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Abstract We establish a full h-principle (C0-close, relative, parametric) for
the simplification of singularities of Lagrangian and Legendrian fronts. More
precisely, we prove that if there is no homotopy theoretic obstruction to simpli-
fying the singularities of tangency of a Lagrangian or Legendrian submanifold
with respect to an ambient foliation by Lagrangian or Legendrian leaves, then
the simplification can be achieved by means of a Hamiltonian isotopy.
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642 D. Álvarez-Gavela

1 Introduction and statement of results

1.1 Panoramic overview

In this paper we establish a general h-principle for the simplification of sin-
gularities of Lagrangian and Legendrian fronts. The precise formulation is
given in Theorem 1.11 below. Here is a sample corollary of our results, where
π : T ∗Sn → Sn denotes the cotangent bundle of the standard n-dimensional
sphere.

Corollary 1.1 Let S ⊂ T ∗Sn be any embedded Lagrangian sphere. If n
is even, then there exists a compactly supported Hamiltonian isotopy ϕt :
T ∗Sn → T ∗Sn such that the singularities of the projection π |ϕ1(S) : ϕ1(S) →
Sn consist only of folds. An analogous result holds for even-dimensional Leg-
endrian spheres in the 1-jet space J 1(Sn, R) = T ∗Sn × R.

More generally, let S ⊂ M be any embedded Lagrangian sphere, where
(M2n, ω) is a symplectic manifold equipped with a foliationF by Lagrangian
leaves. Denote by TF the distribution of Lagrangian planes tangent to the
foliation F and let V be the restriction of TF to S. It is easy to see that a
necessary condition for S to be Hamiltonian isotopic to a Lagrangian sphere
whose singularities of tangency with respect to F consist only of folds is that
V is stably trivial as a real vector bundle over the sphere. When n is even, our
h-principle implies the following converse.

Corollary 1.2 Suppose that V = TF |S is stably trivial as a real vector bundle
over the sphere. If n is even, then there exists a compactly supported Hamil-
tonian isotopy ϕt : M → M such that the singularities of tangency of ϕ1(S)

with respect to the foliation F consist only of folds. An analogous result holds
for even-dimensional Legendrian spheres.

Remark 1.3 As we will see, the assumption that V is stably trivial is automat-
ically satisfied for all even n such that n �≡ 2 mod 8. The simplest example in
which more complicated singularities are necessary occurs when n = 2 and
corresponds to the Hopf bundle on S2, where in addition to the �10 folds we
find that a �110 pleat is unavoidable. When n is odd the problem is not as
straightforward due to the fact that πn(Un) �= 0. Nevertheless, we will apply
our h-principle to give a necessary and sufficient condition for the simplifi-
cation of singularities to be possible in terms of the homotopy class of the
distribution of Lagrangian planes V .

As another application of our h-principle, we establish that higher sin-
gularities are unnecessary for the homotopy theoretic study of the space of
Legendrian knots in the standard contact R

3. Before we can state our result
we need to set some notation.
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The simplification of singularities of Lagrangian 643

Recall that the front projection R
3 → R

2 corresponds to the forgetful map
J 1(R, R) → J 0(R, R) where we identify J 1(R, R) = R

3 and J 0(R, R) =
R
2. In coordinates, we have R

3 = R(q) × R(p) × R(z), R
2 = R(q) × R(z),

ξstd = ker(dz − pdq) and the front projection is the map (q, p, z) �→ (q, z).
The front of a Legendrian knot f : S1 → R

3 is the composition of f with
the front projection, which results in a map S1 → R

2. Let L be the space
of all (parametrized) Legendrian knots f : S1 → R

3 and let M ⊂ L be
the subspace consisting of those Legendrian knots whose front only has mild
singularities, namely cusps and embryos. A cusp of the front corresponds to
a fold type singularity of tangency of f with respect to the foliation given by
the fibres of the front projection. An embryo is the instance of birth/death of
two cusps and corresponds to the familiar Reidemeister Type I move.

The inclusionM ↪→ L is not a homotopy equivalence. Indeed, it is easy to
see that π2(L,M) �= 0. However, by decorating the mild singularities of the
Legendrian knots in M we define a space D, equipped with a map D → M
which forgets the decoration, such that the composition D → M ↪→ L
is surjective on π0 and restricts to a weak homotopy equivalence on each
connected component. The precise definition of the space D is as follows.

For any k ≥ 0, consider the unordered configuration space Ck(S1) of k
distinct points on the circle S1 = R/Z. Define a space ˜Ck(S1) fibered over
Ck(S1) such that the fibre over the configuration {t1, . . . , tk} ⊂ S1 consists of
all unordered collections of closed intervals I1, . . . , Im ⊂ S1 which are disjoint
from the points t1, . . . , tk and such that Ii ∩ I j �= ∅ implies either Ii ⊂ int(I j )
or I j ⊂ int(Ii ). In the degenerate case where the endpoints of an interval I j
coincide, the interval consists of a point and this is allowed. The topology is
such that an interval I j which contains no other intervals in its interior can
continuously shrink to a point and disappear. Observe therefore that the fibre
of the map ˜Ck(S1) → Ck(S1) is contractible. We give ˜C(S1) = ⊔

k
˜Ck(S1)

the disjoint union topology, so that the points ti are not allowed to collide. We
will refer to the elements of˜C(S1) as decorations.

Let D = ({ti }, {I j }
) ∈ ˜C(S1) be any decoration. We say that a Legendrian

knot f : S1 → R
3 is compatible with D if its front has cusp singularities at

each of the points t j and if moreover for each interval I j the following holds.
If I j is not degenerate, then we demand that the front has cusp singularities at
each of the two endpoints of I j and moreover we require that the two cusps
have opposite Maslov co-orientations. If I j is degenerate and thus consists of
a single point, then we demand that the front of f has an embryo singularity
at that point. At all other points of S1 we demand that the front is regular.

Define D to be the space of all pairs ( f, D) such that f : S1 → R
3 is a

Legendrian knot compatible with a decoration D ∈ ˜C(S1). Note in particu-
lar that f ∈ M. The composition of the forgetful map D → M given by
( f, D) �→ f with the inclusion M ↪→ L gives a map D → L. It is easy to
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644 D. Álvarez-Gavela

see that the induced map π0(D) → π0(L) is surjective but not injective. The
parametric version of our h-principle implies the following result.

Corollary 1.4 The map D → L is a weak homotopy equivalence on each
connected component.

Given a family of Legendrian knots in R
3 parametrized by a space of arbi-

trarily high dimension, Corollary 1.4 allows us to simplify the singularities of
the corresponding family of fronts so that we end up having only cusps and
embryos. Moreover we have a strong control on the structure of the singularity
locus (in the source) given by the family of configurations decorating the mild
singularities. Proofs of Corollaries 1.1, 1.2 and 1.4, as well as of the claims
made in Remark 1.3 and elsewhere in the above overview will be given in
Sect. 6.

The singularities of Lagrangian and Legendrian fronts, also known as
caustics in the literature, were first extensively studied by Arnold and his
collaborators. See [3] for an introduction to the theory. Today, caustics still
play a central role in modern symplectic and contact topology, both rigid and
flexible. In many situations it is desirable for a Lagrangian or Legendrian front
to have singularities which are as simple as possible. For example the Reide-
meister theorem for Legendrian knots in the standard contact R

3 (of which
Corollary 1.4 is a multi-parametric generalization) has allowed for the study
of π0(L) using combinatorial tools. Another example is Ekholm’s method of
Morse flow-trees [7] for the computation of Legendrian contact homology,
which can only be applied if the caustic of the Legendrian front consists only
of cusps. A rather different situation in which the simplification of caustics
is desirable occurs in the arborealization program for Lagrangian skeleta pio-
neered by Nadler in his papers [35] and [36]. Applications of our h-principle
to the arborealization program have been hinted at in Starkston’s recent paper
[44] as well as in Eliashberg’s review of Weinstein manifold topology [19]
and are the subject of present research.

The simplification of singularities of Lagrangian and Legendrian fronts is of
course not always possible, since there exists a homotopy theoretic obstruction
to removing higher singularities. The main point of this article is to prove that
whenever this formal obstruction vanishes, the simplification can indeed be
achieved by means of an ambient Hamiltonian isotopy. Our h-principle is full
in the sense of [14] (C0-close, relative parametric). See Sect. 1.6, where we
state the result precisely, for further details. The key ingredients in the proof
are (1) an explicit model for the local wrinkling of Lagrangian and Legendrian
submanifolds and (2) our holonomic approximation lemma for ⊥-holonomic
sections from [1], which is a refinement of Eliashberg and Mishachev’s holo-
nomic approximation lemma [13].
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The simplification of singularities of Lagrangian 645

Our work builds on Entov’s paper [20], where the first h-principle for the
simplification of caustics was proved. See Sect. 1.9 for a discussion of his
results, which consist of an adaptation of Eliashberg’s surgery of singularities
[8,9] to the setting of Lagrangian and Legendrian fronts. Our paper instead
follows the strategy employed by Eliashberg and Mishachev in the proof of
their wrinkled embeddings theorem [15]. The main advantage of the wrinkled
approach is the following. The surgery technique can only be applied to �2-
nonsingular fronts, which are fronts whose singularities have the lowest corank
possible. This condition is not generic except in low dimensions. By contrast,
the wrinkling technique can be applied to any front. By removing the �2-
nonsingularity restriction, we extend considerably the range of application of
the h-principle.

Given any smooth manifold equipped with a smooth foliation, there is the
analogous problem in geometric topology of simplifying of the singularities
of tangency of a smooth submanifold with respect to the foliation by means
of an ambient smooth isotopy. This problem also abides by an h-principle
and has been studied by several authors. Gromov’s method of continuous
sheaves [24,26], as well as Eliashberg and Mishachev’s holonomic approxi-
mation lemma [13,14] can be used to simplify the singularities of tangency
when the submanifold is open. Gromov’s theory of convex integration [25,26]
also yields the same result. When the submanifold is closed, neither continu-
ous sheaves nor holonomic approximation seem to work, but there are several
othermethodswhich dowork.Wehave alreadymentioned twoof them, namely
Eliashberg’s surgery of singularities [8,9] and the wrinkling embeddings theo-
rem of Eliashberg andMishachev [15]. Additionally, Spring showed in [42,43]
that convex integration can be applied to the closed case. See also the approach
of Rourke and Sanderson [38,39].

We should also mention that Corollary 1.4 can be thought of as a Legen-
drian analogue of Igusa’s theorem [28] which states that higher singularities
of smooth functions are unnecessary. The analogy becomes clearer from the
viewpoint of generating functions. Closely related is another result of Igusa
[29] on the high connectivity of the space of framed functions and Lurie’s
improvement in [32] which sketches a proof of the fact that the space of framed
functions is contractible. Eliashberg and Mishachev generalized Igusa’s orig-
inal result in [12] and gave a proof of the contracibility of the space of framed
functions in [16], in both cases using the wrinkling philosophy. There also
exists a folklore approach for proving h-principles using a categorical deloop-
ing technique which was used by Galatius in unpublished work to obtain a
different proof of the contractibility of the space of framed functions. The
approach of Galatius inspired Kupers’ recent paper [31], which provides an
exposition to the delooping technique and includes yet another proof of the
contractibility of the space of framed functions.
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646 D. Álvarez-Gavela

Fig. 1 The singularities of tangency of a Lagrangian embedding f : L → T ∗B

1.2 Singularities of tangency

Let g : L → B be any map between smooth manifolds, where we assume
dim(L) ≤ dim(B) for simplicity. A point q ∈ L is called a singularity of the
map g if the differential dg : Tq L → Tg(q)B is not injective. The subset of L
consisting of singular points is denoted by �(g). Next, let π : M → B be a
fibration of smooth manifolds and let f : L → M be a smooth embedding.
The singularities of the composition g = π ◦ f : L → B are precisely the
singularities of tangency of the submanifold f (L) ⊂ M with respect to the
foliation F of M given by the fibres Fb = π−1(b), b ∈ B. This latter notion
makes sense for arbitrary foliations F not necessarily given by a globally
defined fibration.

Definition 1.5 A singularity of tangency of an embedding f : L → M with
respect to a foliationF ofM is a point q ∈ L such that d f (Tq L)∩T f (q)F �= 0.
The subset of L consisting of singular points is denoted by �( f,F).

We will be interested in the special case in which (M, ω) is a symplectic
2n-dimensional manifold and F is a foliation of M by Lagrangian leaves.
Such a setup could arise from a Lagrangian fibration π : M → B, where B is
any n-dimensional manifold. A good example to keep in mind is the cotangent
bundle M = T ∗B with π : T ∗B → B the standard projection (Fig. 1).

Wewill also consider the analogous notion in contact topology. Here (M, ξ)

is a (2n + 1)-dimensional contact manifold and F is a foliation of M by
Legendrian leaves. Such a setup could arise from a Legendrian fibration π :
M → B, where B is an (n + 1)-dimensional manifold. A good example to
keep in mind is the 1-jet space M = J 1(E, R), where E is any n-dimensional
manifold, B = J 0(E, R) and π : J 1(E, R) → J 0(E, R) is the forgetful
map (which in the literature is usually referred to as the front projection). We
remark for future reference that J 1(E, R) = T ∗E × R, J 0(E, R) = E × R
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The simplification of singularities of Lagrangian 647

and that the front projection T ∗E×R → E×R is the product of the cotangent
bundle projection T ∗E → E and the identity map R → R.

Suppose thatF is inducedby aLagrangianorLegendrianfibrationπ : M →
B, so that the singularities of tangency �( f,F) = {q ∈ L : d fq(Tq L) ∩
T f (q)F �= 0} coincide with the singularity locus �(p ◦ f ) = {q ∈ L :
ker

(

d(p◦ f )q
) �= 0} of the smoothmap p◦ f : L → B. Then the composition

p ◦ f is called the Lagrangian or Legendrian front associated to f . The image
of the singularity locus p ◦ f (�) ⊂ B is called the caustic of the front.

1.3 The Thom–Boardman hierarchy

To state our results precisely, we first need to recall some notions from the
Thom–Boardman hierarchy of singularities. We do not intend to be thorough
and only discuss the basic facts which are necessary to frame our discussion.
For a detailed exposition to the theory of singularities we refer the reader to
the original papers, including those of Thom [45], Boardman [6] and Morin
[33], as well as to the books [4,5] by Arnold, Gusein-Zade and Varchenko.

Suppose first that g : L → B is any smoothmap between smoothmanifolds,
where dim(L) = n and dim(B) = m. The singularity locus � = �(g) ⊂ L
of g can be stratified in the following way.

� = �1 ∪ �2 ∪ · · · ∪ �n, �k = {

q ∈ L : dim
(

ker(dgq)
) = k

}

.

The Thom transversality theorem implies that generically �k is a smooth
submanifold of L , whose codimension equals k

(

m − n + k
)

. In fact, to any
non-increasing sequence I of non-negative integers i1 ≥ i2 ≥ · · · ≥ ik we
can associate a singularity locus � I ⊂ L . Provided that g is generic enough
so that its k-jet extension j k(g) satisfies a certain transversality condition,
� I is a smooth submanifold whose codimension is given by an explicit com-
binatorial formula. For such g, the locus � I is determined inductively by
� I = �ik

(

g|
� I ′ : � I ′ → B

)

, where I ′ denotes the truncated sequence

i1 ≥ i2 ≥ · · · ≥ ik−1. In particular, � I ⊂ � I ′
.

We will mainly be interested in the flag of submanifolds �1 ⊃ �11 ⊃
· · · ⊃ �1n , where we denote a string of 1′s of length k by 1k . Generically,
�1k is a smooth codimension k submanifold of L , so that dim(�1k ) = n − k.
To understand this flag geometrically it is useful to think of the line field
l = ker(dg)|�1 ⊂ T L , which is defined along �1. Inside �1 we have the
secondary singularity �11 = �1

(

g|�1 : �1 → B
)

, which consists of the
set of points q ∈ �1 where l is tangent to �1. Points in the complement
�10 = �1\�11, where l is transverse to �1, are called fold points. Similarly,
the singularity �111 consists of the set of points q ∈ �11 where l is tangent
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648 D. Álvarez-Gavela

Fig. 2 The singularities �10 and �110

to �11. Points in the complement �110 = �11\�111, where l is transverse to
�11 inside �1, are called pleats. And so on. See Fig. 2 for an illustration of
�10 and �110. Each of the singularities �1k0 = �1k\�1k+1

has a unique local
model and is easy to understand explicitly.We call them�1-type singularities.

Singularities of type �k , k > 1 are much more complicated than �1-type
singularities. In particular, there is no finite list of possible local models for the
generic�k singularity when k > 1. The situation is in fact muchworse: except
in simple cases where the source and target manifolds have low dimension,
the generic singularities of smooth maps have moduli. Furthermore, when the
dimension is sufficiently high the number of moduli is infinite. Whence the
desire to simplify these complicated singularities into singularities which are
at least of type �1 and ideally consisting only of �10 folds.

We now return to the setting where f : L → M is a Lagrangian or Leg-
endrian embedding into a symplectic or contact manifold M equipped with
an ambient foliation F by Lagrangian or Legendrian leaves. We will assume
that the foliation is given by the fibres of a Lagrangian or Legendrian fibration
π : M → B, indeed there is no harm in doing so since this is always the case
locally. Hence the singularities of tangency �( f ;F) of f with respect to F
are the same as the singularities �(g) of the smooth mapping g = π ◦ f , the
Lagrangian or Legendrian front of f . Since the map g is constrained by the
condition of being a Lagrangian or Legendrian front, we cannot hope for its
k-jet extension j k(g) to generically satisfy the transversality condition men-
tioned in the definition of the loci � I . For example, the generic codimension
of �k( f ;F) in L is k(k + 1)/2, which differs from the formula given above
for the singularities of smooth maps. This point is better understood from the
viewpoint of generating functions, which remove the Lagrangian or Legen-
drian condition in exchange of increasing the jet order by one. However, we
will not pause to discuss this subtlety any further since transversality can be
generically achieved at the level of fronts for the singularities that we will be
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The simplification of singularities of Lagrangian 649

Fig. 3 The standard �10 fold. The Lagrangian submanifold on the left corresponds to the
Legendrian front on the right (in that p j = ∂z/∂q j ). The former is the trivial product of a

parabola q1 = p21 with R
n−1 and the latter is the trivial product of a semi-cubical cusp q31 = z2

with R
n−1

Fig. 4 The standard �110 pleat. The Lagrangian submanifold on the left corresponds to the
Legendrian front on the right (in that p j = ∂z/∂q j ). The former is the birth/death of two
parabolas and the latter is the birth/death of two semi-cubical cusps

interested in: the �1-type singularities. In particular, the generic codimension
of �1k ( f ;F) in L is k, just like in the case of smooth mappings.

Figure 3 illustrates the�10 fold and Figure 4 illustrates the�110 pleat, both
in their Lagrangian and Legendrian realizations. Here and below we use the
standard coordinates (q, p) ∈ R

n ×R
n = T ∗

R
n and (q, p, z) ∈ T ∗

R
n ×R =

J 1(Rn, R), where the symplectic form on T ∗
R
n is dp ∧ dq and the contact

form on J 1(Rn, R) is dz − pdq.

Example 1.6 ALagrangian or Legendrian front has the following unique local
model in a neighborhood of any fold point q ∈ �10.

• In the symplectic setting where the Lagrangian fibration is π : T ∗B → B,
the front π ◦ f : Ln → Bn is locally equivalent near the point q to the
map (q1, q2 . . . , qn) �→ (q21 , q2, . . . , qn) near the origin.

• In the contact setting where the Legendrian fibration is π : J 1(E, R) →
J 0(E, R), the front π ◦ f : Ln → En × R is locally equivalent near the
point q to the map (q1, . . . , qn) �→ (q21 , q2, . . . , qn, q

3
1 ) near the origin.
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650 D. Álvarez-Gavela

Fig. 5 One half of a double fold. The Lagrangian submanifold on the left corresponds to the
Legendrian front on the right

1.4 The double fold

An example of a singularity locus which will be particularly relevant to our
discussion is the so-called double fold, which we now describe. For an illus-
tration, see Fig. 5. Before we give the definition, observe that near a fold point
q ∈ �10, the Lagrangian or Legendrian submanifold f (L) ⊂ M could be
turning in one of two possible directions with respect to F . This direction
can be specified by a co-orientation of the (n − 1)-dimensional submanifold
�1 inside L , which is called the Maslov co-orientation and was implicitly
introduced in [2]. Informally, we can view d f (Tq L) as a quadratic form over
T f (q)F whose signature changes by one as q crosses �10 transversely. The
Maslov co-orientation specifies the direction in which the signature is increas-
ing. This is the same Maslov co-orientation which appears in Entov’s work
[20].

Definition 1.7 A double fold is a pair of topologically trivial (n − 1)-spheres
S1 and S2 in the fold locus �10 which have opposite Maslov co-orientations
and such that S1 ∪ S2 is the boundary of an embedded annulus A ⊂ L .

By a topologically trivial sphere wemean a sphere which bounds an embed-
ded n-ball in L .We say that a pair of double folds F = S1∪S2 and ˜F = ˜S1∪˜S2
bounding annuli A and ˜A in L are nested if one annulus is contained inside
the other, say A ⊂ ˜A, and furthermore A bounds an n-ball B ⊂ L which is
completely contained in ˜A. See Fig. 6 for an illustration.

1.5 Tangential rotations

The Lagrangian Grassmannian of a symplectic manifold (M2n, ω) is a fibre
bundle 	 : 
(M) → M whose fibre 	−1(x) over a point x ∈ M consists
of all linear Lagrangian subspaces of the symplectic vector space (TxM, ωx ).
To each Lagrangian embedding f : L → M we can associate its Gauss map
G(d f ) : L → 
(M), given by G(d f )(q) = d f (Tq L) ⊂ T f (q)M . Observe
that 	 ◦ G(d f ) = f , in other words, G(d f ) covers f .
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The simplification of singularities of Lagrangian 651

Fig. 6 A nested double fold

Similarly, given a contact manifold (M2n+1, ξ), where locally ξ = ker(α)

for some 1-form α such that dα is non-degenerate on ξ , the Lagrangian Grass-
mannian is a fibre bundle 	 : 
(M) → M whose fibre 	−1(x) over a
point x ∈ M consists of all linear Lagrangian subspaces of the symplec-
tic vector space (ξx , dαx ). To each Legendrian embedding f : L → M
we associate its Gauss map G(d f ) : L → 
(M), given as before by
G(d f )(q) = d f (Tq L) ⊂ ξ f (q).

The formal analogue of the Gauss map is obtained by decoupling a
Lagrangian or Legendrian embedding from its tangential information.

Definition 1.8 Atangential rotation of aLagrangian orLegendrian embedding
f : L → M is a compactly supported deformation Gt : L → 
(M), t ∈
[0, 1], of G0 = G(d f ) such that 	 ◦ Gt = f .

Example 1.9 In the previous sectionwe introduced the double fold as an exam-
ple of a singularity locus. Observe that any double fold is homotopically trivial
in the following sense. If f has a double fold on the annulus A ⊂ L , then we
can always construct a tangential rotationGt of f supported in a neighborhood
of A such that at time t = 1 we have G1 � F in that same neighborhood. In
other words, there is no formal obstruction to removing a double fold.

The formal analogue of the condition �k( f ;F) = ∅ is the following.

Definition 1.10 AmapG : L → 
(M) is called�k-nonsingular with respect
to the foliationF if dim(G(q)∩Tg(q)F) < k for all q ∈ L , where g = 	◦G.
When k = 1 we simply say thatG is nonsingular, or transverse toF , and write
G � F .

Accordingly, we say that a Lagrangian or Legendrian embedding f is �k-
nonsingular with respect to F when G(d f ) is �k-nonsingular with respect
to F . When the foliation is clear from the context we will simply say �k-
nonsingular and omit the reference to F . It is easy to see that a necessary
condition for f to be Hamiltonian isotopic to a �k-nonsingular embedding

123



652 D. Álvarez-Gavela

is the existence of a tangential rotation Gt such that G1 is �k-nonsingular.
Indeed, if we denote the Hamiltonian isotopy by ϕt and we choose a family
of symplectic bundle isomorphisms �t : T M | f (L) → T M |ϕt◦ f (L) such that
�0 = id and such that �t

(

TF | f (L)

) = TF |ϕt◦ f (L), then we can set Gt =
�−1

t ·G(d(ϕt ◦ f )
)

. The family �t exists by the homotopy lifting property of
a Serre fibration. Note that in the contact case we must replace the symplectic
bundle (T M, ω) by the symplectic bundle (ξ, dα), but the argument is the
same.

The results we state in the next section assert that this necessary condition is
also sufficient when k = 2 and is almost sufficient when k = 1. The ‘almost’
part comes from the necessity of double folds and will be discussed below.

1.6 Main results

We are now ready to state the h-principle. Recall that M is a symplectic or
contact manifold equipped with a foliation F by Lagrangian or Legendrian
leaves. By the singularities of a Lagrangian or Legendrian embeddingwemean
its singularities of tangency with respect to F .

Theorem 1.11 Suppose that there exists a tangential rotation Gt : L →

(M) of a Lagrangian or Legendrian embedding f : L → M such that G1 �
F . Then there exists a compactly supportedHamiltonian isotopy ϕt : M → M
such that the singularities of ϕ1 ◦ f consist of a union of nested double folds.

Remark 1.12 In particular, ϕ1 ◦ f is �2-nonsingular. Indeed all of its singu-
larities are of the simplest possible type, namely the �10 fold.

Theorem 1.11 is a full h-principle in the sense of [14]. More precisely, the
following C0-close, relative and parametric versions of the statement hold.

(C0-close) We can choose the Hamiltonian isotopy ϕt to be arbitrarily C0-
close to the identity. Moreover, we can arrange it so that ϕt =
idM outside of an arbitrarily small neighborhood of f (L) in M .

(relative) Suppose that Gt = G(d f ) on Op(A) ⊂ L for some closed
subset A ⊂ L , where here and belowwe use Gromov’s notation
Op(A) for an arbitrarily small but unspecified neighborhood of
A. Thenwe can arrange it so thatϕt = idM on Op

(

f (A)
) ⊂ M .

(parametric) An analogous result holds for families of Lagrangian or Legen-
drian embeddings parametrized by a compact manifold of any
dimension. The statement also holds relative to a closed sub-
set of the parameter space. For example, it holds for the pair
(Dn, Sn−1) formed by the unit disk and its boundary sphere.
For details see Sect. 6.
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For singularities of type �2 we have the following h-principle, in which
we don’t have to worry about the presence of double folds since they are
singularities of type �1.

