Macromolecules 2018, 51, 9122–9130

One-Pot Synthesis of Ion-Containing CO₂-Based Polycarbonates Using Protic Ionic Liquids as Chain Transfer Agents

Zhaohe Huang,^{†,‡} Yanyan Wang,[‡] Na Zhang,[†] Luhong Zhang,^{*,†} and Donald J. Darensbourg*,[‡]

Supporting Information

ABSTRACT: An analysis of the construction of ioncontaining CO₂-based polycarbonates via metal-catalyzed immortal copolymerization of propylene oxide (PO) and carbon dioxide in the presence of protic ionic liquids (ILs) as chain transfer agents is described. The reactions were catalyzed by the binary (salen)CoO₂CCF₃/onium salt system in the absence of added solvent. On the basis of the results of this study, which includes ¹H NMR and MALDI-TOF-MS data, it is clear that the role of the protic IL in this process is dominated by its anion. When the anion of the protic ionic liquid is nucleophilic, such as chloride, the protic ionic liquid

acts as a cocatalyst in the reaction system for epoxide ring opening, and the chain transfer reaction initiated by the cation is completely suppressed. However, when the anion of the protic ionic liquid is non-nucleophilic, such as BF₄, the protic ionic liquid acts as an effective chain transfer agent to afford IL-based polycarbonates by rapid and reversible chain transfer processes. The resultant polymer structures were confirmed by ¹H NMR and MALDI-TOF-MS spectroscopies. This work provides a facile method for synthesizing ion-containing polycarbonate as well as an insight into immortal copolymerization processes utilizing protic ionic liquids as chain transfer agents.

INTRODUCTION

Carbon capture and utilization (CCU) processes represent effective options for reducing CO₂ emissions. In this context, several processes are currently being employed that utilize sizable quantities of carbon dioxide, e.g., the production of urea, methanol, 4 cyclic carbonates, 5,6 and polymers. Although presently the impact of CCU with regard to climate change is of little consequence, its contribution to reducing the "greenhouse effect" would be greatly enhanced if the technology was available for efficiently converting CO2 into energy-rich products or fuels.8 In recent decades, the copolymerization of CO2 and epoxides to synthesize degradable aliphatic polycarbonates has drawn considerable attention from both academia and industrial communities. 9-24 For example, aliphatic polycarbonates have been proposed as alternatives to petro-based chemicals for use in the fields of automotive, medical, and electronic industries.²⁵

Today, much effort is being devoted to synthesizing CO₂based polyols by means of immortal polymerization, since these polyols are raw materials for polyurethane production, as well as effective macroinitiators for constructing block polymers.²⁶ Immortal polymerization, first identified by Inoue and co-workers in 1985,²⁷ is an effective method for synthesizing hydroxyl end-functional polymers with narrow molecular weight distributions. In the copolymerization of epoxides and CO2, the addition of an alcohol or carboxylic acid to the catalytic system momentarily terminates chain growth.

However, a rapid and reversible chain transfer reaction occurs between the metal bound anionic growing polymer chain and the protic compound, resulting in uniform chain growth from all the added protic molecules (Scheme 1). 28,29 Notably, chain transfer reactions provide promising methods for precisely controlling topology and architecture of block or graft copolymers.

The presence of adventitious water commonly serves as a chain transfer agent in copolymerization reactions of epoxides and CO₂. This in turn accounts for the observation that in general there is not a good correlation between the copolymer's molecular weight and monomer/initiator ratio as expected for a living polymerization process.³⁰ In our previous studies, ABA triblock polycarbonates were synthesized by a facile and straightforward "two-step, one-pot" strategy using water as an effective chain transfer agent in a (salen)CoTFA/ PPNTFA catalyst system. 31,32 The use of trifluoroacetate initiators (TFA = X in Scheme 1) is employed because they undergo hydrolysis more easily and rapidly than other end groups, thereby providing nearly 100% polyols during the polymerization process. 29,33 Wu has also explored the role of water during the copolymerization of propylene oxide and CO₂ in detail.³⁴ In addition to water, various chain transfer agents

Received: August 24, 2018 Revised: October 22, 2018 Published: November 7, 2018

[†]School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China

[‡]Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States

Scheme 1. Widely Accepted Proposal for Protic Molecules as Chain Transfer Agents in the Copolymerization of Epoxides and CO₂

'Immortal Polymerization'

have been investigated. For example, Lee and co-workers explored compounds containing $-\mathrm{OH}$ or $-\mathrm{COOH}$ groups acting as chain transfer agents in the copolymerization of PO/CO₂ and obtained CO₂-based polyols with controllable molecular weight. Moreover, these same researchers employed CO₂-based polyols bearing the organophosphorus group to prepare flame-retarding polyurethane. Recently, Liu's research group has investigated various polybasic organic acids as chain transfer agents to obtain CO₂-based polyols, oligo(carbonate—ether) triol, and oligo(carbonate—ether) tetraol.

