
i
i

“5-Bertelson” — 2019/1/24 — 18:29 — page 1021 — #1 i
i

i
i

i
i

journal of
symplectic geometry
Volume 16, Number 4, 1021–1040, 2018

Contact structures and cones of structure

currents

Mélanie Bertelson⇤ and Cédric De Groote

In his paper Cycles for the dynamical study of foliated manifolds

and complex manifolds, Denis Sullivan proves that a closed man-
ifold supports a symplectic structure if and only if it admits a
distribution of cones of bivectors that satisfies two conditions. We
prove a similar result for contact structures. It relies on a suitable
variant of the symplectization process that produces a S1-invariant
nondegenerate 2-form on the closed manifold S1

⇥M that is closed
for a twisted di↵erential.

Introduction

In [7], Sullivan establishes, among other results, a correspondence, for closed
manifolds, between symplectic structures and cone structures of bivectors
that satisfy certain hypotheses. A symplectic structure ! induces a cone
structure of bivectors through the choice of an almost complex structure
tamed by !. That cone structure is ample and the associated cone of struc-
ture currents does not contain nontrivial exact currents (elements in the
image of the adjoint of the exterior di↵erential). Conversely, an ample cone
structure on M with no nontrivial exact structure current admits a con-
tractible collection of positive di↵erential forms that are symplectic. The
proof uses the Hahn-Banach separation theorem, as well as the duality be-
tween forms and currents.

The purpose of this paper, whose motivation is explained below, is to
propose a correspondence between contact structures and a class of cone
structures. Our first idea was to apply Sullivan’s correspondence to the sym-
plectization of a contact manifold. This raises a number of di�culties. One
is that the usual symplectization yields an open manifold R⇥N , while the
assumption that M is closed is necessary to apply Sullivan’s correspondence
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1022 M. Bertelson and C. De Groote

because it implies that the cone of structure currents is compact, whence
that Hahn-Banach may be applied. Another issue is that, even if this obstacle
could be circumvented, the symplectic structures we would recover on R⇥N
might not yield contact structures onN . Indeed, only R-equivariant symplec-
tic structures on R⇥N naturally induce contact structures on N . These two
problems can be bypassed by considering another version of the symplecti-
zation process that yields a bijective correspondence between contact forms
on N and S1-invariant nondegenerate 2-forms on S1

⇥N that are closed
for a twisted di↵erential D� = dt ^ � + d�. Such a form, called hereafter a
S1

-invariant D-symplectic form, induces, through the choice of a compatible
S1-invariant almost complex structure, an ample S1-invariant cone structure
that has no nontrivial D⇤-exact structure currents. Conversely, applying an
invariant version of the Hahn-Banach separation theorem to such a cone
structure produces a S1-invariant D-symplectic form on S1

⇥N , whence a
contact form on N . Here is the statement of our result:

Theorem 0.1. Let M be a closed manifold. A cooriented contact structure

⇠ on M induces a non-empty contractible collection of ample S1
-invariant

cone structures on S1
⇥M with no non-trivial D⇤

- exact structure currents.

Conversely, such a cone structure on S1
⇥M induces a non-empty con-

tractible collection of contact structures on M .

A similar correspondence can be established for non-coorientable contact
structure. In that case, the associated cone structure, which is supported by
the manifold S1

⇥ fM , where fM ! M is the coorientation double cover, is
Z2-skew-invariant.

The twisted di↵erential D on S1
⇥M is in fact the di↵erential of the

Lichnerowicz or Novikov cohomology associated to the closed form dt and
a D-symplectic form is a locally conformal symplectic (lcs) structure whose
Lee form is dt. In view of these facts, it is tempting to believe that a similar
result can be established for lcs structures and it is indeed the case. The cor-
respondence is between lcs structures whose Lee form is a fixed closed form ✓
and ample cone structures of bivectors whose cones of structure currents do
not contain non-trivial D⇤

✓
-boundaries, where D⇤

✓
denotes the adjoint of the

di↵erential D✓ : ↵ 7! d↵+ ✓ ^ ↵ for the Lichnerowicz cohomology associated
to ✓. So the correspondence is really between locally conformal symplectic
forms and ample cones of bivectors whose cones of structure currents avoid
at least one of the various spaces of boundaries ImD⇤

✓
.

Dusa McDu↵ has proven in her paper [6] a criterion for existence of
contact structures that also involves Sullivan’s cone structures but, as ex-
plained hereafter, her approach is di↵erent. Starting from an orientable odd-
dimensional manifold M endowed with an exact 2-form d↵ of maximal rank
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Contact structures and cones of structure currents 1023

(or even a 2-form of maximal rank, as the h-principle for odd-dimensional
symplectic structures implies that these two data are equivalent up to ho-
motopy), she searches for a closed 1-form  such that ↵0 = ↵+  is a contact
form. It is the case if and only if the kernel of d↵ and that of ↵0 are trans-
verse, of course. Observe that, because M is orientable, Ker d↵ is a trivial
line bundle and is therefore divided into two connected components by the
0-section. McDu↵ considers the cone structure consisting of one of these
components and formulates a condition on the associated cone of structure
currents that is equivalent to existence of the desired 1-form. This condition
is that the collection of structure currents vanishing on ↵ intersects trivially
the (necessarily nontrivial) space of structure boundaries. It is also based
on the Hahn-Banach theorem. To summarize, McDu↵ starts from an exact
2-form d↵ and builds a cone structure that depends on that 2-form and
which, when it satisfies a certain homological condition involving ↵, implies
existence of a contact structure di↵ering from ↵ by a closed 1-form. So the
cone structure and the homological condition it has to satisfy in order to
induce a contact structure both depend on the initial choice of exact 2-form.