Theorem 1.13 Suppose that there exists a tangential rotation Gt : L →

(M) of a Lagrangian or Legendrian embedding f : L → M such that
G1 is �2-nonsingular with respect to the foliation F . Then there exists a
compactly supported Hamiltonian isotopy ϕt : M → M such that ϕ1 ◦ f is
�2-nonsingular.

In fact, we prove a much stronger version of Theorem 1.13 which allows
for the prescription of any homotopically allowable�1-type singularity locus.
The precise statement is given in Theorem 1.17 below, after we discuss Entov’s
results on the surgery of Lagrangian and Legendrian singularities.

1.7 The homotopical obstruction

Consider the subset�(M,F) ⊂ 
(M)which over each point x ∈ M consists
of all planes Px ∈ 
(M)x such that Px ∩ TxF �= 0. We have a stratification
�(M,F) = ⋃

k �k(M,F), where�k(M,F) = {Px : dim(Px ∩TxF) = k}.
The formal obstruction to �k-nonsingularity can be understood as follows: is
it possible to smoothly homotope the map G(d f ) : L → 
(M) through maps
Gt covering f so that its image becomes completely disjoint from the subset
�k(M,F) ⊂ 
(M)? This is a purely topological question.

The most obvious cohomological obstruction is given by the higher Maslov
classes. To define them, observe that �k(M,F) = {Px ∈ 
(M)x :
dim(Px ∩ TxF) = k} is a stratified subset of codimension k(k + 1)/2 inside
the Grassmannian 
(M), whose boundary ∂�k(M,F) = ⋃

l>k �l(M,F)

has dimension strictly less than dim
(

�k(M,F)
)−1. We can therefore define

μk = G(d f )∗mk ∈ Hk(k+1)/2(L; Z/2), where mk ∈ Hk(k+1)/2
(


(M); Z/2
)

is Poincaré dual to the cycle
[

�k(F)
]

. The classμk is an obstruction to remov-
ing the singularity �k .

Remark 1.14 Even for orientable M and F , the characteristic class μk lifts
over Z only for k odd (for example, the lift of μ1 in H1(L; Z) is the familiar
Maslov class). This can be seen by the following simple argument, which
the author learnt from Givental (private communication). In the homoge-
neous space 
n = U (n)/O(n), consider the subset �k = {[A] : A ∈
U (n), dim(AR

n ∩ R
n) = k} ⊂ 
n . Then it is easy to check that the normal

space to �k in 
n at [A] ∈ �k can be identified with the space of quadratic
forms on the intersection AR

n ∩ R
n . Hence the normal bundle to �k in 
n is

isomorphic to the pullback by the projection �k → Grn,k , [A] �→ AR
n ∩ R

n
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of the second symmetric power of the tautological bundle on the (n, k) Grass-
mannian Grn,k . When k is even, the generator of π1(Grn,k) (which lies in the
image of π1(�k) by the above projection) can be easily checked to induce a
change of orientation on this bundle, hence the cycle �k is not orientable.

More generally, to each multi-index I = (i1 ≥ i2 ≥ · · · ≥ ik) there exists
a cohomology class μI which obstructs the removal of � I and which is the
pullback of a universal class in the appropriate jet space. In addition to these
cohomological obstructions there exist subtler homotopical obstructions to the
simplification of singularities.

In certain situations the obstruction to the simplification of singularities can
be straightforwardly seen to vanish. In Sect. 6 we explore a couple of such
cases and are thus able to deduce concrete applications of our h-principle.
However, in general this homotopical problem can be nontrivial. For instance,
consider the setup of the nearby Lagrangian conjecture, so that f : L → T ∗B
is an exact Lagrangian embedding of a connected closed manifold L into the
cotangent bundle of a connected closed manifold B. Abouzaid and Kragh
showed in [30] that the first Maslov class μ1 always vanishes. However, to the
extent of the author’s knowledge it is not known whether the higher Maslov
classes μk must also vanish.

1.8 Strategy of the proof and outline of the paper

The strategy of proof of our main result Theorem 1.11 is an adaptation to
the symplectic and contact setting of the strategy employed in Eliashberg
and Mishachev’s wrinkled embeddings paper [15]. Wrinkled embeddings are
topological embeddings of smooth manifolds which are smooth embeddings
away from a finite union of spheres of codimension 1, called wrinkles, where
the mapping has cusps (together with their birth/deaths on the equator of each
sphere). The rank of the differential falls by one on the wrinkling locus, hence
the map fails to be a smooth embedding near the wrinkles. However, there
is a well-defined tangent plane at every point of the image and so wrinkled
embeddings have Gauss maps just like smooth embeddings. In this paper
we define wrinkled Lagrangian and Legendrian embeddings to be wrinkled
embeddings f into a symplectic or contact manifold M whose Gauss map
G(d f ) lands in the Lagrangian Grassmannian. The precise definition, together
with all related terminology, is given in Sect. 2.

Thepoint ofworkingwithwrinkledLagrangian andLegendrian embeddings
instead of regular Lagrangian andLegendrian embeddings is the following the-
orem, the proof of which takes up Sects. 3, 4 and 5 (a more precise breakdown
of its proof is given below) (Fig. 7).
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Fig. 7 The strategy of the proof

Theorem 1.15 Any tangential rotation Gt of a regular Lagrangian or Legen-
drian embedding f can be C0-approximated by the Gauss maps G(d ft ) of a
homotopy ft of wrinkled Lagrangian or Legendrian embeddings.

Such a statement is of course false if we demand that the homotopy ft
consists only of regular Lagrangian or Legendrian embeddings. The additional
flexibility provided by Theorem 1.15 trivially implies the following result: if
there exists a tangential rotation Gt of a regular Lagrangian or Legendrian
embedding f such that G1 is transverse to an ambient foliation F , then there
exists a homotopy of wrinkled Lagrangian or Legendrian embeddings ft such
that f1 is transverse to F . By a regularization process (which is C0 small but
C1 large) we can smooth out the wrinkles of ft and obtain a homotopy of
regular Lagrangian or Legendrian embeddings ˜ft . The embedding ˜f1 is no
longer transverse to F , we must of course pay a price when we pass from f1
to ˜f1. The price is the following: the regularization process causes �10 folds
to appear where the embedding used to be wrinkled, with �110 pleats on the
equator of each wrinkle. But these �110 pleats are not necessary, we can use a
surgery of singularities technique to get rid of them. The result of the surgery
is a union of double folds, as in the conclusion of our h-principle. See Fig. 7
for an illustration of the strategy. We formalize the process described in this
paragraph in Sect. 6, where we also present applications of the h-principle.
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The heart of the matter is therefore to prove the C0-approximation result
for wrinkled Lagrangian and Legendrian embeddings stated in Theorem 1.15.
The steps in the proof of this result are roughly as follows.

Step 1 (Section 3) We first restrict the class of tangential rotations under
consideration. A suitable class is that of simple rotations, which are those
that fix a hyperplane field in the tangent space to the embedding, leaving
only one degree of freedom to rotate. The key result we prove is that any
tangential rotation can be C0 approximated by a piecewise simple tangential
rotation. By piecewise simple we mean that there is some subdivision of the
time interval [0, 1] such that on each subinterval the Lagrangian plane field
Gt always contains a fixed field of isotropic (n−1)-planes (the field of course
depends on the subinterval). Using this result we reduce to proving Theorem
1.15 for simple tangential rotations, but now allowing for the possibility that
f is wrinkled to start with.
Step 2 (Section 4) We use a refinement of the holonomic approximation

lemma of Eliashberg and Mishachev [13] to construct a homotopy of our
embedding f (which now may have wrinkles!) such that the Gauss map of
the homotopy approximates our simple rotation Gt near the wrinkles. This
is achieved by wiggling f via an ambient Hamiltonian isotopy, so no new
wrinkles are needed at this stage. The refinement in question is a version of
the holonomic approximation lemma in which cutoffs are carefully controlled.
We established this refinement in [1]. The control in the cutoffs allows us
to perform the wiggling of f in such a way that the simplicity condition is
preserved up to an error which can be made arbitrarily small.

Step 3 (Section 5) We construct by hand a local relative wrinkling model
which allows us to add wrinkles to the homotopy produced in the previous
step so that the resulting Gauss map globally approximates Gt on the whole
submanifold, completing the proof of Theorem 1.15. The simplicity of Gt
is essential in order for us to reduce the general problem to an explicit local
model.Ourmodel is analogous to themodel used byEliashberg andMishachev
in [16] but some care is needed in order to adapt their construction to the
Lagrangian and Legendrian settings without the inevitable cutoffs introducing
uncontrolled error terms.

This completes the outline of the proof. We conclude this introduction with
some brief comments on the techniques of surgery of singularities and wrin-
kling.

1.9 Surgery of singularities

In his thesis [9], Eliashberg developed a technique to modify the singularity
locus of a �2-nonsingular map between smooth manifolds by means of a
surgery construction, see Fig. 8 for an example. This technique yields an
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Fig. 8 An example of the surgery of singularities

h-principle for the simplification of singularities of �2-nonsingular smooth
maps. Almost thirty years later, Entov adapted this surgery technique to the
setting of Lagrangian and Legendrian fronts, also in his thesis [20]. The main
point in Entov’s construction is to write down the generating functions that
produce Eliashberg’s surgeries, but some additional subtleties arise such as the
Maslov co-orientation. As a consequence of Entov’s results, one obtains an h-
principle for the simplification of singularities of �2-nonsingular Lagrangian
or Legendrian fronts, which we now briefly discuss.

Suppose that f : L → M is a �2-nonsingular Lagrangian or Legendrian
embedding into a symplectic or contact manifold M equipped with a folia-
tion F by Lagrangian or Legendrian leaves. We recall that �2-nonsingularity
means that dim(d f (Tq L) ∩ T f (q)F) < 2 for all q ∈ L , hence �2 = ∅.
The Thom–Boardman stratification of the singularity locus � = �1 there-
fore consists of a flag of submanifolds �1 ⊃ �11 ⊃ · · · ⊃ �1n , where
dim(�1k ) = n−k. This flag, togetherwith certain co-orientationdatawhichwe
won’t be precise about right now, is called the chain of singularities associated
to the embedding f and the foliationF . More generally, given any Lagrangian
distribution D defined along f (L) (not necessarily tangent to an ambient foli-
ation), we say that D is �2-nonsingular if dim(d f (Tq L) ∩ D f (q)) < 2 for
all q ∈ L . For such Lagrangian distributions D we can similarly define an
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associated chain of singularities consisting of a flag �1 ⊃ �11 ⊃ · · · ⊃ �1n

together with certain co-orientation data.
We say that two chains of singularities are equivalent if the flags of sub-

manifolds are isotopic in L , with the corresponding co-orientation data also
matching up under the isotopy. Entov’s main result can be phrased as follows.

Theorem 1.16 (Entov) Let f : L → M be a �2-nonsingular Lagrangian or
Legendrian embedding into a symplectic or contact manifold M equipped with
a foliation F by Lagrangian or Legendrian leaves. Let Dt be a homotopy of
�2-nonsingular Lagrangian distributions defined along f (L), fixed outside
of a compact subset and such that D0 = TF | f (L). We moreover assume
that f � F outside of that compact subset. Then there exists a C0-small
compactly supported Hamiltonian isotopy ϕt : M → M such that the chain of
singularities ofϕ1◦ f with respect toF is equivalent to the chainof singularities
of f with respect to D1, together with a union of nested double folds.

Suppose that G(d f ) � D1. Then the chain of singularities associated to f
and D1 is empty and the conclusion of Entov’s theorem is the same as the one
in our Theorem 1.11. It is no coincidence that both Entov’s result and Theorem
1.11 only work up to a union of double folds. Although homotopically trivial,
one cannot hope to get rid of these double folds in general. The rigidity of
Lagrangian and Legendrian folds was first explored by Entov in [21] and by
Ferrand and Pushkar in [22] and [23]. We note that for singularities of smooth
maps as considered by Eliashberg in [8] and [9] the situation is slightly better:
one can always absorb these double folds into an already existing fold locus
with the only condition that this locus is nonempty.

The main limitation of the surgery technique is that it requires �2-
nonsingularity of the initial embedding to even get started. A generic
Lagrangian or Legendrian embedding is �2-nonsingular only when the
Lagrangian or Legendrian has dimension ≤ 2. This restricts significantly the
possible applications of the surgery h-principle beyond the case of Lagrangian
or Legendrian surfaces. Even in the 2-dimensional case, �2-type singularities
will generically arise in 1-parametric families, preventing a satisfactory para-
metric result from being formulated.

This limitation is not serious in the smooth version of the problem because
one can easily get rid of �2-type singularities by using a different technique,
for example one can use Gromov’s convex integration (the partial differential
relation in question is ample, see Section 2.4 of [26]). Unfortunately, these
techniques seem to be inadequate to get rid of the �2-type singularities of
Lagrangian and Legendrian fronts. We bypass this issue in the present article
by using a different strategy, namely the wrinkling philosophy. Indeed, we will
prove in Sect. 6.3 the following version of Entov’s Theorem 1.16 in which the
condition of �2-nonsingularity is dropped.
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Theorem 1.17 Let f : L → M be a Lagrangian or Legendrian embed-
ding into a symplectic or contact manifold M equipped with a foliation F
by Lagrangian or Legendrian leaves. Let Dt be a homotopy of Lagrangian
distributions defined along f (L), fixed outside of a compact subset, such that
D0 = TF | f (L) and such that D1 is �2-nonsingular. We moreover assume
that f � F outside of that compact subset. Then there exists a C0-small
compactly supported Hamiltonian isotopy ϕt : M → M such that ϕ1 ◦ f is
�2-nonsingular with respect to F and moreover such that the chain of singu-
larities of ϕ1 ◦ f with respect to F is equivalent to the chain of singularities
of f with respect to D1, together with a union of nested double folds.

Remark 1.18 Theorem 1.13, the h-principle for �2-nonsingular embeddings,
is an immediate consequence of Theorem 1.17.

1.10 The wrinkling philosophy

Many h-principles can be proved by interpolating between local Taylor approx-
imations. To achieve this interpolation near a subset of positive codimension,
one can use the extra dimension to wiggle the subset in and out, creating
extra room. This room ensures that no big derivatives arise when interpolating
from one Taylor polynomial to another. This idea has been present throughout
the history of the h-principle starting with the immersion theory of Smale-
Hirsch-Phillips [27,37,40] and Gromov’s method of flexible sheaves [24,26].
The wiggling strategy was reformulated into a simple but general statement
by Eliashberg and Mishachev in [13,14] with their holonomic approximation
lemma.

In many cases, however, one wishes to prove a global h-principle on the
whole manifold (which might be closed) and there is no extra dimension avail-
able for wiggling. In the absence of additional hypotheses (such as ampleness),
the wrinkling philosophy provides a strategy for proving global h-principles.
The idea is to wrinkle the manifold back and forth upon itself. One can then
interpolate between local Taylor approximations along thewrinkles. Thewrin-
kling process creates the extra room needed so that this interpolation does not
create big derivatives. One pays an unavoidable price, namely the singularities
caused by the wrinkles. However, these are very simple singularities which
can be explicitly understood (Fig. 9).

In their papers [10–12,15–17], Eliashberg andMishachev exploit this wrin-
kling strategy to prove a number of results in flexible geometric topology.
Together with Galatius, they give a further application in [18]. The theorem
on wrinkled embeddings from [15], which is particularly relevant for our pur-
poses, has gained greater significance after it was used by Murphy in [34] to
establish the existence of loose Legendrians in high-dimensional contact man-
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Fig. 9 The difference between wiggling and wrinkling

ifolds. Our paper provides a different application of the wrinkled embeddings
theorem to flexible symplectic and contact topology.

Warning 1.19 At this point we should alert the reader that Murphy’s wrin-
kled Legendrians are not the same as our wrinkled Lagrangian and Legendrian
embeddings. The two notions should not be confused, despite the terribly sim-
ilar terminology for which the author can only apologize and excuse himself
in the desire to be consistent with the existing literature [15].

To be clear: in Murphy’s wrinkled Legendrians, the wrinkles occur in the
Legendrian front. In the wrinkled Lagrangian and Legendrian embeddings
under consideration in this paper, the wrinkles occur in the Lagrangian or
Legendrian submanifold itself (see Remark 2.5 below).

2 Lagrangian and Legendrian wrinkles

2.1 Wrinkled embeddings

We start by recalling the definition of wrinkled embeddings, from [15].
Throughout we denote a point q ∈ R

n by q = (q̂, qn), where q̂ =
(q1, . . . , qn−1).

Definition 2.1 A wrinkled embedding is a topological embedding f : Ln →
Xn+r which is a smooth embedding away froma disjoint union of finitelymany
topologically trivial embedded (n − 1)-spheres S ⊂ L , with f equivalent (up
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Fig. 10 One half of a
standard wrinkle

to diffeomorphism) on Op(S) to the local model Wn,r : Op(Sn−1) ⊂ R
n →

R
n+r given by (Fig. 10)

(q1, . . . , qn) �→ (q1, . . . , qn−1, η, 0, . . . , 0, h) ,

where η(q) = q3n + 3
(||q̂||2 − 1

)

qn and

h(q) =
∫ qn

0

(||q̂||2 + u2 − 1
)2
du.

We recall that by topologically trivial we mean that each sphere is the
boundary S = ∂B of an embedded n−ball B ⊂ L . We say that f has a
wrinkle along each S. The wrinkle itself is the germ of f in a neighborhood
of S. By definition all the wrinkles are equivalent and the above formula gives
an explicit model.

The mapping Wn,r has singularities along Sn−1. On the upper and lower
hemispheres Sn−1 ∩{qn > 0} and Sn−1 ∩{qn < 0}, the singularities are semi-
cubical cusps. More precisely, near each point of Sn−1\Sn−2, the modelWn,r
is locally equivalent to the following map near the origin, see Fig. 11.

(q1, . . . , qn) �→ (

q1, . . . , qn−1, q
2
n , 0, . . . , 0, q

3
n

)

.

On the equator Sn−2 = Sn−1∩{qn = 0}, the singularities are the birth/death
of semi-cubical zig-zags. More precisely, near each point of Sn−2, the model
Wn,r is locally equivalent to the following map near the origin, see Fig. 12.

(q1, . . . , qn) �→
(

q1, . . . , qn−1, q
3
n − 3q1qn, 0, . . . , 0,

∫ qn

0

(

u2 − q1
)2
du
)

.

Warning 2.2 Observe that a wrinkled embedding has singularities along the
wrinkles, but these are not singularities of tangency with respect to any folia-
tion. These are (non-generic) singularities of the smooth map, in other words,
points in the source where the rank of the differential is strictly less than the
possible maximum. Throughout the paper we will be talking about both types
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Fig. 11 A wrinkled
embedding has cusps on the
complement of the equator
of each wrinkle

Fig. 12 A wrinkled
embedding has birth/deaths
of zig-zags on the equator of
each wrinkle

Fig. 13 A wrinkled
embedding has a
well-defined Gauss map
everywhere, including points
in the wrinkling locus

of singularities but it should always be clear from the context which type we
are referring to in each case.

A wrinkled embedding has a well defined Gauss map G(d f ) : L →
Grn(X), whereGrn(X) is theGrasmannian of n-planes in T X . For each q ∈ L
there is a unique n-dimensional subspaceG(d f )(q) ⊂ T f (q)X tangent to f (L)

at f (q). At regular points q ∈ L we have of course G(d f )(q) = d f (Tq L),
but G(d f )(q) is defined even at singular points, see Fig. 13.

2.2 Wrinkled Lagrangian and Legendrian embeddings

Let (M, ω) be a symplectic manifold.
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Definition 2.3 Awrinkled Lagrangian embedding is a topological embedding
f : Ln → (M2n, ω) which is a smooth Lagrangian embedding away from a
disjoint union of finitely many topologically trivial embedded (n−1)-spheres
S ⊂ L , with f equivalent (up to symplectomorphism) on Op(S) ⊂ L to the
local model Ln : Op(Sn−1) ⊂ R

n → (T ∗
R
n, dp ∧ dq) given by

(q1, . . . , qn) �→
(

q1 , . . . , qn−1 , η ,
∂H

∂q1
− h

∂η

∂q1
, . . . ,

∂H

∂qn−1

− h
∂η

∂qn−1
, h

)

where η(q) = q3n + 3(||q̂||2 − 1)qn, h(q) =
∫ qn

0
(||q̂||2 + u2 − 1)2du

and H(q) =
∫ qn

0
h(q̂, u)

∂η

∂qn
(q̂, u)du.

The wrinkled Lagrangian embedding Ln is obtained from the wrinkled
embedding Wn,n in the following way. Let (q, p) be the standard coordi-
nates on T ∗

R
n = R

n(q1, . . . , qn) × R
n(p1, . . . , pn). Keeping pn ◦Wn,n = h

fixed, for j < n we replace the zero functions p j ◦ Wn,n = 0 with the only
possible functions (up to initial conditions) which will make the embedding
Lagrangian. Informally, integrate h in the direction ∂/∂qn and differentiate the
resulting function in the directions ∂/∂q j , j < n. Note that this construction
produces a Lagrangian object out of a smooth object, independently of which
functions η and h one applies the construction to. Taking η and h to be the func-
tions defining the local model for a wrinkled embedding we obtain the local
model for a wrinkled Lagrangian embedding. The corresponding definition
for Legendrians is entirely analogous. Let (M, ξ) be a contact manifold.

Definition 2.4 Awrinkled Legendrian embedding is a topological embedding
f : Ln → (M2n+1, ξ) which is a smooth Legendrian embedding away from a
disjoint union of finitely many topologically trivial embedded (n−1)-spheres
S ⊂ L , with f equivalent (up to contactomorphism) on Op(S) ⊂ L to the
local model ̂Ln : Op(Sn−1) ⊂ R

n → (

J 1(Rn, R), ξstd
)

given by

(q1, . . . , qn) �→
(

q1 , . . . , qn−1 , η ,
∂H

∂q1
− h

∂η

∂q1
, . . . ,

∂H

∂qn−1

−h
∂η

∂qn−1
, h , H

)

where η(q) = q3n + 3(||q̂||2 − 1)qn, h(q) =
∫ qn

0
(||q̂||2 + u2 − 1)2du,
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Fig. 14 The Legendrian front which generates one half of a Legendrian wrinkle. The cusps and
swallowtail have a higher order of tangency than the standard cusps or swallowtails which one
finds in the front projection of a regular Legendrian. To be more precise, the cusps which appear
in the front projection of a Legendrian wrinkle are locally equivalent to y2 = x5, whereas the
standard cusps are locally equivalent to y2 = x3

and H(q) =
∫ qn

0
h(q̂, u)

∂η

∂qn
(q̂, u)du.

We recall that J 1(Rn, R) = T ∗
R
n(q, p) × R(z) with the standard contact

structure ξstd = ker(dz − pdq). The Legendrian model ̂Ln is the Leg-
endrian lift of the Lagrangian model Ln under the Lagrangian projection
J 1(Rn, R) → T ∗

R
n , (q, p, z) �→ (q, p). Consider also the front projection

J 1(Rn, R) → J 0(Rn, R) = R
n × R, (q, p, z) �→ (q, z). It is conceptually

useful to understand the Legendrian front of the model ̂Ln , which is the map
Op(Sn−1) ⊂ R

n → R
n × R given by q �→ (

(q̂, η), H
)

. On each of the
hemispheres in Sn−1\Sn−2, the front has semi-quintic cusps. On the equator
Sn−2 ⊂ Sn−1, the front has semi-quintic swallowtail singularities. See Fig. 14
for an illustration.

When we need to specify that a Lagrangian or Legendrian embedding f :
L → M is not wrinkled, we will call f regular. Observe that the Gauss map
G(d f ) of a wrinkled Lagrangian or Legendrian embedding f : L → M
lands in the Lagrangian Grassmannian 
(M), just like a regular Lagrangian
or Legendrian embedding.

Warning 2.5 The zig-zags of a wrinkled Legendrian embedding are differ-
ent from the zig-zags which appear in the loose Legendrians and wrinkled
Legendrians of Murphy [34]. Indeed, the zig-zags of Murphy’s wrinkled Leg-
endrians occur in the front projection, whereas the zig-zags of our wrinkled
Legendrian embeddings occur in the Legendrian submanifold itself.Moreover,
the Lagrangian projection ofMurphy’s wrinkled Legendrians is not embedded
(there is a Reeb chord in the zig-zag), whereas the Lagrangian projection of
our wrinkled Legendrian is a wrinkled Lagrangian embedding, which is in
particular a topological embedding. Finally, the cusps of Murphy’s wrinkled
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Legendrians are semi-cubic in the front projection whereas the cusps of our
wrinkled Legendrian embeddings are semi-quintic in the front projection. So
the two notions of wrinkled Legendrian are quite different, although of course
they share the feature of exploiting the wrinkling philosophy in the context of
symplectic and contact geometry.

We should also mention that a wrinkled embedding [15] is not a wrinkled
map in the sense of [10], though of course the two are closely related. We
make sure to always include the word ‘embedding’ throughout the text when
referring to our wrinkled Lagrangian and Legendrian embeddings in the hope
of minimizing confusion, but in any case this is the only flavor of wrinkling
that will appear.

2.3 Parametric families of wrinkles

Wewill also consider families f z parametrized by a smooth compact manifold
Z , possibly with boundary. A family of regular Lagrangian or Legendrian
embeddings f z : L → M parametrized by Z is simply a smooth map Z ×
L → M , (z, q) �→ f z(q), such that for each z ∈ Z the map f z is a regular
Lagrangian or Legendrian embedding. If we allow the embeddings f z to be
wrinkled, then we must allow the wrinkles to appear and disappear as the
parameter z varies. Indeed, in the smooth case considered in [15], Eliashberg
and Mishachev allow wrinkled embeddings to have the following local model
En,r : Op(0) ⊂ R

n → R
n+r near finitely many points. These are embryos of

wrinkles, instances of birth/death.

(q1, . . . , qn) �→
(

q1, . . . , qn−1, μ, 0, . . . , 0, e
)

,

where μ(q) = q3n + 3||q̂||2qn and e =
∫ qn

0
(||q̂||2 + u2)2du.

In the symplectic or contact case, we can deduce corresponding local forms
for Lagrangian or Legendrian embryos by integrating the function e in the
direction ∂/∂qn and then differentiating in the directions ∂/∂q j , j < n, just
like we did in the definition of Lagrangian and Legendrian wrinkles. However,
we wish to be slightly more precise in the way in which we allow wrinkles to
be born or die and so we give the following definition of a family of wrinkled
Lagrangian or Legendrian embeddings.We use the fibered terminology, which
is a convenient language and is largely self-explanatory (the reader whowishes
to see further details may consult for example [15]).

