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There is an increasing need for passive 3D scanning in many applications that have stringent energy constraints. In this paper, we
present an approach for single frame, single viewpoint, passive 3D imaging using a phase mask at the aperture plane of a camera.
Our approach relies on an end-to-end optimization framework to jointly learn the optimal phase mask and the reconstruction
algorithm that allows an accurate estimation of range image from captured data. Using our optimization framework, we design
a new phase mask that performs significantly better than existing approaches. We build a prototype by inserting a phase mask
fabricated using photolithography into the aperture plane of a conventional camera and show compelling performance in 3D imaging.

Index Terms—computational photography, passive depth estimation, coded aperture, phase masks

I. INTRODUCTION

3D Imaging is critical for a myriad of applications such
as autonomous driving, robotics, virtual reality, and

surveillance. The current state of art relies on active illumina-
tion based techniques such as LIDAR, radar, structured illu-
mination or continuous-wave time-of-flight. However, many
emerging applications, especially on mobile platforms, are
severely power and energy constrained. Active approaches are
unlikely to scale well for these applications and hence, there
is a pressing need for robust passive 3D imaging technologies.

Multi-camera systems provide state of the art performance
for passive 3D imaging. In these systems, triangulation be-
tween corresponding points on multiple views of the scene
allows for 3D estimation. Stereo and multi-view stereo ap-
proaches meet some of the needs mentioned above, and an in-
creasing number of mobile platforms have been adopting such
technology. Unfortunately, having multiple cameras within a
single platform results in increased system cost as well as
implementation complexity.

The principal goal of this paper is to develop a passive,
single-viewpoint 3D imaging system. We exploit the emerging
computational imaging paradigm, wherein the optics and the
computational algorithm are co-designed to maximize perfor-
mance within operational constraints.

A. Key Idea

We rely on a bevy of existing literature on coded aperture
[1]–[4]. It is well known that the the depth-dependent defocus
‘bokeh’ (point spread function) depends on the amplitude and
phase of the aperture used. Is it possible to optimize a mask
on the aperture plane with the exclusive goal of maximizing
depth estimation performance?

We exploit recent advances in deep learning [5], [6] to
develop an end-to-end optimization technique. Our proposed
framework is shown in Figure 1, wherein the aperture mask
and the reconstruction algorithm (in terms of the network
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parameters) for depth estimation are simultaneously optimized.
To accomplish this, we model light propagation from the
scene to the sensor, including the modulation by the mask
as front-end layers of a deep neural network. Thus in our
system, the first layer corresponds to physical optical elements.
All subsequent layers of our network are digital layers and
represent the computational algorithm that reconstructs depth
images. We run the back-propagation algorithm to update this
network, including the physical mask, end-to-end.

Once the network is trained, the parameters of the front-end
provide us with the optimized phase mask. We fabricate this
optimized phase mask and place it in the aperture plane of
a conventional camera (Figure 2) to realize our 3D imaging
system. The parameters of the back-end provide us with
a highly accurate reconstruction algorithm, allowing us to
recover the depth image from the captured data.

B. Contributions

The main technical contributions of our work are as follows.

• We propose PhaseCam3D, a passive, single-viewpoint 3D
imaging system that jointly optimizes the front-end optics
(phase mask) and the back-end reconstruction algorithm.

• Using end-to-end optimization, we obtain a novel phase
mask that provides superior depth estimation performance
compared to existing approaches.

• We fabricated the optimized phase mask and build a coded
aperture camera by integrated the phase mask into the
aperture plane of the lens. We demonstrate compelling 3D
imaging performance using our prototype.

Our current prototype system consists of a phase mask
inserted into the aperture plane of a conventional imaging lens.
In practice, it might be more efficient to fabricate a single
optical element that accomplishes the task of both the main
lens and the phase mask simultaneously. This would especially
be the case for mobile platforms, where custom fabricated
plastic lenses are the de-facto norm.
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Fig. 1. Framework overview. Our proposed end-to-end architecture consists of two parts. In the optical layer, a physics-based model first simulates depth-
dependent PSFs given a learnable phase mask, and then applies these PSFs to RGB-D input to formulate the coded image on the sensor. In the reconstruction
network, a U-Net based network estimates the depth from the coded image. Both parameters in the optical layer, as well as the reconstruction network, are
optimized based on the loss defined between the estimated depth and ground truth depth.

C. Limitations

PhaseCam3D relies on the defocus cue which is not avail-
able in regions without texture. As a consequence, depth
estimates obtained in texture-less regions are mainly through
prior statistics and interpolation, both of which are implicitly
learned by the deep neural network. Our results seem to
indicate that the network has been able to successfully learn
sufficient prior statistics to provide reasonable depth estimates
even in texture-less regions. Nevertheless, large texture-less
regions will certainly challenge our approach. Unlike most
active approaches that provide per-pixel independent depth
estimates, PhaseCam3D utilizes spatial blur to estimate depth
and therefore will likely have a lower spatial resolution.

II. RELATED WORK

Image sensors capture 2D intensity information. Therefore,
estimating the 3D geometry of the actual world from one
or multiple 2D images is an essential problem in optics and
computer vision. Over the last decades, numerous approaches
were proposed for 3D imaging.

