/O) Tn—1(0) Tu—1(U)
0 0 Z /
1 Z 7]2 0
2 7]2 7]2 Z
3 7]2 0 0
4 0 7 7
5 Z 0 0
6 0 0 Z
7 0 0 0

From the table we deduce that ker (7Tn—1 (0) > m,1(U )) = 0 except if
n =1 or 2 mod 8 (in which case the kernel is isomorphic to Z/2). It follows
that if n is even and n # 2 mod 8, then we necessarily have S(8) = 0, as
claimed.

Remark 6.16 The simplest example of a caustic that cannot be simplified to
consist only of folds occurs when n = 2 and V is the Hopf bundle on S2. It is
easy to check that in this case a !9 pleat is unavoidable, in addition to the
%10 folds.

When 7 is odd, the same reasoning still shows that a necessary and suffi-
cient condition for the simplification of singularities to be possible is that V
is homotopic to one of the standard models Vyx in the space of Lagrangian
distributions. However, stable triviality of the underlying real vector bundle is
not sufficient to guarantee that this condition is satisfied because 7, (U,) # 0
and hence the map m,,(A,) — 7,-1(0,) need not be an injection.

We have only touched the surface of the homotopy theoretic calculations
which are necessary to understand the formal condition obstructing the simpli-
fication of caustics. In the very concrete example of spheres considered above
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we were able to reason in a fairly hands-on manner. We believe that it should
be possible to carry out a more systematic approach in the spirit of obstruction
theory to study the general case.

6.5 Application: families of 1-dimensional Legendrians

We now turn to the second application discussed in Sect. 1.1. Our goal is to
establish that higher singularities are unnecessary for the homotopy theoretic
study of the space of Legendrian knots in the standard contact Euclidean R3.
Recall that we think of R? as the jet space J! (R, R) = R(g) x R(p) x R(z)
which comes equipped with the contact form dz — pdq. The Lagrangian
projection is the map R® — R?, (¢, p, z) — (¢, p) which corresponds to
the forgetful map J!'(R, R) — T*R. The front projection is the map R? —
R2, (g, p,2) — (g, z) which corresponds to the forgetful map J (R, R) —
JO(R, R). The Reeb direction is 8/9z and it will also be useful to think of the
projection along the Reeb direction R> — R which is the map (¢, z) — q.

The fibres of the front projection form a Legendrian foliation F of R3.
Recall that a Legendrian knot f : ' — R3 is said to have mild singularities
when the only singularities tangency of f with respect to F are folds and
embryos. Folds are the generic X '° singularities of a single Legendrian knot
and in the front projection correspond to cusps, see Fig. 44. Embryos are the
generic X110 singularities of a 1-parametric family of Legendrian knots and
in the front projection correspond to Type I Reidemeister moves, namely the
instances of birth/death of two cusps. See Fig. 45.

Generically, a Legendrian knot only has folds and a 1-parametric family
of Legendrian knots only has folds and embryos. However, the caustic of a
family of Legendrian knots parametrized by a space of high dimension will
generically be very complicated. It is therefore not a priori clear how the
topology of the space of Legendrian knots L is related to that of the subspace
M C L consisting of those Legendrian knots whose singularities are mild. In
Sect. 1.1 we defined a space of decorations C(S') and a space D of pairs ( f, D)
consisting of a Legendrian knot with mild singularities f € M together with
a decoration D € C(S') of the singularities of f. See Fig. 46 for an example
of a decoration D compatible with the standard front projection of the figure
eight knot.

By composing the forgetful map D — M given by (f, D) — f with the
inclusion M < £ we obtain a map D — L. In this section we will prove the
following result, which is a consequence of our parametric s-principle for the
simplification of caustics.