Our motivation to transpose Sullivan’s correspondence to the contact
world originated in our interest for symplectic and contact structures of
weaker than smooth regularity. There is a growing interest for the notion
of C0-symplectic structure, but other categories of symplectic and contact
manifolds could also be considered, as, for instance, the PL or bi-Lipschitz
ones. A fundamental problem is to compare these various categories. It is,
for instance, tempting to believe that any PL symplectic or contact manifold
of small dimension ( 7) may be smoothed. In order to prove that, one idea
is to build from the PL symplectic or contact structure a cone structure
of bivectors à la Sullivan satisfying the necessary conditions for inducing
a smooth symplectic or contact structure. Now the reason for wanting a
contact version of Sullivan’s correspondence instead of testing this procedure
in the symplectic category is simply that after the dimension 2, for which
most phenomena are quite simple, comes the dimension 3, specific to the
contact world.

The paper is organized as follows. The first section describes Sullivan’s
original construction. The second one presents a version of the symplecti-
zation process that is useful to us. The third section discusses the invariant
Hahn-Banach separation theorem. The fourth one gathers the results from
the previous sections to establish the correspondence for contact structures
as well as for locally conformal symplectic structures and the last one treats
the non-coorientable case.
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1. Sullivan’s construction

For the convenience of the reader we now recall Sullivan’s correspondence.

Definition 1.1. Let V denote a topological vector space over the reals and
let C be a cone in V .

- A continuous linear form ↵ 2 V 0 is said to be positive on C if ↵(v) > 0
for all v 2 C � {0}. In that case, the subset C = ↵�1(1) is called a base
for C.

- A cone is compact when it admits a positive linear form ↵ and C is
compact (notice that all bases are homeomorphic).

The following definition is due to Sullivan’s (cf. [7]).

Definition 1.2. A cone structure of k-vectors on a manifold M is a con-
tinuous field C = (Cx)x2M of compact convex cones Cx ⇢ ⇤kTxM .

To make sense of continuity, one chooses a Riemannian metric g on
S⇤kTM , the sphere bundle in ⇤kTM . It induces a Hausdor↵ distance ⇢ on
the collection K of non-empty compact subsets of S⇤kTM :

⇢(S1, S2) = max

(
sup
x2S1

d(x, S2), sup
y2S2

d(S1, y)

)
.

The cone structure C can be seen as a map from M to K and continuity of
C can thus be defined by means of ⇢.
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Contact structures and cones of structure currents 1025

Definition 1.3. A k-form � is said to be transverse to a cone structure
C of k-vectors, or positive on C, if �x(P ) > 0I for all P 2 Cx � {0} and all
x 2 M .

Due to compactness of the cones, transverse k-forms always exist. Indeed,
for each x in M , consider an element �x in ⇤kT ⇤

xM such that ↵x(P ) > 0 for
all non-vanishing P 2 Cx. Because C is continuous, it can be extended to a
positive k-form on a neighborhood of x. Finally a partition of unity allows
one to glue local positive forms to produce a global one.

Example 1.4. Examples of cone structures that are essential here are the
cone structures induced by symplectic forms. Let ! be such a form on a
manifoldM and consider an almost complex structure J compatible with the
symplectic structure !II . Define the cone structure CJ = (CJ

x )x2M whose
fiber at x is defined to be the convex closure of the cone

{v ^ Jv | v 2 TxM}.

The proof of Lemma 4.1 shows that CJ is indeed a cone structure. The
original symplectic form ! is a positive form on CJ , as is any symplectic
form that tames J . To avoid the choice of a almost complex structures, on
could consider, instead of CJ

x , the convex closure of the collection of bivectors
v ^ w 2 ⇤2TxM such that !x(v, w) > 0, but that cone is not compact and
its topological closure is too large in the sense that it contains isotropic
bivectors as well.

Let us now briefly recall some facts about currents that will be needed in
the sequel. LetM be a manifold. For k 2 N, a k-current onM is a continuous
linear form on the space ⌦k

c (M) of compactly supported k-forms on M
endowed with its standard Fréchet topology. The collection of k-currents is
denoted by Dk(M) and endowed with the weak topology (see Remark 1.6
below). The transpose of the exterior di↵erential d : ⌦k

c (M) ! ⌦k+1
c (M) is

a continuous di↵erential operator d⇤ : Dk+1(M) ! Dk(M).
It is a standard fact that the injection of the space of forms into the dual

of its weak dual is a surjection. In other terms, any continuous linear form
on currents corresponds to a unique di↵erential form. Moreover, the forms
vanishing on the space of exact (respectively closed) currents are the closed

IIf P = v1 ^ · · · ^ vk, then �(P ) = �(v1, . . . , vk).
IIWhich means that !(Jv, Jw) = !(v, w) 8 v, w 2 TM and !(v, Jv) > 0 8 0 6=

v 2 TM .
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(respectively exact) forms. This is a consequence of the following relation
satisfied by the transpose of a continuous linear map F between topological
vector spaces (see [8] Formula (23.2) p 241):

(1) KerF ⇤ = (ImF )?.