Definition 2.6 A fibered wrinkled Lagrangian embedding f z : Ln →
(M2n, ω) parametrized by an m-dimensional manifold Z is a topological
embedding f : Z × L → Z × M , (z, q) �→ (z, f z(q)) such that f is a
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fibered smooth Lagrangian embedding away from a disjoint union of finitely
many topologically trivial embedded (m + n− 1)-spheres S ⊂ Z × L , with f
equivalent (up to fibered symplectomorphism) on Op(S) ⊂ Z × L to the local
fibered model LF

n,m : Op(Sm+n−1) ⊂ R
m × R

n → R
m × (T ∗

R
n, dp ∧ dq)

given by

(z1, . . . , zm, q1, . . . , qn) �→
(

z1, . . . , zm, q1, . . . , qn−1, η ,
∂H

∂q1

−h
∂η

∂q1
, . . . ,

∂H

∂qn−1
− h

∂η

∂qn−1
, h

)

,

where η(z, q) = q2n + 3(||z||2 + ||q̂||2 − 1)qn,

h(z, q) =
∫ qn

0
(||z||2 + ||q̂||2 + u2 − 1)2du

and H(z, q) =
∫ qn

0
h(z, q̂, u)

∂η

∂qn
(z, q̂, u)du.

If we restrict LF
n,m to the half space {z1 ≥ 0} we get the local model for the

fibered half-wrinkles near the boundary ∂Z of the parameter space. We can
define fibered wrinkled Legendrian embeddings in the exact same way, with
the local model ̂LF

n,m = (LF
n,m, H) : Op(Sm+n−1) ⊂ R

m × R
n → R

m ×
(

J 1(Rn, R), ξstd
)

. When we talk about families of wrinkled Lagrangian or
Legendrian embeddings parametrized by a compact manifold, we will always
assume that the family is fibered in the sense just described.

2.4 Exact homotopies

Taking Z = [0, 1] in the definition of fibered wrinkled Lagrangian or Legen-
drian embeddings, we obtain the notion of a homotopy of wrinkled Lagrangian
or Legendrian embeddings ft : L → M , t ∈ [0, 1], in which wrinkles are
allowed to be born and to die as time goes by. The notion of exactness for
homotopies of regular Lagrangian embeddings can be extended to the wrin-
kled case in a straightforward way.

Definition 2.7 Let ft : L → M be a homotopy of (possibly wrinkled)
Lagrangian embeddings. We say that ft is exact if the following condition
holds. For the mapping F : L × [0, 1] → M defined by (q, t) �→ ft (q),
consider the closed form i∂/∂t F∗ω on L × [0, 1]. We demand that this form
is exact when pulled back to L by each of the inclusions L ↪→ L × [0, 1],
q �→ (q, t) (Fig. 15).

Remark 2.8 Recall that if ft : L → M is a homotopy of regular Lagrangian
embeddings, then for small time t > 0 one can interpret ft as a closed 1-
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Fig. 15 The difference between an exact and a non-exact deformation of the zero section
B ↪→ T ∗B. On the left, the areas cancel out, whereas on the right they do not. Exactness can
be thought of as an area condition

form αt on L by identifying a neighborhood of the zero section in T ∗L with a
Weinstein neighborhood of f0(L) in M . In this case exactness of ft amounts
to asking that αt is exact for every t ∈ [0, 1].

The importance of this definition stems from the following fact. If ft :
L → M is a compactly supported exact homotopy of regular Lagrangian
embeddings, then there exists a (compactly supported) ambient Hamiltonian
isotopyϕt : M → M such that ft = ϕt ◦ f0.Wewill alwayswant to ensure that
all homotopies of Lagrangian embeddings, regular or wrinkled, are exact. In
the contact case, exactness is automatic. For convenience, we shall therefore
refer to all homotopies of Legendrian embeddings, regular or wrinkled, as
exact.

When a homotopy ft is fixed on a closed subset A ⊂ L (usually A = L\U
is the complement of an open setU where we are performing some geometric
manipulation), the notions of exactness will be understood relative to Op(A).
In this way, the ambient Hamiltonian isotopy inducing ft can be taken to be
the identity on Op

(

f (A)
) ⊂ M .

2.5 Regularization of wrinkles

Wrinkles can be regularized as follows. Consider the local modelWn,n(q) =
(q̂, η, 0, . . . , 0, h) introduced in Sect. 2.1. Let φ : R

n → R be a C∞-small
function such that ∂φ/∂qn > 0 on Sn−1 ⊂ R

n and such that supp(φ) ⊂
Op(Sn−1). Let˜h = h+φ and observe that ˜Wn,n(q) = (q̂, η, 0, . . . , 0,˜h) is a
smooth regular embedding such that ˜Wn,n = Wn,n outside of Op(Sn−1), see
Fig. 16.

Next, require further that

∫ qn

0
φ(q̂, u)

∂η

∂qn
(q̂, u) = 0
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Fig. 16 Regularization of the standard wrinkle

Fig. 17 The regularization can be also understood in terms of the front projection. The effect
is to replace the semi-quintic cusps and swallowtails with semi-cubic cusps and swallowtails

whenever q = (q̂, qn) /∈ supp(φ), and consider the modified integral

˜H(q) =
∫ qn

0

˜h(q̂, u)
∂η

∂qn
(q̂, u)du.

Weobtain a regularLagrangian embedding ˜Ln : Op(Sn−1) → (T ∗
R
n, dp∧

dq) such that ˜Ln = Ln outside of Op(Sn−1) by the formula

(q1, . . . , qn) �→
(

q1, . . . , qn−1, η ,
∂ ˜H

∂q1
−˜h

∂η

∂q1
, . . . ,

∂ ˜H

∂qn−1
−˜h

∂η

∂qn−1
, ˜h
)

.

TheLegendrian counterpart of the regularization is the localmodel (˜Ln, ˜H).
See Fig. 17 for an illustration of the regularization process in the front projec-
tion. Given a wrinkled Lagrangian or Legendrian embedding f : L → M , we
can apply this local procedure to everywrinkle and obtain a regular Lagrangian
or Legendrian embedding ˜f . Similarly, a fibered wrinkled Lagrangian or Leg-
endrian embedding f z can be regularized to a fibered regular Lagrangian or
Legendrian embedding ˜f z . If ft : L → M is an exact homotopy of wrinkled
Lagrangian embeddings, then ˜ft : L → M is an exact homotopy of regular
Lagrangian embeddings.

The change in the order of tangency as well as the geometric meaning of
the condition

∫ qn
0 φ(q̂, u)

∂η
∂qn

(q̂, u)du = 0 can be better appreciated if we
focus on the complement of the equator. See Fig. 18 for an illustration of the
regularization process near a cusp point.
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Fig. 18 Effect of the regularization process away from the equator in both the Lagrangian
and front projections. The equation

∫ qn
0 φ(q̂, u)

∂η
∂qn

(q̂, u)du = 0 manifests itself as an area
condition in the bottom left

Remark 2.9 Observe that the regularization process f �→ ˜f depends on the
choice of φ. However, the space of possible φ is convex and therefore ˜f
is well defined up to a contractible choice. Different choices alter ˜f by an
ambient Hamiltonian isotopy supported on a neighborhood of the image of
the wrinkling locus.

Remark 2.10 In the Lagrangian case, let T ∗
R
n be foliated by the fibres of the

standard projection π : T ∗
R
n → R

n and in the contact case, let J 1(Rn, R) =
T ∗

R
n×R be foliated by the fibres of the front projectionπ×id : T ∗

R
n×R →

R
n × R. Observe that the standard Lagrangian and Legendrian wrinkles are

transverse to these foliations.Moreover, when we regularize the Lagrangian or
Legendrian wrinkle we obtain a regular Lagrangian or Legendrian embedding
whose singularities of tangency with respect to the corresponding foliation
consist of �10 folds away from the equator and of �110 pleats on the equator.

2.6 Sharpening the wrinkles

Let D± = {q ∈ Sn−1| ± qn ≥ 0} be the north and south hemispheres of the
unit sphere Sn−1 ⊂ R

n and let Dn−1 be the closed unit disk in R
n−1, which
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we think of as sitting in R
n via the inclusion R

n−1 = R
n−1 × 0 ⊂ R

n . The
standard Lagrangian wrinkle Ln : Op(Sn−1) ⊂ R

n → T ∗
R
n is equivalent

on Op(D±)\Op(∂D±) to the following local model Cn : R
n → T ∗

R
n on

Op(Dn−1)\Op(∂Dn−1).

Cn(q1, . . . , qn) = (

q1, . . . , qn−1, q
2
n , 0, . . . , q

3
n

)

.

Note that Cn is the product of C1 : R → T ∗
R and the zero section R

n−1 ↪→
T ∗

R
n−1. Scaling the model Cn by any small number ε > 0 in the direction of

the cotangent fibres yields a sharpened Lagrangian cusp ε Cn : R
n → T ∗

R
n .

Explicitly, we set

ε Cn(q1, . . . , qn) = (

q1, . . . , qn−1, q
2
n , 0, . . . , εq

3
n

)

.

Later on itwill be useful for us to be able to sharpen the cusps of aLagrangian
wrinkle at will. This sharpening can be achieved by interpolating between the
twomodels Cn and ε Cn . The key property of the sharpening construction is that
the interpolation can be achieved by aC1-small perturbation. The precise result
that we will need is the following, where we recall the notation q = (q̂, qn),
q̂ = (q1, . . . , qn−1) (Fig. 19).

Lemma 2.11 For δ, ε > 0 there exists an exact homotopy Cn,t : R
n → T ∗

R
n

such that the following properties hold.

• Cn,0 = Cn.
• Cn,t = Cn when |qn| > 2δ or ||q̂|| > 1 − δ.
• Cn,1 = ε Cn when |qn| < δ and ||q̂|| < 1 − 2δ.
• distC1(Cn, Cn,t ) ≤ K δ, where K is a constant independent of δ and ε.

The same Lemma also holds for the Legendrian cusp ̂Cn = (Cn,C) : R
n →

T ∗
R
n × R = J 1(Rn, R), where C(q) = 2

5q
5
n . We prove the Lagrangian and

Legendrian versions simultaneously.

Fig. 19 Sharpening the Lagrangian cusp. Since we define the sharpening by means of a gen-
erating function, the area condition which is necessary for exactness is automatically satisfied,
as shown on the picture
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Proof Fix A > 1. Given δ, ε > 0 arbitrarily small, there exists a function
ψ : R × R → [0, 1] satisfying the following properties:
• ψ(x, y) = ε for (x, y) ∈ [−δ, δ] × [−1 + 2δ, 1 − 2δ],
• ε ≤ ψ(x, y) ≤ 1 for (x, y) ∈ [−2δ, 2δ] × [−1 + δ, 1 − δ]\ [−δ, δ] ×

[−1 + 2δ, 1 − 2δ],
• ψ(x, y) = 1 for (x, y) /∈ [−2δ, 2δ] × [−1 + δ, 1 − δ].
• |∂ψ/∂x |, |∂ψ/∂y| ≤ A/δ.
• |∂2ψ/∂x2|, |∂2ψ/∂x∂y|, |∂2ψ/∂y2| ≤ A/δ2.
• ∂ψ/∂y = 0 when |y| < 1 − 2δ.

Set ψt = (1 − t) + tψ and Ct (q) = 2
5ψt (qn, ||q̂||)q5n . The front q �→

(

(q̂, q2n ),Ct
) ∈ R

n × R generates the Lagrangian and Legendrian cusps Cn,t

and ̂Cn,t = (Cn,t ,Ct ) respectively. To be explicit, we have

Cn,t (q) =
(

q̂, q2n ,
2

5

∂ψt

∂y
(qn, ||q̂||)q1q

5
n

||q̂|| , . . . ,

2

5

∂ψt

∂y
(qn, ||q̂||)qn−1q5n

||q̂|| ,
1

5

∂ψt

∂x
(qn, ||q̂||)q4n + ψt (qn, ||q̂||)q3n

)

.

The first three properties stated in the Lemma are clearly satisfied. The fourth
property follows from the uniformbounds on the first and second partial deriva-
tives of ψ . ��

Next we explain how to sharpen the birth/deaths of zig-zags on the equator
of each wrinkle. The standard Lagrangian wrinkle Ln : Op(Sn−1) ⊂ R

n →
T ∗

R
n is equivalent on Op(Sn−2) ⊂ R

n to the following local model Gn :
Sn−2 × R

2 → T ∗(Sn−2 × R
2) on Op(Sn−2 × 0) ⊂ Sn−2 × R

2.

Gn (̃q, qn−1, qn) =
(

q̃, qn−1, τ, 0,
∂G

∂qn−1
− g

∂τ

∂qn−1
, g

)

,

q = (̃q, qn−1, qn) ∈ Sn−2 × R × R,

where τ(qn−1, qn) = q3n − 3qn−1qn,

g(qn−1, qn) =
∫ qn

0
(u2 − qn−1)

2du

and G(qn−1, qn) =
∫ qn

0
g(qn−1, u)

∂τ

∂qn
(qn−1, u) du.

We remark that Gn is the product of G2 : R
2 → T ∗

R
2 with the zero section

Sn−2 ↪→ T ∗Sn−2. For any ε > 0, the sharpened model ε Gn : Sn−2 × R
2 →

T ∗(Sn−2 × R
2) is given by
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Fig. 20 Sharpening the Lagrangian birth/death of zig-zags

ε Gn (̃q, qn−1, qn) =
(

q̃, qn−1, τ, 0, ε

(

∂G

∂qn−1
− g

∂τ

∂qn−1

)

, εg

)

.

The following result allows us to interpolate between Gn and ε Gn while
maintaining C1−control throughout the perturbation (Fig. 20).

Lemma 2.12 For any δ, ε > 0 there exists an exact homotopy Gn,t : Sn−2 ×
R
2 → T ∗(Sn−2 × R

2) such that the following properties hold.

• Gn,0 = Gn.
• Gn,t = Gn when |qn−1| > 2δ or |qn| > 2δ.
• Gn,1 = ε Gn when |qn−1| < δ and |qn| < δ.
• distC1(Gn,Gn,t ) ≤ K δ, where K is a constant independent of δ and ε.

As before, the same Lemma also holds for the Legendrian counterpart ̂Gn =
(Gn,G) : Sn−2 × R

2 → T ∗(Sn−2 × R
2) × R = J 1(Sn−2 × R

2, R) and we
prove both versions simultaneously.

Proof Fix A > 1. Given δ, ε > 0 arbitrarily small there exists a function
φ : R

2 → [0, 1] satisfying the following properties.
• φ(x, y) = ε for (x, y) ∈ [−δ, δ]2,
• ε ≤ φ(x, y) ≤ 1 for (x, y) ∈ [−2δ, 2δ]2 \ [−δ, δ]2,
• φ(x, y) = 1 for (x, y) /∈ [−2δ, 2δ]2.
• |∂φ/∂x |, |∂φ/∂y| ≤ A/δ.
• |∂2φ/∂x2|, |∂2φ/∂x∂y|, |∂2φ/∂y2| ≤ A/δ2.
• ∂φ/∂y = 0 when |y| < δ.

Set φt = (1 − t) + tφt and Gt (q) = φt (qn−1, qn)G(q). The front q �→
(

(̃q, qn−1, τ ),Gt
)

generates the Lagrangian and Legendrian birth/deaths of
zig-zags Gn,t and ̂Gn,t = (Gn,t ,Gt ) respectively. To be explicit, we have

Gn,t (̃q, qn−1, qn) =
(

q̃, qn−1, τ , 0 ,
∂Gt

∂qn−1

−
(

∂φt

∂y

G

( ∂τ
∂qn

)
+ φt g

)

∂τ

∂qn−1
,

∂φt

∂y

G

( ∂τ
∂qn

)
+ φt g

)

.
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The first three properties stated in the Lemma are clearly satisfied. The fourth
property follows from the uniformbounds on the first and second partial deriva-
tives of φ. ��
Remark 2.13 The sharpening construction can also be applied to a family of
wrinkled Lagrangian or Legendrian embeddings. To do this, one needs to
work instead with the local model for the fibered wrinkle and repeat the above
construction in the fibered setting. The proofs only differ in notation.

3 Lagrangian and Legendrian rotations

3.1 Tangential rotations

In Sect. 1.5 we introduced the notion of a tangential rotation, which decou-
ples a Gauss map G(d f ) : L → 
(M) from its underlying Lagrangian or
Legendrian embedding f : L → M . We repeat the definition below for con-
venience. Recall that 	 : 
(M) → M denotes the Lagrangian Grassmannian
of a symplectic or contact manifold M .

Definition 3.1 A tangential rotation of a regular Lagrangian or Legendrian
embedding f : L → M is a compactly supported deformation Gt : L →

(M), t ∈ [0, 1], of G0 = G(d f ) such that 	 ◦ Gt = f .

We will also need to consider tangential rotations of wrinkled Lagrangian
andLegendrian embeddings.As in the unwrinkled case, a tangential rotation of
a wrinkled Lagrangian or Legendrian embedding f : L → M is a compactly
supported deformation Gt : L → 
(M), t ∈ [0, 1], of G0 = G(d f ) such that
	 ◦ Gt = f .

3.2 Simple tangential rotations

LetGt : L → 
(M)be a tangential rotation of a possiblywrinkledLagrangian
or Legendrian embedding f : L → M . A priori, the one-parameter family of
Lagrangian planes Gt (q) could rotate around wildly inside T f (q)M . It will be
useful for us to restrict these rotations to be of a particularly simple type. See
Fig. 21 for an illustration of the desired simplicity.

Definition 3.2 A tangential rotation Gt : L → 
(M) of a possibly wrinkled
Lagrangian or Legendrian embedding f : L → M is simple if there exists
a field of (n − 1)-dimensional isotropic planes Hn−1 ⊂ T M defined along
some open subset O ⊂ M such that

• on f −1(O) we have H ⊂ im(Gt ) for all t ∈ [0, 1].
• on L\ f −1(O) the rotation Gt is constant.
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Fig. 21 The difference between a non-simple tangential rotation and a simple tangential rota-
tion. Observe that in the simple case, the rotating planes Gt are constrained so that the (n − 1)
directions contained in H are kept fixed, leaving only one degree of freedom

We say that Gt is simple with respect to H .

If f is regular, then we can think of H ⊂ d f (T L) as a hyperplane field in
T L . When f is wrinkled we need to be a little bit careful near the wrinkling
locus so it will be best to think of H as an ambient (n − 1)-plane field in T M .

Remark 3.3 Our definition of simple tangential rotations is slightly more
restrictive than what one might expect by comparing with the definition given
by Eliashberg and Mishachev in [15] for the smooth analogue of this notion.
This is the case because the Lagrangian or Legendrian wrinkling model that
we are able to construct below is somewhat more restrictive than the model
used in their proof.

We will also need the notion of piecewise simplicity. A tangential rotation
Gt of a regular Lagrangian or Legendrian embedding f is piecewise simple if
we can subdivide the time interval 0 = t0 < · · · < tk = 1 so that the following
property holds.We demand that there exist (n−1)-dimensional isotropic plane
fields H j ⊂ im(Gt j ), which extend over open subsets O j ⊂ M , such that for
all t ∈ [t j , t j+1] we have Gt = Gt j outside of f −1(O j ) and H j ⊂ im(Gt )

on f −1(O j ). We will prove below that any tangential rotation of a regular
Lagrangian or Legendrian embedding can be C0-approximated as accurately
as desired by a piecewise simple tangential rotation. In order to do this we first
translate the notion of a tangential rotation into the language of jet spaces.

3.3 Rotations of 2-jets

Let f : L → M be a regular Lagrangian embedding. Fix once and for all
a Riemannian metric on L . For δ > 0 small enough, the Weinstein theorem
guarantees the existence of a symplectomorphism � between a neighborhood
N of f (L) in (M, ω) and (T ∗

δ L , dp ∧ dq), where T ∗
δ L = {(q, p) ∈ T ∗

q L :
||p|| < δ}.We call� theWeinstein parametrization (Fig. 22). The zero section
L ↪→ T ∗

δ L corresponds under � to the embedding f : L → M . More
generally, for any open subset U ⊂ L and any function h : U → R such

123



The simplification of singularities of Lagrangian 675

Fig. 22 AWeinstein neighborhood N of f (L) in M

that ||dh|| < δ, the section dh : U → T ∗
δ L corresponds under � to a regular

Lagrangian embedding fh : U → M which is graphical over f |U .
Similarly, if f : L → M is a regular Legendrian embedding, then for

some δ > 0 small enough there exists a contactomorphism � between a
neighborhood N of f (L) in (M, ξ) and J 1δ (L , R) = T ∗

δ L × (−δ, δ), which
is equipped with the standard contact structure. We still call � the Weinstein
parametrization. For any open subset U ⊂ L and any function h : U → R

such that |h| < δ and ||dh|| < δ, we obtain a regular Legendrian embedding
fh : U → M which is graphical over f |U . The embedding fh corresponds
under � to the section j1(h) : U → J 1δ (L , R).

In order to capture the tangential information contained in 1-jets we must
consider 2-jets. The Riemannian metric fixed on L induces the following triv-
ialization of the 2-jet space J 2(L , R).

J 2(L , R) = {(q, z, p, Q), q ∈ L , z ∈ R, p : Tq L → R, Q : Tq L → R},
where p is a linear form and Q is a quadratic form. Explicitly, given
a germ of a function h : Op(q) ⊂ L → R, we set j2(h)(q) =
(

q, h(q), dhq ,Hess(h)q
) ∈ J 2(L , R).Weobtain a vector bundle J 2(L , R) →

L , where the linear structure is induced by the above trivialization.

Example 3.4 When L = R
n with the standard Euclidean metric and standard

coordinates q = (q1, . . . , qn), we have a canonical identification TqR
n � R

n

for each q ∈ R
n . Under this identification, dh(v) = ∑n

i=1(∂h/∂qi )vi and
Hess(h)(v) = ∑n

i, j=1(∂
2h/∂qi∂q j )viv j for all v = (v1, . . . , vn) ∈ R

n .

Definition 3.5 A 2-jet rotation of L is a compactly supported deformation
st : L → J 2(L , R), t ∈ [0, 1], of the zero section s0 = 0 which is of the form
st (q) = (

q, 0, 0, Qt (q)
)

for some family of quadratic forms Qt : T L → R.

In other words, a 2-jet rotation is a deformation of the zero section whose 1-jet
component is zero at all times. The corresponding notion of simplicity for 2-jet
rotations is the following.

Definition 3.6 A 2-jet rotation st : L → J 2(L , R) is simple if there exists a
hyperplane field H ⊂ T L defined along an open subset U ⊂ L containing
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Fig. 23 The difference between a non-simple 2-jet rotation and a simple 2-jet rotation

supp(st ) such that H ⊂ ker(Qt ) for all t ∈ [0, 1]. We say that st is simple
with respect to H .

Remark 3.7 Observe in particular thatQt has rank≤ 1.However, the condition
of simplicity is stronger,we demand that the kernel always contains a fixed (n−
1)-dimensional distribution. See Fig. 23 for an illustration of 2-jet simplicity.

In the same vein, we say that a 2-jet rotation st : L → J 2(L , R) is piecewise
simple if there exists a subdivision 0 = t0 < · · · < tk = 1 of the time interval
[0, 1] such that on each subinterval [t j , t j+1] we have st = st j + r j

t for some

simple 2-jet rotation r j
t : L → J 2(L , R).

Remark 3.8 The proper language for this discussion would naturally extend
our definitions to include the concepts of l- and ⊥-holonomic sections of the
r -jet bundle associated to any fibre bundle. These ideas were introduced by
Gromov in [26] in the context of convex integration. We explore these notions
further in the context of holonomic approximation in our paper [1], the results
of which will be crucially used below.

Given a regular Lagrangian or Legendrian embedding f : L → M , a
Weinstein parametrization � of a neighborhood N of f (L) in M and a 2-jet
rotation st : L → J 2(L , R), we can define a tangential rotation G(�, st ) :
L → 
(M) of f associated to � and st . Explicitly, we set G(�, st )(q) =
G(d fht )(q) at each point q ∈ L , where ht : Op(q) ⊂ L → R is any
function germ such that j2(ht )(q) = st (q) and fht : Op(q) ⊂ L → M is the
Lagrangian or Legendrian embedding corresponding to ht under �. Observe
that if st is simple, then G(�, st ) is also simple.

Conversely, given a regular Lagrangian or Legendrian embedding f : L →
M , aWeinstein parametrization� and a tangential rotationGt : L → 
(M)of
f , there exists a unique 2-jet rotation st : L → J 2(L , R) such thatG(�, st ) =
Gt . To be more precise, st might only be defined in a small time interval
[0, ε] ⊂ [0, 1], since the Lagrangian planes Gt (q) could at some point stop
being graphical over d f (Tq L) with respect to �, see Fig. 24.
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Fig. 24 The difference between a graphical and a non-graphical tangential rotation

Definition 3.9 When st is defined for all t ∈ [0, 1], we say thatGt is graphical.

TheWeinstein parametrization� is implicit in the definition. Observe again
that if Gt is simple, then st is also simple. The notions of piecewise simplicity
also coincide under this correspondence.

3.4 Approximation by simple rotations

Let I n = [−1, 1]n denote the unit n-dimensional cube. The following lemma
will allow us to replace any tangential rotation of a Lagrangian or Legendrian
embedding by a piecewise simple tangential rotation.

Lemma 3.10 Let st : I n → J 2(Rn, R) be a 2-jet rotation such that st = 0
on Op(∂ I n). Then there exists a piecewise simple 2-jet rotation rt : I n →
J 2(Rn, R) which is C0-close to st and such that rt = 0 on Op(∂ I n).

Lemma 3.10 is an immediate consequence of a more general approximation
result which we prove in [1]. For completeness we present below the outline of
the argument in our concrete setting. The idea goes back to Gromov’s iterated
convex hull extensions in [26], which used similar decompositions into so-
called principal subspaces. Indeed, in convex integration one is also forced to
work one pure partial derivative at a time. These decompositions are studied
carefully in Spring’s book [41].