A. Active Depth Estimation

When a coherent light source is available, holography is
an ideal approach for 3D imaging. Holography [7] encodes
the phase of the light in intensity based on the principle of
wave interference. Once the interference image is recorded,
the phase and therefore the 3D information can be derived
[8], [9]. However, even though analog recording and recon-
struction are straightforward (with even educational toy kits

100µm

Fig. 2. Fabricated phase mask. A 2.835mm diameter phase mask is
fabricated by photolithography and attached on the back side of the lens
aperture. The image on the right shows a close-up image of the fabricated
phase mask taken using a 2.5× microscope objective.

available now [10], [11]), the digital reconstruction process
can be computationally expensive, and the requirement of the
coherent light source and precise optical interference setup
largely limited its usage in microscopy imaging [12]. With
a more accessible incoherent light source, structured light
[13] and time-of-flight (ToF) 3D imagers [14] became popular
and made their ways to commercialized products, such as
the Microsoft Kinect [15]. However, when lighting conditions
are complex (i.e. outdoors under sunlight), given that both
methods rely on active light sources, the performance of depth
estimation can be poor. Therefore specialty hardware setup or
additional computations are needed [16]–[18]. With a passive
depth estimation method, such as the proposed PhaseCam3D,
this problem can be avoided.



B. Passive Depth Estimation

a) Stereo vision: One of the most widely used passive
depth estimation methods is binocular or multi-view stereo
(MVS). MVS is based on the principle that, if two or more
cameras see the same point in the 3D scene from different
viewpoints, granted the geometry and the location of the
cameras, one can triangulate the location of the point in the
3D space [19]. Stereo vision can generate high-quality depth
maps [20], and is deployed in many commercialized systems
[21] and even the Mars Express Mission [22]. Similarly,
structure from motion (SfM) use multiple images from a
moving camera to reconstruct the 3D scene and estimate
the trajectory and pose of the camera simultaneously [23].
However, both SfM and stereo 3D are fundamentally prone
to occlusion [24]–[26] and texture-less areas [27], [28] in
the scene; thus special handling of those cases have to be
taken. Moreover, stereo vision requires multiple calibrated
cameras in the setup, and SfM requires a sequence of input
images, resulting in increased cost and power consumption and
reduced robustness. In comparison, the proposed PhaseCam3D
is single-view and single-shot, therefore, has much lower cost
and energy consumption. Moreover, even though phase mask-
based depth estimation relies on textures in the scene for
depth estimation as well, PhaseCam3D’s use of the data-driven
reconstruction network can help to provide depth estimation
with implicit prior statistics and interpolation from the deep
neural networks.

b) Coded aperture: Previously, amplitude mask designs
have demonstrated applications in depth estimation [1], [2] and
light-field imaging [3]. PhaseCam3D uses novel phase mask
to help with the depth estimation, and the phase mask-based
approach provides several advantages compared to amplitude
maks: First, unlike the amplitude masks that block the light,
phase masks bend light, thus has much higher light throughput,
consequently delivers lower noise level. Secondly, the goal of
designing the mask-based imaging system for depth estimation
is to make the point spread functions (PSFs) of different
depth to have maximum variability. Even though the PSFs
of amplitude mask-based system is depth dependent, the dif-
ference in PSFs across depth is only in scale. On the contrary,
phase masks produce PSFs with much higher depth dependent
variability. As a result, the phase mask should help distinguish
the depth better in theory and the feature size can be made
smaller. Lastly, the phase mask also preserves cross-channel
color information, which could be useful for reconstruction
algorithms. Recently, Haim et al. [4] demonstrate to use a
phase mask for depth estimation. However, they only explore
a two-ring structure, which constrains the design space with
limited PSF shapes, whereas our PhaseCam3D has a degree
of freedom (DoF) of 55 given the Zernike basis we choose to
use, described in Section III-D(a).

C. Semantics-based Single Image Depth Estimation

More recently, deep learning based single-image depth
estimation methods demonstrated that high-level semantics
itself can be useful enough for depth estimation without any
physics-based models [29]–[35]. However, while those results

sometimes appear visually pleasing, they might deviate from
reality and usually have a low spatial resolution, thus getting
the precise absolution depth is difficult. Some recent work sug-
gested to add physics-based constraints elevated the problems
[36]–[39], but extra inputs such as multiple viewpoints were
required. In addition, many of those methods focus and work
very well on certain benchmark datasets, such as NYU Depth
[40], KITTI [41], but the generalization to scenes in the wild
beyond the datasets is unknown.

D. End-to-end Optimization of Optics and Algorithms

Deep learning has now been used as a tool for end-to-end
optimization of the imaging system. The key idea is to model
the optical imaging formation models as parametric neural
network layers, connect those layers with the application layers
(i.e., image recognition, reconstruction, etc.) and finally use
back-propagation to train on a large dataset to update the
parameters in optics design. An earlier example is designing
the optimal Bayer color filter array pattern of the image sensor
[5]. More recently, [6] shows that the learned diffractive optical
element achieves a good result for achromatic extended depth
of field. Haim et al. [4] learned the phase mask and recon-
struction algorithm for depth estimation using Deep learning.
However, their framework is not entirely end-to-end, since
their phase mask is learned by a separate depth classification
algorithm besides the reconstruction network, and the gradient
back-propagation is performed individually for each network.
Such a framework limits their ability to find the optimal mask
for depth estimation.