Another key point is that the set of exact currents is a closed subspace
of the space of all currents or equivalently the di↵erential d⇤ is a homo-
morphismIII . It is a consequence of the standard result recalled in Proposi-
tion 4.4 and of the closedness of the space of exact forms, itself a consequence
of de Rham’s theorem.

Coming back to cone structures, to any such is associated a compact
convex cone in the space of currents as described below. First observe that
an element P in some ⇤kTxM induces the Dirac current �P mapping a k-
form � to �(P ). Given a cone structure C on M , consider the collection
DC = {�P | P 2 C} of Dirac currents. It is a (non-convex) cone in Dk(M).

Definition 1.5. To a cone structure C on M is associated the cone of
structure currents, that is, the topological closure of the convex closure of
the cone DC . It is denoted by C. A closed current that belongs to C is called
a structure cycle.

The subset C is of course a closed convex cone and, when M is a compact
manifold, it is also compact (cf. [7], Proposition I.5. p. 230).

Remark 1.6. We might as well have considered the strong topology on the
space of currents, or any topology between the weak and the strong ones, as
all the properties we need are true for those topologies as well. Indeed, the
space ⌦k(M) is reflexive and a subset of Dk(M) is compact for the strong
topology if and only if it is compact for the weak topology.

Now one of Sullivan’s important points in [7] is that certain properties
of transverse k-forms may be encoded in the structure cone. For instance,
whether exact or closed transverse forms exist is determined by the position
of the structure cone relative to the subspaces of closed and exact currents,
denoted respectively by Zk(M) and Bk(M).

IIILet us recall that a continuous linear map F : V ! W between topological
vector spaces is said to be a homomorphism if the induced map F : V/KerF !

ImF is a homeomorphism for the obvious topologies.
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Theorem 1.7. (Sullivan [7] Theorem I.7 p. 231) Let C denote a cone

structure of k-vectors on a closed manifold M . Then if there are no non-

trivial closed (respectively exact) structure currents, then there are exact

(respectively closed) transverse forms.

The main ingredient for the proof is the Hahn-Banach separation the-
orem (see [8], Proposition 18.2 p. 191 for instance). The idea is that if the
structure cone does not intersect Bk(M) (except along 0), then, because C

is compact, the separating Hahn-Banach theorem implies that the closed
subspace Bk(M) is contained in a closed hyperplane H that does not inter-
sect a base for C. That closed hyperplane is the kernel of a continuous linear
functional on Dk(M), determined up to a non-zero factor. That functional
determines a k-form which can be chosen to be positive on C, whence on
C since DC ⇢ C, and which is closed because it vanishes on Bk(M). If C is
disjoint not only from Bk(M) but also from Zk(M), we obtain likewise exact
transverse k-forms.

Coming back to the symplectic world, the question is how to encode
the defining properties of a symplectic form into properties of an associ-
ated structure cone to which it is transverse. Recall the cone structure CJ

(introduced in Example 1.4) associated to an almost complex structure J ,
itself compatible with a given symplectic structure !. The previous discus-
sion shows that closedness of ! corresponds to absence of non-trivial exact
structure currents. How about nondegeneracy ? As explained hereafter, it
corresponds to the property of ampleness.

As a preliminary, let us recall that the Schubert variety of a 2-plane ⌧ in
a vector space V is the collection, denoted by S⌧ , of all 2-planes intersecting
⌧ non-trivially. Observe also that to a 2-plane ⌧ corresponds the line in ⇤2V
consisting of the bivectors v ^ w for {v, w} ⇢ ⌧ . This allows us to think of
the Schubert variety S⌧ as being a cone in ⇤2V .

Definition 1.8. A cone C in ⇤2V is said to be ample if for any 2-plane
⌧ ⇢ V , the Schubert variety of ⌧ intersects C � {0} non-trivially. A cone
structure C = (Cx)x2M is ample when each Cx is ample in ⇤2TxM .

Lemma 1.9. The cone structure CJ
associated to an almost complex struc-

ture J (cf. Example 1.4) is ample. Any 2-form transverse to an ample cone

structure of bivectors is non-degenerate.