For our purposes, we only need to remark that any homogeneous degree 2
polynomial can bewritten as a sumof squares of linear polynomials. Explicitly,
we have the polynomial identity Xi X j = 1

2

(

(Xi + X j )
2 − X2

i − X2
j

)

. We can
think of a 2-jet rotation as a parametric family of Taylor polynomials which
are homogeneous of degree 2. By applying the above identity we obtain a
decomposition st = ∑

r i, jt , where the 2-jet rotation r i, jt is simple with respect
to the integrable hyperplane field τi, j = ker(dqi + dq j ) and the sum is taken
over all 1 ≤ i ≤ j ≤ n. Moreover, it follows that if st = 0 on Op(∂ I n), then
r i, jt = 0 on Op(∂ I n) for all i, j (Fig. 25).

Once we have this decomposition, we can subdivide the interval [0, 1] very
finely and add a fraction of each r i, jt at a time to obtain the desired piecewise
simple approximation of st . The parametric version is proved in the exact same
way. The statement reads as follows.
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Fig. 25 Decomposing a homogeneous degree 2 polynomial into a sum of squares of linear
polynomials

Lemma 3.11 Let szt : I n → J 2(Rn, R) be a family of 2-jet rotations
parametrized by a compact manifold Z such that szt = 0 on Op(∂ I n) and
such that szt = 0 for z ∈ Op(∂Z). Then there exists a family of piecewise
simple 2-jet rotations r zt : I n → J 2(Rn, R) which is C0-close to szt , such that
r zt = 0 on Op(∂ I n) and such that r zt = 0 for z ∈ Op(∂Z).

To be more precise, for the piecewise simple family we demand that there
exists a single subdivision 0 = t0 < · · · < tk = 1 of the time interval [0, 1]
such that every r zt is simple on each piece [t j , t j+1]. We can translate Lemmas
3.10 and 3.11 from the world of jet spaces back into the world of symplectic
and contact topology. The precise consequence that we wish to extract is the
following.

Proposition 3.12 Let Gt : L → 
(M) be a tangential rotation of a reg-
ular Lagrangian or Legendrian embedding f : L → M. Then we can
C0-approximate Gt as much as desired by a piecewise simple tangential rota-
tion Rt : L → 
(M).

Proof By using a partition of unity and a fine enough subdivision 0 = t0 <

· · · < tk = 1 of the interval [0, 1], we can localize in space and time to obtain
a tangential rotation ˜Gt : L → 
(M) which is C0-close to Gt and such that
on each subinterval [t j , t j+1] the rotation ˜Gt is constant outside of some ball
Bj ⊂ L . In the Lagrangian case, let � j be a symplectic isomorphism of the
symplectic vector bundle (T M | f (Bj ), ω) → Bj such that� j ·G(d f ) = ˜Gt j . In
the Legendrian case, we ask that� j satisfies the same property but is instead a
symplectic isomorphism of the symplectic vector bundle (ξ | f (Bj ), dα) → Bj ,
where ξ = ker(α) on the ball Bj .

Consider the tangential rotation S j
t = (� j )

−1 · ˜Gt , t ∈ [t j , t j+1]. Observe
that S j

t = G(d f ) on Op(∂Bj ). By further subdividing the time interval if nec-

essary and picking new isomorphisms� j , wemay assume that S j
t is graphical.

In other words, S j
t corresponds to a 2-jet rotation s jt : Bj → J 2(Bj , R) such

that s jt = 0 on Op(∂Bj ). Lemma 3.10 asserts the existence of a piecewise sim-

ple 2-jet rotation r j
t : Bj → J 2(Bj , R) which is C0-close to s jt and such that
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r j
t = 0 on Op(∂Bj ). We obtain a corresponding piecewise simple tangential

rotation R j
t : Bj → 
(M)which isC0-close to S j

t and such that R
j
t = G(d f )

on Op(∂Bj ). Set Rt = � j · R j
t , t ∈ [t j , t j+1] on Bj . Outside of Bj we extend

by setting Rt = ˜Gt , which is constant for t ∈ [t j , t j+1]. This piecewise defini-
tion yields a tangential rotation Rt : L → 
(M), t ∈ [0, 1], where each piece
Rt |[t j ,t j+1] is itself a piecewise simple tangential rotation. Hence Rt is also a
piecewise simple tangential rotation. Moreover, Rt is everywhere C0-close to
˜Gt , hence also to Gt . ��
Remark 3.13 From the proof we can also deduce the relative version of Propo-
sition 3.12. If Gt = G(d f ) on Op(A) for some closed subset A ⊂ L , then we
can arrange it so that Rt = G(d f ) on Op(A).

The parametric version is proved in the same way. The corresponding rela-
tive version also holds.As in the case of 2-jet rotations, by a family of piecewise
simple tangential rotations we mean a family of tangential rotations such that
for some subdivision 0 = t0 < · · · < tk = 1 of the time interval [0, 1], every
tangential rotation of the family is simple on each subinterval [t j , t j+1]. The
precise statement that we will need reads as follows.

Proposition 3.14 Let Gz
t : L → 
(M) be a family of tangential rotations of

regular Lagrangian or Legendrian embeddings f z : L → M parametrized by
a compact manifold Z such that Gz

t = G(d f z) for z ∈ Op(∂Z). Then we can
C0-approximate the family Gz

t as much as desired by a family of piecewise
simple tangential rotations Rz

t : L → 
(M) such that Rz
t = G(d f z) for

z ∈ Op(∂Z).

Remark 3.15 Although we won’t need this fact, we note that the piecewise
simple rotations produced by our approximation process are all piecewise
simple with respect to integrable hyperplane fields.

4 Wiggling embeddings

4.1 Regular approximation near the (n− 1)-skeleton

Let Gt : L → 
(M) be a tangential rotation of a regular Lagrangian or
Legendrian embedding f : L → M . It is in general impossible to globally
C0-approximateGt by theGaussmapsG(d ft ) of an exact homotopy of regular
Lagrangian or Legendrian embeddings ft : L → M , f0 = f . However, it is
always possible to achieve this approximation in a wiggled neighborhood of
any reasonable subset of L which has positive codimension, see Fig. 26. For
simplicity, we will restrict ourselves to the following class of stratified subsets.
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Fig. 26 We can always approximate Gt by Gauss maps G(d ft ) in a neighborhood of any
reasonable subset K ⊂ L of positive codimension

Definition 4.1 A closed subset K ⊂ L is called a polyhedron if it is a sub-
complex of some smooth triangulation of L .

In [1] we prove several refinements of the holonomic approximation lemma.
The following result is a straightforward application of our holonomic approx-
imation lemma for l-holonomic sections.

Theorem 4.2 Let K ⊂ L be a polyhedron of positive codimension and let Gt :
L → 
(M) be a tangential rotation of a regular Lagrangian or Legendrian
embedding f : L → M. Then there exists an exact homotopy of regular
Lagrangian or Legendrian embeddings ft : L → M, f0 = f , such that
G(d ft ) is C0-close to Gt on Op(K ) ⊂ L.

Remark 4.3 We can arrange it so that ft is C0-close to f on all of L and so
that ft = f outside of a slightly bigger neighborhood of K in L . Moreover,
the result also holds in relative and parametric forms.

Remark 4.4 As far as the author can tell, Theorem 4.2 is not an immediate
consequence of Eliashberg andMishachev’s holonomic approximation lemma
[14] or of any of the other standard h-principle techniques. However it does fol-
low immediately from the holonomic approximation lemma for l-holonomic
sections which we established in [1]. The subtlety stems from the pervasive
danger of cutoffs in symplectic topology. .

In Sect. 5 we will prove that any tangential rotation Gt can be globally C0-
approximated by the Gauss maps G(d ft ) of an exact homotopy of wrinkled
LagrangianorLegendrian embeddings ft . This is themain technical ingredient
in the proof of the h-principle for the simplification of singularities in Sect. 6
below. In the course of the proof of this global C0-approximation theorem
we will need to use a result of the same flavour as Theorem 4.2, taking K
to be the (n − 1)-skeleton of a triangulation of L . The idea is to construct
the homotopy ft by first wiggling f near the (n − 1)-skeleton. Then one can
apply a wrinkling construction in the interior of each of the top dimensional
simplices to complete the approximation.
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However, on the nose Theorem 4.2 is not quite sufficient for our purposes.
The issue is that the local wrinkling model which we construct in Sect. 5 can
only be applied if the tangential rotation is simple. Initially this is not a problem
because we can use Proposition 3.12 to first approximate any given rotation
by a piecewise simple rotation. We can then attempt to deal with each simple
piece in the decomposition separately, working step by step. Unfortunately
the following additional difficulty arises. Suppose that at a given step we
apply Theorem 4.2 near the (n − 1)-skeleton of L . We might find that our
fixed decomposition is no longer piecewise simple from the viewpoint of the
freshly wiggled embedding. If this is the case, then we cannot continue on to
the next step, because the local wrinkling model can only be applied to simple
rotations. To fix this issue we need a stronger version of Theorem 4.2 which
allows us to control the wiggles with respect to any fixed simple tangential
rotation. We state and prove this stronger version in the next section.

4.2 Keeping things simple

The precise result that we need is the following application of our holonomic
approximation lemma for ⊥-holonomic sections from [1]. The choice of a
Riemannian metric on L and a Weinstein parametrization of a neighborhood
of f (L) in M is implicit throughout. We use the language of 2-jet rotations
introduced in Sect. 3.3.

Theorem 4.5 Let K ⊂ L be a polyhedron of positive codimension and let Gt :
L → 
(M) be a graphical simple tangential rotation of a regular Lagrangian
or Legendrian embedding f : L → M. Then there exists a graphical simple
tangential rotation Rt : L → 
(M) of f and an exact homotopy of regular
Lagrangian or Legendrian embeddings ft : L → M, f0 = f , such that the
following properties hold.

• G(d ft ) is C0-close to Gt on Op(K ) ⊂ L
• G(d ft ) is C0-close to Rt on all of L.
• Rt is simple with respect to the same hyperplane field as Gt .
• ft = f and Rt = G(d f ) outside of a slightly bigger neighborhood of K
in L.

Remark 4.6 Tthe second property implies that ft is everywhere C0-close to
f .

Remark 4.7 The relative form of Theorem 4.5 also holds. If Gt = G(d f ) on
Op(A) for some closed subset A ⊂ L , then we can arrange it so that ft = f
and Rt = G(d f ) on Op(A) ⊂ L .

Let us explain the difference between Theorems 4.2 and 4.5 and how this
difference deals with the difficulty discussed at the end of Sect. 4.1. Denote by
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H ⊂ T L the hyperplane field with respect to which Gt is simple. First note
that the Gauss map G(d ft ) of the exact homotopy ft produced by Theorem
4.2 is an arbitrarily good approximation of Gt near K , but we have no control
on G(d ft ) away from K . Compare with the Gauss map G(d ft ) of the exact
homotopy ft produced by Theorem 4.5, which is not only an arbitrarily good
approximation ofGt near K , but everywhere on L only differs fromG(d f ) by
a rotation which is simple with respect to H (up to an error which can be made
arbitrarily small). Hence the lack of global control on G(d ft ) is restricted to
the one degree of freedom completementary to H in T L . We don’t know what
G(d ft ) does within this one degree of freedom, but we record it and give it a
name: Rt . The upshot is that from the viewpoint of ft the rotation Gt is still
simple with respect to the same hyperplane field H (up to an error which can
be made arbitrarily small). This will allow us to complete the approximation
of Gt by the introduction of wrinkles on ft which are parallel to H and of
magnitude Gt − Rt . This discussion will be made precise when it is time for
us to wrinkle. In the meantime, we proceed to wiggle.

Proof of Theorem 4.5 Fix a Riemannian metric on L . By definition of graph-
icality, we can think of Gt as a 2-jet rotation st : L → J 2(L , R) which is
simple with respect to some hyperplane field H ⊂ T L . We can therefore
apply the (1-parametric) holonomic approximation lemma for ⊥-holonomic
sections from [1] to st . The output is a family of functions ht : L → R, h0 = 0
and an isotopy Ft : L → L such that the following properties hold.

• j2(ht ) is C0-close to st on Op
(

Ft (K )
) ⊂ L .

• j1(ht ) is C0-small on all of L .
• Hess(ht )|H is C0-small on all of L .
• Ft is C0-small.
• F∗

t H is C0-close to H .
• ht = 0 and Ft = idL outside of a slightly bigger neighborhood of K in L .

The C1-smallness of ht allows us to think of dht ◦ Ft : L → T ∗L (in
the Lagrangian case) or of j1(ht ) ◦ Ft : L → J 1(L , R) (in the Legendrian
case) as an exact homotopy of regular Lagrangian or Legendrian embeddings
ft : L → M . We define the simple tangential rotation Rt : L → 
(M)

by specifying its corresponding simple 2-jet rotation rt : L → J 2(L , R) as
follows. Write rt (q) = (

q, 0, 0, Qt (q)
) ∈ J 2(L , R) for Qt : T L → R a

family of quadratic forms and set Qt (q) = Hess(ht )|Ft (q) ◦ p : T L → R to
obtain the desired Rt , where p : T L → T L is the orthogonal projection with
kernel H . Note that Hess(ht )|Ft (q) does not define a quadratic form on Tq L ,
but rather a quadratic form on TFt (q)L , so let us explainmore carefullywhat we
mean by Qt (q). With respect to our fixed Riemannianmetric, a quadratic form
on Tq L which vanishes on Hq is determined by a co-orientation of Hq and a
non-negative number, namely its norm. Since Ft isC0-small a co-orientation of
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Hq induces co-orientation of HFt (q). Therefore Qt (q) is uniquely determined
by demanding that it vanishes on Hq and that its norm is equal to the norm of
Hess(ht )|Ft (q) ◦ p (which is a quadratic form on TFt (q)L with kernel HFt (q)).

All the properties listed in Theorem 4.5 can now be easily checked to hold.
The only property which may need clarification is the third one. To verfity it
observe that the C0-smallness of Hess(ht ) on H implies that Hess(ht )|Ft (q) is
C0-close toHess(ht )|Ft (q)◦p. ButHess(ht )|Ft (q)◦p isC0-close toQt (q), since
they both have the same norm and their kernels, HFt (q) and Hq respectively,
are C0-close (the degree of accuracy determined by how C0-close Ft is to the
identity).

Finally,weobserve that theC0-approximation bounds satisfiedby the result-
ing G(d ft ) and Rt can be improved as much as desired by demanding the
corresponding degree ofC0-approximation in the invokation or our holonomic
approximation lemma for ⊥-holonomic sections. Note that the Rt produced
by the proof will depend on the desired degree of C0-approximation. ��
Remark 4.8 The condition that F∗

t H is C0-close to H was not used in this
proof but we include it for the sake of intuition given that in our construction
of the refined holonomic approximation [1] it is crucial to have the wiggles be
almost parallel to H .

The above argument also works for families. In the parametric case, we note
that the polyhedron K may also vary with the parameter. To be more precise,
we have the following definition.

Definition 4.9 A closed subset K ⊂ Z × L is called a fibered polyhedron
if it is a subcomplex of a smooth triangulation of Z × L which is in general
position with respect to the fibres z × L , z ∈ Z .

More precisely, the requirement is that the n-plane field V ⊂ T (Z × L)

tangent to the fibres of the projection Z × L → Z is transverse to each k-
simplex αk in the triangulation when k ≥ n and that V + Tαk ⊂ T (Z × L)|αk

has dimension n + k when k ≤ n. The crucial consequence of this definition
is that for every z ∈ Z the subset K z ⊂ L given by K ∩ (z × L) = z × K z

is a polyhedron in L . If K has positive codimension in Z × L , then K z has
positive codimension in L for all z ∈ Z . The more restrictive notion of general
position considered by Thurston in [46] is not necessary for our purposes but
we can also ask for it if we want to since we will rely on his existence result for
triangulations in general position to foliations, which he proves in this stronger
sense.

The parametric version of Theorem 4.5 is proved in the sameway, by adding
a parameter in the notation everywhere and invoking our parametric holonomic
approximation lemma for⊥-holonomic sections from [1]. The statement reads
as follows. We note that the relative version also holds, as in Remark 4.7.

123



684 D. Álvarez-Gavela

Theorem 4.10 Let K ⊂ Z×L beafiberedpolyhedronof positive codimension
and let Gz

t : L → 
(M) be a family of graphical simple tangential rotations
of regular Lagrangian or Legendrian embeddings f z : L → M parametrized
by a compact manifold Z such that Gz

t = G(d f z) for z ∈ Op(∂Z). Then
there exists a family of graphical simple tangential rotations Rz

t : L → 
(M)

of f z and a family of exact homotopies of regular Lagrangian or Legendrian
embeddings f zt : L → M, f z0 = f z , such that the following properties hold.

• G(d f zt ) is C0-close to Gz
t on Op(K z) ⊂ L.

• G(d f zt ) is C0-close to Rz
t on all of L.

• Rz
t is simple with respect to the same hyperplane field as G

z
t .

• f zt = f z and Rz
t = G(d f z) outside of a slightly bigger neighborhood of

K z in L.
• f zt = f z and Rz

t = G(d f z) for z ∈ Op(∂Z).

4.3 Wiggling the wrinkles

In this section we extend Theorems 4.5 and 4.10, which were stated for regular
Lagrangian or Legendrian embeddings, to the case of wrinkled Lagrangian or
Legendrian embeddings. In thewrinkled case,we cannot invoke our holonomic
approximation lemma for ⊥-holonomic sections from [1] directly because a
wrinkledLagrangian orLegendrian embedding is not regular near thewrinkles.
The sharpening construction described in Sect. 2.6 will allow us to resolve
this issue, since the sharper the wrinkles, the better they can be approximated
locally by a regular Lagrangian or Legendrian submanifold.

Given a wrinkled Lagrangian or Legendrian embedding f : L → M , recall
that the subset on which f is wrinkled consists of a disjoint unionW = ⋃

j S j
of finitely many (n − 1)-dimensional embedded spheres S j ⊂ L . Each sphere
S j has an (n − 2)-dimensional equator E j ⊂ S j on which f has birth/deaths
of zig-zags. The complement S j\E j consists of two hemispheres on which f
has cusps.

We say that a polyhedron K ⊂ L is compatible with the wrinkles of f if the
following condition holds. We demand that the wrinkling locus W = ⋃

j S j
is contained in the (n − 1)-skeleton of K and that the union of the equators
⋃

j E j is contained in the (n − 2)-skeleton of K . In the same way we can
define what it means for a fibered polyhedron K ⊂ Z × L to be compatible
with the fibered wrinkles of a family f z : L → M of wrinkled Lagrangian or
Legendrian embeddings parametrized by a compact manifold Z .

We now prove the analogue of Theorem 4.5 for wrinkled Lagrangian and
Legendrian embeddings. The precise statement is the following.

Theorem 4.11 Let K ⊂ L be a polyhedron of positive codimension which
is compatible with the wrinkles of a wrinkled Lagrangian or Legendrian
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embedding f : L → M. Let Gt : L → 
(M) be a graphical simple tan-
gential rotation of f . Then there exists a graphical simple tangential rotation
Rt : L → 
(M) of f and a family of exact homotopies ft : L → M,
f0 = f , of wrinkled Lagrangian or Legendrian embeddings such that all of
the properties listed in Theorem 4.5 hold.

Proof Consider first a single wrinkle S in the wrinkling locus W ⊂ L of f .
The wiggling on S is performed in two steps. First we will wiggle f near the
equator E ⊂ S and then we will wiggle f near the remaining part of S. In both
cases this wiggling is achieved by replacing the singular Lagrangian or Leg-
endrian submanifold f (L) with a regular approximation to which holonomic
approximation can be applied. We then use the resulting ambient Hamilto-
nian isotopy to induce a wiggling of f . We will restrict our attention to the
Lagrangian case for the sake of concreteness, but the Legendrian case is no
different.

In Sect. 2.6 we introduced the Lagrangian local model Gn for the birth/death
of zig-zags. Recall that Gn : Sn−2 × R

2 → T ∗(Sn−2 × R
2) is given by

Gn (̃q, qn−1, qn) =
(

q̃, qn−1, τ, 0,
∂G

∂qn−1
− g

∂τ

∂qn−1
, g

)

,

q = (̃q, qn−1, qn) ∈ Sn−2 × R × R.

where τ(qn−1, qn) = q3n − 3qn−1qn,

g(qn−1, qn) =
∫ qn

0
(u2 − qn−1)

2du

and G(qn−1, qn) =
∫ qn

0
g(qn−1, u)

∂τ

∂qn
(qn−1, u) du.

Near the equator E ⊂ S, our wrinkled Lagrangian embedding f : L → M
is locally equivalent to Gn near Sn−2 × 0 ⊂ Sn−2 × R

2. Working in this local
model, we can think of Gt as a tangential rotation of Gn which is simple with
respect to an (n − 1)-plane field H ⊂ T

(

T ∗(Sn−2 × R
2)
)

. Consider the zero
section Z : Sn−2 × R

2 → T ∗(Sn−2 × R
2), which is a Lagrangian cylinder.

Observe that Z|Sn−2×0 = Gn|Sn−2×0, and moreover that G(dZ)|Sn−2×0 =
G(dGn)|Sn−2×0. Extend Gt |Sn−2×0 to St : Sn−2 × R

2 → 

(

T ∗(Sn−2 × R
2)
)

,
a tangential rotation of Z which is simple with respect to H .

Let δ > 0 and setN = Sn−2 × (−δ, δ)2 ⊂ Sn−2 ×R
2. Apply Theorem 4.5

to the regular Legendrian embedding Z , the simple tangential rotation St and
the stratified subset Sn−2 × 0 ⊂ Sn−2 × R

2. We obtain an exact homotopy of
regular Legendrian embeddingsZt : Sn−2 ×R

2 → T ∗(Sn−2 ×R
2) which we

may assume is constant outside of N . Recall that G(dZt ) is C0-close to Gt
near Sn−2 ×0. Recall also that G(dZt ) is everywhere C0-close to a tangential
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Fig. 27 The sharpening construction applied to the equator

rotation Rt which is also simple with respect to H and which is supported on
N .

Write Zt = ϕt ◦ Z for an ambient Hamiltonian isotopy ϕt which we may
assume constant outside of Op(N ) ⊂ T ∗(Sn−2×R

2). Let ε > 0 and consider
the sharpening Gn,t of Gn described in Sect. 2.6 with respect to the parameters
δ and ε (Fig. 27). Recall that distC1(Gn,Gn,t ) ≤ Aδ for some constant A > 0
independent of δ and ε, so by taking δ > 0 small enough we may replace
Gn with Gn,1 from the onset up to an error which is proportional to δ. Recall
also that sharpening is supported on Sn−2 × (−2δ, 2δ)2 and is ε-sharp on
N = Sn−2 × (δ, δ). For details see Sect. 2.6.

Consider now ϕt ◦ Gn,1. Note that on Op(Sn−2 × 0) the Gauss map of this
composition is C0-close to Gt . Indeed, Gn,1 andZ are tangent along Sn−2 ×0
and when we invoke Theorem 4.5 to construct Zt we can demand as much
accuracy in the approximation as we want. Next, observe that Zt is supported
on N and on that neighborhood G(dZt ) is C0-close to a tangential rotation
which is simplewith respect to H . Letπ : T ∗(Sn−2×R

2) → Sn−2×R
2 denote

the standard projection. As ε → 0 in the sharpening Gn,1, for each q ∈ N
the tangent plane G(dGn,1)(q) converges to the horizontal plane tangent to
the zero section at the point π(q), and hence G

(

d(ϕt ◦ Gn,1)
)

(q) converges
to G(dZt )

(

π(q)
)

. It follows that by taking ε > 0 as small as is necessary,
we can use Rt to exhibit a tangential rotation of Gn,1 which is simple with
respect to H and which is arbitrarily C0-close to G

(

d(ϕt ◦ Gn,1)
)

on all of L .
We have therefore achieved the required global approximation up to an error
which is proportional to δ. Since we can take δ > 0 to be arbitrarily small, this
completes the wiggling near the equator.

Once we have wiggled f near the equator E we proceed to wiggle f on
the two hemispheres D± of the complement S\E . Near the interior of each
of the two disks D+ and D− the map f is equivalent to the local model
Cn : R

n → T ∗
R
n on Op(Dn−1)\Op(∂Dn−1), where we recall from Sect. 2.6

that

Cn(q1, . . . , qn) = (

q1, . . . , qn−1, q
2
n , 0, . . . , q

3
n

)

.
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Our input this time is a simple tangential rotation Gt of the local model
Cn|Dn−1 which we assume to be constant on Op(∂Dn−1). The strategy is the
same as before. Consider the zero sectionZ : R

n → T ∗
R
n and extendGt |Dn−1

to a simple tangential rotation St ofZ . Then apply (the relative version of) The-
orem 4.5 toZ , St and Dn−1 to obtain an exact homotopy of regular Lagrangian
embeddingsZt which is induced by an ambient Hamiltonian isotopy ϕt fixing
the boundary. For a suitable choice of parameters δ and ε, the concatenation of
the sharpening homotopy Cn,t described in Sect. 2.6 followed by the isotopy
ϕt ◦ Cn,1 gives the required wiggling on S\E .

This process can now be repeated on all wrinkles S until we have achieved
the desired wiggling on the locus W where f fails to be a regular Lagrangian
embedding. The proof of Theorem 4.11 is completed by applying (the relative
version) of Theorem 4.5 on the regular locus. ��

The analogue of the parametric Theorem 4.10 for families of wrinkled
Lagrangian or Legendrian embeddings also holds, where we demand that the
fibered polyhedron K ⊂ Z × L is compatible with the wrinkles. The proof
only differs in notation and the precise statement reads as follows.

Theorem 4.12 Let K ⊂ Z×L beafiberedpolyhedronof positive codimension
which is compatible with the wrinkles of a family of wrinkled Lagrangian or
Legendrian embeddings f z : L → M parametrized by a compact manifold
Z. Let Gz

t : L → 
(M) be a family of graphical simple tangential rotations
of f z such that Gz

t = G(d f z) for z ∈ Op(∂Z). Then there exists a family of
graphical simple tangential rotations Rz

t : L → 
(M) of f z and an exact
homotopy of wrinkled Lagrangian or Legendrian embeddings f zt : L → M,
f z0 = f z , such that all of the properties listed in Theorem 4.10 hold.

Remark 4.13 Observe that no wrinkles appear or disappear in the homotopies
of wrinkled Lagrangian or Legendrian embeddings produced by Theorems
4.11 and 4.12. In [15], Eliashberg andMishachev refer to the analogous smooth
homotopy as an isotopy ofwrinkled embeddings.We call the process ‘wiggling
embeddings’.

