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Contact structures and cones of structure
currents

MELANIE BERTELSON* AND CEDRIC DE GROOTE

In his paper Cycles for the dynamical study of foliated manifolds
and complex manifolds, Denis Sullivan proves that a closed man-
ifold supports a symplectic structure if and only if it admits a
distribution of cones of bivectors that satisfies two conditions. We
prove a similar result for contact structures. It relies on a suitable
variant of the symplectization process that produces a S'-invariant
nondegenerate 2-form on the closed manifold S* x M that is closed
for a twisted differential.

Introduction

In [7], Sullivan establishes, among other results, a correspondence, for closed
manifolds, between symplectic structures and cone structures of bivectors
that satisfy certain hypotheses. A symplectic structure w induces a cone
structure of bivectors through the choice of an almost complex structure
tamed by w. That cone structure is ample and the associated cone of struc-
ture currents does not contain nontrivial exact currents (elements in the
image of the adjoint of the exterior differential). Conversely, an ample cone
structure on M with no nontrivial exact structure current admits a con-
tractible collection of positive differential forms that are symplectic. The
proof uses the Hahn-Banach separation theorem, as well as the duality be-
tween forms and currents.

The purpose of this paper, whose motivation is explained below, is to
propose a correspondence between contact structures and a class of cone
structures. Our first idea was to apply Sullivan’s correspondence to the sym-
plectization of a contact manifold. This raises a number of difficulties. One
is that the usual symplectization yields an open manifold R x N, while the
assumption that M is closed is necessary to apply Sullivan’s correspondence
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because it implies that the cone of structure currents is compact, whence
that Hahn-Banach may be applied. Another issue is that, even if this obstacle
could be circumvented, the symplectic structures we would recover on R x N
might not yield contact structures on N. Indeed, only R-equivariant symplec-
tic structures on R x NN naturally induce contact structures on N. These two
problems can be bypassed by considering another version of the symplecti-
zation process that yields a bijective correspondence between contact forms
on N and S'-invariant nondegenerate 2-forms on S' x N that are closed
for a twisted differential DS = dt A 5 + d. Such a form, called hereafter a
St-invariant D-symplectic form, induces, through the choice of a compatible
Sl-invariant almost complex structure, an ample S'-invariant cone structure
that has no nontrivial D*-exact structure currents. Conversely, applying an
invariant version of the Hahn-Banach separation theorem to such a cone
structure produces a S'-invariant D-symplectic form on S x N, whence a
contact form on N. Here is the statement of our result:

Theorem 0.1. Let M be a closed manifold. A cooriented contact structure
€ on M induces a non-empty contractible collection of ample S*-invariant
cone structures on S* x M with no non-trivial D*- exact structure currents.
Conwersely, such a cone structure on S' x M induces a non-empty con-
tractible collection of contact structures on M.

A similar correspondence can be established for non-coorientable contact
structure. In that case, the associated cone structure, which is supported by
the manifold S' x M, where M — M is the coorientation double cover, is
Zo-skew-invariant.

The twisted differential D on S x M is in fact the differential of the
Lichnerowicz or Novikov cohomology associated to the closed form dt and
a D-symplectic form is a locally conformal symplectic (lcs) structure whose
Lee form is dt. In view of these facts, it is tempting to believe that a similar
result can be established for lcs structures and it is indeed the case. The cor-
respondence is between lcs structures whose Lee form is a fixed closed form 6
and ample cone structures of bivectors whose cones of structure currents do
not contain non-trivial Dj-boundaries, where Dy denotes the adjoint of the
differential Dy : a — da + 0 A « for the Lichnerowicz cohomology associated
to 0. So the correspondence is really between locally conformal symplectic
forms and ample cones of bivectors whose cones of structure currents avoid
at least one of the various spaces of boundaries Im Dj.

Dusa McDuff has proven in her paper [6] a criterion for existence of
contact structures that also involves Sullivan’s cone structures but, as ex-
plained hereafter, her approach is different. Starting from an orientable odd-
dimensional manifold M endowed with an exact 2-form da of maximal rank
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(or even a 2-form of maximal rank, as the h-principle for odd-dimensional
symplectic structures implies that these two data are equivalent up to ho-
motopy), she searches for a closed 1-form & such that o/ = a + & is a contact
form. It is the case if and only if the kernel of da and that of o’ are trans-
verse, of course. Observe that, because M is orientable, Ker da is a trivial
line bundle and is therefore divided into two connected components by the
0-section. McDuft considers the cone structure consisting of one of these
components and formulates a condition on the associated cone of structure
currents that is equivalent to existence of the desired 1-form. This condition
is that the collection of structure currents vanishing on « intersects trivially
the (necessarily nontrivial) space of structure boundaries. It is also based
on the Hahn-Banach theorem. To summarize, McDuff starts from an exact
2-form da and builds a cone structure that depends on that 2-form and
which, when it satisfies a certain homological condition involving «, implies
existence of a contact structure differing from « by a closed 1-form. So the
cone structure and the homological condition it has to satisfy in order to
induce a contact structure both depend on the initial choice of exact 2-form.

