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Improving Cache Performance for Large-Scale
Photo Stores via Heuristic Prefetching Scheme
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Abstract—Photo service providers are facing critical challenges of dealing with the huge amount of photo storage, typically in a
magnitude of billions of photos, while ensuring national-wide or world-wide satisfactory user experiences. Distributed photo caching
architecture is widely deployed to meet high performance expectations, where efficient still mysterious caching policies play essential
roles. In this work, we present a comprehensive study on internet-scale photo caching algorithms in the case of QQPhoto from Tencent
Inc., the largest social network service company in China. We unveil that even advanced cache algorithms can only perform at a similar
level as simple baseline algorithms and there still exists a large performance gap between these cache algorithms and the theoretically
optimal algorithm due to the complicated access behaviors in such a large multi-tenant environment. We then expound the reasons
behind this phenomenon via extensively investigating the characteristics of QQPhoto workloads. Finally, in order to realistically further
improve QQPhoto cache efficiency, we propose to incorporate a prefetcher in the cache stack based on the observed immediacy
feature that is unique to the QQPhoto workload. The prefetcher proactively prefetches selected photos into cache before they are
requested for the first time to eliminate compulsory misses and promote hit ratios. Our extensive evaluation results show that with
appropriate prefetching we improve the cache hit ratio by up to 7.4%, while reducing the average access latency by 6.9% at a marginal
cost of 4.14% backend network traffic compared to the original system that performs no prefetching.

Index Terms—Caching Algorithm; Distributed Storage; Photo Storage; Cloud Computing;
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1 INTRODUCTION

PHOTO sharing is a most common social network activity
through which people communicates their daily life

updates to friends and even strangers over the internet,
where uploaded photos are typically viewed and com-
mented more intensively right after their publishings and
accesses to them gradually fade away as time goes. It has
recently become a dominating web content generator [1],
resulting in billions of photos being hosted by the photo
service provider. Hundreds of millions of users are inter-
acting with the photo store in a concurrent manner, which
imposes significant management challenges to the photo
store [2], [3], [4]. To efficiently support such a large-scale
photo store and deliver satisfactory user experiences, photo
service providers routinely build geographically distributed
and hierarchically structured photo storage systems [4], [5],
[6], [7], which consist of multiple layers along the access
path, including client-end cache, edge cache, regional cache
[2] and backend storage located in a number of data centers.

The deployment of multiple cache layers not only speeds
up photo-access requests, but also reduces downstream
traffics to the low-performance backend storage when the
requested photos happen to have already been cached in
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the caches. For example, a 8.5% hit ratio improvement
can reduce 20.8% downstream requests [2]. Therefore, as
in traditional on-chip cache scenarios [8], [9], [10], it is
important to improve the photo cache hit ratio. In fact, it
is even more desirable to achieve a high hit ratio in the web
photo cache case, since the miss penalty is more expensive
as a missed access request might be routed through the
network to locate the requested photo. Unfortunately, it is
particularly challenging to design effective cache algorithms
for photo caching workloads, as the access patterns are
rather complicated and extremely difficult to predict due
to the nature of multi-tenancy and extensive-sharing in
the cloud web environment [11], [12], [13], [14], [15], [16].
Access requests from different clients are constantly inter-
vened such that recency and frequency are often compro-
mised, leading to relatively low hit ratios (compared to the
Clairvoyant algorithm) of locality-based cache algorithms.
Even though the Facebook’s analysis work suggests that
advanced cache algorithms are able to perform better [2],
still simple algorithms are utilized in real-world deployed
systems. For instance, Facebook’s photo caching uses the
FIFO algorithm and Tencent’s QQPhoto employs the LRU
algorithm. Particularly, for such photo caching workloads,
it has been demonstrated that even advanced cache algo-
rithms are able to improve the hit ratios only when the cache
capacity is smaller than a certain size and there exist inflect
points on the hit ratio curves beyond which advanced cache
algorithms lose their advantageous benefits [2].