As previously mentioned, a significant driving force for synthesizing CO₂-based polyols is for their use in condensation reactions with diisocyanates to produce polyurethanes,

polymers which occupy an important position in modern society. Currently, growing attention is being paid to preparing various types of ion-containing polyurethanes or polyurethane ionomers because of their unique morphologies and properties. These latter characteristics are attributed to the combined effects of Coulombic, hydrogen bonding, and hydrophobic interactions. 40,41 For the production of ion-containing polyurethanes, the key material is the ion-containing polyols. Ionic liquids (ILs) as emerging green solvents have been widely studied and applied in many areas such as catalysts, ^{6,42} CO₂ absorption, 43 solvents, 44 and so forth. Thereinto, protic ionic liquids when functionalized with -OH or -COOH groups as one of the task specific ionic liquids might have great potential as chain transfer agents by means of immortal copolymerization processes with epoxides and CO2 to provide ioncontaining polyols. At this time, we report studies of protic ionic liquids serving as chain transfer agents in CO2/epoxide copolymerization processes.

In this article, a series of protic ionic liquids (Figure 1) were synthesized and utilized as chain transfer agents in the copolymerization of PO/CO₂ using binary (salen)CoTFA/ onium salt catalysts (Figure 2) to prepare CO2-based polycarbonates. For the copolymerization reactions, the cation of the ionic liquid with -OH or -COOH groups may participate in the chain transfer reaction, while the anion may act as the initiator in the early stages of the process. Thus, the roles of the cation and anion of the protic ILs were systematically examined. To improve the selectivity for the ion-containing CO₂-based polycarbonates among the polycarbonate product, the acidity and the anion of the IL were altered. Based on the results of these experimental observations, along with ¹H NMR and MALDI-TOF-MS spectra, a mechanism for the copolymerization of CO2 and PO in the presence of protic ILs using a (R,R)SalenCoTFA binary catalyst system is proposed.

1-Carboxymethyl- 3-methyl imidazolium chloride 1,3-bis(carboxymethyl)imidazolium chloride MimCM.Cl BCMim.Cl

1,3-bis(3-carboxypropyl)imidazolium chloride or tetrafluoroborate $BCPim.Cl\ or\ BCPim.BF_4$

Figure 1. Structures and abbreviations of the protic ionic liquids utilized in these studies.

$$(R,R)SalenCoTFA = PPNY = PPNY = OOCCF_3 GOOCCF_3 tBu$$

$$tBu tBu tBu tBu$$

Figure 2. Structure of (R,R)SalenCoTFA/PPNY (Y = TFA, Cl).

Table 1. CO₂/PO Copolymerization in the Presence of Protic Ionic Liquids Containing Chloride Anion^a

entry	co-cat.	IL	[IL]/[cat.]	time (h)	conv (%)	selectivity ^b (%)	$M_{\rm n}^{\ c}$ (g/mol)	PDI^{c}
1	PPNTFA	ChCl	5	20	96	93:7	11300	1.20
2	PPNTFA	CMTea.Cl	2.5	20	96	99:1	12700	1.21
3	PPNTFA	CMTea.Cl	5	20	>99	93:7	7300	1.08
4	PPNTFA	CMTea.Cl	10	20	>99	70:30	3854	1.11
5	PPNCl	CMTea.Cl	2.5	20	98	98:2	15397	1.14
6	PPNCl	CMTea.Cl	5	20	>99	73:27	10800	1.22
7	PPNTFA	MimCM.Cl	2.5	20	91.8	99:1	14600	1.23
8	PPNTFA	MimCM.Cl	5	20	72.4	99:1	6900	1.10
9	PPNCl	MimCM.Cl	2.5	20	93.5	96:4	16550	1.18
10	PPNCl	MimCM.Cl	5	20	75.8	99:1	6950	1.07
11	PPNCl	MimCM.Cl	10	20	48.5	96:4	3000	1.03
12	PPNTFA	BCMim.Cl	1.25	20				
13	PPNTFA	BCPim.Cl	1.25	20	94	99:1	25000	1.15
14	PPNTFA	BCPim.Cl	2.5	20	96	99:1	15600	1.12
15	PPNTFA	BCPim.Cl	3.75	20	92	97:3	9450	1.09
16	PPNTFA	BCPim.Cl	5	20	83	92:8	_d	_ ^d

"Reaction conditions: (salen)CoTFA/PPNY/PO (Y = TFA, Cl) = 1/1/1000 (molar ratio); a certain amount of protic ionic liquid was added into a 15 mL predried autoclave which was pressurized to 2.5 MPa by CO₂ at 25 °C. ^bSelectivity for copolymers vs cyclic carbonates determined by ¹H NMR spectroscopy. ^cMeasured by GPC. ^dOwing to the interaction of the charged polymers with the GPC column, the M_n and PDI measured by GPC are unreliable.

RESULTS AND DISCUSSION

Initially, we examined the copolymerization of propylene oxide (PO) and CO₂ in the presence of various amounts of different protic ionic liquid chain transfer agents containing the nucleophilic chloride anion. It should be noted that unlike conventional CTAs, e.g., adipic acid, both the anion and cation of these protic ILs could have an effect on the copolymerization reaction. That is, the chloride anion is one of the most commonly used initiators for epoxide/CO₂ coupling processes. Thus, clarification of the role of the anion in these polymerization processes is of utmost importance in understanding the use of these protic ILs as CTAs. Four types of protic ILs containing nucleophilic chloride anions were employed as additives. The results of this study are summarized in Table 1.