Our motivation to transpose Sullivan’s correspondence to the contact
world originated in our interest for symplectic and contact structures of
weaker than smooth regularity. There is a growing interest for the notion
of CO-symplectic structure, but other categories of symplectic and contact
manifolds could also be considered, as, for instance, the PL or bi-Lipschitz
ones. A fundamental problem is to compare these various categories. It is,
for instance, tempting to believe that any PL symplectic or contact manifold
of small dimension (< 7) may be smoothed. In order to prove that, one idea
is to build from the PL symplectic or contact structure a cone structure
of bivectors a la Sullivan satisfying the necessary conditions for inducing
a smooth symplectic or contact structure. Now the reason for wanting a
contact version of Sullivan’s correspondence instead of testing this procedure
in the symplectic category is simply that after the dimension 2, for which
most phenomena are quite simple, comes the dimension 3, specific to the
contact world.

The paper is organized as follows. The first section describes Sullivan’s
original construction. The second one presents a version of the symplecti-
zation process that is useful to us. The third section discusses the invariant
Hahn-Banach separation theorem. The fourth one gathers the results from
the previous sections to establish the correspondence for contact structures
as well as for locally conformal symplectic structures and the last one treats
the non-coorientable case.
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1. Sullivan’s construction
For the convenience of the reader we now recall Sullivan’s correspondence.
Definition 1.1. Let V denote a topological vector space over the reals and

let C be a cone in V.

- A continuous linear form « € V is said to be positive on C if a(v) > 0
for all v € C — {0}. In that case, the subset C = a~!(1) is called a base
for C.

- A cone is compact when it admits a positive linear form « and C is
compact (notice that all bases are homeomorphic).

The following definition is due to Sullivan’s (cf. [7]).

Definition 1.2. A cone structure of k-vectors on a manifold M is a con-
tinuous field C' = (C,)zer of compact convex cones C, C AFT, M.

To make sense of continuity, one chooses a Riemannian metric g on
SAFT M, the sphere bundle in A*TM. Tt induces a Hausdorff distance p on
the collection KC of non-empty compact subsets of SAFTM:

€S, yESs

p(S1,52) = max { sup d(z, S2), sup d(Shy)} :

The cone structure C' can be seen as a map from M to K and continuity of
C can thus be defined by means of p.
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Definition 1.3. A k-form [ is said to be transverse to a cone structure
C of k-vectors, or positive on C, if B, (P) > 0 for all P € C, — {0} and all
x e M.

Due to compactness of the cones, transverse k-forms always exist. Indeed,
for each  in M, consider an element 3, in A*T* M such that o, (P) > 0 for
all non-vanishing P € C,. Because C' is continuous, it can be extended to a
positive k-form on a neighborhood of z. Finally a partition of unity allows
one to glue local positive forms to produce a global one.

Example 1.4. Examples of cone structures that are essential here are the
cone structures induced by symplectic forms. Let w be such a form on a
manifold M and consider an almost complex structure J compatible with the
symplectic structure w!!. Define the cone structure C7/ = (C) zen Whose
fiber at x is defined to be the convex closure of the cone

{vAJv|veT,M}.

The proof of Lemma 4.1 shows that C” is indeed a cone structure. The
original symplectic form w is a positive form on C”, as is any symplectic
form that tames .J. To avoid the choice of a almost complex structures, on
could consider, instead of C;E] , the convex closure of the collection of bivectors
v Aw € A*T, M such that w,(v,w) > 0, but that cone is not compact and
its topological closure is too large in the sense that it contains isotropic
bivectors as well.

Let us now briefly recall some facts about currents that will be needed in
the sequel. Let M be a manifold. For k € N, a k-current on M is a continuous
linear form on the space QF(M) of compactly supported k-forms on M
endowed with its standard Fréchet topology. The collection of k-currents is
denoted by Dy (M) and endowed with the weak topology (see Remark 1.6
below). The transpose of the exterior differential d : Q¥ (M) — QF1(M) is
a continuous differential operator d* : Dy1 (M) — Di(M).