In order to further improve the cache efficiency for
photo cache workloads, we comprehensively investigate the
characteristics of photo cache workloads by analyzing a
vast amount of realistic photo cache traces of the QQPhoto
workload at Tencent Inc. [17], the largest social network
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service provider in China. According to our analysis, we
find that the major factor limiting hit ratio improvement is
the compulsory misses or cold misses of the first accesses to
photos, with which existing cache algorithms are incapable
of dealing. Based on this observation, we identify that the
key to improving hit ratio is to eliminate those cold misses
as much as possible. Moreover, we have observed that a
majority of photos become extensively interesting to users
in a limited period of the time right after their uploadings,
which we call the immediacy feature. Leveraging this feature,
we propose to augment a prefetcher to the photo cache
to reduce compulsory misses. The prefetcher proactively
prefetches selected resolutions (Section 2) of freshly up-
loaded photos from the backend storage system to the photo
cache in advance in anticipation that they will be accessed
soon. It should be noted that the added prefetecher is
tailored for the QQPhoto cache infrastructure in which client
photos are directly uploaded to the backend storage system
and photo read requests are serviced in a separate read
channel via caching. In alternative infrastructures where
photos are written to the photo cache layer when uploaded,
photos can be deemed as prefetched upon uploading. How-
ever, in doing so, those infrastructures require excessively
large amount of cache space, which could be too expensive
to afford. In other words, in that infrastructure, we could
utilize the immediacy feature to decide which photos are
to be kept in the cache. Our evaluations show that the
prefetcher is able to promote photo cache hit ratio at a
marginal expense of network resources consumption.

In summary, we make the following main research con-
tributions in this paper:

(1) We conduct a comprehensive investigation on a set of
realistic large-scale photo cache traces and make several
interesting and insightful observations.

(2) We perform extensive experiments with various cache
algorithms using the photo cache traces and find that
even advanced cache algorithms are only able to bring
negligible benefits in the photo cache scenario due to
excessive compulsory misses.

(3) We propose to augment a prefetcher to proactively bring
selected resolutions of recently uploaded photos into
the cache stack. To make the prefetcher more efficient,
we also design two heuristics based cache algorithms.

(4) We have implemented a cache simulator framework to
verify our designs. We evaluated the prefetcher’s effi-
ciency with the simulator thoroughly. Compared with
the state-of-art cache policies, our prefetcher improves
the hit ratios by up to 7.4%, while reducing the average
access latency by 6.9% at a marginal cost of 4.14%
backend network traffic.

The remainder of this paper is structured as follows. In
Section 2, we present the background of this study with a
focus on the QQPhoto architecture and trace methodology
and our motivation to improve photo cache hit ratios. We
then elaborate on the design details of our proposed photo
cache prefetcher in Section 3. We experimentally evaluate
the efficacy of our solution in terms of hit ratio improve-

ment and request latency reduction in Section 4. Finally, we
discuss related work on cache algorithms and photo storage
in Section 5 and conclude the paper in Section 6.

2 BACKGROUND AND MOTIVATION

2.1 QQPhoto Preliminaries
QQPhoto at Tencent Inc. [17] is the photo service factory
that supports the popular instant message QQ application in
China. QQ users upload photos to their respective photo al-
bums. Depending on the chosen visibility protection scheme
(including private, public, and friend-only), only friends
of a photo album owner or all strangers on the internet
can browse photos in the album. In 2017, QQPhoto hosted
more than 2,000 billions of photos for 1 billion users, which
amounted to a total storage capacity of 300PB, with 250 mil-
lions of photos uploaded and 50 billions of photos requested
daily [18]. Nowadays, the magnitude of QQPhoto is much
larger. It has been a tremendous challenge for Tencent to
manage the photo store system at such a large scale.

In QQPhoto, photo writes and reads are routed through
separate upload and download channels and the QQPhoto
cache stack specifically refers to the download cache path.
Figure 1 gives an overview of the QQPhoto cache stack.
Figure 1 (a) depicts the upload and download channels.
As it is indicated, the photo infrastructure comprises the
backend storage where all photos are hosted and a cache
layer consisting of SSDs. Photos are directly uploaded to the
backend storage, while they are provided to users through
the cache layer comprised of multiple Data Center Caches
(DCs) and Outside Caches (OCs). Tencent adopts separate
paths for reads and writes mainly based on the follow-
ing two considerations. First, after uploading, each photo
is resized to multiple versions corresponding to specified
different specifications and formats, which is referred as a
physical or resolution photo. The original photo is called a
logical photo. Storing multiple physical photos for a logical
photo is a common practice among web media content ser-
vice providers to accommodate clients’ varying display re-
quirements, e.g., desktop setting or mobile terminal [5], [19].
Directly uploading photos to the backend storage relieves
resizing computational burden from the cache servers. Sec-
ond, uploading photos to and resizing them in the cache
servers would pollute and quickly consume up the cache
space, jeopardizing overall cache performance. In contrast,
QQPhoto employs an SSD cache layer to fasten photo read
requests and conserve network requirements, because reads
are more popular than writes in photo caching workloads.
The total SSD cache space in one data center cache is about
5TB and is managed using the Least Recently Used (LRU)
cache policy.