III. PHASECAM3D FRAMEWORK

We consider a phase mask-based imaging system capable
of reproducing the 3D scenes with single image capture. Our
goal is to achieve state-of-the-art single image depth estimation
results with jointly optimized front-end optics along with the
back-end reconstruction algorithm. We achieve this via end-
to-end training of a neural network for the joint optimization
problem. As shown in Figure 1, our proposed solution network
consists of two major components: 1) a differentiable optical
layer, whose learnable parameter is the height map of the
phase mask, that takes in as input an all-in-focus image and
a corresponding depth map and outputs a physically-accurate
coded intensity image; and 2) a U-Net based deep network to
reconstruct the depth map from the coded image.

During the training, the RGB all-in-focus image and the
corresponding ground truth depth are provided. The optical
layer takes this RGB-D input and generates the simulated
sensor image. This phase-modulated image is then provided
as input to the reconstruction network, which outputs the esti-
mated depth. Finally, the loss between the estimated depth and
ground truth depth is calculated. From the calculated loss, we
back-propagate the gradient to update both the reconstruction
network and the optical networks. As a result, the parameters
in the reconstruction network, as well as the phase mask
design, are updated.

We next describe our proposed system components in detail.



A. Optical Layer

To simulate the system accurately, we model our system
based on Fourier optics theory [42], which takes account for
diffraction and wavelength dependence. To keep the consis-
tency with natural lighting conditions, we assume that the light
source is incoherent.

The optical layer simulates the working of a camera with
a phase mask in its aperture plane. Given the phase mask,
describes as a height map, we can first define the pupil function
induced by it, calculate the point spread function on the image
plane and render the coded image produced by it given an
RGBD image input.

a) Pupil function: Since the phase mask is placed on the
aperture plane, the pupil function is the direct way to describe
the forward model. The pupil function is a complex-valued
function of the 2D coordinates (x1, y1) describing the aperture
plane.

P (x1, y1) = A(x1, y1) exp[iφ(x1, y1)] (1)

The amplitude A(·, ·) is constant within the disk aperture
and zero outside since there is no amplitude attenuation for
phase masks. The phase φ has two components from the phase
mask and defocus.

φ(x1, y1) = φM (x1, y1) + φDF (x1, y1) (2)

φM (x1, y1) is the phase modulation caused by height vari-
ation on the mask.

φM (x1, y1) = kλ∆n h(x1, y1) (3)

λ is the wavelength, kλ = 2π
λ is the wave vector, and ∆n is

the reflective index difference between air and the material of
the phase mask. The material used for our phase mask has
little refractive index variations in the visible spectrum [43];
so, we keep ∆n as a constant. h denotes the height map of
the mask, which is what we need to learn in the optical layer.

The term φDF (x1, y1) is the defocus aberration due to the
mismatch between in-focus depth z0 and the actual depth z
of a scene point. The analytical expression for φDF (x1, y1) is
given as [42]

φDF (x1, y1) = kλ
x21 + y21

2

(
1

z
− 1

z0

)
= kλWmr(x1, y1)2,

(4)
where r(x1, y1) =

√
x21 + y21/R is the relative displacement,

R is the radius of the lens aperture, and Wm is defined as

Wm =
R2

2

(
1

z
− 1

z0

)
. (5)

Wm combines the effect from the aperture size and the depth
range, which is a convenient indication of the severity of the
focusing error. For depths that are closer to the camera than
the focal plane, Wm is positive. For depths that are further
than the focal plane, Wm is negative.

b) PSF induced by the phase mask: For an incoherent
system, the PSF is the squared magnitude of the Fourier
transform of the pupil function.

PSFλ,Wm
(x2, y2) = |F{Pλ,Wm

(x1, y1)}|2 (6)

The PSF is dependent on the wavelength of the light source
and defocus. In the numerical simulations, the broadband color
information in the training datasets — characterized as red (R),
blue (B) and green (G) channels — are approximated by three
discretized wavelengths, 610 nm (R), 530 nm (G) and 470 nm
(B), respectively.

c) Coded image formulation: If the scene is comprised
of a planar object at a constant depth from the camera, the PSF
is uniform over the image, and the image rendering process
is just a simple convolution for each of the color channels.
However, most real-world scenes contain depth variations, and
the ensuing PSF is spatially varying. While there are plenty of
algorithms to simulate the depth-of-field effect [44]–[46], we
require four fundamental properties to be satisfied. First, the
rendering process has to be physically accurate and not just
photo-realistic. Second, it should have the ability to model
arbitrary phase masks and the PSF induced by them, rather
than assuming a specific model on the PSF (e.g., Gaussian
distribution). Third, since the blurring process will be one
part of the end-to-end framework, it has to be differentiable.
Fourth, this step should be computationally efficient because
the rendering process needs to be done for each iteration with
updated PSFs.

Our method is based on the layered depth of field model
[45]. The continuous depth map is discretized based on Wm.
Each layer is blurred by its corresponding PSF calculated from
(6) with a convolution. Then, the blurred layers are composited
together to form the image.

IBλ (x2, y2) =
∑
Wm

ISλ,Wm
(x2, y2)⊗ PSFλ,Wm(x2, y2) (7)

This approach does not model the occlusion and hence, the
rendered image is not accurate near the depth boundaries due
to intensity leakage; however, for the most part, it does capture
the out-of-focus effect correctly. We will discuss fine-tuning
of this model to reduce the error at boundaries in Section V-D.

To mimic noise during the capture, we apply Gaussian
noise to the image. A smaller noise level will improve the
performance during the reconstruction but also makes the
model to be more sensitive to noise. In our simulation, we
set the standard deviation σ = 0.01.