As shown in Table 1, the obtained polycarbonates all exhibit narrow molecular weight distributions (PDI < 1.23) no matter which protic IL was used in the copolymerization process. Moreover, the molecular weights decreased with the molar ratio of IL/cat. increase, thereby indicating that the molecular weight of the polycarbonate can be controlled by the concentration of the IL. At the same ratio of IL/cat. of 5.0 (entries 1, 3, and 8), the $M_{\rm n}$ values of the polycarbonates of 11300, 7300, and 6900 g/mol decreased in the order ChCl > CMTea.Cl > MimCM.Cl. Furthermore, the PDIs of these three polycarbonates were 1.20, 1.08, and 1.10, respectively, suggesting ILs containing carboxyl groups are better chain

transfer agents. These results are in accordance with previous findings by Wang and co-workers. ³⁹ A series of copolymerization reactions employing CMTea.Cl as chain transfer agents are listed in Table 1, entries 2–6. These results clearly illustrate that the conversion of PO increases with the molar ratio of IL/cat., reaching nearly 100% when the molar ratio of CMTea.Cl/cat. was above 5. However, the selectivity of polycarbonate over cyclic carbonate sharply decreased as the molar ratio of CMTea.Cl/cat. increased from 5 to 10. Because the chloride ion is the better initiator (*vide infra*), as expected upon changing the cocatalyst from PPNTFA to PPNCl (entries 3 and 6), while maintaining the IL/cat. ratio at 5, the selectivity of copolymer was also decreased.

To investigate the effect of the acidity of the protic IL on the copolymerization reaction, MimCm.Cl was synthesized which has a stronger acidity than CMTea.Cl because of its electron-withdrawing imidazole ring. The results using MimCM.Cl are summarized in Table 1, entries 7–11, which indicated the selectivity for copolymer to be unchanged with an increase in MimCM.Cl/cat. with a decrease in PDI. However, there is a sharp decrease in the conversion of PO monomer with increasing quantities of MimCM.Cl, indicative of a decrease in catalytic activity with IL's acid strength. To further confirm this finding, BCMim.Cl and BCPim.Cl were examined for their effect on the copolymerization process. The p K_a values of these acidic ILs are 1.9 (MimCM.Cl) , 1.33 (BCMim.Cl), and 3.46 (BCPim.Cl). When the IL with the strongest acidity,

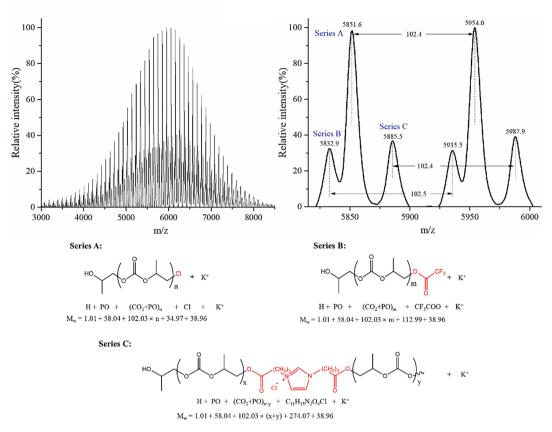


Figure 3. MALDI-TOF-MS spectrum of the product prepared by adding BCPim.Cl as chain transfer agent (entry15, Table 1).

BCMim.Cl, was employed as CTA, production of polycarbonate was quenched (entry 12). By way of contrast, the use of BCPim.Cl (entry 14) compared favorably with MimCm.Cl (entry 7) in copolymer production. This is an interesting observation, for our goal is to synthesize ion-containing polycarbonate diols.

 1 H NMR and MALDI-TOF-MS spectroscopies were used to assess the effectiveness of ILs as chain transfer agents in the copolymerization reactions of propylene oxide and CO₂. For example, when employing BCPim.Cl as chain transfer agent (entry 15, Table 1), the copolymer produced contained weak resonances in the proton NMR spectrum at 2.54, 2.33, and 3.65 ppm assigned to the $-\text{CH}_2-$ groups of the IL (Figure S1). However, these proton signals are so weak such that the M_n value measured by GPC would be greatly inconsistent with that determined by NMR. Indeed, the MALDI-TOF-MS spectrum depicted in Figure 3 displays a trimodal distribution, with the major species being the chloride-initiated polycarbonate.

It is of interest to note that the catalyst and cocatalyst do not contain a chloride ion; hence, the chloride ion from the IL participates in the early stages of the copolymerization process. This was further supported by changing the cocatalyst from PPNTFA to PPNCl (entries 3 and 6); the selectivity for copolymer significantly decreased. Consistent with literature predence, the backbiting pathway for cyclic carbonate production is enhanced with increasing concentrations of chloride anion. The other two minor carbonate chains were initiated by trifluoroacetate and chain transferred by BCPim cation, respectively. Although the cation of BCPimCl serves as a CTA, the major role of BCPimCl is to provide the chloride

anion as an initiator of the copolymerization process. Similar results were found from the MALDI-TOF-MS spectra of polymers derived from CMTea.Cl and MimCM.Cl employed as chain transfer agents (Figures S2 and S3). Furthermore, the molecular weights of the copolymers were found to be significantly lower than the theoretical values in the presence of ILs and can thereby precisely be controlled by the amount of added IL.