5 Wrinkling embeddings

5.1 Wrinkled approximation on the whole manifold

As we already mentioned, we cannot in general hope to globally C0-
approximate a tangential rotation Gt : L → 
(M) of a regular Lagrangian or
Legendrian embedding f : L → M by the Gauss mapsG(d ft ) of a homotopy
ft of regular Lagrangian or Legendrian embeddings. In the previous section,
we showed that the approximation can nevertheless be achieved by such a reg-
ular homotopy in a small neighborhood of any polyhedron K ⊂ L of positive
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688 D. Álvarez-Gavela

Fig. 28 The wrinkling theorem in action

codimension. In this section we show that the approximation can be globally
achieved on the whole manifold L if we allow the homotopy ft to be wrinkled.
See Fig. 28 for an illustration. More, precisely we have the following theorem,
which is the main result of this section.

Theorem 5.1 Let Gt : L → 
(M) be a tangential rotation of a regular
Lagrangian or Legendrian embedding f : L → M. Then there exists a
compactly supported exact homotopy of wrinkled Lagrangian or Legendrian
embeddings ft : L → M, f0 = f such that G(d ft ) is C0-close to Gt .

By Proposition 3.12 we can reduce Theorem 5.1 to the following statement.

Theorem 5.2 Let Gt : L → 
(M) be a graphical simple rotation of a wrin-
kled Lagrangian or Legendrian embedding f : L → M. Then there exists a
compactly supported exact homotopy of wrinkled Lagrangian or Legendrian
embeddings ft : L → M, f0 = f such that G(d ft ) is C0-close to Gt .

The parametric version of Theorem 5.1 reads as follows.

Theorem 5.3 Let Gz
t : L → 
(M) be a family of tangential rotations of

regular Lagrangian or Legendrian embeddings f z : L → M parametrized
by a compact manifold Z such that Gz

t = G(d f z) for z ∈ Op(∂Z). Then
there exists a family of compactly supported exact homotopies of wrinkled
Lagrangian or Legendrian embeddings f zt : L → M, f z0 = f z such that
G(d f zt ) is C0-close to Gz

t and such that f
z
t = f z for z ∈ Op(∂Z).

As in the non-parametric case, by Proposition 3.14 we can reduce Theorem
5.3 to the following statement.

Theorem 5.4 Let Gz
t : L → 
(M) be a family of graphical simple rotations

ofwrinkledLagrangianorLegendrian embeddings f z : L → M parametrized
by a compact manifold Z such that Gz

t = G(d f z) for z ∈ Op(∂Z). Then
there exists a family of compactly supported exact homotopies of wrinkled
Lagrangian or Legendrian embeddings f zt : L → M, f z0 = f z such that
G(d f zt ) is C0-close to Gz

t and such that f
z
t = f z for z ∈ Op(∂Z).

123



The simplification of singularities of Lagrangian 689

The proof of Theorems 5.2 and 5.4 consists of two steps. The first step is
the construction of a local wrinkling model, which we carry out in Sect. 5.2.
The second step is to combine this local wrinkling model with the wiggling
results established in Sect. 4 to obtain the desired global approximation. We
carry out this second step in Sect. 5.3.

5.2 Local wrinkling model

We begin by describing the local model for the oscillating function that will
generate the wrinkles. This is essentially the same local model used by Eliash-
berg andMishachev in [15]. In fact, our local wrinklingmodel for Lagrangians
and Legendrians is obtained from theirs by simply integrating and differenti-
ating the formulae, just like we did in Sect. 2 with the definition of wrinkled
Lagrangian and Legendrian embeddings.

The basic geometric idea behind the construction is quite straightforward.
One wishes to wrinkle the Lagrangian or Legendrian submanifold back and
forth so that the wrinkles are parallel to the rotating planes Gt (q). Since we
model the wrinkles on a highly oscillating function, the Gauss map of the
resulting wrinkled embedding gives an arbitrarily good approximation of Gt .
There is a delicate part of the construction regarding the embryos of the zig-
zags because the oscillating function is forced to have a derivative with the
‘wrong sign’ in some neighboring region. However, we will impose bounds
on the size of this bad derivative to ensure that its effect is not significant.

Construction 5.5 (The oscillating function) First, we fix some notation. We
will localize our problem from a general n-dimensional manifold L to the unit
cube I n = [−1, 1]n ⊂ R

n . A point q = (q1, . . . , qn) ∈ I n will be written as
q = (q̂, qn), where q̂ = (q1, . . . , qn−1). We will consider rotations which are
simple with respect to the (constant) hyperplane field Hn−1 ⊂ T I n spanned
by the vectors ∂/∂q1, . . . , ∂/∂qn−1. Hence the last coordinate qn will play a
special role in our discussion. We will also need a time parameter, which will
be denoted by t . Sometimes it will be convenient to consider time as another
spatial parameter, in which case wewill think of the domain of our local model
as [0, 1] × I n .

Consider the family of curves Zs ⊂ R
2, s ∈ R, given by parametric equa-

tions

xs(u) = 15

8

∫ u

0
(w2 − s)2dw, ys(u) = 1

2
(u3 − 3su).

The curve Zs is a graph of a continuous function zs : R → R which
is smooth for s < 0 and smooth on R\{−s5/2, s5/2} for s ≥ 0, where we
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Fig. 29 The family of curves Zs gives the local model for the birth/death of semi-cubical
zig-zags

Fig. 30 The family ζs . Observe that for s = 0 the derivative dζ0/dx blows up near zero but is
everywhere bounded below by −α, where the parameter α can be taken to be arbitrarily small.
This lower bound also holds everywhere for s < 0 and outside of [−σ s5/2, σ s5/2] for s > 0

note that xs(±√
s) = ±s5/2. See Fig. 29 for an illustration. We note that the

constants 15/8 and 1/2 are chosen for convenience in the calculation but are
otherwise immaterial.

Remark 5.6 Observe that the composition ys(u) = zs
(

xs(u)
)

is smooth for all
s ∈ R.

Let σ, α > 0 be small and choose an odd 1-periodic family of functions
ζs : R → R, s ∈ [−1, 1], illustrated in Fig. 30, which satisfies the following
properties.
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ζs(x)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

= zs(
x
σ
) for x ∈ Op

([− σ s5/2, σ s5/2
])

, s ∈ [0, 1],
= zs(

x
σ
) for x ∈ Op(0), s ∈ [−1, 0],

≥ 0 for x ∈ [−1
2 , −1

4

]

, s ∈ [−1, 1],
≤ 0 for x ∈ [1

4 ,
1
2

]

, s ∈ [−1, 1].
dζ1

dx
(x)

⎧

⎨

⎩

≤ − 4
σ

for x ∈ (−σ, σ ),

≥ 1 for x ∈ [−2σ, −σ) ∪ (σ, 2σ ],
∈ [1, 2] for x ∈ [−1

2 , −2σ
] ∪ [2σ, 1

2 ].

dζs

dx
(x)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

≤ − 4
σ

for x ∈ (−σ s5/2, σ s5/2), s ∈ (0, 1],
≥ −α for x ∈ [−2σ, −σ s5/2) ∪ (σ s5/2, 2σ ], s ∈ (0, 1],
≥ −α for x ∈ [−2σ, 2σ ], s ∈ [−1, 0],
∈ [−α, 2] for x ∈ [−1

2 , −2σ
] ∪ [

2σ, 1
2

]

, s ∈ [−1, 1].

Let Dn = {x ∈ R
n : ||x || ≤ 1} denote the closed unit n−dimensional

disk. We now use the family ζs to define a model ξ = ξσ,α,γ,δ,N : Dn(t, q̂) ×
[−1, 1](qn) → Rwhich like ζs depends on σ, α > 0 but also depends on three
more parameters γ, δ > 0 and N ∈ N. The parameters σ, α, γ, δ, 1/N are all
taken to be small (in particular we demand that they are all < 1), but it is the
relative smallness between the parameters that will play a crucial role in what
follows.

Fix a non-increasing function η : [0, 1] → R such that

• η(x) = 1 for x ∈ [0, 1 − 2δ],
• η(x) = −δ for x ∈ [1 − δ, 1].
Fix a non-increasing cutoff function ρ : [0, 1] → R such that

• ρ(x) = 1 for x ∈ [0, 1 − δ]
• ρ(x) = 0 for x near 1.

Fix also another non-increasing cutoff function ψ : [0, 1] → [0, 1] such that
• ψ(x) = 1 for x ∈ [

0, 1 − 1
4N+2

]

,

• ψ(x) = 0 for x near 1.

We define our oscillating model ξ by the following formula, see Fig. 31 for an
illustration.

ξ(t, q) = γ ρ
(||(t, q̂)||) ψ

(|qn|
)

ζη(||(t,q̂)||)
(

2N + 1

2
qn

)

,

(t, q̂) ∈ Dn, qn ∈ [−1, 1].

Given t ∈ [0, 1], q ∈ I n and b, c > 0, let C = C(t, q, b, c) denote the box

C = (t, q) + (

bDn)× [−c, c] ⊂ R
n+1(t, q̂, qn)
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Fig. 31 One-half of the oscillating function ξ

which is a copy of Dn × [−1, 1] centered at (t, q) and scaled by b and c
in the (t, q̂) and qn directions respectively. Let ψ : C → Dn × [−1, 1]
be the obvious diffeomorphism obtained by translating and rescaling. Define
ξC = ξ ◦ ψ : C → R. The oscillating function ξC also depends on the
parameters σ, α, γ , δ and N . We will call ψ−1

(

Dn × 1
)

and ψ−1
(

Dn × −1
)

the top and bottom of the box C respectively. We will also need to consider
the slightly smaller boxes

̂C = C

(

t, q, (1 − δ)b,

(

1 − 1

4N + 2

)

c

)

⊂ C

and ˜C = C

(

t, q, (1 − 2δ)b,

(

1 − 1

4N + 2

)

c

)

⊂ ̂C .

Observe that ξC has wild oscillations on ˜C which die out on ̂C\˜C , so that
ξC is smooth on C\̂C and ξC = 0 on Op(∂C).

Finally, we modify our local model ξ to make it Lagrangian. We do this
by integrating and differentiating as in the definition of wrinkled Lagrangian
embeddings.Define � : Dn(t, q̂)×[−1, 1](qn) → T ∗

R
n(q, p) by the formula

�(t, q) =
(

q1, . . . , qn,
∂K

∂q1
, . . . ,

∂K

∂qn−1
, ξ

)

,

where K (t, q) =
∫ qn

−1
ξ(t, q̂, u)du (1)

Observe that � is defined in terms of ξ , hence also depends on the parameters
σ, α, γ, δ and N . Observe also that ξ is odd in the qn variable, hence K = 0
on Op

(

∂(Dn × [−1, 1])). It follows that � has a Legendrian lift (�, K ) which
agrees with the zero section on Op

(

∂(Dn × [−1, 1])).
Given any box C we can similarly define a translated and scaled version

�C of � which has support in C . This completes the construction of our local
wrinkling model.
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Fig. 32 A tangential rotation which is quasi-graphical and simple with respect to H

Remark 5.7 The function ξ is not smooth and hence � is also not smooth.
However, ξ can be smoothly reparametrized and therefore so can �. We will
revisit this nuance later on but it will not cause us any trouble.

We are now ready to state and prove the local wrinkling lemma. Note
that a tangential rotation Gt : I n → 
(T ∗ I n) of the inclusion of the
zero section i : I n ↪→ T ∗ I n is simple with respect to the hyperplane field
H = span(∂/∂q1, . . . , ∂/∂qn−1) ⊂ T I n if it can be written as

Gt = span

(

∂

∂q1
, . . . ,

∂

∂qn−1
, cos(λt )

∂

∂qn
+ sin(λt )

∂

∂pn

)

for some angle function λt : I n → R. According to our previous definition
we say that Gt is graphical when im(λt ) ⊂ (−π/2, π/2). We will say that Gt
is quasi-graphical when im(λt ) ⊂ (−π, π) (Fig. 32).

Lemma 5.8 (Local wrinkling for Lagrangians) Let Gt : I n → 
(T ∗ I n) be a
tangential rotation of the zero section i : I n ↪→ T ∗ I n which is quasi-graphical
and simple with respect to H and such that Gt = G(di) on Op(∂ I n). Then
there exists an exact homotopy of wrinkled Lagrangian embeddings ft : I n →
T ∗ I n, f0 = i , such that the following properties hold.

• G(d ft ) is C0-close to Gt .
• ft = i on Op(∂ I n).

Proof Let τ > 0 be small. We will be precise about exactly how small we
need τ to be later on. Wrinkling is dangerous and unnecessary where λt is
close to zero, so we will first use our oscillating model � to define a similar
model which does not oscillate on the subset of [0, 1] × I n in which |λt | < τ .

Remark 5.9 Although we want to think of time as a spatial parameter, observe
that λt �= 0 on the boundary face 1 × I n ⊂ ∂([0, 1] × I n), so we are not
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quite in the relative setting. To remedy this, we extend the time interval from
[0, 1] to [0, 2] by setting λt = λ2−t for t ∈ [1, 2]. We can then work with
the box [0, 2] × I n as our local model, which has the advantage that λt = 0
on Op

(

∂([0, 2] × I n)
)

. We can later restrict back to only considering times
t ∈ [0, 1] and forget about the rest.

Let �τ = {(t, q) ∈ [0, 2] × I n : |λt (q)| > τ }. We call a box C =
C(t, q, b, c) ⊂ [0, 2] × I n special if |λt (q)| < 2τ for (t, q) near the top
and bottom of C . Choose special boxes C1, . . . ,Cm ⊂ [0, 2] × I n which are
contained in�τ and such that the smaller boxes˜C1, . . . , ˜Cm are still special and
cover �2τ . This can be achieved if δ is sufficiently small and N is sufficiently
big.Writeψ j for the parametrizing diffeomorphismsψ j : C j → Dn×[−1, 1]
as above. We can assume that the setsψ−1

j

(

Dn × ([−1, 1]∩Q)
) ⊂ [0, 2]× I n

are disjoint. Therefore for each integer N there exists a number σ(N ) > 0
such that for all σ < σ(N ) the subsets

ψ−1
j

(

Dn×
[

2k

2N+1
− σ̃ ,

2k

2N+1
+ σ̃

])

, σ̃ = 4σ

2N + 1
, −N ≤ k ≤ N ,

are also disjoint. When we let N → ∞ below, we will let σ → 0 accordingly
so that we always have σ < σ(N ).

For each box C j ⊂ �τ we have an oscillating Lagrangian model �C j . Let
sign( j) = sign(λt |C j ) ∈ {±1}. Define the Lagrangian oscillating model wt
adapted to Gt by setting wt (q) = ∑

j sign( j)�C j (t, q). More precisely, we
set

wt (q) =
⎛

⎝q1, . . . , qn,
∂Ht

∂q1
, . . . ,

∂Ht

∂qn−1
,
∑

j

sign( j)ξC j

⎞

⎠ ,

where Ht =
∑

j

∫ qn

−1
sign( j)ξC j (t, q̂, u)du

Observe that wt = 0 and Ht = 0 outside of �τ . At this point we can restrict
back to the time interval [0, 1] ⊂ [0, 2], which is all that we really cared about.

Consider the function Ft (q, p) = 1
2 cot

(

λt (q)
)

p2n . For each t ∈ [0, 1]
we consider Ft as an autonomous Hamiltonian function. Therefore Ft yields
a Hamiltonian isotopy ϕs

t : T ∗�τ → T ∗
R
n such that the vector field

Xt = ∂sϕ
s
t (q)|s=0 is the symplectic dual of dFt (q) = cot

(

λt (q)
)

pndpn −
1
2cosec

2
(

λt (q)
)

p2ndλt (q). Hence we have

Xt (q, p) = cot
(

λt (q)
)

pn
∂

∂qn
+ 1

2
cosec2

(

λt (q)
)

p2n

n
∑

j=1

∂λt

∂q j

∂

∂p j
.
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Fig. 33 Along the zero section R
n ⊂ T ∗

R
n we have dϕt (∂/∂qn) = ∂/∂qn and dϕt (∂/∂pn) =

cot(λt )∂/∂qn + ∂/∂pn

It follows by explicit computation that

ϕs
t (q, p) = (

q̂, qn + cot
(

λt (q)
)

pns , p1

+1

2
cosec2

(

λt (q)
)

p2n
∂λt

∂q1
s , . . . , pn

+1

2
cosec2

(

λt (q)
)

p2n
∂λt

∂qn
s

)

.

We set ϕt = ϕ1
t , which is well defined for all t ∈ [0, 1] on Op(�τ ) ⊂ T ∗

R
n .

Note that ϕt is itself a Hamiltonian isotopy. Note also that ϕt = id on �τ ⊂
T ∗�τ since p1, . . . , pn = 0 on the zero section. Note moreover that on �τ

we have (Fig. 33)

∂ϕt

∂q j
= ∂

∂q j
for j = 1, . . . , n,

∂ϕt

∂p j
= ∂

∂p j
for j < n

and
∂ϕt

∂pn
= cot(λt )

∂

∂qn
+ ∂

∂pn
.

Hence in particular on �τ we have

dϕt

(

span

(

∂

∂q1
, . . . ,

∂

∂qn−1
,

∂

∂pn

))

= Gt .

Set ft = ϕt ◦ wt . We recall from Remark 5.7 that each �C j is not smooth,
hence wt is not smooth, hence the same is true for ft . However, we can pre-
compose wt with a reparametrization of the domain so that wt and hence also
ft is smooth. Note moreover that this reparametrization can be taken to be
C0-smal and supported in an arbitrarily neighborhood of the wrinkles. Note
finally that reparametrizing ft doesn’t change the image of ft and therefore
it also doesn’t change the image of the Gauss map G(d ft ), which is what we
actually care about. By abusing notation we will also use ft to denote the
reparametrized smooth map whenever this is convenient. See Figs. 34 and 35
for an illustration of ft .
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Fig. 34 The pn-coordinate of the map ft . The cusps are semi-cubic

Fig. 35 The z-coordinate of the Legendrian lift of ft . In other words, this is the Legendrian
front of ft . The cusps are semi-quintic

Claim 5.10 For any ε > 0 we can choose parameters τ, δ, σ, α, γ and N so
that distC0(G(d ft ),Gt ) < ε.

We recall the parameters at play. The game is all about controlling the different
rates at which the parameters tend to zero or infinity, so it will be important
to be precise in the interdependence of the parameters and in the order of
quantifiers.

• τ is the cutoff angle of Gt under which we will perform no wrinkling.
• δ is proportional to the width of the shell between a box C and the smaller
box ˜C .

• 1/σ is the order of magnitude of ζ ′
s on the regions where it is large and

negative (inside the wrinkles).
• α controls the magnitude of the ‘bad’ negative derivative ζ ′

s when the wrin-
kles die out.

• γ is the height of the oscillating model ξ .
• N is proportional to the number of wrinkles in ξ .
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We begin by fixing ε > 0 arbitrarily small. To choose τ , observe that

dϕt

(

∂

∂qn
+ β

∂

∂pn

)

= ∂

∂qn
+ β

(

cot(λt )
∂

∂qn
+ ∂

∂pn

)

, β ∈ R

and hence if sign(β) = sign(λt ), then the scalar product of ∂/∂qn and
dϕt (∂/∂qn + β∂/∂pn) is positive and moreover we have

�
(

∂

∂qn
, dϕt

(

∂

∂qn
+ β

∂

∂pn

))

< |λt |.

Recall that on the subset �τ\�2τ we have τ < |λt | ≤ 2τ . Suppose that
τ < ε/4. It follows that if sign(β) = sign(λt ), then

�
(

∂

∂qn
, dϕt

(

∂

∂qn
+ β

∂

∂pn

))

< 2τ <
ε

2
on �τ\�2τ .

Once τ < ε/4 is fixed, we choose δ small enough so that the construction of
wt = ∑

j sign( j)�C j (which depends implicitly on τ ) is possible. The other
parameters must be chosen somewhat more judiciously. Our first task is to
understand the geometry of the initial local model (s, u) �→ (

xs(u), ys(u)
)

in order to control the error produced when we modify the model to make it
Lagrangian.

Consider the Lagrangian version in T ∗
R
2 = R

4(q1, q2, p1, p2) given by
the formula

m(s, u) =
(

s, xs(u), rs(u), ys(u)
)

∈ T ∗
R
2,

rs(u) =
∫ u

0
∂s
(

ys(u)
)

∂u
(

xs(u)
)− ∂u

(

ys(u)
)

∂s
(

xs(u)
)

du,

where we recall that

xs(u) = 15

8

∫ u

0
(w2 − s)2dw, ys(u) = 1

2
(u3 − 3su).

We also have the corresponding scaled version

mγ,N (s, u) =
(

s,
1

N
xs(u),

γ

N
rs(u), γ ys(u)

)

∈ T ∗
R
2.

If γ → 0 and N → ∞ in such a way that Nγ → ∞, then the Gauss map
G(dmγ,N ) converges (on compact subsets of the (s, u) plane) to the distri-
bution spanned by the vectors ∂/∂q1 = (1, 0, 0, 0) and ∂/∂p2 = (0, 0, 0, 1).
The proof is the following explicit computation.
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It will we convenient to carry out our calculations in terms of the function
F(s, u) = 1

3(u
3 − 3su) and its derivative Fu(s, u) = u2 − s. Note that the

zero set {Fu = 0} is precisely the wrinkling locus of m. We compute:

∂u
(

xs(u)
) = 15

8
F2
u , ∂s

(

xs(u)
) = −15

4
F

∂u
(

ys(u)
) = 3

2
Fu, ∂s

(

ys(u)
) = −3

2
u

∂u
(

rs(u)
) = 15

8
Fu
(

− 3

2
uFu + 3F

)

= −15

16
Fu(u

3 + 3su).

∂mγ,N

∂s
=
(

1,
1

N
∂s
(

xs(u)
)

,
γ

N
∂s
(

rs(u)
)

, γ ∂s
(

ys(u)
)

)

→ (

1, 0, 0, 0
)

as γ → 0, N → ∞,

∂mγ,N

∂u
=
(

0,
1

N

15

8
F2
u , − γ

N

15

16
(u3 + 3su)Fu, γ

3

2
Fu
)

= −γ Fu
(

0,
1

Nγ
Fu, − 1

N

15

16
(u3 + 3su),

3

2

)

and hence provided that Nγ → ∞ we have

span
(∂mγ,N

∂s
,

∂mγ,N

∂u

)

−→ span
( ∂

∂q1
,

∂

∂p2

)

.

With some minor modifications we can extend our computations to the
scaled n−dimensional model for the Lagrangian wrinkle as it appears in �

(see equation 1).

(t, q) �→
(

q1, . . . , qn−1,
σ xη(qn)

2N + 1
,

σγ rη(qn)

2N + 1

∂||(t, q̂)||
∂q1

η′, . . . ,

σγ rη(qn)

2N + 1

∂||(t, q̂)||
∂qn−1

η′, γ yη(qn)
)

where η = η
(||(t, q̂)||). Indeed, the only difference comes from the terms

∂ jη = η′∂ j ||(t, q̂)|| for j < n and their partial derivatives, which give an error
that tends to zero as γ → 0 and N → ∞. The conclusion is that provided we
have Nγ → ∞, the Gauss map converges to the distribution

V = span
( ∂

∂q1
, . . . ,

∂

∂qn−1
,

∂

∂pn

)

.

Recall that we must ensure σ < σ(N ) so that the singularity loci�(�C j ) ⊂
[0, 1] × I n are disjoint. Hence if we let N → ∞, then we must also allow for
σ → 0. But this only helps us in the above computation so there is no issue.
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Consider next the oscillating model � defined above. Let � ⊂ [−1, 1]× I n

be the locus on which � is not smooth. The set � consists of a disjoint union
of spheres with cuspidal equators. Let E be the compact region bounded by
�. If γ → 0 and N → ∞ so that Nγ → ∞, then the above computations
show that on Op(E) the Gauss map of � converges to the distribution V . In
the complement of Op(E), the model � is smooth and for j < n we have
∂�/∂q j → ∂/∂q j as γ → 0. On the subset B = [−1+ 2δ, 1− 2δ]n × [−1+

1
4N+2 , 1− 1

4N+2 ] the Gauss map of � converges to V , indeed on the remaining
part B\Op(E) the derivative dpn(∂�/∂qn) = ∂ξ/∂qn is strictly positive and
scales by Nγ while dp j (∂�/∂qn) scales by γ for j < n. On I n\B we cannot
control ∂�/∂qn so precisely but we assert that outside of Op(E) there still
holds the following lower bound:

dpn(∂�/∂qn) = ∂ξ/∂qn ≥ −(N + 1)γ α.

To confirm this assertion, we compute

∂ξ

∂qn
= γρ(t, q̂)

(

sign(qn)ψ
′(|qn|)ζη(t,q̂)

(

2N + 1

2
qn

)

+2N + 1

2
ψ(|qn|)ζ ′

η(t,q̂)

(

2N + 1

2
qn

))

.

Since ψ ′ ≤ 0 and sign(ζη(t,q̂)(
2N+1

2 qn)
) = −sign(qn) in the region where

ψ ′ �= 0, the first term is always non-negative. For the second term we use our
assumption that ζ ′

s ≥ −α and the desired inequality follows.
We deduce from this inequality that if we let γ, α → 0 and N → ∞ so

that Nγ → ∞ and Nγα → 0, then on the complement of Op(E) we have
lim inf dpn(∂�/∂qn) ≥ 0. Of course we also still have dq j (∂�/∂qn) = 0 for
j < n, dqn(∂�/∂qn) = 1 and dp j (∂�/∂qn) → 0 as γ → 0.
Next we proceed to study the model wt = ∑

j sign( j)�C j which is adapted
to our rotation Gt . Assume first for simplicity that λt ≥ 0, so that sign( j) = 1
for all j . Let ˜� ⊂ [0, 1] × I n be the non-smooth locus of wt . The set ˜�
is again a disjoint union of spheres which have cuspidal equators. Let ˜E be
the compact subset bounded by ˜�. Note that ˜E ⊂ �τ . On �2τ\˜E all the
derivatives ∂ξC j /∂qn are bounded below by a positive constant times −Nγα

and at each point there is at least one of them which is bounded below by
a constant times Nγ . This last assertion holds because the boxes ˜C j ⊂ C j
cover �2τ . Inside ˜E all the derivatives ∂ξC j /∂qn are bounded above by a
positive constant times Nγ and at each point there is exactly one derivative
∂ξC j /∂qn for which is bounded above by a constant times −Nγ /σ . This
last derivative corresponds to the �C j whose non-smooth locus bounds the
component of ˜E containing the point we’re looking at. We recall that we are
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letting σ → 0 with the only requirement that σ < σ(N ). Hence if N → ∞
and γ, α, σ → 0 in such a way that this condition holds and if additionally we
have Nγ → ∞ and Nγα → 0, then on the region �2τ ∪ Op(˜E) the Gauss
map of wt converges to the distribution V and on and on �τ\

(

�2τ ∪ Op(˜E)
)

we know that ∂wt/∂q j → ∂/∂q j for j < n and that ∂wt/∂qn gets arbitrarily
close to the sector

C = span

{

∂

∂qn
+ β

∂

∂pn
: β ≥ 0

}

⊂ T (T ∗
R
n)|Rn .