Proof. For the proof that CJ
x is ample, let ⌧ be a 2-plane in TxM and let

v 2 ⌧ . The bivector v ^ Jv belongs to CJ
x . Hence S⌧ intersects CJ

x non-
trivially.
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For the second statement, suppose that M is even-dimensional and that
! is a degenerate 2-form transverse to a cone structure C. It admits thus
a 2-plane ⌧ in its radical. Let ⌧ 0 2 S⌧ and let {v, w} be a basis for ⌧ 0 with
v 2 ⌧ \ ⌧ 0. Since !(v, w) = 0, the bivector v ^ w does not belong to Cx,
whence Cx \ S⌧ = {0}. ⇤

Theorem 1.10. (Sullivan, [7] Theorem III.2, p. 249) Let M be a closed

manifold. If a symplectic structure ! is given on M , then any choice of

compatible almost complex structure J induces an ample cone structure CJ

that has no exact structure cycles and admits ! as a transverse form. Con-

versely, an ample cone structure C without exact structure cycles admits a

non-empty contractile collection of transverse forms that are symplectic.

The proof follows directly from Theorem 1.7 and Lemma 1.9. Con-
tractibility follows from the observation that the collection of forms that
are positive on the cone structure and vanish on B

k(M) is convex.

2. An invariant version of the symplectization process

The symplectization of a contact manifold (M, ⇠) consists of the open man-
ifold R⇥M endowed with an R-equivariant symplectic form. We present
here a variant of the symplectization process which yields a bijective corre-
spondence between contact forms on a closed manifold M and S1-invariant
non degenerate 2-forms on the manifold S1

⇥M that are closed for a twisted
di↵erential.

Let us first recall the usual symplectization process. If (M,↵) is a closed
cooriented contact manifold then (R⇥M,d(es⇡⇤↵)), where ⇡ is the canoni-
cal projection of R⇥M onto M and s is the function R⇥M ! R : (s, x) 7!
s, is an open symplectic manifold whose symplectic form is equivariant
with respect to the standard action ⇢(t, (s, x)) = ⇢t(s, x) = (t+ s, x) of R
on R⇥M . That is, the form ! = d(es⇡⇤↵) satisfies the relation

⇢⇤t! = et!, 8t 2 R.

Conversely, an equivariant symplectic form on R⇥M yields a contact
form. Indeed, an equivariant 2-form on R⇥M is of the type

� = es⇡⇤�0 + esds ^ ⇡⇤↵0,

for a 2-form �0 and 1-form ↵0 on M . It is closed if and only if d↵0 = �0 and
non-degenerate exactly when ↵0 ^ �0 ^ · · · ^ �0 does not vanish.
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This yields a one-to-one correspondence between the collection Cont(M)
of contact forms on M and the collection ESymp(R⇥M) of equivariant
symplectic forms on R⇥M . Since the aim is a correspondence between
contact forms and forms on S1

⇥M , we are interested in invariant rather
than equivariant forms on R⇥M , as they pass to the quotient.

Remark 2.1. An invariant 2-form on R⇥M , that is, a form � 2 ⌦2(R⇥

M) that satisfies ⇢⇤t� = � for all t 2 R, induces a 2-form �0 and 1-form ↵0

on M such that

� = ⇡⇤�0 + ds ^ ⇡⇤↵0.

Notice that � is closed if and only if both �0 and ↵0 are closed.

Thus an invariant symplectic 2-form is far from inducing a contact form.
On the other hand, the map ' : � 7! es� induces a one-to-one correspon-
dence between invariant and equivariant forms on R⇥M . The property of
non-degeneracy is of course preserved. Moreover,

d(es�) = es(ds ^ � + d�).

This means that the map ' intertwines the exterior di↵erential d with the
di↵erential operator

D : ⌦i(R⇥M) ! ⌦i+1(R⇥M) : � 7! D� = ds ^ � + d�.

With symbols:

d � ' = ' �D.

Lemma 2.2. The operator D obviously satisfies the following properties:

- D2 = 0,

- ⇢⇤t �D = D � ⇢⇤t , for all t 2 R,

- D is continuous.

Since D commutes with the R-action, it passes to the quotient under
the Z-action and yields a twisted di↵erential on ⌦⇤(S1

⇥M), also denoted
by D. Introducing the collection ISympD(R⇥M) of non-degenerate invari-
ant 2-forms � on R⇥M satisfying D� = 0, called hereafter R-invariant D-
symplectic forms, the previous discussion implies that the following map is
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a bijection:

 : Cont(M) ! ISympD(R⇥M) : ↵ 7! e�sd(es⇡⇤↵) = ds ^ ⇡⇤↵+ d(⇡⇤↵).

Now we would like to pass from R⇥M to S1
⇥M . The map p : R⇥

M ! S1
⇥M : (s, x) 7! (eis, x) induces a push-forward p⇤ from the space of

R-invariant forms on R⇥M to the space of S1-invariant forms on S1
⇥M

defined by

[p⇤(�)](eis,x)(v1, . . . , v?) = �(s,x)(v1, . . . , v?),

where vi 2 T (R⇥M) is the lift of vi through the point (s, x). It is of course
independent on the choice of (s, x) in p�1(eis, x).

The push-forward p⇤ above is obviously a bijection. Along with the fact
that the map  is also a bijection, this yields the following proposition.