These results are in accordance with the work reported by Lee and co-workers where polymer chain growth resulted not only from the anions in the catalyst system but also from adipic acid which served as a chain transfer agent.³⁵ In general, the chain transfer process is shown to be much faster than chain propagation as well as being reversible.⁴⁸ In this instance, where large concentrations of chloride ions presence in the reaction system derived from the protic IL, the chain transfer reaction by the cation of the IL is suppressed. This is the result of a fast chloride ligand exchange reaction with the growing anionic polymer chain or, in other words, a faster chain transfer reaction involving chloride anions. Hence, the solution for utilizing protic ILs as CTAs for providing ion-containing polycarbonates is to eliminate the nucleophilic nature of the anion associated with the ionic liquid.

To achieve our goal of developing an efficient synthesis of ion-containing polycarbonates via an immortal copolymerization of propylene oxide and CO_2 , we simply replaced the chloride anion in BCPim.Cl with BF_4^- , which was easily implemented by an ion exchange method.⁴⁹ The use of BF_4^- as a non-nucleophilic anion in the copolymerization of epoxides and CO_2 has been discussed elsewhere. ^{15,50} The results of our studies of the copolymerization reactions of PO and CO_2 in

Table 2. Effects	of BCPim.BF.	on the Copo	lymerization	of CO_3/PO^a

entry	co-cat.	CTA	[CTA]/[cat.]	time (h)	conv ^b (%)	selectivity b (%)	M_n^b (g/mol) (1 H NMR)	$M_{\rm n}^{\ c}$ (g/mol) (theor)
1	PPNTFA	BCPim.BF ₄	5	20	48	92:8	16500	9300
2	PPNTFA	BCPim.BF ₄	2.5	60	96	94:6	73400	37200
3	PPNTFA	BCPim.BF ₄	5	60	92	92:8	36200	19100
4	PPNTFA	BCPim.BF ₄	7.5	60	90	94:6	13400	12600
5	PPNTFA	BCPim.BF ₄	10	60	87	92:8	9050	9200
6^d	PPNTFA	BCPim.BF ₄	10	60	94	98:2	4650	6050
7	PPNTFA	BCPim.BF ₄	12.5	60	80	98:2	6200	6900
8 ^d	PPNTFA	BCPim.BF ₄	12.5	64	93	98:2	3900	4900
9	PPNTFA	BCPim.BF ₄	15	60	10			

"Reaction conditions: (salen)CoTFA/PPNTFA/PO = 1/1/1000, molar ratio, a certain amount of protic ionic liquid was added into a 15 mL predried autoclave which was pressurized to 2.5 MPa by CO₂ at 25 °C. Determined by H NMR spectroscopy, based on comparing the relative integrals of polycarbonate and BCPim.BF₄. Calculated according to $M_n = n_{PO} \times C_{PO} \times S_{polymer}/n_{BCPim.BF4} + (M_{BCPim.BF4})$, where n_{PO} is the amount of PO added into the reaction system, C_{PO} is the conversion of PO after reaction, $S_{polymer}$ is the selectivity of polycarbonate over cyclic carbonate, $n_{BCPim.BF4}$ is the amount of BCPim.BF₄ fed into the reaction system, and $M_{BCPim.BF4}$ is the molecular weight of BCPim.BF₄. Same reaction conditions except that (salen)CoTFA/PPNTFA/PO = 1/1/600.

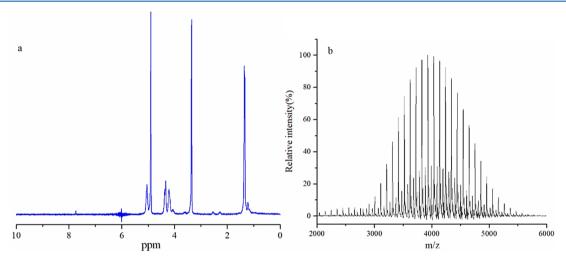


Figure 4. (a) ¹H NMR spectrum using CD₃OD as solvent. (b) MALDI-TOF-MS spectrum of the product prepared using BCPim.BF₄ (entry 7, Table 2).

the presence of the protic IL BCPim.BF₄ as a chain transfer agent are summarized in Table 2.

As can be seen in Table 1 (entry 16) and Table 2 (entry 1) for reactions otherwise run under identical conditions, the catalytic activity decreases in the presence of BCPim.BF₄ relative to BCPim.Cl. However, the selectivity for copolymer remains high at 92% in both cases. To address the role of BCPim.BF₄ in the copolymerization process, ¹H NMR spectroscopy was employed. In Figure S4, the proton signals in the region 2.20-2.60 ppm are ascribed to the $-CH_2$ groups in BCPim.BF4, which are consistent with those seen in Figure S1 for the BCPim.Cl derived copolymer. Moreover, the ¹H NMR spectrum of the copolymer obtained from BCPim.BF₄ displays a resonance at 7.40 ppm due to the hydrogen atom on the imidazole ring which is too weak to be observed in the polymer from the chloride analogue. Although the ¹H NMR signals of the IL are relatively stronger in the copolymer of the BF_4^- derivative, the M_n values calculated from ¹H NMR spectroscopy were abnormally higher than their expected values for [IL]/cat. ratios ≤5, suggesting only partial BCPim incorporation in these instances. The MALDI-TOF-MS spectrum of the polycarbonate obtained in entry 3 of Table 2 is shown in Figure S5. Three species were observed: $[BCPim.BF_4(PO-CO_2)_m(PO)_2]K^+, [BCPim.BF_4(PO-CO_2)_m(PO)_2]K^+$

 CO_2)_m(PO)₃]K⁺, and [TFA(PO-CO₂)_m(PO)]K⁺, with the BCPim.BF₄-based polycarbonate being the dominant product. Hence, as anticipated, the chain transfer reaction is accelerated upon changing the anion from Cl⁻ to BF₄⁻, which demonstrates the dramatic role of the anion in the IL on the copolymerization process. Moreover, it should be noted that small quantities of ether linkages are seen in the BCPim.BF₄ derived polycarbonate. Because the charged copolymers' molecular weights could not be reliably determined by GPC, the M_n values were calculated by ¹H NMR measurements. When the [IL]/cat. exceeded 7.5, there was good agreement between calculated and theoretical M_n values. At high [IL]/cat. (entry 9, Table 2), PO conversion was very low, suggestive of (salen)CoTFA deactivation with the addition of excessive amounts of IL.