It is a standard fact that the injection of the space of forms into the dual
of its weak dual is a surjection. In other terms, any continuous linear form
on currents corresponds to a unique differential form. Moreover, the forms
vanishing on the space of exact (respectively closed) currents are the closed

Tf P =wvy A -+ Awg, then B(P) = B(v1,...,vx).
I'\Which means that w(Jv, Jw) = w(v,w) Vv,w € TM and w(v, Jv) >0V 0 #
veTM.
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(respectively exact) forms. This is a consequence of the following relation
satisfied by the transpose of a continuous linear map F' between topological
vector spaces (see [8] Formula (23.2) p 241):

(1) Ker F* = (Im F)*.

Another key point is that the set of exact currents is a closed subspace
of the space of all currents or equivalently the differential d* is a homo-
morphism’!!. Tt is a consequence of the standard result recalled in Proposi-
tion 4.4 and of the closedness of the space of exact forms, itself a consequence
of de Rham’s theorem.

Coming back to cone structures, to any such is associated a compact
convex cone in the space of currents as described below. First observe that
an element P in some A*T, M induces the Dirac current §p mapping a k-
form B to B(P). Given a cone structure C' on M, consider the collection
Dc = {ép | P € C} of Dirac currents. It is a (non-convex) cone in Dy (M).

Definition 1.5. To a cone structure C' on M is associated the cone of
structure currents, that is, the topological closure of the convex closure of
the cone D¢. It is denoted by C. A closed current that belongs to C is called
a structure cycle.

The subset C is of course a closed convex cone and, when M is a compact
manifold, it is also compact (cf. [7], Proposition L.5. p. 230).

Remark 1.6. We might as well have considered the strong topology on the
space of currents, or any topology between the weak and the strong ones, as
all the properties we need are true for those topologies as well. Indeed, the
space QF(M) is reflexive and a subset of Dy (M) is compact for the strong
topology if and only if it is compact for the weak topology.

Now one of Sullivan’s important points in [7] is that certain properties
of transverse k-forms may be encoded in the structure cone. For instance,
whether exact or closed transverse forms exist is determined by the position
of the structure cone relative to the subspaces of closed and exact currents,
denoted respectively by Zy (M) and By (M).

1Tet us recall that a continuous linear map F : V — W between topological
vector spaces is said to be a homomorphism if the induced map F : V/Ker F —
Im F' is a homeomorphism for the obvious topologies.
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Theorem 1.7. (Sullivan [7] Theorem 1.7 p. 231) Let C denote a cone
structure of k-vectors on a closed manifold M. Then if there are no non-
trivial closed (respectively exact) structure currents, then there are exact
(respectively closed) transverse forms.

The main ingredient for the proof is the Hahn-Banach separation the-
orem (see [8], Proposition 18.2 p. 191 for instance). The idea is that if the
structure cone does not intersect Bi(M) (except along 0), then, because C
is compact, the separating Hahn-Banach theorem implies that the closed
subspace By (M) is contained in a closed hyperplane H that does not inter-
sect a base for C. That closed hyperplane is the kernel of a continuous linear
functional on Dy (M), determined up to a non-zero factor. That functional
determines a k-form which can be chosen to be positive on C, whence on
C since D¢ C C, and which is closed because it vanishes on By (M). If C is
disjoint not only from By (M) but also from Z (M), we obtain likewise exact
transverse k-forms.

Coming back to the symplectic world, the question is how to encode
the defining properties of a symplectic form into properties of an associ-
ated structure cone to which it is transverse. Recall the cone structure C”
(introduced in Example 1.4) associated to an almost complex structure J,
itself compatible with a given symplectic structure w. The previous discus-
sion shows that closedness of w corresponds to absence of non-trivial exact
structure currents. How about nondegeneracy ? As explained hereafter, it
corresponds to the property of ampleness.

As a preliminary, let us recall that the Schubert variety of a 2-plane 7 in
a vector space V is the collection, denoted by S, of all 2-planes intersecting
7 non-trivially. Observe also that to a 2-plane 7 corresponds the line in A2V
consisting of the bivectors v A w for {v,w} C 7. This allows us to think of
the Schubert variety S; as being a cone in A2V.

Definition 1.8. A cone C in A%V is said to be ample if for any 2-plane
7 C V, the Schubert variety of 7 intersects C — {0} non-trivially. A cone
structure C' = (Cy ), is ample when each C; is ample in A*T, M.

Lemma 1.9. The cone structure C” associated to an almost complex struc-
ture J (cf. Example 1.4) is ample. Any 2-form transverse to an ample cone
structure of bivectors is non-degenerate.