B. Depth Reconstruction Network

There are a variety of networks to be applied for our depth
estimation task. Here, we adopt the U-Net [47] since it is
widely used for pixel-wise prediction.

The network is illustrated in Figure 1, which is an encoder-
decoder architecture. The input to the network is the coded
image with three color channels. The encoder part consists
of the repeated application of two 3 × 3 convolutions, each
followed by a rectified linear unit (ReLU) and a batch nor-
malization (BN) [48]. At each downsampling step, we halve
the resolution using a 2×2 max pooling operation with stride
2 and double the number of feature channels. The decoder part
consists of an upsampling of the feature map followed by a
2× 2 convolution that halves the number of feature channels
and two 3× 3 convolutions, each followed by a ReLU and a



BN. Concatenation is applied between the encoder and decoder
to avoid the vanishing gradient problem. At the final layer, a
1x1 convolution is used with a sigmoid to map each pixel to
the given depth range.

During the training, the input image size is 256× 256. But
the depth estimation network can be run fully-convolutionally
for images size of any multiple of 16 at test time.

C. Loss Function

Instead of optimizing depth z directly, we optimize Wm

which is linear to the inverse of the depth. Intuitively, since
defocus blur is proportional to the inverse of the depth,
estimating depth directly would be highly unstable since even a
small perturbation in defocus blur estimation could potentially
lead to an arbitrarily large change in depth. Further, since
Wm is relative to the depth of the focus plane, it removes
an additional degree of freedom that would otherwise need to
be estimated. Once we estimate Wm, the depth map can be
calculated using (5).

We use a combination of multiple loss functions

Ltotal = λRMSLRMS + λgradLgrad + λCRLBLCRLB (8)

Empirically, we found that setting the weights of the respective
loss functions (if included) as λRMS = 1, λgrad = 1, and
λCRLB = 1e−4 generates good results. We describe each loss
function in detail.
• Root Mean Square (RMS). In order to force the estimated
Ŵm to be similar to the ground truth Wm, we define a loss
term using the RMS error.

LRMS =
1√
N
‖Wm − Ŵm‖2, (9)

where N is the number of pixels.
• Gradient. In a natural scene, it is common to have multiple

objects located at different depths, which creates sharp
boundaries in the depth map. To emphasize the network
to learn these boundaries, we introduce an RMS loss on the
gradient along both x and y directions.

Lgrad =
1√
N

(∥∥∥∥∥∂Wm

∂x
− ∂Ŵm

∂x

∥∥∥∥∥+
∥∥∥∥∥∂Wm

∂y
− ∂Ŵm

∂y

∥∥∥∥∥
)

(10)

• Cramér-Rao Lower Bound (CRLB). The effectiveness of
depth-varying PSF to capture the depth information can
be expressed using a statistical information theory measure
called the Fisher information. Fisher information provides
a measure of the sensitivity of the PSF to changes in
the 3D location of the scene point [49]. Using the Fisher
information function, we can compute CRLB, which pro-
vides the fundamental bound on how accurately a parameter
(3D location) can be estimated given the noisy measure-
ments. In our problem setting, the CRLB provides a scene-
independent characterization of our ability to estimate the
depth map. Prior work on 3D microscopy [49] has shown
that optimizing a phase mask using CRLB as the loss
function provides diverse PSFs for different depths.

The Fisher information matrix, which is a 3 × 3 matrix in
our application, is given as

Iij(θ) =

Np∑
t=1

1

PSFθ(t) + β

(
∂PSFθ(t)

∂θi

)(
∂PSFθ(t)

∂θj

)
,

(11)
where PSFθ(t) is the PSF intensity value at pixel t, Np
is the number of pixels in the PSF, and θ = (x, y, z)
corresponds to the 3D location.
The diagonal of the inverse of the Fisher information matrix
yields the CRLB vector, which bounds the variance of the
3D location.

CRLBi ≡ σi2 = E(θ̂i − θi)2 ≥
[
(I(θ))

−1
]
ii

(12)

Finally, the loss is a summation of CRLB for different
directions, different depths, and different colors.

LCRLB =
∑

i=x̂,ŷ,ẑ

∑
z∈Z

∑
c=R,G,B

√
CRLBi(z, c) (13)

In theory, smaller LCRLB indicates better 3D localization.

D. Training / Implementation Details

We describe key elements of the training procedure used to
perform the end-to-end optimization of the phase mask and
reconstruction algorithm.

a) Basis for height maps: Recall that the phase mask is
described in terms of a height map. We describe the height map
at a resolution of 23×23 pixels. To speed up the optimization
convergence, we constrain the height map further by modeling
it using the basis of Zernike polynomials [50]; this approach
was used previously by [49]. Specifically, we constrain the
height map to the of the form

h(x, y) =
55∑
j=1

ajZj(x, y) (14)

where {Zj(x, y)} is the set of Zernike polynomials. The
goal now is to find the optimal coefficient vector a1×55 that
represents the height map of the phase mask.

b) Depth range: We choose the range of kGWm to
be [−10.5, 10.5]. The term kG is the wave vector for green
wavelength (kG = 2π

λG
; λG = 530nm) and we choose the

range of kGWm so that the defocus phase φDF is within a
practical range, as calculated by (4). For the remainder of the
paper, we will refer to kGWm as the normalized Wm.