The ¹H NMR and MALDI-TOF-MS spectra of the BCPim.BF₄-based polycarbonates (entry 7, Table 2) are depicted in Figure 4. Of importance, this ion-containing polycarbonates dissolves in CD₃OD as indicated in Figure 4, indicative of the BCPim.BF₄-based polycarbonates being amphiphilic. The trifluoroacetate-initiated copolymer is not present in significant quantity as confirmed by the MALDI-TOF-MS spectrum in Figure 4, where only BCPim.BF₄-based polycarbonates were observed: [BCPim.BF₄(PO-CO₂)_m-

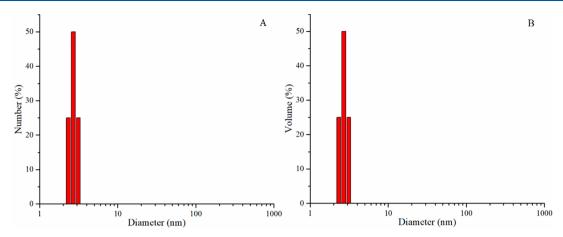


Figure 5. Dynamics light scattering results of nanoparticles of polymer (entry 8, Table 2).

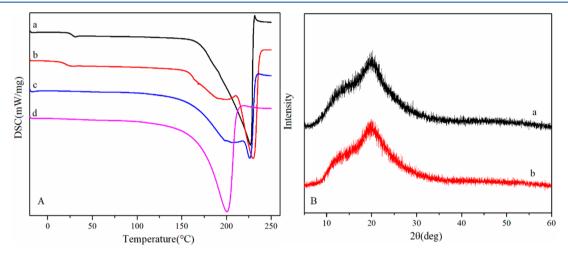


Figure 6. (A) DSC thermograms of various ion-containing polycarbonate: (a) entry 2, (b) entry 4, (c) entry 5, and (d) entry 7. (B) powder XRD profiles of selected ion-containing polycarbonates: (a) entry 2 and (b) entry 7. All entries are from Table 2.

Scheme 2. Plausible Mechanism of Protic Ionic Liquid as Chain Transfer Agent in the Copolymerization of PO and CO₂ Catalyzed by SalenCoTFA/PPNTFA

$$L_{n} Co - CI \xrightarrow{O} + co_{2} \qquad L_{n} Co \sim CI \xrightarrow{O} + co_{2} \qquad L_{n} Co \sim TFA \xrightarrow{O} + co_{2} \qquad$$

 $(PO)_2]Na^+$, $[BCPim.BF_4(PO-CO_2)_m(PO)_2]K^+$, $[BCPim.BF_4-(PO-CO_2)_m(PO)_3]Na^+$, and $[BCPim.BF_4(PO-CO_2)_m-(PO)_3]K^+$. In summary, the BCPim.BF₄-based polycarbonates were successfully synthesized by means of immortal copolymerization of CO_2/PO in the presence of BCPim.BF₄ as chain transfer agent using the (salen)CoTFA/PPNTFA catalyst.

As discussed above, the BCPim.BF₄-derived polycarbonate dissolves in methanol at ambient temperature. In previous

studies, we have reported that anionic and cationic block polymer dissolve in deionized water and self-assemble to form nanoparticles with high uniformity.³² Thus, as the affinity between polycarbonates and methanol is weak, it is possible that ion-containing polycarbonates self-assemble to provide nanoparticles in methanol. In this regard, the polymer from entry 8, Table 2, was investigated using dynamic light scattering (DLS). Indeed, the ion-containing polycarbonate

does form nanoparticles in methanol with a narrow particle size distribution, providing a relatively low hydrodynamic diameter of 2.71 ± 0.79 nm, indicating that the introduction of ions into the polycarbonate increases its affinity for methanol (Figure 5). Hence, the ion-containing polymers reported upon herein are amphiphilic.

The thermal properties of the ion-containing polycarbonates were determined by differential scanning calorimetry (DSC) which reveal a gradual decrease in the T_g (glass transition temperature) with increasing CTA content. As seen in Figure 6a, entry 2, a T_g of about 40 $^{\circ}$ C is observed, which decreases to about 35 °C for entry 4. Furthermore, a quite sharp and high crystallization endothermic peak and the $T_{\rm m}$ (melting temperature) values decrease with increasing CTA content, with a value of 200 °C for the copolymer derived from entry 7 of Table 2. These results indicate that these polycarbonates exhibit some degree of crystallinity. 51,52 To investigate this further by XRD methods, as shown in Figure 6B, broad diffraction peaks were observed at $2\theta = 19.8$ °C with a shoulder at 13°, regardless of the CTA's composition, which corresponds to the crystalline segments in the polycarbonates. Nevertheless, the degree of crystallinity in these ion-containing polycarbonates is low.