Proof. For the proof that C; is ample, let 7 be a 2-plane in T, M and let
v € 7. The bivector v A Jv belongs to C;. Hence S, intersects C; non-
trivially.
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For the second statement, suppose that M is even-dimensional and that
w is a degenerate 2-form transverse to a cone structure C. It admits thus
a 2-plane 7 in its radical. Let 7" € S; and let {v,w} be a basis for 7/ with
veTNT. Since w(v,w) =0, the bivector v Aw does not belong to Cj,
whence C, N S; = {0}. O

Theorem 1.10. (Sullivan, [7] Theorem III.2, p. 249) Let M be a closed
manifold. If a symplectic structure w is given on M, then any choice of
compatible almost complex structure J induces an ample cone structure C”
that has no exact structure cycles and admits w as a transverse form. Con-
versely, an ample cone structure C' without exact structure cycles admits a
non-empty contractile collection of transverse forms that are symplectic.

The proof follows directly from Theorem 1.7 and Lemma 1.9. Con-
tractibility follows from the observation that the collection of forms that
are positive on the cone structure and vanish on B¥(M) is convex.

2. An invariant version of the symplectization process

The symplectization of a contact manifold (M, ) consists of the open man-
ifold R x M endowed with an R-equivariant symplectic form. We present
here a variant of the symplectization process which yields a bijective corre-
spondence between contact forms on a closed manifold M and S'-invariant
non degenerate 2-forms on the manifold S' x M that are closed for a twisted
differential.

Let us first recall the usual symplectization process. If (M, «) is a closed
cooriented contact manifold then (R x M, d(e*7*a)), where 7 is the canoni-
cal projection of R x M onto M and s is the function R x M — R : (s,x) —
s, is an open symplectic manifold whose symplectic form is equivariant
with respect to the standard action p(t,(s,x)) = pi(s,x) = (t + s,x) of R
on R x M. That is, the form w = d(e*n*«) satisfies the relation

piw = e'w, Vt € R.

Conversely, an equivariant symplectic form on R x M yields a contact
form. Indeed, an equivariant 2-form on R x M is of the type

B =e’n" By + e’ds N ay,

for a 2-form [y and 1-form ag on M. It is closed if and only if dag = [y and
non-degenerate exactly when ag A By A --- A By does not vanish.
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This yields a one-to-one correspondence between the collection Cont(M )
of contact forms on M and the collection ESymp(R x M) of equivariant
symplectic forms on R x M. Since the aim is a correspondence between
contact forms and forms on S' x M, we are interested in invariant rather
than equivariant forms on R x M, as they pass to the quotient.

Remark 2.1. An invariant 2-form on R x M, that is, a form 3 € Q?(R x
M) that satisfies p; 3 = ( for all ¢ € R, induces a 2-form 5y and 1-form «g
on M such that

B=7"Fy+dsATrap.

Notice that £ is closed if and only if both 8y and ag are closed.

Thus an invariant symplectic 2-form is far from inducing a contact form.
On the other hand, the map ¢ : § +— e°f induces a one-to-one correspon-
dence between invariant and equivariant forms on R x M. The property of
non-degeneracy is of course preserved. Moreover,

d(e’B) = e*(ds N B+ dp).

This means that the map ¢ intertwines the exterior differential d with the
differential operator

D:QRxM)—= QMR xM):8— DB=dsAB+dp.

With symbols:
dop=¢poD.

Lemma 2.2. The operator D obviously satisfies the following properties:
- D?>=0,
-pioD=Dopj, forallt € R,

- D is continuous.

Since D commutes with the R-action, it passes to the quotient under
the Z-action and yields a twisted differential on Q*(S! x M), also denoted
by D. Introducing the collection ISymp” (R x M) of non-degenerate invari-
ant 2-forms § on R x M satisfying DS = 0, called hereafter R-invariant D-
symplectic forms, the previous discussion implies that the following map is
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a bijection:
¥ : Cont(M) — ISymp? (R x M) : a— e *d(e*n*a) = ds A m*a + d(7*a).

Now we would like to pass from R x M to S* x M. The map p: R x
M — S x M : (s,z) — (€', ) induces a push-forward p, from the space of
R-invariant forms on R x M to the space of S'-invariant forms on S' x M
defined by

[ *(5)](@5@) (1)1, . ,v*) = 5(3,33) (51, ... ,ﬁ*),

where 7; € T(R x M) is the lift of v; through the point (s, x). It is of course
independent on the choice of (s,z) in p~1(e®*, x).

The push-forward p, above is obviously a bijection. Along with the fact
that the map 1 is also a bijection, this yields the following proposition.