Corollary 6.17 The map D — L is a weak homotopy equivalence on each
connected component.
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Fig. 44 The standard fold as seen from the Lagrangian and front projections (top right and
bottom left respectively). If we project all the way down to R = R(g) (bottom right), the germ
of the resulting map is equivalent to that of x +— x2
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Fig. 45 The embryo singularity is illustrated in the middle column. We can picture it in the
ambient contact R3 (top), in the Lagrangian projection (middle) and in the front projection
(bottom). Anembryois a generically isolated singularity of a 1 —parametric family of Legendrian
knots, which we exhibit from left to right. The bottom row (which takes place in the front
projection) gives us the familiar Reidemeister I move for Legendrian fronts
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S 1
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Fig.46 An example of a decoration which consists of two points 71, 7, and two nested intervals
I Cch

Remark 6.18 The decoration D is necessary because the inclusion M — L
is not a homotopy equivalence, indeed 72 (£, M) # 0. To see this, let f* be a
family of Legendrian knots parametrized the closed unit 2-disk D? which has
mild singularities everywhere except for a single 110 singularity appearing
in the interior. Then it is easy to see that the family { f*},.;p2 represents a
nontrivial element of (L, M). The decoration D is designed to kill this
homotopy group.

Remark 6.19 For an explicit example of the D? family mentioned in the pre-
vious remark, take a Legendrian front with only cusp singularities. The family
will be localized near a single cusp. On the boundary 8 D?, the family does the
following. Start with your front, apply a Reidemesiter I move near the cusp,
slide the result of the move over the cusp (as in the first four pictures of Fig. 47)
and then eliminate it on the other side of the cusp with another Reidemeister I
move to end back where you started. It is an instructive exercise to understand
why we cannot assign compatible decorations to this S' family in a continuous
way. Note also that the S'-family can then be coned off to obtain a D* family
by taking the distances between the fixed cusp point and the points where the
Reidemesiter I moves are applied to be proportional to the radial coordinate
rof D> = {re'? : 0 < r < 1}. Everywhere except at the origin 0 € D? the
fronts have mild singularities, while at the origin two arcs of embryos meet in
a single £ 19 singularity.

Remark 6.20 1f f € L is any Legendrian knot, then by a generic perturbation
we may assume that the singularities ¥ C S! of f consist only of a finite num-
ber of folds. Then f is compatible with the trivial decoration D = ({t;}, {I;})
consisting of {#;} = X and {/;} = &. It follows that 7o(D) — mo(L) is sur-
jective. However, is it easy to see that 7wo(D) — mo(L) is not injective, since
in the space D we are keeping track of the decoration D.

To prove Corollary 6.17 it suffices to show that 7, (L, D) = 0 forn > 1
and that 71 (D) — m1(L) is surjective. We deal with each of the statements
separately.
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Fig. 47 The family L,. The
parameter 7 runs from O to 1

Proof that m,(L,D) = 0 forn > 1 Let o € m,(L, D) be any class. We
can represent « by a map F : D" — L such that F|ypn lifts to a map F :
dD" — D. To conclude that @ = 0 we must show that there exist a homotopy
F; : D" — L which is fixed on Op(dD") and such that F : D" — D
extends to a lift F| : D" — D of Fj.

We begin by examining the singularity locus of F on the boundary, which
is the subset X (F|ypr) C D" x st consisting of all pairs (z, s) € sn—1lx st
such that the front of the Legendrian knot F(z) : S' — R3 has a fold or
embryo singularity at the point s € S!. Denote the map (f, D) + D which
forgets the knot but remembers the decoration by dec : D — C(S 1), The
family of decorations dec o F : aD" — C(S 1) induces a decomposition of
the singularity locus X (F|yp») = C U W, where C consists of folds and W
consists of pairs of folds with opposite Maslov co-orientations together with
the embryos that give rise to the birth/death of such pairs. The folds of C
correspond to the points ?q, ..., fx and the pairs of folds or embryos of W
correspond to the endpoints of the intervals Iy, ..., I,,. Note that the number
m of intervals may vary with the parameter z but the number k of points is
fixed since n > 1. After a generic perturbation we may assume that C and W
are smooth codimension 1 submanifolds of $”~! x S! and moreover that the
set of embryos £ is a smooth codimension 1 submanifold of W.
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Our strategy is the following. The first step is to construct F; near the
boundary of the parameter space d D". This involves manually killing all the
pairs of folds in Y. The next step is to extend the folds in C to the interior of
the parameter space int(D"). After these two preparatory steps we can apply
the relative form of our parametric h-principle to construct F; everywhere
else so that the only additional singularities of the deformed family F are the
folds and embryos resulting from the wrinkling process. By construction the
resulting map F; : D" — M will have an obvious lift to D, completing the
proof.