During the image rendering process, Wm needs to be dis-
cretized so that the clean image is blurred layer by layer. There
is a tradeoff between the rendering accuracy and speed. For
the training, we discretize normalized Wm to [−10 : 1 : 10],
so that it has 21 distinct values.

c) Datasets: As discussed in the framework, our input
data requires both texture and depth information. The NYU
Depth dataset [51] is a commonly used RGBD dataset for
depth-related problems. However, since Kinect captures the
ground-truth depth map, the dataset has issues in boundary
mismatch and missing depth. Recently, synthetic data has been
applied to geometric learning tasks because it is fast and



TABLE I
QUANTITATIVE EVALUATION OF ABLATION STUDIES

Exp. Learn mask Initialization Loss Error (RMS)
A No No mask RMS 2.69
B Yes Random RMS 1.07
C No Fisher mask RMS 0.97
D Yes Random RMS+CRLB 0.88
E Yes Fisher mask RMS 0.74
F Yes Fisher mask RMS+CRLB 0.85
G Yes Fisher mask RMS+gradient 0.56

cheap to produce and contains precise texture and depth. We
use FlyingThings3D from Scene Flow Datasets [40], which
includes both all-in-focus RGB images and corresponding
disparity map for 2247 training scenes. Each scene contains
ten successive frames. We used the first and last frames in
each sequence to avoid redundancies.

To accurately generate 256×256 coded images using PSFs
of size 23 × 23 pixels, we need all-in-focus images at a
resolution 278×278 pixels. We generate such data by cropping
patches of appropriate size from the original images (whose
resolution is 960× 540) with a sliding window of 200 pixels.
We only select the image whose disparity map ranges from 3
to 66 pixels and convert them to Wm linearly.

With this pre-processing, we obtain 5077 training patches,
553 validation patches, and 419 test patches. The data is
augmented with rotation and flip, as well as brightness scaling
randomly between 0.8 to 1.1.

d) Training process: Given the forward model and the
loss function, the back-propagation error can be derived using
the chain rule. In our system, the back-propagation is obtained
by the automatic differentiation implemented in TensorFlow
[52]. For those who are interested in the derivation for the
optical layer, please refer to our supplementary material.
During the training, we use Adam [53] optimizer with pa-
rameters β1 = 0.99 and β2 = 0.999. Empirically, we found
that using different learning rates for the phase mask and depth
reconstruction improves the performance. We suspect this is
due to the large influence that the phase mask has on the U-
Net given that even small changes to the mask produces large
changes in the coded image. In our simulation, the learning
rates for phase mask and depth reconstruction were 10−8 and
10−4, respectively. A learning rate decay of 0.1 was applied
at 10K and 20K iterations. We observed that the training
converges after about 30K iterations. We used a training mini-
batch size to be 40. Finally, the training and testing were
performed on NVIDIA Tesla K80 GPUs.

IV. SIMULATION

The end-to-end framework learns the phase mask design and
reconstruction algorithm in the simulation. In this section, We
perform ablation studies to identify elements that contribute
most to the overall performance as well as identify the best
operating point. Finally, we provide comparisons with other
depth estimation methods using simulations.

A. Ablation Studies

To clearly understand our end-to-end system as well as
choosing the correct parameters in our design space, we carry
out several ablation experiments. We discuss our findings
below, provide quantitative results in Table I and the quali-
tative visualizations in Figure 3. For convenience, we use the
numbering in the first column of Table I when referring to the
experiment performed and the corresponding models acquired
in the ablation study. For all the experiments here, we use
the same U-Net architecture as discussed in Section III-B for
depth reconstruction. The baseline for all comparison is model
(A), a depth-reconstruction-only network trained with a fixed
open aperture and RMS loss.

a) Learned vs. fixed mask: In this first experiment,
we use our end-to-end framework to learn both the phase
mask and the reconstruction layer parameters from randomly
initialized values (Exp. B). For comparison, we have Exp. C
where the phase mask is fixed to the Fisher mask, which is
designed by minimizing LCRLB in our depth range, and we
learn only the reconstruction layer from random initialization.

To our surprise, shown in Table I and Figure 3 (Exp. B vs.
C), when learning from scratch (random phase mask param-
eters), our end-to-end learned masks (B) underperforms the
Fisher mask that was designed using a model-based approach
(C). We believe that there are two insights to be gained from
this observation. First, the CRLB cost is very powerful by itself
and leads to a phase mask that is well suited for depth estima-
tion; this is expected given the performance of prior work that
exploits the CRLB cost. Second, a random initialization fails
to converge to the desired solution in part due to the highly
non-convex nature of the optimization problem and the undue
influence of the initialization. We visualize the corresponding
phase mask height map is visualized in Figure 4, where 4(a)
is the mask learned from scratch in Exp. B, and 4(b) is the
fixed Fisher in Exp. C.

b) Effect of initialization conditions: With our hypothesis
drawn from the previous experiment, we explore if careful
initialization would help in improving overall performance.
Instead of initializing with random values in Exp. B, we
initialize the mask as a Fisher mask in Exp. E, and perform
end-to-end optimization of both the mask design and the
reconstruction network (there is no constraint forcing the
optical network to generate masks that are close to the Fisher
mask). Interestingly, under such an initialization, the end-to-
end optimization improves the performance compared to the
randomly initialized mask (B) by a significant margin (1.07
vs. 0.74 in RMS), and it also out-performs the fixed Fisher
mask (Exp. C) noticeably (0.97 vs. 0.74 in RMS), suggesting
the CRLB-model-based mask design can be further improved
by data-driven fine-tuning. This is reasonable given that the
model-based mask design does not optimize directly on the
end objective – namely, a high-quality precise depth map
that can capture both depth discontinuities and smooth depth
variations accurately. Fisher mask is the optimal solution for
3D localization when the scene is sparse [49]. However, most
real-world scenes are not sparse and hence optimizing for the
actual depth map allows us to beat the performance of the
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Ground truth
Random initialized mask