A photo download request goes through both OC and
DC. When a user requests photos, QQPhoto first sends the
query to the OC which is geographically nearest to the
requesting user or has the smallest network distance. If the
requested photos are cached in the selected OC, they are
returned to the user from the OC. Otherwise, the photo
request is forwarded to a DC for further checking. If it
misses in the DC again, the request continues to be passed
on to the backend storage and the requested photos are
populated to the DC and OC cache. Figure 1 (b) describes
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Fig. 1: The QQPhoto architectural view. Figure (a) shows that QQPhoto supports separate photo upload and download
channels. Figure (b) shows that the photo download cache path includes outside caches (OCs) and data center caches
(DCs). Figure (c) gives a detailed view of the internal organization of an OC.

this query procedure. In addition, QQPhoto also optimizes
photo accesses using a heuristic based on the creation time
of requested photos. If the requested photos were created a
relatively long time ago, e.g., a week ago, QQPhoto simul-
taneously issues requests to the DC to reduce access latency
because they may more likely not be cached in the OC, as it
is indicated by the red arrow requests in Figure 1(b). Please
be noted that QQPhoto allows multiple copies of a photo
to be cached in different OCs, as OCs make cache decisions
on behalf of their respective clients independently of other
OCs. Figure 1 (c) gives a detailed internal structural view
of an OC. Within an OC, there are hundreds of peer web
servers responsible for handling photo requests arriving at
the OC. Our photo traces were crawled from requests in
such an OC.

2.2 Photo Traces and Sampling Method

The QQPhoto traces used in our study span a 9-day length
period of duration and record photo requests occurring
to an OC during that period of time. Each request log
entry contains the following information: request times-
tamp, photo ID, image format (jpg, webp, etc.), specifica-
tion (small, medium or large), handling time, return size,
terminal type (PC or mobile) and some other auxiliary
information which is irrelevant and thus ignored in our
study. All physical photos corresponding to the same logical
photo have the same photo ID. The whole trace contains a
total of about 5.8 billion requests.

To efficiently experiment with such a large set of traces
while without missing their original behavior character-
istics, we select a representative subset of samples from
the original traces for evaluations. Specifically, we first
extract all unique photo IDs into an ID set and then
use the reservoir sampling method [20] to sample out
1

100 of the total photo IDs. We then obtain our experi-
mental traces via extracting from the original traces the
requests whose photo IDs belonging to the sampled set
of photo IDs. In doing so, our sampled set of traces
inherits the access characteristics in the original traces
since it keeps the whole access history of any sampled
logical photos. For instance, assume the original traces
are < P 2
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where P j
i , represents the physical photo corresponding to

the jth resolution of the ith (Photo ID) logical photo. If

TABLE 1: QQPhoto Original and Sampled Traces

Original Sampled

# of Requests 5,854,956,972 58,565,016
# of Logical Photos 801,498,523 8,014,985
# of Physical Photos 1,515,462,898 15,162,925
Data set (GB) 46,753 467
Total Traffic (GB) 186,712 1,802

we sample one third of photos IDs and the sampled photo
ID set is < P1, P2 >, then our extracted traces will be
< P 1

2 , P
1
1 , P

2
1 , P

3
2 , P

2
2 >, which reserves the whole access

history of the photos < P1, P2 >. Table 1 gives a brief
comparison of some key statistics between the original and
sampled traces.

To verify the faithfulness of our sampling method, we
evaluate both original and sampled traces with the LRU
cache algorithm used by QQPhoto. For the original traces,
we set the total cache size the same as in the real production
system, denoted as size X (about 5TB). Correspondingly, we
use one percent of the original cache size (i.e., 0.01X) for the
sampled traces. We compare the photo hit ratio and byte hit
ratio between the original and sampled traces. Table 2 lists
the comparison results. The photo hit ratios of the original
and sampled traces are 67.9% and 67.7% and the byte hit
ratios are 69.6% and 68%, with a bias of -0.2% and -1.6%,
respectively. To verify the accuracy of simulation results, we
have also obtained the overall hit ratio of the entire original
trace, which is calculated as the ratio of the number of photo
hits to the total number of photo accesses. The trace hit ratio
is 65.62%, which is quite near to our simulation result. The
slight difference might be due to not all the cache space
(5T) in the production system being used to cache photo
files. Some cache space is used for management overhead,
while all the cache is simulated to cache photo files in the
simulation. As we are more concerned about the photo hit
ratio, we believe that our sampled traces faithfully represent
the original traces. Our following evaluations are all based
on the sampled traces.