Proposition 2.3. There is a bijective correspondence between the collection

of contact forms on M and the collection, denoted by ISympD(S1
⇥M), of

S1
-invariant D-symplectic forms on S1

⇥M . More precisely, the map

S : Cont(M) ! ISympD(S1
⇥M) : ↵ 7! S(↵) = p⇤

�
e�sd(es⇡⇤↵)

�

is one-to-one.

Remark 2.4. The “twisted symplectization” S(↵) of a contact form ↵ coin-
cides withD↵. It is thus aD-exact form. It is easy to verify directly that aD-
closed nondegenerate S1-invariant 2-form � on S1

⇥M is necessarily the D-
boundary of a contact form onM . Indeed, since � is invariant, it is of the type
� = ⇡⇤�0 + dt ^ ⇡⇤↵0, for some forms �0 and ↵0 on M . The relation D� = 0
implies �0 = d↵0. Thus � = D⇡⇤↵0. Now �n = ndt ^ ⇡⇤(↵0 ^ d↵n�1

0 ) which
implies that ↵0 is a contact form if and only if � is non degenerate.

3. An invariant version of the Hahn-Banach separation

theorem

In this section appears a proof of the invariant separation Hahn-Banach
theorem that relies on the invariant analytic Hahn-Banach theorem. Sur-
prisingly, a proof of the precise statement we need is not so easily accessible
in the literature whence our decision to include it in the text. See neverthe-
less [4] Theorem 1 in Section 3, as well as [2] Théorème 2.20 p 32.

Let us first recall the statement, due to R. Agnew and A. Morse [1], of
the invariant analytic Hahn-Banach theorem.
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Theorem 3.1. (Agnew & Morse) Let V denote a real topological vector

space and W a linear subspace. Let p : V ! R+
be a positively homoge-

neous subadditive functional
IV

and let f be a linear form on W such that

f(w)  p(w) for all w 2 W . If G is a solvable group acting continuously on

V , preserving W and leaving p and f invariant, then there exists a linear

extension of f to V that is invariant under G and satisfies f(v)  p(v) for

all v 2 V .

The proof of the above theorem is done by induction on the length of
the derived series of G, the initial case of the trivial group corresponding to
the classical Hahn-Banach theorem. In what follows, G will be abelian and
hence solvable.

Here is the version of the invariant geometric Hahn-Banach theorem
used hereafter:

Theorem 3.2. Let G be a solvable group acting continuously on a real

Hausdor↵ topological vector space V . Suppose K is a compact convex subset

of V invariant under G and W is a closed linear subspace of V also invari-

ant under G and that does not meet K. If K contains a fixed point c0 for

the action of G and if the complement of W �K = {w � k|w 2 W,k 2 K}

contains a convex invariant open neighborhood of 0, then the subspace W
can be extended to a closed invariant hyperplane that does not meet K.

Proof. Let A be a convex invariant open neighborhood of 0 contained in
W �K. Consider the subset O = A+K � c0. It is convex, invariant and
open as a union O =

[

c2K
(A+ (c� c0)) of open sets. Consider its gauge

pO : V ! R+ : v 7! inf{� > 0 | v 2 �O}.

The functional pO is positively homogeneous subadditive and invariant be-
cause O is invariant. Moreover O = p�1

O
([0, 1)) since O is open. Thus pO

is continuous. Now consider the subspace W 0 generated by W and c0 and
the linear functional � : W 0

! R : w � tc0 7! t. Observe that W 0 is invariant
and that � is continuous (because W is closed) and invariant. Moreover, the

IV This means that p(�v) = �p(v) 8� 2 R+, v 2 V and p(v + w)  p(v) + p(w)
8 v, w 2 V .
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relation �(w0)  pO(w0) holds true for all w0
2 W 0. Indeed, for t > 0, we have

pO(w � tc0) = tpO
⇣w
t
� c0

⌘
� t

since
w

t
� c0 2 W �K which is disjoint from O.

The Agnew-Morse theorem above implies that � can be extended to an
invariant linear functional � : V ! R such that �(v)  pO(v) for all v 2 V .
Observe that, as implied by the previous inequality and the continuity of pO,
the functional � is continuous. Let H denote the kernel of �. It is a closed
invariant hyperplane containing W . Moreover H \K = ; because if c 2 K,
then c� c0 2 O and thus pO(c� c0) < 1. This implies that

�(c) = �(c0) + �(c� c0)  �(c0) + pO(c� c0) < �1 + 1 = 0,

showing that c cannot belong to H. ⇤

Under the additional assumptions that G is compact and V is locally
convex, the awkward assumption of existence of a convex invariant open
neighborhood of 0 contained in W �K is satisfied. To prove this we need
the following standard result about actions of topological groups.

Lemma 3.3. Consider a continuous action of a topological group G on

a topological space X. Then, for a compact subspace ⇥ of G and a closed

subset C of X, the set ⇥ · C = {✓ · x | ✓ 2 ⇥, x 2 C} is closed.

Corollary 3.4. Let G be a compact solvable topological group acting contin-

uously on a real locally convex Hausdor↵ topological vector space V . Suppose

K is a compact convex subset of V invariant under G and W is a closed

linear subspace of V also invariant under G and that does not meet K. If

K contains a fixed point for the action of G then the subspace W can be

extended to a closed invariant hyperplane that does not meet K.