Consider next the general case where we don’t assume that sign( j) = 1 for
all j . Since �τ = {λt > τ } ∪ {λt < −τ } is a disjoint union, we can repeat the
above reasoning on each component and reach the same conclusion, provided
that we modify that definition of the subset C as follows

C = span

{

∂

∂qn
+ β

∂

∂pn
: sign(β) = sign(λt )

}

⊂ T (T ∗
R
n)|�τ .

We now return to the wrinkled Lagrangian embedding ft = ϕt ◦ wt . Recall
that along the zero section the linear symplectic isomorphism dϕt is the map
which sends

∂

∂q j
�→ ∂

∂q j
, j = 1, . . . , n,

∂

∂p j
�→ ∂

∂p j
, j < n

and
∂

∂pn
�→ cot(λt )

∂

∂qn
+ ∂

∂pn
,

so that dϕt (V ) = Gt along the zero section. Recall also that we chose
τ = τ(ε) so that on �τ\�2τ we have �

(

dϕt (v), ∂/∂qn
)

< ε/2 for all
v ∈ C. Under the above convergence assumptions it follows that we have
lim sup�(∂ ft/∂qn, ∂/∂qn) ≤ ε/2 on �τ\

(

�2τ ∪ Op(˜E)
)

and hence also
lim sup dist(G(d ft ), TR

n) ≤ ε/2. Therefore lim sup dist
(

G(d ft ),Gt
) ≤

dist
(

G(d ft ), TR
n
)+dist

(

TR
n,Gt

)

< ε/2+2τ < ε on�τ/
(

�2τ ∪Op(˜E)
)

.
Outside of �τ we have dist

(

G(d ft ),Gt ) = dist
(

TR
n,Gt ) < τ < ε. If we

assume that on�2τ ∪Op(˜E) the Gaussmap ofwt converges to the distribution
V , then for ft we have

G(d ft ) → dϕt (V ) = Gt on �2τ ∪ Op(˜E).

Therefore to conclude the proof of Claim 5.10, and hence also of Lemma
5.8, it suffices to show that we can arrange that γ, α → 0 and N → ∞ in such
a way that Nγ → ∞ and Nγα → 0. This is clearly possible, for instance we
can set γ = N−1/2 and α = N−2/3. ��
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The simplification of singularities of Lagrangian 701

The analogous result for Legendrians is stated and proved in the same
way. Observe as in the Lagrangian case that a tangential rotation Gt : I n →


(

J 1(I n, R)
)

of the inclusionof the zero section i : I n ↪→ J 1(I n, R) is simple
with respect to the hyperplane field H = span(∂/∂q1, . . . , ∂/∂qn−1) ⊂ T I n

if it can be written as

Gt = span
(

∂/∂q1, . . . , ∂/∂qn−1, cos(λt )∂/∂qn + sin(λt )∂/∂pn
)

for some function λt : I n → R. According to our previous definition we
say that Gt is graphical when im(λt ) ⊂ (−π/2, π/2). We will say that Gt is
quasi-graphical when im(λt ) ⊂ (−π, π).

Lemma 5.11 (Localwrinkling forLegendrians)LetGt : I n → 

(

J 1(I n, R)
)

be a tangential rotation of the zero section i : I n ↪→ J 1(I n, R) which is
quasi-graphical and simple with respect to H and such that Gt = G(di)
on Op(∂ I n). Then there exists an exact homotopy of wrinkled Legendrian
embeddings ft : I n → J 1(I n, R), f0 = i , such that the following properties
hold.

• G(d ft ) is C0-close to Gt .
• ft = i on Op(∂ I n).

Proof We proceed exactly like we did in the proof of Lemma 5.8. The Leg-
endrian model is simply given by the Legendrian lift ̂� = (�, K ) of the
Lagrangian model � which exists because of the exactness condition K = 0
on [−1, 1] × Op(∂ I n). ��
The parametric versions read as follows. Note that we also localize the
problem from a general m-dimensional parameter space Z to the unit cube
Im = [−1, 1]m .
Lemma 5.12 (Parametric local wrinkling for Lagrangians) Let Gz

t : I n →

(T ∗ I n) be a family of tangential rotations of the zero section i : I n ↪→ T ∗ I n
parametrized by the unit cube Im which are all quasi-graphical and simplewith
respect to H, such that Gz

t = G(di) on Op(∂ I n) and such that Gz
t = G(di)

for z ∈ Op(∂ Im). Then there exists a family of exact homotopies of wrinkled
Lagrangian embeddings f zt : I n → T ∗ I n, f z0 = i , such that the following
properties hold.

• G(d f zt ) is C0-close to Gz
t .

• f zt = i on Op(∂ I n).
• f zt = i for z ∈ Op(∂ Im).

Lemma 5.13 (Parametric local wrinkling for Legendrians) Let Gz
t : I n →



(

J 1(I n, R)
)

be a family of tangential rotations of the zero section i : I n ↪→
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702 D. Álvarez-Gavela

J 1(I n, R) parametrized by the unit cube Im which are all quasi-graphical and
simple with respect to H, such that Gz

t = G(di) on Op(∂ I n) and such that
Gz

t = G(di) for z ∈ Op(∂ Im). Then there exists a family of exact homotopies
of wrinkled Legendrian embeddings f zt : I n → J 1(I n, R), f z0 = i , such that
the following properties hold.

• G(d f zt ) is C0-close to Gz
t .

• f zt = i on Op(∂ I n).
• f zt = i for z ∈ Op(∂ Im).

Lemmas 5.12 and 5.13 are proved in the same way as Lemmas 5.8 and
5.11, adapting our construction to the fibered case as in [15]. To be more
precise, in the local model for the oscillating function ξ we replace the box
Dn(t, q̂) × [−1, 1](qn) by the box Dn(t, q̂) × [−1, 1](qn) × Dm(z) and set

ξ(t, q, z) = γ ρ(||z||) ρ
(||(t, q̂)||)ψ

(|qn|
)

ζη(||(t,q̂)||)
(

2N + 1

2
qn

)

,

(t, q̂) ∈ Dn, qn ∈ [−1, 1], z ∈ Dm .

The rest of the proof can then be repeated carrying the parameter z ∈ Dm

along for the ride.

5.3 Wrinkling the wiggles

We are now ready to prove that tangential rotations can be globally approxi-
mated by Gauss maps of wrinkled embeddings (Fig. 36).

Proof of Theorem 5.2 For simplicity we spell out the details only for the
Lagrangian case, but the Legendrian case is entirely analogous. Let Gt : L →

(M) be a graphical simple rotation of a wrinkled Lagrangian embedding
f : L → M . Fix a Riemannian metric on L . Let � be a triangulation of L
which is compatible with the wrinkles of f as in Sect. 4.3.

Set K = �n−1, the (n−1)-skeleton of�. By Theorem 4.11, there exists an
exact homotopy of wrinkled Lagrangian embeddings ˜ft : L → M , ˜f0 = f ,

Fig. 36 The two-step process applied to a given simplex D. First we wiggle, then we wrinkle
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The simplification of singularities of Lagrangian 703

(which is in fact an isotopy in the sense of Remark 4.13) and a tangential
rotation Rt : L → 
(M) of f such that the following properties hold.

• G(d ˜ft ) is C0-close to Gt on Op(K ).
• G(d ˜ft ) is C0-close to Rt on all of L .
• Rt is graphical and simple with respect to the same hyperplane field H as
Gt .

• ˜ft = f and Rt = G(d f ) outside of a slightly bigger neighborhood of K
in L .

Take an open n-simplex D in �n , so that ˜ft |D : D → M is an exact
homotopy of regular Lagrangian embeddings. Suppose first that ∂D is disjoint
from the wrinkling locus of f and take a slightly larger disk ˜D ⊃ D in L . With
respect to aWeinstein parametrizationof a tubular neighborhoodof f (˜D) inM ,
the graphical homotopy ˜ft |D corresponds to a homotopy dht ◦Ft : D → T ∗

˜D.
Here Ft : D → ˜D is an isotopy (which may wiggle D outside of itself but by
C0-smallness can be assumed to satisfiy Ft (D) ⊂ ˜D) and ht : Ft (D) → R

is a homotopy of real valued functions. The reader can review the proof of
Theorem 4.5 (to which Theorem 4.11 reduces away from the wrinkling locus)
to see where Ft and ht come from.

We can assume that the hyperplane field H is almost constant along ˜D,
in the following sense. For any ε > 0, there exists a δ > 0 for which we
can cover the compact subset where Gt is not identically G(d f ) with a finite
union of radius δ metric balls Bj = Bδ(q j ), q j ∈ L , such that in exponential
coordinates from q j the hyperplane field H |Bj is ε-close to being constant (in
other words, the angle between H at different points varies by less than ε). For
balls which intersect the wrinkling locus of f (along which the hyperplane
field H may jump discontinuously) we demand that the restriction of each
hyperplane field is ε-close to being constant. For that fixed ε > 0 we can
from the onset subdivide the triangulation � fine enough so that every n-
simplex is contained in one of the balls Bj . We can then use the exponential
coordinates on Bj to replace the hyperplane field H with a constant hyperplane
field, modifying Gt and Rt accordingly, at the cost of a C0-error uniformly
proportional to ε. Since we were free to choose ε > 0 arbitrarily small, we can
ensure that the error resulting from straightening out H is arbitrarily small and
in particular smaller than whatever C0-accuracy is desired in the conclusion
of Theorem 5.2. Henceforth we shall use these coordinates for ˜D and H on
Bj , composed with an inclusion into the unit cube I n = [−1, 1]n by a linear
Euclidean isometry so that we have ˜D ⊂ I n and H = R

n−1×0 as in our local
wrinkling model. Since our local model is a relative construction, we won’t
really care about the precise way that ˜D sits in I n .

With respect to our Weinstein parametrization, Gt |D and Rt |D correspond
to simple 2-jet rotations gt and rt , which we recall are maps D → J 2(D, R).
Consider the difference gt − rt . Observe from the conclusion of Theorem 4.5
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704 D. Álvarez-Gavela

that near ∂D this difference is C0-small. Let st be the composition (gt − rt ) ◦
F−1
t on Ft (D) ⊂ ˜D but cut off so that st = 0 near ∂Ft (D). We precompose by

F−1
t to account for the reparametrization Ft used to construct ˜ft . Notice that

even after the cutoff we have that st is C0-close to (gt − rt ) ◦ F−1
t on Ft (D),

with the degree of C0-closeness determined by how much C0-closeness we
demanded in the invokation of Theorem 4.5 which produced ˜ft . Equivalently,
st
(

Ft (q)
)

is C0-close to gt (q) − rt (q).
We are now ready towrinkle.Wewill produce awrinkling of the zero section

to approximate st and then add thiswrinkling to the graphofdht to approximate
st + rt ∼ gt . Apply the local wrinkling Lemma 5.8 to the simple rotation of
I n ⊂ T ∗ I n determined by the 2-jet rotation st : I n → J 2(Rn, R). The result
is an exact homotopy of wrinkled Lagrangian embeddings ̂ft : I n → T ∗ I n as
in the statement of the Lemma. Note in particular that ̂ft is the inclusion of the
zero section in the complement of Ft (D) ⊂ I n . Now consider the following
addition of the two Lagrangian embeddings ft = ̂ft + ˜ft . We define an exact
homotopy of wrinkled Lagrangian embeddings D → T ∗

˜D by means of the
formula

q �→ ̂f
(

Ft (q)
)+ dht

(

π ◦ ̂ft
(

Ft (q)
))

, q ∈ D,

where π : T ∗
˜D → ˜D is the cotangent bundle projection and the addition sign

corresponds to the fibrewise addition of cotangent vectors based at the same
point.

Note that in the invokation of our local wrinkling lemma we can demand
that π ◦ ̂f be arbitrarily C0-close to the identity, so π ◦ ̂ft

(

Ft (q)
)

is arbitrarily
C0-close to Ft (q) and hence the Lagrangian plane tangent to the graph of dht
over the pointπ◦ ̂f (Ft (q)

)

isC0-close to rt(q). Note also that each Lagrangian
plane tangent to ̂ft over that same point is C0-close to st

(

Ft (q)
)

. Hence the
Lagrangian plane tangent to ft at the point ft (q) isC0-close to the Lagrangian
plane corresponding to rt (q) + st

(

Ft (q)
)

, which is itself C0-close to Gt (q),
as required.

In remains to explain how to adapt the proof when the n-simplex D has
boundary intersecting the wrinkling locus of f . The issue is that any larger
disk ˜D ⊃ D would necessarily intersect the wrinkling locus. However, this is
straightforward to fix: take a smooth Lagrangian disk 
 ⊂ M which contains
f (D) in its interior and such that ˜ft (D) is graphical over 
 with respect to a
Weinstein parametrization of a tubular neighborhood of
. A quick look at the
proof of Theorem 4.11 is sufficient to convince oneself of the existence of this
disk. Then with respect to this Weinstein parametrization we can still write ˜ft
as a composition dht ◦Ft for Ft : f (D) → 
 an isotopy and ht : Ft (D) → R

a homotopy of real valued functions. The rest of the proof now proceeds as
before. ��
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Fig. 37 One-half of a regularized wrinkle. In this picture, the ambient foliation should be
thought of as being vertical

The proof of the parametric Theorem 5.4 follows the same outline, using
the parametric Theorem 4.10 instead of Theorem 4.5 and using the parametric
Lemmas 5.12 and 5.13 instead of Lemmas 5.8 and 5.11. The only essential
difference is that in order to localize the parameter space from an arbitrary
m-dimensional manifold Z to the unit cube Z = Im we need to choose a
triangulation� of Z×L with sufficiently small simplices, which is compatible
with thewrinkles of f andwhich is in general positionwith respect to the fibres
z × L ⊂ Z × L , z ∈ Z . The existence of such a triangulation was proved by
Thurston in [46]. Once we know that such a triangulation exists, we can take
the fibered polyhedron K = �n+m−1 ⊂ Z × L and work simplex by simplex.

6 The simplification of singularities

6.1 Wrinkles, swallowtails and double folds

We now return to the setting described in Sect. 1. Let M be a symplectic or
contact manifold and let F be a foliation of M by Lagrangian or Legendrian
leaves. Suppose that f : L → M is a wrinkled Lagrangian or Legendrian
embeddingwhich is transverse toF .We can apply the regularization procedure
described in Sect. 2.5 to f and obtain a regular Lagrangian or Legendrian
embedding ˜f : L → M . We already observed in Remark 2.10 that ˜f only has
�1-type singularities with respect to F , see Fig. 37 for an illustration. More
precisely, �(˜f ,F) consists of a disjoint union of regularized wrinkles, which
are defined as follows.

Definition 6.1 A regularized wrinkle of a regular Lagrangian or Legendrian
embedding g : L → M with respect to a foliation F is a connected compo-
nent of the singularity locus �(g,F) which consists of a topologically trivial
codimension 1 sphere S ⊂ L such that we can decompose S = D1 ∪ E ∪ D2
into two hemispheres D1 and D2 and an equator E satisfying the following.

• the equator E consists of �110 pleats.
• the disks D1 and D2 consist of �10 folds.
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For a concrete local model, one can take the standard Lagrangian or Legen-
drian wrinkle defined in Sect. 2.2, after regularizing as described in Sect. 2.5.
In the Lagrangian case, the foliation F of the cotangent bundle is given by the
fibres of the standard projection π : T ∗

R
n → R

n . In the Legendrian case, the
foliation F of the 1-jet space J 1(Rn, R) = T ∗

R
n × R is given by the fibres

of the front projection π × id : T ∗
R
n × R → R

n × R.

Remark 6.2 If the foliationF is induced by a Lagrangian fibrationπ : M2n →
Bn , then for any regular Lagrangian embedding f : Ln → M2n the following
two conditions are equivalent.

• the singularities of tangency of g with respect to F consist of a union of
regularized wrinkles.

• the front π ◦ g : Ln → Bn is a generalized wrinkled mapping in the sense
of [15].

In the contact case where π : M2n+1 → Bn+1 is a Legendrian fibration
(whichwe think of as the front projection),we can think of regularizedwrinkles
in the following way. The singularities of tangency of a regular Legendrian
embedding consist of a union W = ⋃

j S j of regularized wrinkles if and
only if the front of the embedding has cusps on each sphere S j together with
swallowtails on the equator E j of each S j .

Regularized wrinkles are also close relatives of the double folds introduced
in Sect. 1.3. We recall the definition for convenience.

Definition 6.3 Adouble fold is a pair of topologically trivial (n−1)-spheres S1
and S2 in the fold locus �10 ⊂ L which have opposite Maslov co-orientations
and such that S1 ∪ S2 is the boundary of an embedded annulus A ⊂ L .

Indeed, the Entov surgery of [20] can be used to open up a regularized
wrinkle along its equator, producing a double fold. This is achieved by taking
one of the two hemispheres of a regularized wrinkle S ⊂ L and pushing it
slightly away from S while keeping it fixed on the equator E . We obtain an
embedded disk D ⊂ L contained in an arbitrarily small neighborhood of S in L
such that ∂D = E and int(D)∩S = ∅. In fact, we require that int(D) is outside
of the n-ball B ⊂ L bounded by S. The surgery construction removes the�110

pleats from E and trades them for �10 folds on two parallel copies of D. One
of these two parallel copies of D is surgered onto one of the hemispheres of
S and the other parallel copy is surgered onto the other hemisphere, so that
the end result consists of a disjoint union of two parallel spheres on which the
embedding has �10 folds. The Maslov co-orientations on the two resulting
spheres are opposite of each other. Hence we end up with the desired double
fold. See [20] for the details of the surgery construction and see Fig. 38 for an
illustration.
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Fig. 38 Opening up a wrinkle into a double fold. The upper picture corresponds to the
Lagrangian projection and the lower picture to the front projection

The precise statement that we will need is the following. Given a regular
Lagrangian or Legendrian embedding g : L → M and given S ⊂ �(g,F)

a regularized wrinkle, there exists a C0-small ambient Hamiltonian isotopy
ϕt : M → M such that ϕt = idM outside of an arbitrarily small neighborhood
of g(S) in M and such that inside this neighborhood the regularized wrinkle
of g is replaced by a double fold of ϕ1 ◦ g. If g = ˜f is the regularization
of a wrinkled Lagrangian or Legendrian embedding f : L → M , then the
wrinkles S of f will typically be nested. By this we mean that the ball B ⊂ L
bounded by any wrinkle S of f may contain other wrinkles of f . Hence when
we apply the surgery construction on each regularized wrinkle of g = ˜f , we
obtain a regular Lagrangian or Legendrian embedding ϕ1◦g whose singularity
locus consists of a disjoint union of double folds which are nested in the sense
of Sect. 1.3.

Remark 6.4 We could of course have worked with double folds all along with-
out ever mentioning wrinkles. Instead of defining wrinkled Lagrangian and
Legendrian embeddings as we did, we could have defined ‘doubly cusped’
Lagrangian and Legendrian embeddings to be topological embeddings which
are smooth Lagrangian or Legendrian embeddings away from a finite union of
pairs of parallel spheres, where the embedding has cusps of opposite Maslov
co-orientation (the cusps are semi-quintic in the ambient symplectic or con-
tact manifold and semi-cubic in the front projection). Our C0-approximation
result for a tangential rotation Gt would also hold for the class of doubly
cusped Lagrangian and Legendrian embeddings. Moreover, the regularization
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708 D. Álvarez-Gavela

of a doubly cusped Lagrangian or Legendrian embedding which is transverse
to a foliationF is a regular Lagrangian or Legendrian embeddingwhose singu-
larities of tangency with respect to F consist of double folds. The h-principle
for the simplification of singularities proved below then follows with the same
proof. We have chosen to work with wrinkles instead to draw the parallel with
the smooth wrinkled embeddings theorem [15].

Suppose next that f z : L → M is a family of wrinkled Lagrangian or
Legendrian embeddings parametrized by a compact manifold Z . We can also
in this case regularize and obtain a family of regular Lagrangian or Legendrian
embeddings ˜f z : L → M . If f z is transverse to F , then the singularities of
tangency of the family ˜f z with respect to F consist of fibered regularized
wrinkles. In particular, for some values of the parameter z ∈ Z the regular
Lagrangian or Legendrian embedding ˜f z will have regularized embryos in
addition to regularized wrinkles. Regularized embryos are non-generic �1-
type singularities of tangency which occur at the instance of birth/death of a
regularized wrinkle. One can of course give a concrete local model for the
regularized embryo, however it is simpler to think about families as a single
object using the fibered terminology. For a concrete local model, one can take
the standard fibered Lagrangian or Legendrian wrinkle defined in Sect. 2.3,
after regularizing as described in Sect. 2.5. The foliation F is given as in the
non-parametric case.

Remark 6.5 If the foliationF is induced by a Lagrangian fibrationπ : M2n →
Bn , then for any family of regular Lagrangian embeddings g : Zm × Ln →
M2n the following two conditions are equivalent.

• the singularities of tangency of g with respect to F consist of a union of
fibered regularized wrinkles.

• the fibered front p ◦ g : Zm × Ln → Zm × Bn is a fibered generalized
wrinkled mapping in the sense of [15].

In the Legendrian case one can of course reinterpret what fibered regularized
wrinkles mean in the front projection in terms of cusps and swallowtails. Note
that one can also use theEntov surgery in families to replace fibered regularized
wrinkles with fibered double fold singularities. The embryos of regularized
wrinkles will become embryos of double folds. An embryo of a double fold is
a non-generic locus of �1-type singularities of tangency consisting of a single
codimension 1 sphere from which the two parallel spheres of folds can either
be born or die, see Fig. 39.
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Fig. 39 One-half of the birth/death of a double fold. The picture on the left corresponds to the
Lagrangian projection and the picture on the right corresponds to the front projection

6.2 The h-principle for the simplification of singularities

We are now ready to establish the flexibility of singularities of Lagrangian
and Legendrian fronts. As above, F denotes a foliation by Lagrangian or
Legendrian leaves of a symplectic or contact manifold M .

Theorem 6.6 Suppose that there exists a tangential rotation Gt : L → 
(M)

of a regular Lagrangian or Legendrian embedding f : L → M such that
G1 � F . Then there exists a compactly supportedambientHamiltonian isotopy
ϕt : M → M such that the singularities of ϕ1 ◦ f consist of a union of nested
regularized wrinkles.

Proof Apply the wrinkling Theorem 5.1 to Gt and f . We obtain a compactly
supported exact homotopy of wrinkled Lagrangian or Legendrian embeddings
ft : L → M such that G(d f1) � F . Next, apply the regularization process
described in Sect. 2.5 to the homotopy ft . We obtain a compactly supported
exact homotopy of regular Lagrangian orLegendrian embeddings ˜ft : L → M
such that the singularity locus �(˜f1,F) ⊂ L consists of a disjoint union of
regularized wrinkles. Finally, since the homotopy ˜ft is exact and compactly
supported, we can write ˜ft = ϕt ◦ f for some compactly supported ambient
Hamiltonian isotopy ϕt : M → M . ��

To deduce the version with double folds stated in Theorem 1.11, we simply
apply the Entov surgery construction of [20] to open up each of the wrinkles
as described in the previous section.
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Remark 6.7 At each stage of the proof, when we apply Theorem 5.1, the
regularization of Sect. 2.5 and the Entov surgery, we can always ensure that
the resulting homotopy of embeddings is C0-close to f . Hence Theorem 6.6
also holds in C0-close form, where we demand that the Hamiltonian isotopy
ϕt isC0-close to the identity idM . Moreover, we can also ensure that ϕt = idM
outside of a neighborhood of f (L) in M .

Remark 6.8 Suppose thatGt = G(d f ) on Op(A) for some closed subset A ⊂
L . At each stage of the proof, when we apply Theorem 5.1, the regularization
of Sect. 2.5 and the Entov surgery, we can always ensure that the resulting
homotopy of embeddings agrees with f on Op(A). Hence Theorem 6.6 also
holds in relative form. More precisely, we can demand that ϕt = idM on
Op

(

f (A)
) ⊂ M .

The parametric version reads as follows, and is proved in exactly the same
way. At each stage we just need to invoke the parametric versions of each of
the ingredients of the proof. The corresponding C0-close and relative versions
also hold, for the same reasons as in the non-parametric case.

Theorem 6.9 Suppose that there exists a family of tangential rotations Gz
t :

L → 
(M) of regular Lagrangian or Legendrian embeddings f z : L → M
parametrized by a compact manifold Z such that Gz

1 � F for all z ∈ Z
and such that Gz

t = G(d f z) for z ∈ Op(∂Z). Then there exists a family of
compactly supported ambient Hamiltonian isotopies ϕz

t : M → M such that
the singularities of ϕz

1 ◦ f z consist of a union of fibered nested regularized
wrinkles and such that ϕz

t = idM for z ∈ Op(∂Z).

As in the non-parametric case we can open up the fibered regularized wrin-
kles into fibered double folds using the Entov surgery construction [20].

Remark 6.10 Observe that in the case n = 1 there is no need to resolve a
wrinkle into a double fold. Indeed a 1-dimensional regularizedwrinkle consists
of nothingmore than a pair of pointswhere the embedding has folds of opposite
Maslov co-orientation. For fibered regularized wrinkles the two folds die as
in the Legendrian Reidemeister I move. We explore the case n = 1 further in
Sect. 6.5 below.

6.3 The h-principle for the prescription of singularities

Wenext prove a strengthenedversion ofEntov’sTheorem1.16.More precisely,
we apply our h-principle Theorem6.6 to drop the�2-nonsingularity restriction
from his result. As an application we establish some concrete results for the
simplification of the caustics of spheres in Sect. 6.4 below.
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Fig. 40 The chain of singularities associated to the �110 pleat, which is a swallowtail in the
front projection. A flip of the Legendrian front in the z direction would reverse the Maslov
co-orientation v1 and fix v2

Consider f : L → M a Lagrangian or Legendrian embedding and let D
be a Lagrangian distribution in T M defined along f (L). In the symplectic
case, D consists of linear Lagrangian subspaces of (T M, ω) and in the contact
case D consists of linear Lagrangian subspaces of (ξ, dα), where locally ξ =
ker(α) ⊂ T M .