Proposition 2.3. There is a bijective correspondence between the collection
of contact forms on M and the collection, denoted by ISymp® (S' x M), of
Sl-invariant D-symplectic forms on S* x M. More precisely, the map

S : Cont(M) — ISymp? (St x M) : a — S(a) = ps (e7*d(e*m* )
15 one-to-one.

Remark 2.4. The “twisted symplectization” S(«) of a contact form « coin-
cides with Da. It is thus a D-exact form. It is easy to verify directly that a D-
closed nondegenerate S!-invariant 2-form 8 on S! x M is necessarily the D-
boundary of a contact form on M. Indeed, since f is invariant, it is of the type
B = 7% Py + dt A Ty, for some forms [y and ag on M. The relation DS = 0
implies By = dag. Thus f = Dr*ag. Now " = ndt A 7 (ag A dag_l) which
implies that g is a contact form if and only if 5 is non degenerate.

3. An invariant version of the Hahn-Banach separation
theorem

In this section appears a proof of the invariant separation Hahn-Banach
theorem that relies on the invariant analytic Hahn-Banach theorem. Sur-
prisingly, a proof of the precise statement we need is not so easily accessible
in the literature whence our decision to include it in the text. See neverthe-
less [4] Theorem 1 in Section 3, as well as [2] Théoreme 2.20 p 32.

Let us first recall the statement, due to R. Agnew and A. Morse [1], of
the invariant analytic Hahn-Banach theorem.
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Theorem 3.1. (Agnew & Morse) Let V' denote a real topological vector
space and W a linear subspace. Let p:V — RT be a positively homoge-
neous subadditive functional!V and let f be a linear form on W such that
fw) < p(w) for allw € W. If G is a solvable group acting continuously on
V', preserving W and leaving p and f invariant, then there exists a linear
extension of f to V that is invariant under G and satisfies f(v) < p(v) for
allveV.

The proof of the above theorem is done by induction on the length of
the derived series of (G, the initial case of the trivial group corresponding to
the classical Hahn-Banach theorem. In what follows, G will be abelian and
hence solvable.

Here is the version of the invariant geometric Hahn-Banach theorem
used hereafter:

Theorem 3.2. Let G be a solvable group acting continuously on a real
Hausdorff topological vector space V. Suppose K is a compact convex subset
of V invariant under G and W s a closed linear subspace of V' also invari-
ant under G and that does not meet K. If K contains a fixed point cqy for
the action of G and if the complement of W — K = {w — klw € W,k € K}
contains a convex invariant open neighborhood of 0, then the subspace W
can be extended to a closed invariant hyperplane that does not meet K.

Proof. Let A be a convex invariant open neighborhood of 0 contained in

W — K. Consider the subset O = A+ K — ¢y. It is convex, invariant and

open as a union O = U (A + (¢ —cp)) of open sets. Consider its gauge
ceK

po:V = R v inf{\ >0]|v € \O}.

The functional po is positively homogeneous subadditive and invariant be-
cause O is invariant. Moreover O = p;'([0,1)) since O is open. Thus po
is continuous. Now consider the subspace W' generated by W and ¢y and
the linear functional ¢ : W/ — R : w — tcg — t. Observe that W’ is invariant
and that ¢ is continuous (because W is closed) and invariant. Moreover, the

TV'This means that p(Av) = Ap(v) VA € RT,v € V and p(v + w) < p(v) + p(w)
YoweV.
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relation ¢(w') < po(w') holds true for all w’ € W'. Indeed, for ¢ > 0, we have

w
pol(w — teo) = tpo (; - cO) > ¢

since — — co € W — K which is disjoint from O.

The Agnew-Morse theorem above implies that ¢ can be extended to an
invariant linear functional ¢ : V — R such that ¢(v) < po(v) for all v € V.
Observe that, as implied by the previous inequality and the continuity of po,
the functional ¢ is continuous. Let H denote the kernel of ¢. It is a closed
invariant hyperplane containing W. Moreover H N K = () because if ¢ € K,
then ¢ — ¢y € O and thus po(c — ¢p) < 1. This implies that

é(c) = d(co) + d(c — o) < d(co) +polc—co) < —14+1=0,
showing that ¢ cannot belong to H. 0

Under the additional assumptions that G is compact and V is locally
convex, the awkward assumption of existence of a convex invariant open
neighborhood of 0 contained in W — K is satisfied. To prove this we need
the following standard result about actions of topological groups.

Lemma 3.3. Consider a continuous action of a topological group G on
a topological space X. Then, for a compact subspace © of G and a closed
subset C of X, the set ©@-C ={0-z |0 € O,z € C} is closed.