Proof. Observe that, under the assumptions of Corollary 3.4 the existence of
the convex invariant open neighborhood of 0 in the complement of W �K,
needed in Theorem 3.2, is guaranteed. Indeed, the subset W �K is closed,
as implied by Lemma 3.3 applied to the additive action of V on itself. Its
complement contains therefore a convex open neighborhood A0 of 0. Then
Lemma 3.3, again, implies that the invariant subset A = \g2G(g ·A0) is
open (since its complement G · (V \A0) is closed). It is of course convex as
well. ⇤
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4. Correspondence contact forms/cone structures

We are now ready to establish a correspondence between contact forms and
a certain type of cone structures. Recall from Section 2 that we may think of
contact forms on M as being S1-invariant D-symplectic forms on S1

⇥M .
The idea now is to extend Sullivan’s result to forms and cone structures that
are invariant under an S1-action.

Set P = S1
⇥M . For an element ! in SympS

1

D
(P ), consider an invariant

almost complex structure J that is compatible with !. There is a natu-
ral class of such structures. Indeed, consider the contact form ↵ associated
with ! and its Reeb vector field R↵ (defined by the relations d↵(R↵, ·) ⌘ 0
and ↵(R↵) ⌘ 1). Choose a compatible almost complex structure J0 on the
symplectic vector bundle (⇠ = Ker↵, d↵|⇠�⇠). Now define a vector bundle
morphism J : TP ! TP by setting

8
<

:

J(v) = J0(v) for v 2 ⇠

J(R↵) =
@

@t
.

The morphism J is an S1-invariant almost complex structure compatible
with !, as is easily verified.

Now we construct the field CJ of cones of 2-vectors on P associated to
the almost complex structure J as is done in Remark 1.4. The cone at p is
thus the convex hull of the set

{v ^ Jv | v 2 TpP}.

Lemma 4.1. The field CJ
is continuous, compact, ample and invariant.

The proof is elementary but is nevertheless included.

Proof. The fact that CJ is continuous follows directly from the fact that one
can find local trivializations of the vector bundle TP relative to which the
almost complex structure J and thus also the cone field CJ are constant.

To prove compactness of C, let p 2 P and consider pointwise linearly
independent local sections e1, . . . , e2n of TP near p such that J(ei) = ei+n,
i = 1, . . . , n. Define the local 2-form

� =
nX

i=1

ei⇤ ^ ei+n

⇤ ,
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where {e1⇤, . . . , e
2n
⇤ } is the basis of T ⇤P dual to {e1, . . . , e2n}. Then

�(v ^ Jv) =
2nX

i=1

v2i .

It is now obvious that ��1
p (1) \ Cp ⇢ ⇤2TpP is compact.

Ampleness of CJ has been verified in the proof of Lemma 1.9 and in-
variance follows directly from that of J . ⇤

Lemma 4.2. When M is compact, the structure cone C
J
associated to CJ

is compact and invariant.

Proof. For the compactness of CJ , we refer to [7]. Invariance follows directly
from that of CJ . ⇤

It is now necessary to prove that the space of currents that are exact
for the adjoint D⇤ of the operator D, introduced in Section 2, is a closed
subspace of D⇤(M).

Let us denote by Z
k

D
(P ) (respectively B

k

D
(P )) the subspace of ⌦k(P )

consisting of D-closed (respectively D-exact) k-forms and by Z
D

⇤

k
(P ) (re-

spectively B
D

⇤

k
(P )) the space of closed (respectively exact) currents for D⇤.

Because ⇢⇤t �D = D � ⇢⇤t for all t 2 S1 (cf. Lemma 2.2), all those spaces are
S1-invariant.

Lemma 4.3. The space B
D

⇤

k
(P ) is a closed subspace of Dk(P ).

Proof. First show that Bk+1
D

(P ) = ImD is a closed subspace of ⌦k+1(P ) and
then invoke the following classical result (e.g.[8] Proposition 35.7 p. 366) :

Proposition 4.4. For a continuous linear map u between two real locally

convex Hausdor↵ topological vector spaces E and F , the following properties

are equivalent

- u(E) is closed in F ;

- the transpose u⇤ of u is a homomorphism of F 0
onto u⇤(F 0) ⇢ E0

when

F 0
and E0

are endowed with their weak topology.

Supposing that B
k+1
D

(P ) is closed and applying this proposition to D :
⌦k(P ) ! ⌦k+1(P ) implies that D⇤ is a homomorphism. Therefore, because
the space D

k(P )/KerD⇤ is complete, the space ImD⇤ is also complete,
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whence closed. This is true for the weak topology and thus for the strong
topology too.

It remains now to show that B
k

D
(P ) is closed for all k. Recall from

Section 2 the map

' : ⌦k(R⇥M) ! ⌦k(R⇥M) : � 7! es�.