A plausible mechanism for the role of protic ILs in the immortal copolymerization reaction of PO and CO2 in the presence of (salen)CoTFA/onium salt catalysts is provided in Scheme 2. The ILs examined in this report can be classified into two groups: ILs with nucleophilic chloride anions and ILs with non-nucleophilic BF₄ anions. For ILs with chloride anions as shown in Scheme 2, Cl⁻ initiates PO ring opening followed by carbonate chain growth as verified by MALDI-TOF-MS. Under these conditions, only a small portion of the protic IL participates in a chain transfer process to produce ILbased polycarbonates. Hence, the chloride ion plays a pivotal role in the copolymerization process, and the chain transfer reaction by protic IL is suppressed. By way of contrast, for ILs with BF₄⁻ anions, the cationic portion of the IL deprotonates the growing anionic copolymer chain end of PPC and becomes a new initiator for the growing polymer chain. After alternating PO and CO₂ enchainment, as well as rapid interchange between the neutral and growing polymer chains, the protic ILbased polycarbonate is obtained as indicated in Scheme 2.

CONCLUDING REMARKS

In this report, several protic ionic liquids were chosen as chain transfer agents and introduced into the copolymerization of PO/CO₂. By adjusting the acidity and the anion of the protic IL, protic IL-based polycarbonates were obtained by means of immortal copolymerization. The structures of protic IL-based polycarbonates were confirmed by ¹H NMR and MALDI-TOF-MS spectra. It was interesting to note that the anion type of protic ionic liquid had a significant impact on the role of ionic liquids in the reaction process. When the anions were nucleophilic, they dominated the reaction process and suppressed the cations participation in the chain transfer reaction. Conversely, when the anions were non-nucleophilic, the cations dominated the reaction and underwent chain transfer reactions to form protic IL-based polycarbonates. In this manner, the ion-containing polycarbonates were easily prepared by immortal copolymerization using protic ILs as chain transfer agents. This work not only extends the applications of protic ionic liquids but also provides a novel

method to synthesize ion-containing polycarbonates, materials which may have significance in the polyurethane industry.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.macromol.8b01834.

Full experimental details on the preparation of protic ionic liquid, general experimental procedures, and characterizations of resulting copolymers (DOCX)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: zhanglvh@tju.edu.cn (L.Z.). *E-mail: djdarens@chem.tamu.edu (D.J.D.).

ORCID 🏻

Luhong Zhang: 0000-0002-7073-4793

Donald J. Darensbourg: 0000-0001-9285-4895

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support is acknowledged to the China Scholarship Council (CSC), the US National Science Foundation (CHE-1665258), and the Robert A. Welch Foundation (A-0923).

REFERENCES

- (1) Song, C. Global challenges and strategies for control, conversion and utilization of CO_2 for sustainable development involving energy, catalysis, adsorption and chemical processing. *Catal. Today* **2006**, *115*, 2–32.
- (2) Sakakura, T.; Choi, J.-C.; Yasuda, H. Transformation of carbon dioxide. *Chem. Rev.* **2007**, *107*, 2365–2387.
- (3) Obert, R.; Dave, B. C. Enzymatic conversion of carbon dioxide to methanol: Enhanced methanol production in silica sol— gel matrices. *J. Am. Chem. Soc.* **1999**, *121*, 12192—12193.
- (4) Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J.; Milstein, D. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO₂ and CO. *Nat. Chem.* **2011**, *3*, 609–614.
- (5) North, M.; Pasquale, R.; Young, C. Synthesis of cyclic carbonates from epoxides and CO₂. *Green Chem.* **2010**, *12*, 1514–1539.
- (6) Sun, J.; Han, L.; Cheng, W.; Wang, J.; Zhang, X.; Zhang, S. Efficient Acid—Base Bifunctional Catalysts for the Fixation of CO₂ with Epoxides under Metal-and Solvent-Free Conditions. *ChemSusChem* **2011**, *4*, 502–507.
- (7) Inoue, S.; Koinuma, H.; Tsuruta, T. Copolymerization of carbon dioxide and epoxide. *J. Polym. Sci., Part B: Polym. Lett.* **1969**, *7*, 287–292.
- (8) Aresta, M. Carbon Dioxide as Chemical Feedstock; John Wiley & Sons: 2010.
- (9) Darensbourg, D. J.; Holtcamp, M. W. Catalysts for the reactions of epoxides and carbon dioxide. *Coord. Chem. Rev.* **1996**, *153*, 155–174.
- (10) Coates, G. W.; Moore, D. R. Discrete metal-based catalysts for the copolymerization of ${\rm CO_2}$ and epoxides: discovery, reactivity, optimization, and mechanism. *Angew. Chem., Int. Ed.* **2004**, *43*, 6618–6639
- (11) Darensbourg, D. J.; Mackiewicz, R. M.; Phelps, A. L.; Billodeaux, D. R. Copolymerization of CO₂ and epoxides catalyzed by metal salen complexes. *Acc. Chem. Res.* **2004**, *37*, 836–844.
- (12) Chisholm, M. H.; Zhou, Z. New generation polymers: the role of metal alkoxides as catalysts in the production of polyoxygenates. *J. Mater. Chem.* **2004**, *14*, 3081–3092.