RMS loss (B)
Fisher fixed mask

RMS loss (C)
Random initialized mask

RMS+CRLB loss (D)
Fisher initialized mask

RMS loss (E)
Fisher initialized mask

RMS+grad loss (G)
No mask

RMS loss (A)
Fisher initialized mask
RMS+CRLB loss (F)

Avg. RMS error: 2.69 1.07 0.97 0.88 0.74 0.85 0.56

Fig. 3. Qualitative results from our ablation studies. Across the columns, we show the inputs to the reconstruction network and the depth estimation
results from the network. The numbering A-G here correspond to the experiment setup A-G in Table I. The best result is achieved when we initialize the
optical layer with the phase mask derived using Fisher information and then letting the CNN further optimize the phase mask. The last column (G) shows
the results from our best phase mask.

(a) (b) (c)

Fig. 4. Phase mask height maps from ablation studies. (a) Trained from
random initialization with RMS loss. (b) Fisher initialized mask. (c) Trained
from Fisher initialization with RMS and gradient loss.

Fisher mask.

The use of Fisher mask to initialize the network might raise
the concern whether the proposed approach is still end-to-
end. We believe the answer is positive, because initializing a
network from designed weights instead of from scratch is a
common practice in deep learning (i.e., the Xavier approach
[54] and the He approach [55]). Likewise, here we incorporate
our domain knowledge and use a model-based approach in
designing the initialization condition of our optical layers.

c) Effect of loss functions: Finally, we also test different
combinations of Losses discussed in Section III-C with the
Fisher mask as the initialization (E, F, and G). We found
that RMS with gradient loss (G) gives the best results. For
completeness, we also show the performance of randomly
initialized mask with RMS and CRLB loss in D.

-10 (far) -9 -8 -7 -6 -5 -4

-3 -2 -1 0 1 2 3

4 5 6 7 8 9 10 (near)

Fig. 5. Simulated PSFs of our optimal phase mask. The PSFs are labeled
in terms of Wm. Range −10 to 10 corresponds to the depth plane from far
to near.

B. Operating Point with Best Performance
Figure 4(c) shows the best phase mask design based on

our ablation study. It shares some similarity with the Fisher
mask since we take the Fisher mask as our initialization.
But our mask is further optimized based on the depth map
from our data. Figure 5 displays depth-dependent PSFs in
the range [−10 : 1 : 10] of normalized Wm. These PSFs
have large variability across different depths for improving
the performance of depth estimation. More simulation results
are shown in Figure 6.

C. Comparisons with the State-of-the-Art
We compare our result with state-of-the-art passive, single

viewpoint depth estimation methods.
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Fig. 6. Simulation results with our best phase mask. The reconstructed
disparity maps closely match the ground truth disparity maps. The scaled
disparity map have units in terms of normalized Wm.

TABLE II
COMPARISON WITH AMPLITUDE MASK DESIGN

Mask design LRMS

Levin et al. [1] 1.04
Veeraraghavan et al. [3] 1.08

Ours 0.56

a) Coded amplitude masks: There are two well-known
amplitude masks for depth estimation. Levin et al. [1] design
a mask by maximizing the blurry image distributions from dif-
ferent depths using Kullback-Leibler divergence. Veeraragha-
van et al. [3] select the best mask by maximizing the minimum
of the discrete Fourier transformation magnitudes of the zero
padded code. To make a fair comparison between their masks
and our proposed mask, we render blurry image datasets based
on each mask with the same noise level (σ = 0.01). Since U-
Net is a general pixel-wise estimation network, we use it with
same architecture introduced in III-B for depth reconstruction.
Parameters in the U-Net are learned for each dataset using
RMS and gradient loss.

The quantitative results are shown in Table II and qualitative
results are shown in Figure 7. Our proposed mask offers the
best result with the smallest RMS error. One key reason is that
these amplitude masks only change the scaling factor of PSF
at different depths, while our mask creates a more dramatic
difference in PSF at different depths.

b) Two-ring phase mask: Recently, Haim et al. [4] pro-
pose a two-ring phase mask for depth estimation. To compare
the performance, we use their dataset “TAU-Agent” and the
same parameters described in their paper. Performance is
evaluated by the L1 loss of Wm. As shown in Table III, both
our reconstruction network and our phase mask contribute to
achieving smallest estimation error.
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Veeraraghavan et al.
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Fig. 7. Depth estimation comparing with coded amplitude masks. Our
reconstructed disparity map achieves the best performance. Also, our system
has higher light efficiency by using the phase mask. The scaled disparity map
have units in terms of normalized Wm.