It is a homeomorphism that intertwines d withD and, therefore, that induces
a bijection between their respective images B

k

D
(R⇥M) and B

k(R⇥M).
Since the space of exact forms is closed in the space of di↵erential forms
(even if the underlying manifold is not closed), this implies that Bk

D
(R⇥M)

is closed in ⌦k(R⇥M). Besides, the map

p⇤ : ⌦k(S1
⇥M) ! ⌦k(R⇥M) : � 7! p⇤(�).

induces a homeomorphism between ⌦k(S1
⇥M) and ⌦k(R⇥M)Z, the set of

fixed elements of the action of Z on ⌦⇤(R⇥M). The latter being continuous,
the set ⌦k(R⇥M)Z is a closed subspace of ⌦k(R⇥M). Thus B⇤

D
(P ) appears

to correspond, under p⇤, to an intersection ⌦k(R⇥M)Z \ B
⇤
D
(R⇥M) of

closed subspaces of ⌦k(R⇥M). ⇤

Now to apply the invariant version of the Hahn-Banach separation the-
orem, we need to have a fixed point for the action of S1 on a basis for the
structure cone. Let us recall Tychono↵’s fixed point theorem.

Theorem 4.5. Let E be a locally convex topological vector space, let C be

a compact convex subset of E and let f : C ! C be a continuous map. Then

f has a fixed point.

Consider and element g 2 S1 that generates a dense subgroup in S1.
Tychono↵’s fixed point theorem implies that ⇢g : C ! C has a fixed point
c. Now c is fixed under the action of the subgroup generated by g as well.
Since that subgroup in dense in S1 and the action of S1 on C is continuous,
all elements of S1 fix c.

Alternatively, one may use the Markov-Kakutani fixed point theorem
whose statement is recalled hereafter.

Theorem 4.6. (Markov [5] and Kakutani [3]) Let C be a compact convex

subset of a Hausdor↵ topological vector space E and let G be a collection of

commuting continuous a�ne transformations of E that preserve C. Then

there exists a point in C that is fixed under all elements of G.
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Existence of a fixed point allows us to apply the geometric Hahn-Banach
theorem. We are now ready to complete the proof of Theorem 0.1.

Proof of Theorem 0.1. Given a cooriented contact structures ⇠ there exists
a contractible collection of forms ↵ defining ⇠ and compatible with its coori-
entation. Consider an invariant almost complex structure J on P compat-
ible with the symplectization ! = S(↵) of some contact form ↵ defining ⇠
(cf. Section 2) and the associated cone structure CJ . It is ample, invari-
ant (cf. Lemma 4.1) and the associated cone structure C

J does not contain
any D⇤- exact structure cycle. Indeed, the form ! is positive on C

J but a
D-closed form may not be positive on D⇤- exact currents.

Conversely, let C denote an ample S1-invariant cone structure on P
without non-vanishing D⇤- exact structure current. Consider an invariant
basis C for the structure cone C. To show that such a base exists, it su�ces
to construct an invariant positive form, which is easily done as follows. Let
� be a postitive form on C. Define �0 to be the invariant extension of the
restriction of � to T{0}⇥MP . More explicitly:

�0(t,x) = ⇢⇤�t

�
�(0,x)

�
.

The form �0 remain positive because C is invariant. Now Tychono↵’s fixed
point theorem implies existence of a fixed point c in C for the action of S1 and
thus Corollary 3.4 implies that the closed subspace BD

⇤

2 (P ) may be extended
to a closed hyperplane that does not meet C. That closed hyperplane is the
kernel of a continuous linear functional ↵ on D2(P ) positive on C. The
presence of the fixed point c implies that ↵ is invariant. The space ⌦2(P )
being reflexive, that functional is induced by a 2-form ! which is invariant
and D-closed because it vanishes on B

D
⇤

2 (P ) (argument identical to the one
that shows that the closed forms are the ones vanishing on exact currents
and that uses reflexivity of ⌦k(P ) together with formula (1)). Finally, such
a form is the symplectization S(↵) of a contact form ↵ on M . ⇤

As mentioned in the introduction, there is an analogue of Theorem 0.1 for
locally conformal symplectic structures. Let us recall that a locally conformal
symplectic (lcs) structure on a manifold P is a 2-form ! on P such that for
each point p 2 P there exists a neighborhood U of p in P and a positive
smooth function f defined on U such that the form f!|U is symplectic. The
local functions f are such that the exact forms d(lnf) agree on overlaps and
define a global closed form ✓, uniquely determined by ! and called the Lee

form of !. The lcs form ! is closed for the Lichnerowicz di↵erential D✓� =
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d� + ✓ ^ � associated to ✓ and, conversely, any D✓-closed non degenerate
2-form is a lcs structure with Lee form ✓.

Proposition 4.7. Let P be a closed manifold and let ✓ be a closed 1-form
P . A lcs structure whose Lee form is ✓ induces a contractible collection

of ample cones of bivectors with no nontrivial D⇤
✓
-exact structure currents.

Conversely, such a cone structure induces a contractible collection of lcs

structures with Lee form ✓.

Proof. The only thing to prove is that the collection of D⇤
✓
-exact currents is a

closed subspace of D⇤(P ). The proof is quasi-identical to that of Lemma 4.3.
Indeed, it su�ces to observe that the manifold P admits a covering ⇡ : Q !