We now perform the first of these preparatory steps. The key idea, which
appears repeatedly throughout the literature of the wrinkling philosophy, is
that to kill a zig-zag one may create a very small new zig-zag near one end
of the old zig-zag and then slowly let the new zig-zag take over, eventually
killing the old zig-zag and replacing it. The newly created zig-zag does not
bother us because it will end up completely contained in the interior of the
parameter space D".

Fix a collar neighborhood A C D" of §"~!, which we parametrize radially
as A = [0, 1) x §"~! with 0 x §"~! corresponding to d D" . It will be convenient
to assume that F is radially invariant on A, and indeed by means of an initial
homotopy of F fixed on the boundary we can arrange it so that F (XA, z) =
F(0,z) forall » € [0,1) and all z € $"~!. Note then that F(A) C M and
moreover X (F|4) = [0, 1) x X (Fypnr). For an F satisfying this condition we
establish the following preparatory result.

Lemma 6.21 (Preliminary arrangement near the boundary) There exists a
homotopy F; : D" — L of F = Fy such that the following properties hold.

e F; is fixed on Op(aD” u (D”\A)).

e F,(A) C M.

e The folds in C are left untouched throughout the homotopy. To be more
precise, the subset [0, 1) x C C X (F;|4) does not vary with time.

e The pairs of folds in VV are killed at the end of the homotopy. To be more
precise, over each cylinder [0, 1) x z x S' € A x S! the singularity locus
Y (F1|a) contains arcs ay, . .., ay, whose interiors lie in (0, 1) x z X st
and whose endpoints lie in 0 x z x S' and in fact consist precisely of
the endpoints of the intervals 1y, ..., I,,. Moreover, each arc aj consists
everywhere of folds except at a single point in its interior, which is an
embryo.

Proof To construct the homotopy F; we will use the 1—parameter family of
Legendrian fronts L, exhibited in Fig. 47. Suppose that /; is a non-degenerate
interval appearing in the decoration D = dec(F (z)) for some z € dD".
Assume moreover that /; is isolated, meaning that there are no other intervals
Iy contained inside /; or containing /;. In a neighborhood of 7; C § ! the front
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Fig. 48 The projection of

C
Fig. 47 along the Reeb —
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of the knot F (z) is equivalent to either the local model L or to a flip of Ly in
the vertical direction, depending on the Maslov co-orientations. By replacing
L;, by the vertical flip of L, whenever this is needed, we may assume without
loss of generality that the former case holds.

Note that the family of fronts L, can be made to be C O_close to the constant
family Lo and moreover we can arrange that the field of tangent lines to L, is
CO-close to the field of tangent lines to L (when both of these C°-closeness
properties hold for two given fronts we say that the fronts are C'-close). Hence
the resulting Legendrian isotopy can be made C%-small. We can therefore think
of the 1—parameter family L, as a Legendrian isotopy of F'(z) supported on
Op(1).

It is conceptually useful to understand the projection of the family L, along
the Reeb direction. The front L projects down to a zig-zag. As the parameter
n increases from O to 1, a new zig-zag is created just outside of /;. We then
make this new zig-zag bigger and bigger, until it takes over and replaces the
old zig-zag, which has died by the time that 5 is close to 1. This process is
illustrated in Fig. 48

To define F; formally, let ¢ : [0, 1] — [0, 1] be a function such that the
following properties hold.

e ¢ =0on Op(9[0, 1]).
e ¢ =1on0pQ).
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RN
PN

Fig. 49 A nesting of Fig. 47 for two intervals [y C I;

e ¢ is non-decreasing on [0, %] and non-increasing on [%, 1].