When dim(d f (Tq L) ∩ D f (q)) < 2 for all q ∈ L we say that D is �2-
nonsingular. In this case, the structure of the singularity locus � = {q ∈ L :
d f (Tq L) ∩ D f (q) �= 0} is quite simple. Indeed, for generic �2−nonsingular
D the locus � is a codimension 1 submanifold which is naturally stratified as
a flag � = �1 ⊃ �11 ⊃ · · · ⊃ �1n as described in Sect. 1.3. Moreover, the
flag comes equipped with certain co-orientation data which we hinted about
in Sect. 1.9 and which more precisely consist of the following.

• Unit vector fields vk , k > 1, where each vk is defined on �1k\�1k+1
, is

normal to �1k−1
in �1k−2

and cannot be extended (as such a unit normal
vector field) to any subset C ⊂ �1k which has a nontrivial intersection
with �1k+1

.
• An additional unit vector field v1 defined on thewhole of� which is normal
to � in L . This vector field is called the Maslov co-orientation.

Adapting Eliashberg’s terminology from [9], Entov defined in [20] the chain
of singularities associated to f and D to consist of the flag�1 ⊃ �11 ⊃ · · · ⊃
�1n together with vector fields vk as above. The vk are uniquely determined
by the geometry of the singularity. See Fig. 40 for an illustration. Two chains
of singularities are said to be equivalent if there exists an isotopy of L that
transforms one into the other, including the co-orientation data. We can now
state and prove an h-principle which allows for the prescription of any homo-
topically allowable chain of singularities. The result also holds in C0-close
and relative forms.

Theorem 6.11 Let f : L → M be a regular Lagrangian or Legendrian
embedding into a symplectic or contact manifold M equipped with a foliation
F by Lagrangian or Legendrian leaves. Let Dt be a homotopy of Lagrangian
distributions defined along f (L), fixed outside of a compact subset, such
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that D0 = TF | f (L) and such that f is �2-nonsingular with respect to the
distribution D1. We moreover assume that f � F outside of that compact
subset. Then there exists a C0-small compactly supported Hamiltonian iso-
topy ϕt : M → M such that ϕ1 ◦ f is �2-nonsingular with respect to F and
moreover such that the chain of singularities of ϕ1 ◦ f with respect to F is
equivalent to the chain of singularities of f with respect to D1, together with
a union of nested double folds.

Proof We restrict our attention to the Lagrangian case for concreteness, the
Legendrian analogue is no different. Let � ⊂ L be the singularity locus of f
with respect to D1. By abusing notation, we will also denote by � the chain
of singularities which encodes the flag � = �1 ⊃ �11 ⊃ · · · ⊃ �1n and the
corresponding co-orientation data. Let �t be a homotopy of linear symplectic
isomorphisms of T M defined along f (L) such that�0 = id and�t ·D0 = Dt .
Set Gt = (�t )

−1 · G(d f ), a tangential rotation of f .

Our plan will be the following. We will first apply our holonomic approx-
imation lemma for 1−holonomic sections to Gt to make f transverse to F
near a parallel copy �1/2 of �. Then we will introduce by hand a cancelling
pair of singularity loci�1 and�2 in Op(�1/2) such that�2 is equivalent to�

and such that � ∪�1 bounds an embedded annulus which is disjoint from �2.
Formally, � and �1 can be cancelled via a rotation Rt which is fixed on �2
and hence by our relative h−principle for the simplification of singularities we
are able to keep the singularity locus �2 and fill in the rest of the Lagrangian
submanifold with double folds. See Fig. 41 for an illustration of the strategy.

Let l = (d f )−1(D1), which is a line field on T L defined along �. Extend
l to a tubular neighborhood N � � × (−1, 1) of � in L so that with respect
to this parametrization l is constant in the (−1, 1) direction. Denote by �1/2

the parallel copy � × 1
2 of � in N . Apply Theorem 4.2 to the tangential

rotation Gt and the stratified subset K = �1/2. We obtain an exact homotopy
of regular Lagrangian embeddings ft : L → M such that G(d ft ) is C0-
close to Gt on Op(�1/2). In particular, f1 � F on a neighborhood U =
� × (1/2 − ε, 1/2 + ε) of �1/2.

Along f1(U ), the Lagrangian distributions d f1(TU ) and TF | f1(U ) are
transverse. We can therefore choose a symplectic isomorphism T (T ∗U )|U �
T M | f1(U ) such that the horizontal distribution TU (which is tangent to the zero
section) is mapped to d f1(TU ) using d f1 and such that the vertical distribution
VU (which is tangent to the cotangent fibres) is mapped to TF | f1(U ). Choose
an (n − 1)-dimensional complement P for l in TU . Set l∗ = P⊥ ∩ VU and
P∗ = l⊥ ∩VU , where⊥ denotes orthogonality with respect to the symplectic
form dp ∧ dq. Let φ : [1/2 − ε, 1/2 + ε] → R be a function satisfying the
following properties.

• φ(s) = 0 for s near 1/2 ± ε.
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Fig. 41 The plan for our proof of Theorem 6.11

• φ(s) = π for s near 1/2.
• φ′(s) ≥ 0 for s ∈ (1/2 − ε, 1/2] and φ′(s) ≤ 0 for s ∈ [1/2, 1/2 + ε).

Fix nonzerovectorfieldsv ∈ l andw ∈ l∗.Define ahomotopyofLagrangian
distributions Vt ⊂ T (T ∗L) defined alongU = � × (1/2− ε, 1/2+ ε) by the
formula

Vt (e, s) = span
(

sin
(

tφ(s)
)

v + cos
(

tφ(s)
)

w
)⊕ P∗,

(e, s) ∈ � × (1/2 − ε, 1/2 + ε).

Note that V0 = VU , that Vt = VU on ∂U and that dim(Vt∩TU ) ≤ 1 for all
t ∈ [0, 1]. The singularities of tangency of V1 with respect to the zero section
U ↪→ T ∗U consist of two parallel copies�′ and�′′ of�, for concreteness say
�′ is between � and �′′. Along these singularitiy loci we have V1 ∩ TU = l.
The two corresponding chains of singularities, which we also denote by �′
and �′′, have opposite Maslov co-orientations but are otherwise equivalent.
Replacing the function φ by the function−φ if necessary, we may assume that
the chain of singularities �′′ is equivalent to the chain �.
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At this point we wish to use Vt to insert by hand a cancelling pair of singu-
larities modelled on �. The explicit formulas that we need are written down
in Entov’s paper [20]. We could use these formulas to write down a con-
crete model for the creation of the cancelling pair, but we can make our life
even easier by directly applying Entov’s Theorem 1.16 to Vt . The output of
Entov’s theorem is an exact homotopy of regular Lagrangian embeddings
gt : U → T ∗U such that g0 is the inclusion of the zero section U ↪→ T ∗U ,
such that gt is fixed on Op(∂U ) and such that the singularities of tangency
of g1 with respect to VU are equivalent to those of g0 with respect to V1,
together with a union of nested double folds. Furthermore, the homotopy gt
can be assumed to be C0-small, so by taking an appropriate Weinstein neigh-
borhood we can think of this homotopy as happening inside M . The result is
an exact regular homotopy ˜ft : L → M of ˜f0 = f1 such that alongU ⊂ L the
singularities of tangency of ˜f1 with respect toF consist of a union�1∪�2∪F ,
where the chain �1 is equivalent to �′, the chain �2 is equivalent to �′′ and
F is a union of nested double folds. Moreoever, � ∪ �1 bounds an annulus
A ⊂ L which is disjoint from �2.

Claim 6.12 There exists a tangential rotation Rt : L → 
(M) of ˜f1 which is
fixed on Op(�2) and such that R1 � F away from �2.

Once this claim is established we are done, since we can apply the relative
version of Theorem 6.6 to construct an exact homotopy of regular Lagrangian
embeddingswhich is fixed on Op(�2) and such that at the end of the homotopy
the singularities of tangency away from�2 consist of a union of nested double
folds, which is exactly what we wanted to prove.

To justify the claim, we first observe that there exists a tangential rotation
St : L → 
(M) of ˜f1 such that St is fixed on Op(�1∪�2), such that S1 = G1
outside of U and such that S1 � F away from �1 ∪ �2 ∪ �. To define St ,
choose δ1 < δ2 < ε such that the annuli Ui = � × (1/2 − δi , 1/2 + δi ) ⊂ U
contain �1 ∪ �2 ∪ F . Inside of U1, we let St kill the double folds of F so
that the only remaining singularities are �1 ∪ �2. On the rest of L (where we
may assume that ˜f1 = f1 provided that δ1 and δ2 are close enough to ε), we
construct St in three steps.

• First, rotate G(d ˜f1) = G(d f1) to a distribution W which equals G(d f0)
away fromU andwhich interpolates betweenG(d f0) andG(d f1) onU\U2
by means of G(d ft ).

• SinceG(d ft ) isC0-close toGt onU , we can then rotateW to a distribution
W ′ which equals G0 = G(d f0) away from U , which interpolates between
G0 and G1 onU\U2 by means of Gt and which then interpolates between
G1 and G(d f1) on U2\U1.

• We can then rotate W ′ to a distribution W ′′ which equals G1 outside of
U2 and which interpolates between G1 and G(d f1) on U2\U1. The distri-
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bution W ′′ = S1 satisfies the required properties and the rotation St is the
concatenation of the three steps.

Consider now the annulus A ⊂ L with boundary ∂A = � ∪ �1. The
intersection λ = im(S1) ∩ TF ⊂ T M consists of two line fields defined over
the images of � and �1. We claim that they extend to a line field λ ⊂ im(S1)
defined over the image of the whole annulus A.

Indeed, the chain of singularities of �1 is equivalent to that of � up to
Maslov co-orientation. But the isotopy class of the line field which arises from
a �1-type singularity locus is completely dictated by the flag �1 ⊃ �11 ⊃
· · · ⊃ �1n together with the non-Maslov co-orientation data. Hence the line
fields are isotopic in T L . It follows that we can find a line field˜l ⊂ T L defined
along A such that˜l|�1 = d ˜f −1

1 (λ) and such that˜l|� = d f −1 ◦ �1(λ).
Suppose that there exists a family of symplectic isomorphisms �t of T M

such that �0 = id, such that �t · G(d f ) = St , such that �1 ◦ d f = d ˜f1 near
�1 and such that �1 = �−1

1 near �. Then the line field λ = �1 ◦ d f (˜l) is the
required extension. It remains to confirm that the family �t exists. We need
to define �t over A× [0, 1], where t ∈ [0, 1] and we have prescribed �t over
A × 0 ∪ (∂A × [0, 1]). Furthermore, we also have prescribed the image of
�t under the map �t �→ �t · G(d f ) over all of A × [0, 1]. Since this map
is a Serre fibration, it follows that we can find a lift to all of A × [0, 1]. This
completes the proof of the existence of the line field λ ⊂ im(S1).

Next we observe that the distribution S1 : A → 
(M) satisfies S1(∂A) ⊂
�1(M,F) = ⋃

x∈M{W ∈ 
(M)x : dim(W ∩ TxF) = 1} and S1
(

int(A)
) ⊂


�(M,F) = ⋃

x∈M{W ∈ 
(M)x : W ∩ TxF = 0}. Pick a complement
Q ⊂ im(S1) to λ. Set λ∗ = Q⊥ ∩ TF and Q∗ = λ⊥ ∩ TF . Pick nonzero
vector fields v ∈ λ and w ∈ λ∗ such that ω(v, w) > 0 on int(A) and define a
rotation Rt : A → 
(M) starting at R0 = S1 by the formula

Rt = span
(

cos(π t/2)v + sin(π t/2)w
)⊕ Q, t ∈ [0, 1].

Observe that on ∂A we have λ∗ = λ and hence Rt = S1 for all t ∈ [0, 1].
Hence we can extend Rt outside of A by letting it equal S1 elsewhere. Observe
also that R1 ∩ TF = λ∗ along A and hence im(R1)|A ⊂ �1(M,F). Recall
that�1(M,F) is a two-sided hypersurface of
(M), so that ifO ⊂ 
(M,F)

is a small enough neighborhood of im(R1)|A, then O\�1(M,F) has exactly
two connected components. The fact that theMaslov co-orientations of�1 and
� are opposite means precisely that im(S1)|Op(A)\A lies in the same connected
component of O\�1(M,F). Hence we can push the image of R1 entirely off
of �1(M,F) by a small deformation which is fixed outside of Op(A). The
result is a rotation ˜Rt : L → 
(M) starting at ˜R0 = S1 such that ˜R1 = S1
on Op(�2) and such that ˜R1 � F away from �2. This completes the proof of
Claim 6.12, hence also of Theorem 6.11. ��
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Fig. 42 Take� to be the equatorial sphere E ⊂ Sn . The vector bundle TE S
n can be visualized

as the tangent bundle of a singular surface ˜S as illustrated above

6.4 Application: the caustics of spheres

We now return to the first example considered in Sect. 1.1. Our goal is to
study the extent to which it is possible to simply the caustic of an embedded
Lagrangian or Legendrian sphere S ⊂ M , where M is a symplectic or contact
manifold equipped with a foliationF by Lagrangian or Legendrian leaves. For
greater clarity of the expositionwewill restrict our discussion to theLagrangian
version of the problem, but the Legendrian analogue is no different.

First we observe that by theWeinstein neighborhood theoremwe can imme-
diately reduce to the case where M = T ∗Sn and S is the image of the zero
section Sn ↪→ T ∗Sn , which we will also denote by Sn . Note that for n = 1
the problem is uninteresting because the generic caustic consists only of folds,
so the simplification of singularities can be trivially achieved. We assume
n > 1 in what follows. Let V be the restriction to Sn of the distribution TF
of Lagrangian planes tangent to F . We begin with the following topological
obstruction to the simplification of singularities.

Proposition 6.13 If Sn is Hamiltonian isotopic to a Lagrangian sphere whose
singularities of tangencywith respect toF consist only of folds, then V is stably
trivial as a real vector bundle over the sphere.

We precede the proof with some notation. Let � ⊂ Sn be any compact
hypersurface. Following [17], it is conceptually useful to introduce a real n-
dimensional vector bundle T�Sn which is obtained from T Sn by regluing along
� with a fold. More precisely, write Sn = X ∪ Y for X, Y ⊂ Sn two compact
n-dimensional submanifolds whose common boundary ∂X = X ∩ Y = ∂Y
is the hypersurface �. Fix also an identification T Sn|� � T� ⊕ ε, where
ε denotes the trivial line bundle. Define T�Sn to be the real n-dimensional
vector bundle over Sn given by gluing the disjoint union T X

∐

TY over the
intersection X ∩ Y = � via the isomorphism (Fig. 42)

μ = id ⊕ (−1) : T� ⊕ ε → T� ⊕ ε.
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Fig. 43 The rotating line field l ⊂ T
(

T ∗(−1, 1)
)

The bundle T�Sn can be realized as a distribution of Lagrangian planes V�

in T ∗Sn defined along the zero section Sn ↪→ T ∗Sn whose singularities of
tangency with respect to the zero section Sn consist of folds along �. In order
to do this, we fix a co-orientation of �, which will agree with the Maslov
co-orientation induced by V� . Let� × (−1, 1) � N ⊂ Sn be a tubular neigh-
borhood of� such that the canonical orientation of the interval (−1, 1) induces
the chosen co-orientation of�. The Lagrangian Grassmannian


(

T ∗(−1, 1)
)

is the trivial circle bundle T ∗(−1, 1) × S1. We use the canonical coordinates
(q, p) ∈ (−1, 1) × R = T ∗(−1, 1). Let l : (−1, 1) → 


(

T ∗(−1, 1)
)

be the
rotating line field defined over the zero section (−1, 1) ↪→ T ∗(−1.1) by the
formula (Fig. 43)

lq = span

(

cos

(

π iq

2

)

∂

∂q
+ sin

(

π iq

2

)

∂

∂p

)

⊂ T(q.0)
(

T ∗(−1, 1)
)

.

Define V� : N → 
(T ∗N ) to be the distribution of Lagrangian planes
defined over the zero section N ↪→ T ∗N which corresponds to the product
of the cotangent fibres of T ∗� and the line field l under the isomorphism
T ∗N � T ∗� × T ∗(−1, 1). The distribution V� extends to the complement
of N in Sn by letting it consist of the cotagent fibres of T ∗Sn on Sn\N . The
real vector bundle underlying V� is isomorphic to T�Sn .

Proof of Proposition 6.13 We first consider the special case where Sn itself
has only fold singularities with respect to F . Then the caustic � = �(Sn,F)

is an embedded hypersurface in Sn co-oriented by the Maslov co-orientation.
A direct consequence of the local model for the �10 fold is that V and V�

are homotopic in the space of Lagrangian distributions. Since the real vector
bundle underlying V� is isomorphic to T�Sn , it remains to show that T�Sn is
stably trivial. To see this, observe that T�Sn ⊕ ε is obtained from T X ⊕ ε and
TY ⊕ ε by using the gluing μ ⊕ (1) = id ⊕ (−1) ⊕ (1) along X ∩ Y = �,
wherewe still think of T Sn|� as T�⊕ε. Nothing changes if insteadwe use the
gluing η = id ⊕ (1)⊕ (−1), since the two linear isomorphims of R

2 given by

123



718 D. Álvarez-Gavela

(x, y) �→ (−x, y) and (x, y) �→ (x, −y) are in the same connected component
of GL(2, R). We can therefore define a bundle map T�Sn ⊕ ε → T Sn ⊕ ε

by sending T X ⊕ ε → T Sn ⊕ ε via the inclusion id ⊕ (1), by sending
TY ⊕ ε → T Sn ⊕ ε via the map id ⊕ (−1) and by gluing the two pieces
into a global map T�Sn ⊕ ε → T Sn ⊕ ε using η. This glued up map is an
isomorphism, hence T�Sn ⊕ ε � T Sn ⊕ ε � εn+1, as claimed.

Consider now the general case where ϕt : T ∗Sn → T ∗Sn is a Hamiltonian
isotopy such that ϕ1(Sn) only has fold singularities with respect toF . Equiva-
lently, Sn only has fold singularities with respect to the pullback foliation ϕ∗

1F .
From the special case already considered it follows that the restriction V ′ to
Sn of the distribution T (ϕ∗

1F) must be stably trivial as a real vector bundle
over the sphere. But V and V ′ are homotopic as distributions of Lagrangian
planes and therefore isomorphic as real vector bundles. Hence V is also stably
trivial. ��

We now use our h-principle for the prescription of singularities to show
that for n even, the necessary condition for the simplification of singularities
provided by Proposition 6.13 is also sufficient.

Corollary 6.14 Assume that n is even and that V = TF |S is stably trivial
as a real vector bundle over the sphere. Then there exists a compactly sup-
ported Hamiltonian isotopy ϕt : T ∗Sn → T ∗Sn such that the singularities of
tangency of ϕ1(Sn) with respect to F consist only of folds. Moreover, we can
take ϕt to be C0-close to the identity and supported on an arbitrarily small
neighborhood of the zero section.

Remark 6.15 From the proof we can also extract a precise description of the
permissible fold loci � = �(ϕ1(Sn),F) as hypersurfaces of Sn in terms of
the Euler number e(V ) of V . The locus � can be arranged to consist of the
boundary ∂Y of any n-dimensional compact submanifold Y ⊂ Sn of Euler
characteristic χ(Y ) = 1 ± 1

2e(V ), together with a disjoint union of nested
double folds.

Proof If B ⊂ Sn is a closed embedded n−ball, it is readily seen that T∂BSn is
the trivial bundle. Fix a trivialization V∂B � Sn×R

n .We obtain a trivialization
T (T ∗Sn)|Sn � Sn × C

n by identifying both bundles with V∂B ⊗ C. Suppose
that B is chosen so that F is transverse to Sn along Op(B). Then with respect
to this trivialization the distribution V determines a class α ∈ πn(
n), where

n = Un/On is the Grassmannian of linear Lagrangian subspaces of C

n and
we choose any b ∈ int(B) as a basepoint. Let β ∈ πn−1(On) be the image
of α under the map πn(
n) → πn−1(On) given by long exact sequence in
homotopy groups associated to the fibration On → Un → 
n . Observe that β
is the clutching function corresponding to the real vector bundle underlying the
distribution V . Note that the choice of ball B induces a choice of orientation
on V , which is encoded in the class β.
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The stable triviality of V means that β is in the kernel of the map
πn−1(On) → πn−1(O), where O = limk Ok is the stable orthogonal group.
However, πn−1(Ok) → πn−1(Ok+1) is an isomorphism as soon as k > n, and
therefore β ∈ ker

(

πn−1(On) → πn−1(On+1)
) = im

(

πn(Sn) → πn−1(On)
)

,
where the map is given by the long exact sequence in homotopy groups
associated to the fibration On → On+1 → Sn . Recall that under this map
the fundamental class 1 ∈ Z � πn(Sn) is sent to the clutching function
γ ∈ πn−1(On) corresponding to the tangent bundle T Sn . We can therefore
write β = kγ for some k ∈ Z.

Let E ⊂ Sn by any compact hypersurface disjoint from B. Let X and Y
be as in the construction of TE Sn , so that Sn = X ∪ Y and X ∩ Y = E . We
choose the labels so that B ⊂ X , and then we agree to orient TE Sn so that
the inclusion T X ↪→ TE Sn is orientation preserving. It is straightforward to
compute the Euler class e(TE Sn) = 2−2χ(Y ) using for example the Poincaré-
Hopf index theorem. Since e(V ) = 2k, if we choose the hypersurface E so
that χ(Y ) = 1−k, then it follows that TE Sn and V are isomorphic as oriented
real vector bundles.

Using the same construction as above, we can exhibit TE Sn as a distribution
VE of Lagrangian planes in T ∗Sn defined along the zero section Sn ↪→ T ∗Sn .
Observe that the singularities of tangency of the zero section Sn with respect
to the distribution VE consist of �10 folds along E .

Since n is even, πn(Un) = 0 and hence we have an injection πn(
n) ↪→
πn−1(On). Observe that the homotopy classes in πn(
n) determined by the
distributions VE and V have the same image β under this map. It follows
that VE and V are homotopic in the space of Lagrangian distributions. The h-
principle for the prescription of singularities Theorem 6.11 applies to produce
a C0-small Hamiltonian isotopy ϕt : T ∗Sn → T ∗Sn supported in a neigh-
borhood of the zero section such that the singularities of tangency of ϕ1(Sn)
with respect to F are equivalent to those of Sn with V together with a union
of nested double folds, which completes the proof. ��

In fact, the assumption that V is stably trivial is automatically satisfied for
all even n such that n �≡ 2 mod 8. One can argue in the following way. Choose
a class β ∈ πn−1(On), which we think of as the clutching function of a real
vector bundle. By exactness of the long exact sequence in homotopy groups
associated to the fibration On → Un → 
n , it is equivalent to ask that β is
in the image of the map πn(
n) → πn−1(On) or to ask that it is in the kernel
of the map πn−1(On) → πn−1(Un). The first condition says that the vector
bundle can be realized as a distribution of Lagrangian planes in T ∗Sn defined
along the zero section Sn ↪→ T ∗Sn , while the second condition says that the
complexification of the vector bundle is trivial. Suppose that β is such a class
and let S(β) ∈ πn−1(On+1) be the image of β under the stabilization map S
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induced by the inclusion On ⊂ On+1. By commutativity of the diagram below,
observe that S(β) lies in the kernel of the map πn−1(On+1) → πn−1(Un+1).

πn−1
(

On
) −−−→ πn−1

(

Un
)

⏐

⏐

$

⏐

⏐

$

πn−1
(

On+1
) −−−→ πn−1

(

Un+1
)

However, ker
(

πn−1(On+1) → πn−1(Un+1)
) � ker

(

πn−1(O) →
πn−1(U )

)

, since both homotopy groups lie in the stable range. This kernel
can be computed from Bott periodicity. Indeed, �(U/O) � Z × BO implies
that πk(U/O) � πk−2(O) and therefore the groups appearing in the exact
sequence πn(U/O) → πn−1(O) → πn−1(U ) depend on the residue class of
n mod 8 as follows.

n mod 8 πn(U/O) πn−1(O) πn−1(U )

0 0 Z Z

1 Z Z/2 0
2 Z/2 Z/2 Z

3 Z/2 0 0
4 0 Z Z

5 Z 0 0
6 0 0 Z

7 0 0 0

From the table we deduce that ker
(

πn−1(O) → πn−1(U )
) = 0 except if

n ≡ 1 or 2 mod 8 (in which case the kernel is isomorphic to Z/2). It follows
that if n is even and n �≡ 2 mod 8, then we necessarily have S(β) = 0, as
claimed.

Remark 6.16 The simplest example of a caustic that cannot be simplified to
consist only of folds occurs when n = 2 and V is the Hopf bundle on S2. It is
easy to check that in this case a �110 pleat is unavoidable, in addition to the
�10 folds.

When n is odd, the same reasoning still shows that a necessary and suffi-
cient condition for the simplification of singularities to be possible is that V
is homotopic to one of the standard models V� in the space of Lagrangian
distributions. However, stable triviality of the underlying real vector bundle is
not sufficient to guarantee that this condition is satisfied because πn(Un) �= 0
and hence the map πn(
n) → πn−1(On) need not be an injection.

We have only touched the surface of the homotopy theoretic calculations
which are necessary to understand the formal condition obstructing the simpli-
fication of caustics. In the very concrete example of spheres considered above
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we were able to reason in a fairly hands-on manner. We believe that it should
be possible to carry out a more systematic approach in the spirit of obstruction
theory to study the general case.

6.5 Application: families of 1-dimensional Legendrians

We now turn to the second application discussed in Sect. 1.1. Our goal is to
establish that higher singularities are unnecessary for the homotopy theoretic
study of the space of Legendrian knots in the standard contact Euclidean R

3.
Recall that we think of R

3 as the jet space J 1(R, R) = R(q) × R(p) × R(z)
which comes equipped with the contact form dz − pdq. The Lagrangian
projection is the map R

3 → R
2, (q, p, z) �→ (q, p) which corresponds to

the forgetful map J 1(R, R) → T ∗
R. The front projection is the map R

3 →
R
2, (q, p, z) �→ (q, z) which corresponds to the forgetful map J 1(R, R) →

J 0(R, R). The Reeb direction is ∂/∂z and it will also be useful to think of the
projection along the Reeb direction R

2 → R which is the map (q, z) �→ q.
The fibres of the front projection form a Legendrian foliation F of R

3.
Recall that a Legendrian knot f : S1 → R

3 is said to have mild singularities
when the only singularities tangency of f with respect to F are folds and
embryos. Folds are the generic �10 singularities of a single Legendrian knot
and in the front projection correspond to cusps, see Fig. 44. Embryos are the
generic �110 singularities of a 1-parametric family of Legendrian knots and
in the front projection correspond to Type I Reidemeister moves, namely the
instances of birth/death of two cusps. See Fig. 45.