TABLE III
COMPARISON WITH THE TWO-RING PHASE MASK [4]

Method |Wm − Ŵm|
Two-ring mask + Haim’s network 0.6

Two-ring mask + U-Net 0.51
Our Optimized Mask + U-Net 0.42

c) Semantics-based single image depth estimation: To
compare the performance of our proposed methods with other
deep-learning-based depth estimation methods using a single
all-focus image, we run evaluation experiments on standard
NYU Depth V2 datasets [51]. We used the default train-
ing/testing splits provided by the datasets. The size of training
and testing images are re-sized from 640× 480 to 320× 240
following the data augmentations the common practice [29].
We show the comparison of our proposed methods with other
state-of-the-art passive single image depth estimation results
[29]–[35] in Table IV. We use the standard performance
metrics used by all the aforementioned works for comparison,
including linear root mean square error (RMS), absolution
relative error (REL), logarithm-scale root mean square error
(Log10) and depth estimation accuracy within a threshold
margin (δ within 1.25, 1.252 and 1.253 away from the ground
truth). We refer the readers to [29] for the detailed definitions
of the metrics. As one can see, we achieve better performance
in every metrics category for depth estimation error and
accuracy, which suggests that the added end-to-end optimized
phase mask does help improve the depth estimation. Moreover,
we don’t have the issue of scaling ambiguity in depth like those
semantics based single-image depth estimation methods since
our PSFs are based on absolute depth values.

V. EXPERIMENTS ON REAL HARDWARE

We fabricate the phase masks learned through our end-to-
end optimization, and evaluated its performance on a range of
real-world scenes. The experiment details are discussed below,
and the qualitative results are shown in Figure 11.

A. Experiment Setup
In the experiment, we use a Yongnuo 50mm f /1.8 standard

prime lens, which is easy to access the aperture plane. The



TABLE IV
COMPARISON WITH SEMANTICS-BASED SINGLE IMAGE DEPTH

ESTIMATION METHODS ON NYU DEPTH V2 DATASETS.

Method Error Accuracy, δ <

RMS REL Log10 1.25 1.252 1.253

Make3D [29] 1.214 0.349 0.447 0.745 0.897
Eigen [29] 0.907 0.215 - 0.611 0.887 0.971
Liu [30] 0.824 0.23 0.095 0.614 0.883 0.971
Cao [32] 0.819 0.232 0.091 0.646 0.892 0.968
Chakrabarti [31] 0.620 0.149 - 0.806 0.958 0.987
Qi [33] 0.569 0.128 0.057 0.834 0.96 0.99
Laina [34] 0.573 0.127 0.055 0.811 0.953 0.988
Hu [35] 0.530 0.115 0.050 0.866 0.975 0.993
Ours 0.382 0.093 0.050 0.932 0.989 0.997

In-focus image with clean aperture Image with phase mask

Fig. 8. Calibration target for PSF estimation. An example of a sharp image
(left) taken using a camera lens without the phase mask and a coded image
(right) taken through the phase mask. The checkerboard pattern around the
calibration target is used for the alignment of the image pairs.

sensor is a 5472 × 3648 machine vision color camera (BFS-
PGE-200S6C-C) with 2.4 µm pixel size. We set the diameter
of the mask phase to be 2.835 mm. Thus, the simulated pixel
size is about 9.4 µm for the green channel, which corresponds
to 4 pixels in our actual camera. For each 4 × 4 region, we
group it to be one pixel with RGB channels by averaging each
color channel based on the Bayer pattern, therefore the final
output resolution of our system is 1344× 894.

B. Phase Mask Fabrication

The size of the designed phase mask is 21× 21, with each
grid corresponding to a size of 135 µm × 135 µm. The full
size of the phase mask is 2.835 mm × 2.835 mm.

The phase mask was fabricated using two-photon lithog-
raphy 3D printer (Photonic Professional GT, Nanoscribe
GmbH [56]). For a reliable print, the height map of the
designed phase mask was discretized into steps of 200 nm. The
phase mask was printed on a 170 µm thick, 30 mm diameter
glass substrate using Nanoscribe’s IP-L 780 photoresist in
a direct laser writing configuration with a 63× microscope
objective lens. The glass substrate was then cut to a smaller
size to fit into the camera lens’ aperture. Close-up of the phase
mask in the camera lens aperture is shown in Figure 2.

C. PSF Calibration

Although the depth-dependant PSF response of the phase
mask is known from simulation, we calibrate our prototype
camera to account for any mismatch born out of physical im-
plementation such as aberrations in fabricated phase mask and

-10 (1 m) -9 -8 -7 -6 -5 -4

-3 -2 -1 0 1 2 3

4 5 6 7 8 9 10 (0.4 m)

Fig. 9. Calibrated PSFs of the fabricated phase mask. The camera lens
with the phase mask in its aperture is calibrated for depths 0.4 m to 1 m,
which corresponds to the normalized Wm range for an aperture size of 2.835
mm.

Naive rendering Experimental reconstructionMatting rendering
Coded image Naive render Matting render

Fig. 10. Fine-tune digital network with matting-based rendering. (Left)
Example comparison between naive rendering and matting-based rendering.
Without blending between the depth layers, the naive rendering show artifacts
on depth boundaries as shown in the insets. The matting-based rendering is
more realistic throughout the image. (Right) Improvement in depth estimation
of real experimental data is observed when the digital network is fine-tuned
with matting-based rendered training data. The improvement is visible along
the edges of the leaf.

phase mask aperture alignment. We adopted an optimization-
based approach where we estimate the PSFs from a set of sharp
and coded image pairs [57], [58] of a calibration pattern.