We define the homotopy F; on [0,1) x z x Op(I;) by the formula
Fi(A,z,8) = Lipx(s). Suppose next that there are two nested intervals
I, C I; with no other interval either contained or containing /i or /;. Then we
define the homotopy F; just like we did before, but using a nested version of
the family L, which we exhibit in Fig. 49. For more complicated configura-
tions of intervals /; we repeat this strategy but using the obvious model which
is obtained by nesting the 1—parameter family L, (or its flip in the vertical
direction) according to the nesting of the configuration of intervals.

The construction described above can be realized parametrically as z €
$"=1 varies, as long as no interval I j degenerates to a point. However, in
a neighborhood of the locus £ C W of embryos we need a different local
model so that the family L, does not degenerate into a higher singularity.
The 2-parametric family L, ; exhibited in Fig. 50 gets the job done. Let us
first understand what the locus WV looks like in a neighborhood of £. Fix a
connected component Wy C W and set & = £ N W). Consider the image
Wo of Wy under the projection §”~! x S! — §"~! Note that Wo c sn1
is a smooth codimension 0 submanifold with boundary, that 50 = BW() is the
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Lo & ;i /\LM

Fig.50 The 2-parametric family L), z. The parameters n and T both run from O to 1. To visualize
Ly, 7, start with the (constant) 1-parametric family L, | which is the rightmost column of the
figure. As you move towards the left the family undergoes Reidemesiter Type I moves at two
separate points of the front, but towards the top one of the moves is cut off and towards the
bottom the other move is cut off. As you keep moving to the left you fit the newly created
pieces of the front together to obtain the previously defined 1-parametric family L;, which in
the present figure sits as the leftmost vertical column L;, o

image of &y, that the map Wo — Wo is a2 to 1 cover away from &y and that
along & the map Wy — Wo has folds. In particular, the restriction & — 50
is an embedding, see Fig. 51.

Let 50 x (0, l) be a collar neighborhood of 50 = 50 X 5 in §"=1 such that
50 x (0, 2] - Wo Given e € &, let e be its image in 50 and letz; € S"71,
t € (0, 1) correspond to the arce x (0, 1) C 50 x (0, 1). Then the 1-parametric
family F(z;) is equivalent in a neighborhood of the embryo point e to the 1-
parametric family Lq  exhibited in the top row of Fig. 50 (or to its flip in
the vertical direction). Note that the 1-parametric family L ; fits into the 2-
parametric family L, ; shown in Fig. 50, corresponding to the side 0 x [0, 1]
of the square of parameters (1, t) € [0, 1] x [0, 1].
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op"
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Fig. 51 The local geometry of the projection W — 9 D"
D" >
3 /;JK\,I\; /_;IK\I}
10
__.'/2
\\/ Z(F:LIA)QAX%L

Fig. 52 The singularity locus of Fi on D" x [0, %) x S c A x S!, which is one-half of the
full locus X(F1]4)

Observe that the family L, ; can be taken to be C I_close to the family Lo ;
which is constant in 1. We can therefore think of the 2-parametric family L, .
as a C%-small Legendrian isotopy of the 1-parametric family F(z;) supported
in a neighborhood of the embryo point. Note that L, o = L,, so the isotopy
is compatible with our previous isotopy. Notice also that L, 1 is constant. We
can therefore define /tlle homotopy F; by the formula F;(n, z, s) = L), (5),
wherez = (e, t) € & x (0, 1). The construction can be realized parametrically
in z, see Fig. 52 for an illustration. The construction can also be realized with
any configuration of intervals, by nesting the families shown in Figs. 49 and 50
according to the nesting of the intervals. This completes the proof of Lemma
6.21. |

The next step is to extend the cusp locus C to the interior of the parameter
space D". This is achieved by a second preparatory lemma. For notational
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convenience, we now forget about our old family and use the letter F to denote
the new family F produced by Lemma 6.21. In particular, all of the properties
listed in the conclusion of Lemma 6.21 are satisfied by F.