Generically, a Legendrian knot only has folds and a 1-parametric family
of Legendrian knots only has folds and embryos. However, the caustic of a
family of Legendrian knots parametrized by a space of high dimension will
generically be very complicated. It is therefore not a priori clear how the
topology of the space of Legendrian knots L is related to that of the subspace
M ⊂ L consisting of those Legendrian knots whose singularities are mild. In
Sect. 1.1 we defined a space of decorations˜C(S1) and a spaceD of pairs ( f, D)

consisting of a Legendrian knot with mild singularities f ∈ M together with
a decoration D ∈ ˜C(S1) of the singularities of f . See Fig. 46 for an example
of a decoration D compatible with the standard front projection of the figure
eight knot.

By composing the forgetful map D → M given by ( f, D) �→ f with the
inclusionM ↪→ L we obtain a mapD → L. In this section we will prove the
following result, which is a consequence of our parametric h-principle for the
simplification of caustics.

Corollary 6.17 The map D → L is a weak homotopy equivalence on each
connected component.
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Fig. 44 The standard fold as seen from the Lagrangian and front projections (top right and
bottom left respectively). If we project all the way down to R = R(q) (bottom right), the germ
of the resulting map is equivalent to that of x �→ x2

Fig. 45 The embryo singularity is illustrated in the middle column. We can picture it in the
ambient contact R

3 (top), in the Lagrangian projection (middle) and in the front projection
(bottom).Anembryo is a generically isolated singularity of a 1−parametric family ofLegendrian
knots, which we exhibit from left to right. The bottom row (which takes place in the front
projection) gives us the familiar Reidemeister I move for Legendrian fronts
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Fig. 46 An example of a decoration which consists of two points t1, t2 and two nested intervals
I1 ⊂ I2

Remark 6.18 The decoration D is necessary because the inclusion M ↪→ L
is not a homotopy equivalence, indeed π2(L,M) �= 0. To see this, let f z be a
family of Legendrian knots parametrized the closed unit 2-disk D2 which has
mild singularities everywhere except for a single �1110 singularity appearing
in the interior. Then it is easy to see that the family { f z}z∈∂D2 represents a
nontrivial element of π2(L,M). The decoration D is designed to kill this
homotopy group.

Remark 6.19 For an explicit example of the D2 family mentioned in the pre-
vious remark, take a Legendrian front with only cusp singularities. The family
will be localized near a single cusp. On the boundary ∂D2, the family does the
following. Start with your front, apply a Reidemesiter I move near the cusp,
slide the result of the move over the cusp (as in the first four pictures of Fig. 47)
and then eliminate it on the other side of the cusp with another Reidemeister I
move to end back where you started. It is an instructive exercise to understand
whywe cannot assign compatible decorations to this S1 family in a continuous
way. Note also that the S1-family can then be coned off to obtain a D2 family
by taking the distances between the fixed cusp point and the points where the
Reidemesiter I moves are applied to be proportional to the radial coordinate
r of D2 = {reiθ : 0 ≤ r ≤ 1}. Everywhere except at the origin 0 ∈ D2 the
fronts have mild singularities, while at the origin two arcs of embryos meet in
a single �1110 singularity.

Remark 6.20 If f ∈ L is any Legendrian knot, then by a generic perturbation
wemay assume that the singularities� ⊂ S1 of f consist only of a finite num-
ber of folds. Then f is compatible with the trivial decoration D = ({ti }, {I j })
consisting of {ti } = � and {I j } = ∅. It follows that π0(D) → π0(L) is sur-
jective. However, is it easy to see that π0(D) → π0(L) is not injective, since
in the space D we are keeping track of the decoration D.

To prove Corollary 6.17 it suffices to show that πn(L,D) = 0 for n > 1
and that π1(D) → π1(L) is surjective. We deal with each of the statements
separately.
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Fig. 47 The family Lη. The
parameter η runs from 0 to 1

Proof that πn(L,D) = 0 for n > 1 Let α ∈ πn(L,D) be any class. We
can represent α by a map F : Dn → L such that F |∂Dn lifts to a map ˜F :
∂Dn → D. To conclude that α = 0 we must show that there exist a homotopy
Ft : Dn → L which is fixed on Op(∂Dn) and such that ˜F : ∂Dn → D
extends to a lift ˜F1 : Dn → D of F1.

We begin by examining the singularity locus of F on the boundary, which
is the subset �(F |∂Dn ) ⊂ ∂Dn × S1 consisting of all pairs (z, s) ∈ Sn−1 × S1

such that the front of the Legendrian knot F(z) : S1 → R
3 has a fold or

embryo singularity at the point s ∈ S1. Denote the map ( f, D) �→ D which
forgets the knot but remembers the decoration by dec : D → ˜C(S1). The
family of decorations dec ◦ ˜F : ∂Dn → ˜C(S1) induces a decomposition of
the singularity locus �(F |∂Dn ) = C ∪ W , where C consists of folds and W
consists of pairs of folds with opposite Maslov co-orientations together with
the embryos that give rise to the birth/death of such pairs. The folds of C
correspond to the points t1, . . . , tk and the pairs of folds or embryos of W
correspond to the endpoints of the intervals I1, . . . , Im . Note that the number
m of intervals may vary with the parameter z but the number k of points is
fixed since n > 1. After a generic perturbation we may assume that C and W
are smooth codimension 1 submanifolds of Sn−1 × S1 and moreover that the
set of embryos E is a smooth codimension 1 submanifold of W .
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Our strategy is the following. The first step is to construct Ft near the
boundary of the parameter space ∂Dn . This involves manually killing all the
pairs of folds in W . The next step is to extend the folds in C to the interior of
the parameter space int(Dn). After these two preparatory steps we can apply
the relative form of our parametric h-principle to construct Ft everywhere
else so that the only additional singularities of the deformed family F1 are the
folds and embryos resulting from the wrinkling process. By construction the
resulting map F1 : Dn → M will have an obvious lift to D, completing the
proof.

We now perform the first of these preparatory steps. The key idea, which
appears repeatedly throughout the literature of the wrinkling philosophy, is
that to kill a zig-zag one may create a very small new zig-zag near one end
of the old zig-zag and then slowly let the new zig-zag take over, eventually
killing the old zig-zag and replacing it. The newly created zig-zag does not
bother us because it will end up completely contained in the interior of the
parameter space Dn .

Fix a collar neighborhood A ⊂ Dn of Sn−1, which we parametrize radially
as A = [0, 1)×Sn−1 with 0×Sn−1 corresponding to ∂Dn . It will be convenient
to assume that F is radially invariant on A, and indeed by means of an initial
homotopy of F fixed on the boundary we can arrange it so that F(λ, z) =
F(0, z) for all λ ∈ [0, 1) and all z ∈ Sn−1. Note then that F(A) ⊂ M and
moreover �(F |A) = [0, 1) × �(F∂Dn ). For an F satisfying this condition we
establish the following preparatory result.

Lemma 6.21 (Preliminary arrangement near the boundary) There exists a
homotopy Ft : Dn → L of F = F0 such that the following properties hold.

• Ft is fixed on Op
(

∂Dn ∪ (Dn\A)
)

.
• Ft (A) ⊂ M.
• The folds in C are left untouched throughout the homotopy. To be more
precise, the subset [0, 1) × C ⊂ �(Ft |A) does not vary with time.

• The pairs of folds in W are killed at the end of the homotopy. To be more
precise, over each cylinder [0, 1) × z × S1 ⊂ A× S1 the singularity locus
�(F1|A) contains arcs a1, . . . , am whose interiors lie in (0, 1) × z × S1

and whose endpoints lie in 0 × z × S1 and in fact consist precisely of
the endpoints of the intervals I1, . . . , Im. Moreover, each arc a j consists
everywhere of folds except at a single point in its interior, which is an
embryo.

Proof To construct the homotopy Ft we will use the 1−parameter family of
Legendrian fronts Lη exhibited in Fig. 47. Suppose that I j is a non-degenerate
interval appearing in the decoration D = dec

(

˜F(z)
)

for some z ∈ ∂Dn .
Assume moreover that I j is isolated, meaning that there are no other intervals
Ik contained inside I j or containing I j . In a neighborhood of I j ⊂ S1 the front
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Fig. 48 The projection of
Fig. 47 along the Reeb
direction

of the knot F(z) is equivalent to either the local model L0 or to a flip of L0 in
the vertical direction, depending on the Maslov co-orientations. By replacing
Lη by the vertical flip of Lη whenever this is needed, we may assume without
loss of generality that the former case holds.

Note that the family of fronts Lη can be made to beC0-close to the constant
family L0 and moreover we can arrange that the field of tangent lines to Lη is
C0-close to the field of tangent lines to L0 (when both of these C0-closeness
properties hold for two given fronts we say that the fronts areC1-close). Hence
the resulting Legendrian isotopy can bemadeC0-small.We can therefore think
of the 1−parameter family Lη as a Legendrian isotopy of F(z) supported on
Op(I j ).
It is conceptually useful to understand the projection of the family Lη along

the Reeb direction. The front L0 projects down to a zig-zag. As the parameter
η increases from 0 to 1, a new zig-zag is created just outside of I j . We then
make this new zig-zag bigger and bigger, until it takes over and replaces the
old zig-zag, which has died by the time that η is close to 1. This process is
illustrated in Fig. 48

To define Ft formally, let ϕ : [0, 1] → [0, 1] be a function such that the
following properties hold.

• ϕ = 0 on Op(∂[0, 1]).
• ϕ = 1 on Op(12 ).
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Fig. 49 A nesting of Fig. 47 for two intervals Ik ⊂ I j

• ϕ is non-decreasing on [0, 1
2 ] and non-increasing on [12 , 1].

We define the homotopy Ft on [0, 1) × z × Op(I j ) by the formula
Ft (λ, z, s) = Ltϕ(λ)(s). Suppose next that there are two nested intervals
Ik ⊂ I j with no other interval either contained or containing Ik or I j . Then we
define the homotopy Ft just like we did before, but using a nested version of
the family Lη which we exhibit in Fig. 49. For more complicated configura-
tions of intervals I j we repeat this strategy but using the obvious model which
is obtained by nesting the 1−parameter family Lη (or its flip in the vertical
direction) according to the nesting of the configuration of intervals.

The construction described above can be realized parametrically as z ∈
Sn−1 varies, as long as no interval I j degenerates to a point. However, in
a neighborhood of the locus E ⊂ W of embryos we need a different local
model so that the family Lη does not degenerate into a higher singularity.
The 2-parametric family Lη,τ exhibited in Fig. 50 gets the job done. Let us
first understand what the locus W looks like in a neighborhood of E . Fix a
connected component W0 ⊂ W and set E0 = E ∩ W0. Consider the image
̂W0 of W0 under the projection Sn−1 × S1 → Sn−1. Note that ̂W0 ⊂ Sn−1

is a smooth codimension 0 submanifold with boundary, that ̂E0 = ∂ ̂W0 is the
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Fig. 50 The 2-parametric family Lη,τ . The parameters η and τ both run from0 to 1. To visualize
Lη,τ , start with the (constant) 1-parametric family Lη,1 which is the rightmost column of the
figure. As you move towards the left the family undergoes Reidemesiter Type I moves at two
separate points of the front, but towards the top one of the moves is cut off and towards the
bottom the other move is cut off. As you keep moving to the left you fit the newly created
pieces of the front together to obtain the previously defined 1-parametric family Lη, which in
the present figure sits as the leftmost vertical column Lη,0

image of E0, that the map W0 → ̂W0 is a 2 to 1 cover away from E0 and that
along E0 the map W0 → ̂W0 has folds. In particular, the restriction E0 → ̂E0
is an embedding, see Fig. 51.

Let ̂E0 × (0, 1) be a collar neighborhood of ̂E0 = ̂E0 × 1
2 in Sn−1 such that

̂E0 × (0, 1
2 ] ⊂ ̂W0. Given e ∈ E0, let ê be its image in ̂E0 and let zt ∈ Sn−1,

t ∈ (0, 1) correspond to the arc ê×(0, 1) ⊂ ̂E0×(0, 1). Then the 1-parametric
family F(zt ) is equivalent in a neighborhood of the embryo point e to the 1-
parametric family L0,τ exhibited in the top row of Fig. 50 (or to its flip in
the vertical direction). Note that the 1-parametric family L0,τ fits into the 2-
parametric family Lη,τ shown in Fig. 50, corresponding to the side 0 × [0, 1]
of the square of parameters (η, τ ) ∈ [0, 1] × [0, 1].
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Fig. 51 The local geometry of the projection W → ∂Dn

Fig. 52 The singularity locus of F1 on ∂Dn × [0, 1
2 ) × S1 ⊂ A× S1, which is one-half of the

full locus �(F1|A)

Observe that the family Lη,τ can be taken to be C1-close to the family L0,τ
which is constant in η. We can therefore think of the 2-parametric family Lη,τ

as a C0-small Legendrian isotopy of the 1-parametric family F(zt ) supported
in a neighborhood of the embryo point. Note that Lη,0 = Lη, so the isotopy
is compatible with our previous isotopy. Notice also that Lη,1 is constant. We
can therefore define the homotopy Ft by the formula Ft (η, z, s) = Ltϕ(η),τ (s),
where z = (̂e, τ ) ∈ ̂E0×(0, 1). The construction can be realized parametrically
in z, see Fig. 52 for an illustration. The construction can also be realized with
any configuration of intervals, by nesting the families shown in Figs. 49 and 50
according to the nesting of the intervals. This completes the proof of Lemma
6.21. ��

The next step is to extend the cusp locus C to the interior of the parameter
space Dn . This is achieved by a second preparatory lemma. For notational
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convenience, we now forget about our old family and use the letter F to denote
the new family F1 produced by Lemma 6.21. In particular, all of the properties
listed in the conclusion of Lemma 6.21 are satisfied by F .

Lemma 6.22 (Preliminary arrangement in the interior) There exists a homo-
topy Ft : Dn → L of F = F0 such that the following properties hold.

• Ft is fixed on A.
• The singularity locus �(F1) ⊂ Dn × S1 contains a properly embedded
submanifold with boundary I of codimension 1 in Dn × S1 which consists
entirely of folds and such that I ∩ (A × S1) = C × [0, 1).

Remark 6.23 Since Ft is fixed on A,�(F1) also contains the properly embed-
ded codimension 1 submanifold with boundaryK formed by the arcs a j which
kill W . In addition to I and K, the singularity locus �(F1) may have other
components, but we will not care about them because they are all homotopi-
cally trivial and contained in int(Dn) × S1.

Proof We assume that C �= ∅, otherwise the Lemma is trivial. Recall that the
space of decorations˜C(S1) is fibered over the (unordered) configuration space
of points on the circle C(S1) = ⊔

k Ck(S1). The map is
({t j }, {Ii }

) �→ {t j }
and its fibers are contractible. Denote by conf : D → C(S1) the composition
of dec : D → ˜C(S1) with the fibration ˜C(S1) → C(S1). We claim that the
map conf ◦ ˜F : ∂Dn → C(S1) extends to a map c : Dn → C(S1).

First observe that each component Ck(S1) of C(S1) is homotopy equivalent
to S1. Hence for n > 2 there is nothing to prove because πn−1(S1) = 0.
If n = 2, then we need to justify the claim. Write H∗(∂D2 × S1; R) =
R[x, y]/(x2, y2), where x is Poincaré dual to ∂D2 × pt and y is Poincaré
dual to pt × S1. Consider the Gauss map G(dF) : D2 × S1 → S1, (z, s) �→
G
(

dF(z)
)

(s), where 
(R3) = R
3 × S1 and we project away the R

3 factor.
Explicitly, an angle θ corresponds to the line field spanned by cos(θ)∂/∂p +
sin(θ)(∂/∂z+ p∂/∂q). Observe that

(

∂D2 × S1
)∩G(dF)−1

(

span(∂/∂p)
) =

C∪W . Observe also that the fundamental class of C is Poincaré dual to kx+ly
for some l ∈ Z, where we recall that k is the number of points t1, . . . , tk in the
decorations dec◦ F(z). If we write i : ∂D2 × S1 ↪→ D2 × S1 for the inclusion
and denote by u ∈ H1(S1; R) the class which is Poincaré dual (PD) to a point,
then we have

kx + ly = PD[C] = PD[C ∪ W] = PD
[

(

G(dF) ◦ i
)−1(span(∂/∂p)

)

]

= (G(dF) ◦ i)∗u = i∗
(

G(dF)∗u
)

.

However, i∗ : H∗(D2 × S1; R) → H∗(∂D2 × S1; R) has image generated by
x . It follows that l = 0 and hence that C is an embedded curve in ∂D2 × S1
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Fig. 53 The local model for a creation of double folds when the Legendrian is almost tangent
to the foliation. ForF = span(∂/∂q+ p∂/∂z) the model obviously creates a double fold, hence
by stability it also does so for nearby F

which is homologous to k[∂D2 × pt]. Note then that C has necessarily k
components, each of which is homologous to [∂D2 × pt]. It is now a triviality
to check that conf ◦ ˜F : ∂D2 → C(S1) extends to a map c : D2 → C(S1), as
claimed.

Choose then such an extension c and assume without loss of generality that
c is radially constant in the annulus A ⊂ Dn . Choose also a tangential rotation
Gt : Dn × S1 → 
(R3) of the family F such that the following properties
hold.

• Gt is fixed on A.
• G1 = ∂/∂p on the subset I = {(z, t) : t ∈ c(z)} ⊂ Dn × S1.

Using the parametric version of theorem Theorem 4.2 (which in the 1-
dimensional case is the same as Theorem 4.10 since all rotations are simple)
we obtain a homotopy Ft of the family F which is fixed on A and such that
G(dFt ) is C0-close to Gt on Op(I). The family F1 does not quite have folds
along I, but G(dF1) is almost parallel to ∂/∂p on Op(I) and F1|A does have
folds along I ∩ A. By implanting the local model for the creation of a pair
of folds exhibited in Fig. 53 into F1 we can arrange it so that the new family
does have folds precisely along I. Moreover, we can arrange it so that the
new family agrees with the old family inside A. Away from Op(A ∪ I) the
singularities of F might be a mess but we don’t care. The proof of Lemma
6.22 is complete. ��

We can now conclude the proof that πn(L,D) = 0 for n > 2. Given
α ∈ πn−1(L,D) represented by a family F , we can apply Lemmas 6.21
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732 D. Álvarez-Gavela

Fig. 54 The cube Q sits like an open box inside (Dn\A) × J × [0, 1]

and 6.22 and replace F with the family obtained after performing the two
preliminary arrangements, in that order. For the new F , we claim the existence
of a family of tangential rotations Gt : Dn × S1 → S1 of the family F such
that the following properties hold.

• Gt is fixed on Op
(

(∂Dn × S1) ∪ K ∪ I)
)

.

• G1 � F away from K ∪ I.
To verify the claim,we begin by considering the restriction of theGaussmap

G(dF) : Dn × S1 → S1 to the annulus A. Note that by construction the lift
˜F : ∂Dn×S1 → D extends to a lift ˜F : A×S1 → D,whereweassign intervals
to the new pair of folds created by the family Lη. The intervals I1, . . . , Im of
the decoration dec◦ ˜F : A → ˜C(S1)which do not correspond to pairs of folds
in K give us a homotopically canonical deformation Gt : A × S1 → S1 of
G(dF)|A such thatGt is fixed on Op

(

(∂Dn×S1)∪K∪(I∩ A)
)

and such that
G1 � F away fromK∪(I∩ A). Together with the requirement thatGt is fixed
near I, this defines the map (z, s, t) �→ Gt (z, s) on (A× S1 ×[0, 1])∪ (Dn ×
S1 × 0) ∪ (Op(I) × [0, 1]). Each connected component of the complement
of Op(I) in (Dn\A) × S1 is diffeomorphic to (Dn\A) × J , where J is a
closed interval and the diffeomorphism is of the form (z, s) �→ (

z, ψ(z, s)
)

.
Consider the cube

Q = ∂(Dn\A) × J × [0, 1] ∪ (Dn\A) × J × 0 ∪ (Dn\A) × ∂ J × [0, 1]
which we think of as a subset of (Dn\A) × S1 × [0, 1] via the above diffeo-
morphism. See Fig. 54. Note that Q has boundary

∂Q = ∂(Dn\A) × J × 1 ∪ (Dn\A) × ∂ J × 1.

The homotopy Gt defined thus far gives a map of pairs (Q, ∂Q) →
(S1, S1\pt), where pt = span(∂/∂p). Since π j (S1, S1\pt) = 0 for j > 1,
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there exists a homotopy of pairs relative to the boundary so that at the end of
the homotopy the image is disjoint from span(∂/∂p). This is precisely what
we needed to define Gt on the remaining part of Dn × S1 × [0, 1] so that the
required conditions are satisfied.

Now that we have established the existence of such a tangential rotation
Gt , we can invoke Theorem 6.9 to construct a homotopy Ft : Dn → L of F
which is fixed on Op

(

(∂Dn × S1) ∪ K ∪ I) and such that away from K ∪ I
the singularities of the family F1 consist of a finite union of fibered nested
regularized wrinkles. It only remains to show that ˜F : ∂Dn → D extends to a
lift of F1 toD. However, this is clear because to the folds of I and to the pairs
of folds ofKwe can assign points and intervals in the obvious way, while away
from K ∪ I the singularities of F1 consist only of the pairs of points in the
fibered regularized wrinkles, to which intervals can be canonically assigned.
This completes the proof that πn(L,D) = 0 for n > 1. ��
Proof that π1(D) → π1(L) is surjective. Let α ∈ π1(L) be any class. We can
represent α by a map F : [0, 1] → L such that F(0) = F(1) = f0. Choose
any decoration D0 which is compatible with f0.Wemust show that there exists
a homotopy Ft : [0, 1] → L of F = F0 such that Ft (0) = Ft (1) = f0 for all
t ∈ [0, 1] and such that F1 : [0, 1] → L lifts to a map ˜F1 : [0, 1] → D with
˜F1(0) = ˜F1(1) = ( f0, D0).
Write D0 = ({ti }, {I j }) for points t1, . . . , tk ∈ S1 and non-degenerate

intervals I1, . . . , Im ⊂ S1. Let K = {t1, . . . , tk} ∪ ∂ I1 ∪ · · · ∪ ∂ Im ⊂ S1.
Observe that the Gauss map G(dF) : [0, 1] × S1 → 
(R3) of the family F
satisfies G(dF) = span(∂/∂p) on ∂[0, 1]×K . Let Gt : [0, 1]× S1 → 
(R3)

be a tangential rotation of the family F such thatGt is fixed onOp(∂[0, 1]×S1)
and such that G1 = span(∂/∂p) on [0, 1]× K . Using Theorem 4.10 as above,
we can construct a homotopy Ft : [0, 1] → L which is fixed near ∂[0, 1] and
such that G(dF1) is C0-close to span(∂/∂p) on [0, 1] × K .

By the insertion of the local model in Fig. 53 we can assume that F1 actually
has folds along [0, 1]× K . Theorem 6.9 can then be used to further homotope
F1 rel Op

(

(∂[0, 1]×S1)∪([0, 1]×K )
)

so that on the complement of [0, 1]×K
the only singularities are fibered nested regularized wrinkles. This new F1 :
[0, 1] → L admits a canonical lift ˜F1 : [0, 1] → D by assigning intervals
to the pairs of points in the fibered regularized wrinkles. This completes the
proof that π1(M) → π1(L) is surjective. Hence Corollary 6.17 is also proved.

��
We conclude this section with a remark. Proving that πn(L,D) = 0 for

n > 1 amounts to solving the following lifting problem. Given a diagram of
the form
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D −−−→ L
'

⏐

⏐

'

⏐

⏐

Sn−1 −−−→ Dn

we must show that there exists a map Dn → D such that when added to the
above diagram all compositions commute up to a homotopy fixed on Sn−1. The
proof of Corollary 6.17 achieves this, but in fact proves slightly more. Because
all of the theorems invoked hold in C0-close form and because all of the local
models used are C0-small perturbations, it follows that the composition of
the lift Dn → D with the map D → L can be taken to be C0-close to the
original map Dn → L. The analogous C0-approximation result holds for the
corresponding lifting property for proving that π1(D) → π1(L) is surjective.

6.6 Final remarks

We conclude our discussion with a couple of remarks.

Remark 6.24 All of the results proved in this paper also hold for immersed
rather than embedded Lagrangians or Legendrians f : L → M . The reason is
that from the onset one can replace M with T ∗L or J 1(L , R) by choosing a
Weinstein neighborhood of the immersion, thereby reducing to the embedded
case. The only difference in the conclusion is that the resulting exact homotopy
of regular Lagrangian or Legendrian immersions will not be induced by an
ambient Hamiltonian isotopy in the original manifold M .

Remark 6.25 It is worth giving the following warning. If the singularities of
a regular Lagrangian or Legendrian embedding g : L → M with respect to
F consist only of a disjoint union of regularized wrinkles (or double folds),
then the singularity locus is quite simple in the source. However, in the target
the image of the singularity locus is likely to be very complicated. It would be
interesting to know how much of the rigidity of a Lagrangian or Legendrian
embeddeding can be read from this image.

Remark 6.26 FromTheorems 5.1 and 5.3we can also deduce a full h-principle
for directed embeddings of wrinkled Lagrangian or Legendrian embeddings
analogous to the onededucedbyEliashberg andMishachev from theirwrinkled
embeddings theorem [15]. Before we can state it, we need a definition.

Definition 6.27 For any Lagrangian or Legendrian embedding f : L → M
and for any subset A ⊂ 
(M), we say that f is A-directed if im

(

G(d f )
) ⊂ A.

The result is then the following.
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Theorem 6.28 Let f : L → M be a Lagrangian or Legendrian embedding,
let A ⊂ 
(M) be any open subset and assume that there exists a tangential
rotation Gt of f such that im

(

G1
) ⊂ A. Then there exists an exact homotopy

of wrinkled Lagrangian or Legendrian embeddings ft : L → M such that f1
is A-directed.

This theorem holds in C0-close, relative and parametric forms and follows
immediately from Theorems 5.1 and 5.3 since A is assumed to be open.
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