Corollary 3.4. Let G be a compact solvable topological group acting contin-
uwously on a real locally convexr Hausdorff topological vector space V. Suppose
K is a compact conver subset of V invariant under G and W is a closed
linear subspace of V' also invariant under G and that does not meet K. If
K contains a fixed point for the action of G then the subspace W can be
extended to a closed invariant hyperplane that does not meet K.

Proof. Observe that, under the assumptions of Corollary 3.4 the existence of
the convex invariant open neighborhood of 0 in the complement of W — K,
needed in Theorem 3.2, is guaranteed. Indeed, the subset W — K is closed,
as implied by Lemma 3.3 applied to the additive action of V' on itself. Its
complement contains therefore a convex open neighborhood Ay of 0. Then
Lemma 3.3, again, implies that the invariant subset A = Ngeg(g- Ao) is
open (since its complement G - (V' \ Ag) is closed). It is of course convex as
well. ([l
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4. Correspondence contact forms/cone structures

We are now ready to establish a correspondence between contact forms and
a certain type of cone structures. Recall from Section 2 that we may think of
contact forms on M as being S'-invariant D-symplectic forms on S! x M.
The idea now is to extend Sullivan’s result to forms and cone structures that
are invariant under an S'-action.

Set P = S x M. For an element w in Symp?, (P), consider an invariant
almost complex structure J that is compatible with w. There is a natu-
ral class of such structures. Indeed, consider the contact form « associated
with w and its Reeb vector field R, (defined by the relations da(R,,-) =0
and a(R,) = 1). Choose a compatible almost complex structure Jy on the
symplectic vector bundle (£ = Ker a, da|¢ge). Now define a vector bundle
morphism J : T'P — TP by setting

J(v) = Jo(v) for ve
0
J(Ry) = —.
( Oé) at

The morphism J is an S'-invariant almost complex structure compatible
with w, as is easily verified.

Now we construct the field C” of cones of 2-vectors on P associated to
the almost complex structure J as is done in Remark 1.4. The cone at p is
thus the convex hull of the set

{vAJv|veT,P}.
Lemma 4.1. The field C” is continuous, compact, ample and invariant.

The proof is elementary but is nevertheless included.

Proof. The fact that C is continuous follows directly from the fact that one
can find local trivializations of the vector bundle TP relative to which the
almost complex structure J and thus also the cone field C” are constant.

To prove compactness of C, let p € P and consider pointwise linearly
independent local sections ey, ..., es, of TP near p such that J(e;) = €4,
1 =1,...,n. Define the local 2-form

n
B=) clnet
=1
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where {el,... e2"} is the basis of T*P dual to {e1,...,e2,}. Then

2n
B(v A Jv) = va
i=1

It is now obvious that 8,1(1) N C, C A?T,P is compact.
Ampleness of C” has been verified in the proof of Lemma 1.9 and in-
variance follows directly from that of J. 0

Lemma 4.2. When M is compact, the structure cone C’ associated to C”
18 compact and invariant.

Proof. For the compactness of C/, we refer to [7]. Invariance follows directly
from that of C. U

It is now necessary to prove that the space of currents that are exact
for the adjoint D* of the operator D, introduced in Section 2, is a closed
subspace of D, (M).

Let us denote by Z%(P) (respectively BY (P)) the subspace of QF(P)
consisting of D-closed (respectively D-exact) k-forms and by ZP°(P) (re-
spectively BP"(P)) the space of closed (respectively exact) currents for D*.
Because p; o D = D o p} for all t € S1 (cf. Lemma 2.2), all those spaces are
Sl-invariant.

Lemma 4.3. The space BP"(P) is a closed subspace of Dy(P).

Proof. First show that B ™ (P) = Im D is a closed subspace of Q*1(P) and
then invoke the following classical result (e.g.[8] Proposition 35.7 p. 366) :

Proposition 4.4. For a continuous linear map u between two real locally
convexr Hausdorff topological vector spaces E and F', the following properties
are equivalent

- u(FE) is closed in F;

- the transpose u* of u is a homomorphism of F' onto u*(F') C E' when
F' and E' are endowed with their weak topology.

Supposing that B%H(P) is closed and applying this proposition to D :
QF(P) — QFF1(P) implies that D* is a homomorphism. Therefore, because
the space D¥(P)/Ker D* is complete, the space Im D* is also complete,
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whence closed. This is true for the weak topology and thus for the strong
topology too.

It remains now to show that BY(P) is closed for all k. Recall from
Section 2 the map

0 : QPR x M) = QFR x M) : 3 6.