Lemma 6.22 (Preliminary arrangement in the interior) There exists a homo-
topy F; : D" — L of F = Fy such that the following properties hold.

e F; is fixed on A.

e The singularity locus X(F;) C D" x S' contains a properly embedded
submanifold with boundary T of codimension 1 in D" x S' which consists
entirely of folds and such that T N (A x sh=¢ x[o,1).

Remark 6.23 Since F; is fixed on A, X (F1) also contains the properly embed-
ded codimension 1 submanifold with boundary KC formed by the arcs a; which
kill W. In addition to Z and K, the singularity locus X (Fj) may have other
components, but we will not care about them because they are all homotopi-
cally trivial and contained in int(D") x st.

Proof We assume that C # &, otherwise the Lemma is trivial. Recall that the
space of decorations C(S!) is fibered over the (unordered) configuration space
of points on the circle C(S') = ||, Ck(S"). The map is ({t;}, {I;}) — {t;}
and its fibers are contractible. Denote by conf : D — C(S!) the composition
of dec : D - (NZ(Sl) with the fibration E(Sl) — C(S81). We claim that the
map confo F : D" — C(S1) extends to a map ¢ : D" — C(shH.

First observe that each component Cy (S') of C(S') is homotopy equivalent
to S!. Hence for n > 2 there is nothing to prove because rr,,_l(Sl) = 0.
If n = 2, then we need to justify the claim. Write H*(dD?* x S';R) =
R[x, y]/(x2, y?), where x is Poincaré dual to dD* x pr and y is Poincaré
dual to pt x S!. Consider the Gauss map G(dF) : D?x S' = S (z,5) —
G(d F (z))(s), where A(R?) = R3 x S! and we project away the R> factor.
Explicitly, an angle 6 corresponds to the line field spanned by cos(6)d/dp +
sin(6)(d/dz+ pd/dq). Observe that (E)D2 X S') NGdF)™! (span(a/ap)) =
CUW. Observe also that the fundamental class of C is Poincaré dual to kx + [y
for some [ € Z, where we recall that k is the number of points 71, . . ., #x in the
decorations deco F(z). If we write i : dD? x S' < D? x S! for the inclusion
and denote by u € H'(S'; R) the class which is Poincaré dual (PD) to a point,
then we have

kx +1y = PD[C] = PDIC UW] = PD [ (G(F) i)' (span(@/0p)) |
= (G(dF) o i)*u =i*(GdF)*u).

However, i* : H*(D?> x S'; R) — H*(dD?* x S'; R) has image generated by
x. Tt follows that [ = 0 and hence that C is an embedded curve in 3 D? x S!
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Fig. 53 The local model for a creation of double folds when the Legendrian is almost tangent
to the foliation. For 7 = span(d/dq + pd/dz) the model obviously creates a double fold, hence
by stability it also does so for nearby F

which is homologous to k[aD? x pt]. Note then that C has necessarily k
components, each of which is homologous to [9 D? x pt]. Itis now a triviality
to check that confo F : 9D? — C(S!) extends to amapc: D? - C(8h), as
claimed.

Choose then such an extension ¢ and assume without loss of generality that
c is radially constant in the annulus A C D". Choose also a tangential rotation
G; : D" x S' — A(R?) of the family F such that the following properties
hold.

e G, isfixed on A.
e Gy =0/dponthesubsetZ = {(z,1): t € c(z)} C D" x st

Using the parametric version of theorem Theorem 4.2 (which in the 1-
dimensional case is the same as Theorem 4.10 since all rotations are simple)
we obtain a homotopy F; of the family F which is fixed on A and such that
GdF))isC O_close to G, on Op(Z). The family F; does not quite have folds
along Z, but G(d F) is almost parallel to 9/0p on Op(Z) and Fi|4 does have
folds along Z N A. By implanting the local model for the creation of a pair
of folds exhibited in Fig. 53 into F; we can arrange it so that the new family
does have folds precisely along Z. Moreover, we can arrange it so that the
new family agrees with the old family inside A. Away from Op(A U Z) the
singularities of F' might be a mess but we don’t care. The proof of Lemma
6.22 is complete. O