(13) Darensbourg, D. J. Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO₂. *Chem. Rev.* **2007**, *107*, 2388–2410.

- (14) Kember, M. R.; Buchard, A.; Williams, C. K. Catalysts for CO₂/epoxide copolymerisation. *Chem. Commun.* **2011**, *47*, 141–163.
- (15) Lu, X.-B.; Darensbourg, D. J. Cobalt catalysts for the coupling of CO_2 and epoxides to provide polycarbonates and cyclic carbonates. *Chem. Soc. Rev.* **2012**, *41*, 1462–1484.
- (16) Sugimoto, H.; Inoue, S. Copolymerization of carbon dioxide and epoxide. *J. Polym. Sci., Part A: Polym. Chem.* **2004**, 42, 5561–5573.
- (17) Luinstra, G. A. Poly (propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests: catalysis and material properties. *Polym. Rev.* **2008**, *48*, 192–219.
- (18) Qin, Y.; Wang, X. Carbon dioxide-based copolymers: Environmental benefits of PPC, an industrially viable catalyst. *Biotechnol. J.* **2010**, *5*, 1164–1180.
- (19) Klaus, S.; Lehenmeier, M. W.; Anderson, C. E.; Rieger, B. Recent advances in CO₂/epoxide copolymerization—new strategies and cooperative mechanisms. *Coord. Chem. Rev.* **2011**, 255, 1460–1479.
- (20) Darensbourg, D. J.; Wilson, S. J. What's new with CO_2 ? Recent advances in its copolymerization with oxiranes. *Green Chem.* **2012**, *14*, 2665–2671.
- (21) Lu, X.-B.; Ren, W.-M.; Wu, G.-P. CO₂ copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. *Acc. Chem. Res.* **2012**, *45*, 1721–1735.
- (22) Paul, S.; Zhu, Y.; Romain, C.; Brooks, R.; Saini, P. K.; Williams, C. K. Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates. *Chem. Commun.* **2015**, *51*, *6459–6479*.
- (23) Lv, X.-B. Stereoregular CO₂ Copolymers: from Amorphous to Crystalline Materials. *Acta Polym. Sin.* **2016**, 1166–1178.
- (24) Poland, S. J.; Darensbourg, D. J. A quest for polycarbonates provided via sustainable epoxide/CO₂ copolymerization processes. *Green Chem.* **2017**, *19*, 4990–5011.
- (25) Feng, J.; Zhuo, R.-X.; Zhang, X.-Z. Construction of functional aliphatic polycarbonates for biomedical applications. *Prog. Polym. Sci.* **2012**, *37*, 211–236.
- (26) Zhang, Y.-Y.; Yang, G.-W.; Wang, Y.; Lu, X.-Y.; Wu, G.-P.; Zhang, Z.-S.; Wang, K.; Zhang, R.-Y.; Nealey, P. F.; Darensbourg, D. J.; Xu, Z.-K. Synthesis of CO_2 -Based Block Copolymers via Chain Transfer Polymerization Using Macroinitiators: Activity, Blocking Efficiency, and Nanostructure. *Macromolecules* **2018**, *51*, 791–800.
- (27) Asano, S.; Aida, T.; Inoue, S. 'Immortal'polymerization. Polymerization of epoxide catalysed by an aluminium porphyrinalcohol system. *J. Chem. Soc., Chem. Commun.* 1985, 1148–1149.
- (28) Nakano, K.; Kamada, T.; Nozaki, K. Selective Formation of Polycarbonate over Cyclic Carbonate: Copolymerization of Epoxides with Carbon Dioxide Catalyzed by a Cobalt (III) Complex with a Piperidinium End-Capping Arm. *Angew. Chem., Int. Ed.* **2006**, 45, 7274–7277.
- (29) Kember, M. R.; Williams, C. K. Efficient magnesium catalysts for the copolymerization of epoxides and CO₂; using water to synthesize polycarbonate polyols. *J. Am. Chem. Soc.* **2012**, *134*, 15676–15679.
- (30) Sugimoto, H.; Ohtsuka, H.; Inoue, S. Alternating copolymerization of carbon dioxide and epoxide catalyzed by an aluminum Schiff base–ammonium salt system. *J. Polym. Sci., Part A: Polym. Chem.* **2005**, 43, 4172–4186.
- (31) Darensbourg, D. J.; Wu, G. P. A One-Pot Synthesis of a Triblock Copolymer from Propylene Oxide/Carbon Dioxide and Lactide: Intermediacy of Polyol Initiators. *Angew. Chem.* **2013**, *125*, 10796–10800.
- (32) Wang, Y.; Fan, J.; Darensbourg, D. J. Construction of Versatile and Functional Nanostructures Derived from CO₂-based Polycarbonates. *Angew. Chem., Int. Ed.* **2015**, *54*, 10206–10210.

(33) Kember, M. R.; Copley, J.; Buchard, A.; Williams, C. K. Triblock copolymers from lactide and telechelic poly (cyclohexene carbonate). *Polym. Chem.* **2012**, *3*, 1196–1201.