It is a homeomorphism that intertwines d with D and, therefore, that induces
a bijection between their respective images BY (R x M) and B¥(R x M),
Since the space of exact forms is closed in the space of differential forms
(even if the underlying manifold is not closed), this implies that B% (R x M)
is closed in QF(R x M). Besides, the map

pr QRS x M) = QF(R x M) : B p*(B).

induces a homeomorphism between QF(S' x M) and QF(R x M)Z, the set of
fixed elements of the action of Z on Q*(R x M). The latter being continuous,
the set QF(R x M)Z is a closed subspace of Q¥ (R x M). Thus B}, (P) appears
to correspond, under p*, to an intersection QF(R x M)ZN B5 (R x M) of
closed subspaces of QF(R x M). O

Now to apply the invariant version of the Hahn-Banach separation the-
orem, we need to have a fixed point for the action of S' on a basis for the
structure cone. Let us recall Tychonoff’s fixed point theorem.

Theorem 4.5. Let E be a locally convex topological vector space, let C' be
a compact convex subset of E2 and let f : C — C be a continuous map. Then
f has a fized point.

Consider and element g € S' that generates a dense subgroup in S'.
Tychonoft’s fixed point theorem implies that p, : C — C has a fixed point
c. Now c is fixed under the action of the subgroup generated by g as well.
Since that subgroup in dense in S' and the action of S* on C is continuous,
all elements of S! fix c.

Alternatively, one may use the Markov-Kakutani fixed point theorem
whose statement is recalled hereafter.

Theorem 4.6. (Markov [5] and Kakutani [3]) Let C be a compact convex
subset of a Hausdorff topological vector space E and let G be a collection of
commuting continuous affine transformations of E that preserve C. Then
there exists a point in C that is fixed under all elements of G.
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Existence of a fixed point allows us to apply the geometric Hahn-Banach
theorem. We are now ready to complete the proof of Theorem 0.1.

Proof of Theorem 0.1. Given a cooriented contact structures £ there exists
a contractible collection of forms « defining £ and compatible with its coori-
entation. Consider an invariant almost complex structure J on P compat-
ible with the symplectization w = S(«) of some contact form a defining ¢
(cf. Section 2) and the associated cone structure C”. It is ample, invari-
ant (cf. Lemma 4.1) and the associated cone structure C’ does not contain
any D*- exact structure cycle. Indeed, the form w is positive on C’ but a
D-closed form may not be positive on D*- exact currents.

Conversely, let C' denote an ample S'-invariant cone structure on P
without non-vanishing D*- exact structure current. Consider an invariant
basis C for the structure cone C. To show that such a base exists, it suffices
to construct an invariant positive form, which is easily done as follows. Let
B be a postitive form on C. Define 8’ to be the invariant extension of the
restriction of 8 to Ty arP. More explicitly:

Blewy = P2t (Bo))-

The form 3’ remain positive because C' is invariant. Now Tychonoff’s fixed
point theorem implies existence of a fixed point ¢ in C for the action of S! and
thus Corollary 3.4 implies that the closed subspace BY" (P) may be extended
to a closed hyperplane that does not meet C. That closed hyperplane is the
kernel of a continuous linear functional o on Dy(P) positive on C. The
presence of the fixed point ¢ implies that « is invariant. The space Q2(P)
being reflexive, that functional is induced by a 2-form w which is invariant
and D-closed because it vanishes on B2 (P) (argument identical to the one
that shows that the closed forms are the ones vanishing on exact currents
and that uses reflexivity of Q¥(P) together with formula (1)). Finally, such
a form is the symplectization S(a) of a contact form « on M. O

As mentioned in the introduction, there is an analogue of Theorem 0.1 for
locally conformal symplectic structures. Let us recall that a locally conformal
symplectic (lcs) structure on a manifold P is a 2-form w on P such that for
each point p € P there exists a neighborhood U of p in P and a positive
smooth function f defined on U such that the form fw|y is symplectic. The
local functions f are such that the exact forms d(Inf) agree on overlaps and
define a global closed form 6, uniquely determined by w and called the Lee
form of w. The lcs form w is closed for the Lichnerowicz differential Dy =
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dpB + 6 N\ B associated to € and, conversely, any Dy-closed non degenerate
2-form is a lcs structure with Lee form 6.

Proposition 4.7. Let P be a closed manifold and let 6 be a closed 1-form
P. A lcs structure whose Lee form is 0 induces a contractible collection
of ample cones of bivectors with no nontrivial Dy-exact structure currents.
Conversely, such a cone structure induces a contractible collection of lcs
structures with Lee form 6.