We can now conclude the proof that 7,(L, D) = 0 for n > 2. Given
a € m,_1(L, D) represented by a family F, we can apply Lemmas 6.21
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Q< (D) xJ x[0,4]

T (VAT x [o/4]
[°:i] l,’
I —
l_/-‘/“_“ - ‘_K N
y — ]
61 / b?‘\ ?ﬁ\ f/J-
/ \
- (D"\A)xjx{o}\_/ \(D"\A)xajx[o,ij
N S — e A
A DA ﬂ\—/

Fig. 54 The cube Q sits like an open box inside (D"\A) x J x [0, 1]

and 6.22 and replace F with the family obtained after performing the two
preliminary arrangements, in that order. For the new F, we claim the existence
of a family of tangential rotations G, : D" x S' — S! of the family F such
that the following properties hold.

e G, isfixedon Op((dD" x SH UK UI)).
e G| h Faway from L UZ.

To verify the claim, we begin by considering the restriction of the Gauss map
G(dF) : D" x S — S' to the annulus A. Note that by construction the lift
F:39D"xS! — Dextendstoalift F : AxS! — D, where we assign intervals
to the new pair of folds created by the family L. The intervals Iy, ..., I, of
the decoration deco F : A — C(S') which do not correspond to pairs of folds
in K give us a homotopically canonical deformation G; : A x S! — S! of
G(dF)|4 such that G, is fixed on Op((dD" x S')UKU(ZN A)) and such that
G h F away from KU (ZN A). Together with the requirement that G, is fixed
near Z, this defines the map (z, s, t) — G(z, s) on (A X ST %[0, 17) U (D" x
ST x 0)U (Op(@) x [0, 1]). Each connected component of the complement
of Op(Z) in (D™\A) x S! is diffeomorphic to (D"\A) x J, where J is a
closed interval and the diffeomorphism is of the form (z, s) (z, vz, s)).
Consider the cube

0 =3d(D"\A) x J x[0,1] U (D"\A) x J x0 U (D"\A) x 8J x [0, 1]

which we think of as a subset of (D"\A) x S! x [0, 1] via the above diffeo-
morphism. See Fig. 54. Note that Q has boundary

30 = d(D"\A) x J x 1 U (D™\A) x 3J x 1.

The homotopy G, defined thus far gives a map of pairs (Q,90) —
(S', S\ pt), where pt = span(d/dp). Since 7;(S', S'\pt) = 0 for j > 1,
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there exists a homotopy of pairs relative to the boundary so that at the end of
the homotopy the image is disjoint from span(d/dp). This is precisely what
we needed to define G; on the remaining part of D" x S 1'% [0, 1] so that the
required conditions are satisfied.

Now that we have established the existence of such a tangential rotation
G, we can invoke Theorem 6.9 to construct a homotopy F; : D" — L of F
which is fixed on Op((dD" x S') U K UT) and such that away from K U T
the singularities of the family F consist of a finite union of fibered nested
regularized wrinkles. It only remains to show that F : 9 D" — D extends to a
lift of F to D. However, this is clear because to the folds of Z and to the pairs
of folds of KC we can assign points and intervals in the obvious way, while away
from IC U Z the singularities of F| consist only of the pairs of points in the
fibered regularized wrinkles, to which intervals can be canonically assigned.
This completes the proof that 7, (L, D) = 0 forn > 1. O
Proof that w1\ (D) — w1 (L) is surjective. Let o € (L) be any class. We can
represent o by a map F : [0, 1] — £ such that F(0) = F(1) = fp. Choose
any decoration Do which is compatible with fy. We must show that there exists
a homotopy F; : [0, 1] — L of F = Fj such that Ft(0)~= F; (1) = fy for all
t € [0, 1] and such that F; : [0, 1] — L lifts to a map Fp : [0, 1] — D with
F1(0) = Fi1(1) = (fo, Do).