2.3 Advanced Algorithms

A straightforward approach to improving hit ratio is to
employ advanced cache algorithms. In fact, the Facebook’s
photo analysis work has concluded that using advanced



1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2902392, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2018 4

TABLE 2: Hit Ratio Comparison

Hit ratio Byte hit ratio

Original Traces 67.9% 69.6%
Sampled Traces 67.7% 68.0%
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Fig. 2: The hit ratio curves of various cache algorithms on the
QQPhoto cache workloads. The improvements of advanced
cache algorithms over LRU are negligible and there is a big
gap between the Belady algorithm and the advanced cache
algorithms.

cache algorithms improves the hit ratios of Facebook’s photo
caching workloads [2], [4]. In this section, we apply ad-
vanced cache algorithms to QQPhoto workloads to examine
their efficacies and investigate potential improvement space
for the QQPhoto workloads beyond cache algorithms.

The fundamental rationale to improve hit ratios is to
accurately cache the items that will be most likely used in
the near future, which requires perfect knowledge of future
access behaviors. Unfortunately, in most cases, it is almost
always impossible to obtain the ideal insights into future
access patterns. Therefore, existing cache algorithms make
cache decisions based on recent historical patterns. Several
commonly used heuristics include recency, frequency, and
reuse distance. More specifically, the least recently accessed
items will be less likely accessed in the near future (LRU),
the less frequently accessed items will be less likely accessed
(LFU), and cache items with smaller reuse distance are more
likely to be reused again. Advanced cache algorithms may
make cache decisions by taking into account multiple of
those heuristics.

We implement three advanced cache algorithms, i.e.,
S3LRU, ARC, MQ [21], [22], and use them to experiment
with the photo cache traces. In addition, we experiment
the LRU algorithm which is employed in the QQPhoto
production system and the FIFO algorithm which is used
in Facebook’s photo cache. Finally, we also experiment the
optimal offline Belady’s MIN algorithm for the best possible
up-bound hit ratios. We vary the cache capacity in the range
of (0.2X,X, 2X, 3X, 4X). Figure 2 shows the hit ratios of
the cache algorithms. We can make four interesting observa-
tions from this figure. First, for any cache algorithm, there
exists an inflection point on the hit ratio curve. The effect of
cache increase below the inflection point is apparent, while

TABLE 3: Hit Ratio Contribution Breakdown

Frequency PoP PoR CtoHR

f > 10000 0.0006% 4.9926% 4.9925%
1000 < f ≤ 10000 0.0081% 4.1116% 4.1096%
100 < f ≤ 1000 0.1567% 9.4964% 9.4568%
10 < f ≤ 100 5.9010% 36.2041% 34.7113%
5 < f ≤ 10 5.6052% 10.6784% 9.2604%
2 < f ≤ 5 12.5679% 11.7320% 8.5525%
f = 2 14.3027% 7.2368% 3.6184%
f = 1 61.4577% 15.5480% 0

Note: PoP, PoR, and CtoHR stand for the “percentage of photos”, “percent-
age of requests”, and “contribution to hit ratio”, respectively.

it is rather limited once crossing the inflection point. Second,
FIFO performs the worst, leading to other algorithms show-
ing good improvement space. The fact that LRU performs
better than FIFO agrees with the intuition of social network
behaviors, i.e., recently uploaded photos are more likely to
be visited. Third, there is still a big gap between advanced
cache algorithms and the optimal curve. For example, at
capacity X which is the realistic case, the hit ratio of LRU is
67.7% and the hit ratio of optimal Belady is 76.8%, resulting
in a 9% difference. These three observations are in line with
the findings from Facebook’s photo cache study [2], [4].
Fourth, compared to the LRU algorithm, other advanced
cache algorithms show very limited improvements (e.g.,
S3LRU improves only 1.24% at capacity X) and all perform
at a comparable level as indicated by the overlapped curves.