Proof. The only thing to prove is that the collection of Dp-exact currents is a
closed subspace of D, (P). The proof is quasi-identical to that of Lemma 4.3.
Indeed, it suffices to observe that the manifold P admits a covering 7 : ) —
P for which 7*0 = df for some smooth function f on () and to replace,
in the above-mentioned lemma, the manifold S' x M by P, the manifold
R x M by @, the 1-form dt by 6 and the group Z by the group of Deck
transformations of the covering 7 : QQ — P. (]

5. The non coorientable case

If & is a non coorientable contact structure on a manifold /N, consider the
coorientation double cover p: M — N, its Zs-action p : Zo x M — M and
the associated Zo-invariant coorientable contact structure & = p;1¢y. The
latter admits a Zs-skew-invariant defining 1-form . The space P = S' x
M inherits a Zs-action as well and, as explained hereafter, it supports a Zs-
skew-invariant S'-invariant almost complex structure compatible with the
twisted symplectization Da of a.

Let J be an almost complex structure on & which is compatible with
da and such that p, - J = —J, where a is the non-trivial element in Z,.
We would like to extend J to the entire twisted symplectization in such a
way that it remains Zs-skew-invariant. Observe that the Reeb vector field
R, is Zs-skew-invariant: (pg)«(Ra) = —Ra. Now in order to obtain a Zo-
skew-invariant almost complex structure J on P, compatible with Da, and
such that J(R,) = £0s (s is the coordinate on S'), it must be that (pg)« o
J(Ry) = J(Ry). Indeed,

—J(Ra) = (pa - J)(Ra) = (pa)s © J(=Ra) = (pa)«(—J(Ra))-

V'The expression an object O is Zy-skew-invariant means that the nontrivial
element of Z, maps O onto —O
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So, if we lift the Zs-action to P = S' x M as follows
pPa: P — P:(s,z)— (s,—x),

then the almost complex structure J is Zs-skew-invariant.
Now the cone structure C/ on S! x M associated to J is ample, S'-
invariant and Zs-skew-invariant since

Pa - (VA Jv) = (pa)«(v) A (pa)s(Jv)
«(V) A (pa)x © J 0 (pa)s © (Pa)«(v)

= —(pa)*(v) NJo (Pa)*(v)-

(Pa>
(Pa>

Notice that we are not saying that the restriction of p, to C” coincides
with the map —Id. Likewise the associated cone C”’ of structure cycles is
Sl invariant and Zo-skew-invariant. Moreover it does not contain D*- exact
structure cycles.

Conversely, given an ample S'-invariant, Zs-skew-invariant ample cone
structure C' on P with no D*-exact structure cycles, one recovers S'-
invariant, Zs-skew-invariant D-symplectic forms on P, themselves induc-
ing non-coorientable contact structures on N. The first step is to construct
a Sl-invariant compact base C for C that is also Zg-skew-invariant. Given
an S'-invariant form fy that is positive on C”, the form

B =pPo— (pa)*/BO

is also positive on C” and thus 371(1) yields the desired basis. It is now
useful to consider the Zs-action on D, (M) defined by:

N : Du(M) — Dyu(M) : ¢ — —pq - C.

This action commutes with that of S and leaves both C and BY" (P) invari-
ant. The Markov-Kakutani fixed point theorem implies that C contains a
fixed point for the Zy x S'-action. So the invariant Hahn-Banach theorem,
or rather Corollary 3.4, implies that the space of D*- boundaries is contained
in a closed Zo x S'-invariant hyperplane H disjoint from C. Let w denote
a linear form on Dy(P) whose kernel is H and that is positive on C. The
form w is in fact a D-closed differential form that is Zs x S!-invariant and
non-degenerate.

Now because w is D-closed and S'-invariant, it is the D-boundary of
a contact form « (cf. Remark 2.4). The fact that w is n-invariant, that is
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paw = —w, implies the corresponding relation for a:
Pt = —qu.

Thus « yields a non coorientable contact structure on N. We have thus
proven the following result.

Theorem 5.1. Let £ be a non-coorientable contact structure on a closed
manifold N. Consider the coorientation double cover w: M — N associ-
ated to & and the Zo x S*-action on P = S' x M given by Plas0) - (8,T) =
(sos,a-x). Then & induces a mon-empty contractible collection of ample
Sloinvariant, Zs-skew-invariant cone structures on P with no non-trivial
D*- ezact structure currents. Conversely, an ample S'-invariant, Zs-skew-
invariant cone structure on some P = S x M for some double cover M of
N, with no non-vanishing D*- exact structure currents induces a non-empty
contractible collection of non coorientable contact structures on N.
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