- (34) Wu, G.-P.; Darensbourg, D. J. Mechanistic insights into water-mediated tandem catalysis of metal-coordination CO_2 /epoxide copolymerization and organocatalytic ring-opening polymerization: one-pot, two steps, and three catalysis cycles for triblock copolymers synthesis. *Macromolecules* **2016**, 49, 807–814.
- (35) Cyriac, A.; Lee, S. H.; Varghese, J. K.; Park, E. S.; Park, J. H.; Lee, B. Y. Immortal CO₂/propylene oxide copolymerization: precise control of molecular weight and architecture of various block copolymers. *Macromolecules* **2010**, *43*, 7398–7401.
- (36) Cyriac, A.; Lee, S. H.; Varghese, J. K.; Park, J. H.; Jeon, J. Y.; Kim, S. J.; Lee, B. Y. Preparation of flame-retarding poly (propylene carbonate). *Green Chem.* **2011**, *13*, 3469–3475.
- (37) Liu, S.; Qin, Y.; Qiao, L.; Miao, Y.; Wang, X.; Wang, F. Cheap and fast: oxalic acid initiated CO₂-based polyols synthesized by a novel preactivation approach. *Polym. Chem.* **2016**, *7*, 146–152.
- (38) Liu, S.; Qin, Y.; Chen, X.; Wang, X.; Wang, F. One-pot controllable synthesis of oligo (carbonate-ether) triol using a Zn-Co-DMC catalyst: the special role of trimesic acid as an initiation-transfer agent. *Polym. Chem.* **2014**, *5*, 6171–6179.
- (39) Liu, S.; Miao, Y.; Qiao, L.; Qin, Y.; Wang, X.; Chen, X.; Wang, F. Controllable synthesis of a narrow polydispersity CO₂-based oligo (carbonate-ether) tetraol. *Polym. Chem.* **2015**, *6*, 7580–7585.
- (40) Gao, R.; Zhang, M.; Dixit, N.; Moore, R. B.; Long, T. E. Influence of ionic charge placement on performance of poly (ethylene glycol)-based sulfonated polyurethanes. *Polymer* **2012**, *53*, 1203–1211.
- (41) Nelson, A. M.; Long, T. E. Synthesis, Properties, and Applications of Ion-Containing Polyurethane Segmented Copolymers. *Macromol. Chem. Phys.* **2014**, *215*, 2161–2174.
- (42) Bobbink, F. D.; Dyson, P. J. Synthesis of carbonates and related compounds incorporating CO₂ using ionic liquid-type catalysts: State-of-the-art and beyond. *J. Catal.* **2016**, 343, 52–61.
- (43) Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H. CO₂ capture by a task-specific ionic liquid. *J. Am. Chem. Soc.* **2002**, *124*, 926–927. (44) Doherty, T. V.; Mora-Pale, M.; Foley, S. E.; Linhardt, R. J.; Dordick, J. S. Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. *Green Chem.* **2010**, *12*, 1967–1975.
- (45) Darensbourg, D. J.; Poland, R. R.; Escobedo, C. Kinetic studies of the alternating copolymerization of cyclic acid anhydrides and epoxides, and the terpolymerization of cyclic acid anhydrides, epoxides, and CO₂ catalyzed by (salen) CrIIICl. *Macromolecules* **2012**, 45, 2242–2248.
- (46) Fei, Z.; Zhao, D.; Geldbach, T. J.; Scopelliti, R.; Dyson, P. J. Brønsted acidic ionic liquids and their zwitterions: synthesis, characterization and pKa determination. *Chem. Eur. J.* **2004**, *10*, 4886–4893.
- (47) Ren, W.-M.; Wu, G.-P.; Lin, F.; Jiang, J.-Y.; Liu, C.; Luo, Y.; Lu, X.-B. Role of the co-catalyst in the asymmetric coupling of racemic epoxides with CO_2 using multichiral Co (III) complexes: product selectivity and enantioselectivity. *Chem. Sci.* **2012**, *3*, 2094–2102.
- (48) Wang, Y.-M.; Song, X.-Y.; Shao, S.-H.; Xu, P.-X.; Ren, W.-M.; Lu, X.-B. Functionalization of carbon nanotubes by surface-initiated immortal alternating polymerization of CO₂ and epoxides. *Polym. Chem.* **2013**, *4*, 629–636.
- (49) Wei, X.; Yu, L.; Wang, D.; Jin, X.; Chen, G. Z. Thermosolvatochromism of chloro-nickel complexes in 1-hydroxyalkyl-3-methyl-imidazolium cation based ionic liquids. *Green Chem.* **2008**, *10*, 296–305.
- (50) Liu, B.; Zhao, X.; Guo, H.; Gao, Y.; Yang, M.; Wang, X. Alternating copolymerization of carbon dioxide and propylene oxide by single-component cobalt salen complexes with various axial group. *Polymer* **2009**, *50*, 5071–5075.
- (51) Wu, G.-P.; Xu, P.-X.; Lu, X.-B.; Zu, Y.-P.; Wei, S.-H.; Ren, W.-M.; Darensbourg, D. J. Crystalline CO₂ copolymer from epichlor-

ohydrin via Co (III)-complex-mediated stereospecific polymerization. Macromolecules 2013, 46, 2128–2133. (52) Ren, W.-M.; Yue, T.-J.; Zhang, X.; Gu, G.-G.; Liu, Y.; Lu, X.-B. Stereoregular CO $_2$ Copolymers from Epoxides with an Electron-Withdrawing Group: Crystallization and Unexpected Stereocomplexation. Macromolecules 2017, 50, 7062–7069.