To examine the behind reasons why advanced cache
algorithms are not able to deliver better cache performance
and find out any improvement opportunity, we investigate
the frequency and reuse distance distributions. Both logical
photos and physical photos exhibit zipf-like distribution.
Table 3 gives more details about the relationship between
different frequency photos and their respective contribu-
tions to the hit ratio. PoP is the ratio of the number of photos
in each frequency group to the total number of photos and
PoR is the ratio of the amount of requests in each group
to the total requests. CtoHR is calculated via dividing the
difference between the number of requests and the number
of photos in each group by the total requests in the trace.
The CtoHR assumes all requests are hits except for the
first photo request and it reflects how much hit ratio the
group contributes. As can be inferred from Table 3, highly
frequent (frequency >100) photos occupy a very minimal
percentage of the total photos (1.6%) but make contribu-
tions to hit ratio commensurate with their occurrences in
the requests. Medium frequent (2 < frequency ≤ 100)
photos account for a medium percentage (24%) but also
contribute commensurately with their occurrences in the
requests. However, the least-frequent ( frequency is 1 or 2)
photos account for 75.7% of the total photos and 22.8% of
requests, but contribute negligibly to the hit ratio. Especially,
15.5% of the requests to photos of 1 frequency are all missed.
Therefore, frequency-based cache algorithms are incapable
of capturing those 22.8% requests as their requested photos’
lower frequencies would cause them to be quickly evicted
from the cache.

Figure 3 shows the cache reuse distance cumulative
distribution functions grouped by photo frequency ranges.
We define the “reuse distance” as the real time difference
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Fig. 3: The CDFs of photo reuse distance grouped by photo
frequency. Higher frequency photos show smaller reuse
distance and lower frequency have larger reuse distance,
resulting in recency-based cache algorithms ineffective for
lower frequency photos.
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between two consecutive accesses to a cached photo and
thus it also includes the feature of “recency”. Note that
there is no “freq1” curve. As shown in the figure, higher
frequency photos exhibit smaller reuse distance, while lower
frequency photos have larger reuse distance, which means
recency-based cache algorithms are not able to capture low-
frequency photos either.

2.4 Motivation

As discussed in preceding sections, we have analyzed the
factors limiting advanced cache algorithms from promoting
hit ratio for the photo cache workloads. Existing cache
algorithms leverage either frequency or recency, or a combi-
nation of frequency and recency. However, as we have seen,
the low-frequency photos are neither frequency-friendly nor
recency-friendly. Still, they account for a decent amount of
the total requests.

Calculating the cumulative CtoHR (Figure 4), it is ap-
parent that to further improve the hit ratio over LRU, we
need a mechanism that is able to improve the hit ratio of
those low-frequency photos. Given the 1-frequency photos
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Fig. 5: The CDF of time interval between photos uploading
time and their first request time.

are all compulsory misses and the 2-frequency photos have
larger reuse distance (thus the second access is also likely
a compulsory miss due to being evicted), we are motivated
to employ prefetching to eliminate compulsory misses and
improve overall hit ratio.

We leverage a common social network phenomenon to
guide our prefetching design, i.e., recently uploaded pho-
tos are more likely to attract internet users’ interest and
attention, which we name as “immediacy”. To put the phe-
nomenon in perspective, we have analyzed the time inter-
vals between photos uploading time and their first request
time. Figure 5 shows the cumulative distribution function
of the first request intervals. As can be seen from the figure,
30% photos are visited for the first time 10 minutes after
their uploading and this number becomes 52% 6 hours after
their uploading. Moreover, 90% photos are accessed within
1 day following their uploading 1. Therefore, if we prefetch
recently uploaded photos in the cache and keep it for at
least 24 hours, we can eliminate compulsory misses to them
at a probability of 0.9. Fortunately, QQPhoto’s cache space
is large enough to host one day’s worth of uploaded photos,
which makes our approach practically feasible.

3 PHOTO CACHE PREFETCHING

As discussed before, advanced cache algorithms fail to cap-
ture the portion of low-frequency photos due to their pecu-
liar access patterns of photo cache, leading to a large amount
of compulsory misses. We propose to add a prefetcher
to maximally eliminate compulsory misses and improve
cache hit ratio via prefetching appropriate photos to the
cache from the backend storage. We leverage photo cache
characteristic to guide which photos to prefetch and when
to perform prefetching. In this section, we elaborate on the
prefetcher design, focusing on analyzing the popularities of
photo resolutions (i.e., the physically stored versions of a
photo) and discussing prefetching scheduling alternatives.