Estimating the PSF can be posed as a deconvolution prob-
lem, where both a sharp image and a coded image of the same
calibration target are given. The calibration target we used is a
random binary pattern that was laser-printed on paper. We used
two identical camera lenses, one without the phase mask to
capture the sharp image and the other with the phase mask in
the aperture to capture the coded image. Image pairs are then
obtained for each depth plane of interest. The lens focus was
adjusted at every depth plane to capture sharp images while
the focus of the camera lens with the phase mask was kept
fixed. Checkerboard pattern was used around the calibration
pattern to assist in correcting for any misalignment between
the sharp and the coded image.

For a particular depth plane, let I be the sharp image
and J be the coded image taken using the phase mask. We
can estimate the PSF popt by solving the following convex
optimization problem

popt = argmin
p
‖I ∗ p− s · J‖22 + λ ‖∇p‖1 + µ

∥∥1Tp− 1
∥∥2
2

(15)
where the first term is a least-squares data fitting
term (‘∗’ denotes convolution), and the scalar s =∑
m,n I(m,n)/

∑
m,n J(m,n) normalizes the difference in

exposure between the image pairs. The second term con-
straints the gradients of the PSF to be sparse and the third
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Fig. 11. Real-world results. Results of various scenario are shown and compared: Indoor scenes (A, B, E, and F) are shown on the left and outdoor scenes
(C, D, G, and H) are on the right; Smoothly changing surfaces are presented in (A, D and F) and sharp object boundaries in (B, C, E, G, and H); Special
cases of a transparent object (B) and texture-less areas (E and F) are also included.
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Fig. 12. Validation experiments. (a) Comparison with the Microsoft Kinect V2. (b) Depth accuracy evaluation of PhaseCam3D by capturing targets at
known depths. The actual depth is measured by a tape measure.



term enforces an energy conservation constraint. The above
optimization problem can be solved using first-order primal-
dual algorithm presented in [58], [59]. The PSF estimation
is performed for each color channel and each depth plane
independently.

D. Fine-tuning the Digital Network

When training for phase mask profile using our framework,
we used naive rendering to simulate the coded image as
described in Section III-A(c). Such a rendering process is fast,
allowing for multiple cycles of rendering and sufficient to ex-
plain most out-of-focus regions of the scene. However, without
blending between the depth layers, the naive rendering is not
realistic at depth boundaries. Hence, the digital reconstruction
network trained using naive rendering shows artifacts at object
boundaries as shown in Figure 10.

To improve the performance of the depth reconstruction
network, we fix the optimized phase mask and retrain the
digital network with a matting-based rendering technique [60].
Matting for each depth layer was computed by convolving
the corresponding PSF with the depth layer mask. The coded
image was then composited, ordered from farther blurred lay-
ers to nearer blurred layers. The layers were linearly blended
using the normalized matting weights [61]. Since the PSFs
are fixed, rendering of all the coded imaged can be created
apriori and fed into the training of the depth reconstruction
network. The use of closer-to-reality matting-based rendering
improved our experimental reconstructions significantly at the
object boundaries, as shown in Figure 10.

E. Real-world Results

Using the hardware prototype we built, we acquire the depth
of the real world scenes. We show the results in Figure 11.
As one can observe, our system is robust to lighting condition
as reasonable depth estimation for both indoor scenes (A, B,
E, and F) and outdoor scene (C, D, G, and H) are produced.
Both smoothly changing surface (A, D and F) and sharp object
boundaries (B, C, E, G, and H) are nicely portrayed. Special
cases of a transparent object (B) and texture-less areas (E and
F) are also nicely handled.

In addition, given the Microsoft Kinect V2 [15] is the
one of the best ToF-based depth camera available on the
mainstream market, we show our depth estimation results
against the Kinect results in Figure 12(a). As one can see,
the Kinect indeed output smoother depth on flat surfaces than
our system, however, our method handles the depth near the
object boundary better than Kinect.

To validate the depth-reconstruction accuracy of our pro-
totype, we captured a planar target placed at various known
depths. We compute the depth of the target and then compare
against the known depths. As shown in Figure 12(b), we
reliably estimate the depth throughout the entire range.

For comparison, we also tested the Fisher mask in exper-
iments. The results show that our proposed mask provides
better depth estimation. Detailed description can be found in
the supplementary material.

VI. CONCLUSION

In this work, we apply phase mask to the aperture plane
of a camera to help estimate the depth of the scene and
use a novel end-to-end approach to design the phase mask
and the reconstruction algorithm jointly. In our end-to-end
framework, we model the optics as learnable neural network
layers and connected them to the consequent reconstruction
layers for depth estimation. As a result, we are able to use
back-propagation to optimize the reconstruction layers and the
optics layers end-to-end. Compared to existing depth estima-
tion methods, such as stereo vision and ToF sensors, our phase
mask-based approach uses only single-shot, single-viewpoint
and requires no specialty light source, making it easy to
set up, suitable for dynamic scenes, consumes less energy
and robust to any lighting condition. Following our proposed
framework, we build a prototype depth estimation camera
using the end-to-end optimized phase mask and reconstruction
network. The fabrication of the phase mask is low cost and
can be easily scaled up for mass production. Looking into the
future, we hope to extend our framework to more applications,
such as microscopy. We also are interested in modeling other
components in the imaging system (i.e. ISP pipeline, lenses,
and spectral filters) in our end-to-end framework, so as to aim
for a more completely optimized the camera for higher-level
computer vision tasks.
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