Write Do = ({;}, {I;}) for points 71,...,5% € § I and non-degenerate
intervals I1,..., I, c SL.Let K = {t,...,x}UdL U---UdI, C S.
Observe that the Gauss map G(dF) : [0, 1] x St — A(R?) of the family F
satisfies G(d F) = span(d/dp) on d[0, 1] x K.Let G, : [0, 1] x St — A(RY)
be atangential rotation of the family F such that G, is fixedon Op(9[0, 1]x S 1
and such that G| = span(d/dp) on [0, 1] x K. Using Theorem 4.10 as above,
we can construct a homotopy F; : [0, 1] — £ which is fixed near 9[0, 1] and
such that G(d F}) is C°-close to span(d/dp) on [0, 1] x K.

By the insertion of the local model in Fig. 53 we can assume that F actually
has folds along [0, 1] x K. Theorem 6.9 can then be used to further homotope
Fi1el Op((3[0, 11x SHU([0, 11x K)) so that on the complement of [0, 1]x K
the only singularities are fibered nested regularized wrinkles. This new F :
[0, 1] — L admits a canonical lift Fy : [0, 1] — D by assigning intervals
to the pairs of points in the fibered regularized wrinkles. This completes the
proof that 71 (M) — m1(L) is surjective. Hence Corollary 6.17 is also proved.

O

We conclude this section with a remark. Proving that (L, D) = 0 for
n > 1 amounts to solving the following lifting problem. Given a diagram of
the form
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D —— L[

[

Sn—l D"
we must show that there exists a map D" — D such that when added to the
above diagram all compositions commute up to a homotopy fixed on §”~!. The
proof of Corollary 6.17 achieves this, but in fact proves slightly more. Because
all of the theorems invoked hold in C°-close form and because all of the local
models used are C°-small perturbations, it follows that the composition of
the lift D" — D with the map D — L can be taken to be C%-close to the
original map D" — L. The analogous C°-approximation result holds for the
corresponding lifting property for proving that 1 (D) — w1 (L) is surjective.

6.6 Final remarks

We conclude our discussion with a couple of remarks.

Remark 6.24 All of the results proved in this paper also hold for immersed
rather than embedded Lagrangians or Legendrians f : L — M. The reason is
that from the onset one can replace M with T*L or J!'(L, R) by choosing a
Weinstein neighborhood of the immersion, thereby reducing to the embedded
case. The only difference in the conclusion is that the resulting exact homotopy
of regular Lagrangian or Legendrian immersions will not be induced by an
ambient Hamiltonian isotopy in the original manifold M.

Remark 6.25 1t is worth giving the following warning. If the singularities of
a regular Lagrangian or Legendrian embedding g : L — M with respect to
F consist only of a disjoint union of regularized wrinkles (or double folds),
then the singularity locus is quite simple in the source. However, in the target
the image of the singularity locus is likely to be very complicated. It would be
interesting to know how much of the rigidity of a Lagrangian or Legendrian
embeddeding can be read from this image.

Remark 6.26 From Theorems 5.1 and 5.3 we can also deduce a full 4-principle
for directed embeddings of wrinkled Lagrangian or Legendrian embeddings
analogous to the one deduced by Eliashberg and Mishachev from their wrinkled
embeddings theorem [15]. Before we can state it, we need a definition.

Definition 6.27 For any Lagrangian or Legendrian embedding f : L — M
and for any subset A C A(M), we say that f is A-directed if im(G(df)) C A.

The result is then the following.
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Theorem 6.28 Let f : L — M be a Lagrangian or Legendrian embedding,
let A C A(M) be any open subset and assume that there exists a tangential
rotation Gy of f such that im(Gl) C A. Then there exists an exact homotopy
of wrinkled Lagrangian or Legendrian embeddings f; : L — M such that fi
is A-directed.

This theorem holds in C%-close, relative and parametric forms and follows
immediately from Theorems 5.1 and 5.3 since A is assumed to be open.
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