P for which ⇡⇤✓ = df for some smooth function f on Q and to replace,
in the above-mentioned lemma, the manifold S1

⇥M by P , the manifold
R⇥M by Q, the 1-form dt by ✓ and the group Z by the group of Deck
transformations of the covering ⇡ : Q ! P . ⇤

5. The non coorientable case

If ⇠0 is a non coorientable contact structure on a manifold N , consider the
coorientation double cover p : M ! N , its Z2-action ⇢ : Z2 ⇥M ! M and
the associated Z2-invariant coorientable contact structure ⇠ = p�1

⇤ ⇠0. The
latter admits a Z2-skew-invariant defining 1-form ↵V . The space P = S1

⇥

M inherits a Z2-action as well and, as explained hereafter, it supports a Z2-
skew-invariant S1-invariant almost complex structure compatible with the
twisted symplectization D↵ of ↵.

Let J be an almost complex structure on ⇠ which is compatible with
d↵ and such that ⇢a · J = �J , where a is the non-trivial element in Z2.
We would like to extend J to the entire twisted symplectization in such a
way that it remains Z2-skew-invariant. Observe that the Reeb vector field
R↵ is Z2-skew-invariant: (⇢a)⇤(R↵) = �R↵. Now in order to obtain a Z2-
skew-invariant almost complex structure J on P , compatible with D↵, and
such that J(R↵) = ±@s (s is the coordinate on S1), it must be that (⇢a)⇤ �
J(R↵) = J(R↵). Indeed,

�J(R↵) = (⇢a · J)(R↵) = (⇢a)⇤ � J(�R↵) = (⇢a)⇤(�J(R↵)).

V The expression an object O is Z2-skew-invariant means that the nontrivial
element of Z2 maps O onto �O
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So, if we lift the Z2-action to P = S1
⇥M as follows

⇢a : P ! P : (s, x) 7! (s,�x),

then the almost complex structure J is Z2-skew-invariant.
Now the cone structure CJ on S1

⇥M associated to J is ample, S1-
invariant and Z2-skew-invariant since

⇢a · (v ^ Jv) = (⇢a)⇤(v) ^ (⇢a)⇤(Jv)

= (⇢a)⇤(v) ^ (⇢a)⇤ � J � (⇢a)⇤ � (⇢a)⇤(v)

= �(⇢a)⇤(v) ^ J � (⇢a)⇤(v).

Notice that we are not saying that the restriction of ⇢a to CJ coincides
with the map �Id. Likewise the associated cone C

J of structure cycles is
S1-invariant and Z2-skew-invariant. Moreover it does not contain D⇤- exact
structure cycles.

Conversely, given an ample S1-invariant, Z2-skew-invariant ample cone
structure C on P with no D⇤-exact structure cycles, one recovers S1-
invariant, Z2-skew-invariant D-symplectic forms on P , themselves induc-
ing non-coorientable contact structures on N . The first step is to construct
a S1-invariant compact base C for C that is also Z2-skew-invariant. Given
an S1-invariant form �0 that is positive on CJ , the form

� = �0 � (⇢a)
⇤�0

is also positive on CJ and thus ��1(1) yields the desired basis. It is now
useful to consider the Z2-action on D⇤(M) defined by:

⌘a : D⇤(M) ! D⇤(M) : c ! �⇢a · c.

This action commutes with that of S1 and leaves both C and B
D

⇤

2 (P ) invari-
ant. The Markov-Kakutani fixed point theorem implies that C contains a
fixed point for the Z2 ⇥ S1-action. So the invariant Hahn-Banach theorem,
or rather Corollary 3.4, implies that the space of D⇤- boundaries is contained
in a closed Z2 ⇥ S1-invariant hyperplane H disjoint from C. Let ! denote
a linear form on D2(P ) whose kernel is H and that is positive on C. The
form ! is in fact a D-closed di↵erential form that is Z2 ⇥ S1-invariant and
non-degenerate.

Now because ! is D-closed and S1-invariant, it is the D-boundary of
a contact form ↵ (cf. Remark 2.4). The fact that ! is ⌘-invariant, that is
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⇢⇤a! = �!, implies the corresponding relation for ↵:

⇢⇤a↵ = �↵.

Thus ↵ yields a non coorientable contact structure on N . We have thus
proven the following result.

Theorem 5.1. Let ⇠ be a non-coorientable contact structure on a closed

manifold N . Consider the coorientation double cover ⇡ : M ! N associ-

ated to ⇠ and the Z2 ⇥ S1
-action on P = S1

⇥M given by ⇢(a,s0) · (s, x) =
(s0s, a · x). Then ⇠ induces a non-empty contractible collection of ample

S1
-invariant, Z2-skew-invariant cone structures on P with no non-trivial

D⇤
- exact structure currents. Conversely, an ample S1

-invariant, Z2-skew-

invariant cone structure on some P = S1
⇥M for some double cover M of

N , with no non-vanishing D⇤
- exact structure currents induces a non-empty

contractible collection of non coorientable contact structures on N .
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