1. At first glance, it may sound strange to define “immediacy” in
hours or a day. However, we assume it is reasonable in the social
network context, particularly when considering time zone differences
among the world-wide clients.
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3.1 Prefetch Photo Resolutions
Clients of QQPhoto upload millions of photos daily and
QQPhoto resizes each photo to multiple resolutions, i.e.,
combinations of specification and format, to be stored in the
backend storage. To effectively prefetch photo candidates
from such a vast amount of photos, we need a good heuristic
to help guide our prefetch design. Leveraging characteristics
of social network workloads and considering the separate
upload and download path of QQPhoto architecture, we
prefetch recently uploaded photos from the backend storage
to the cache pool.

We observe that resolutions of the same photo show
different access popularities. Some resolutions are much
more intensively accessed, while others experience very
few accesses. For example, with the largest majority of
photo clients using mobile terminals to navigate QQ al-
bums and perform related activities (like make comments
on photos), the resolutions suitable for mobile settings are
thus accessed more intensively. To reveal this phenomenon
in the QQPhoto caching, we have performed an analysis
on the access popularity of photo resolutions. To ensure
information anonymity, we denote the photo resolutions
as “Rez1”, “Rez2” and so on according to their popularity
rank, i.e., “Rez1” is the most popular resolution, and “Rez2”
is the next to “Rez1”. Figure 6 shows the results. As it is
shown, the most popular resolution “Rez1” accounts for
34.78% and the next three resolutions stay around in the
range of 13%-15%, with the remaining being less than 10%.
This figure implies that prefetching the most popular photo
resolutions can deliver reasonably good cache hit ratios.
The more resolutions we prefetch, the better chances of
eliminating compulsory misses. However, the probability of
network wastage is also higher. Therefore, the choice of the
number of prefetching resolutions (NPR) presents a trade-
off point between cache efficiency and network overhead.
We evaluate how various values of this parameter affect the
trade-offs in Section 4. Algorithms 1 describes the procedure
of the prefetching method. Line 1-7 describes the normal
online caching service program. When a prefetching require-
ment is determined, our program spawns a new thread
PREFETCHER to prefetch photos. The thread is scheduled to
run in the background to minimize its impacts on the online
photo service. PREFETCHER (Line24-26) prefetches logical
photos in sequence according to their uploaded timestamp.
The resolutions of a logical photo are prefetched in the order
of their popularities until NPR resolutions are prefetched.

To prevent workloads variations from undermining the
efficacy of prefetcher, the prefetcher can employ an on-line
profiler which dynamically and periodically profiles work-
loads and outputs the popularity rank of photo resolutions.
This information is used to determine photo resolutions for
the next prefetching.

3.2 Prefetching Scheduling
Since QQPhoto is a 24×7 online service, meaning clients are
continuously uploading and downloading photos. There-
fore, we periodically perform prefetching to ensure that
uploaded photos get chances to be prefetched and imme-
diate accesses to them can be serviced from the cache. At
every prefetch timepoint, we prefetch the most popular
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Fig. 6: Photo resolution distributions. The x-axis represents
the photo resolutions ordered by their popularity rank. The
y-axis denotes the number of respective resolutions. The
numbers on top of the bars give their percentages. Prefetch-
ing only several highly ranked resolutions can provide a
good prefetching coverage.

resolutions of all photos uploaded during the last period.
For instance, assume we configure to prefetch 2 resolutions
(based on the profiling results) and [T1, T2] is a prefetch
interval. Then, at time T2, we prefetch 2 resolutions of all
photos which were uploaded to the backend storage during
[T1, T2](Line3-5).

3.3 Smart Eviction

Another decision pertaining to prefetched photos is use
what eviction policy to manage the cache pool containing
both prefetched photos and cached photos. A preliminary
idea is to treat prefetched and cached photos uniformly,
i.e., once prefetched photos have been entered in the cache
pool, they are managed using the LRU cache algorithm
along with regular cached photos. However, taking into
account the characteristics of workloads, we could benefit
from two heuristic improvements on eviction policy. The
first improvement is time heuristic that leverages the features
of immediacy and low-frequency and instructs the prefetcher
to proactively evict photos the two features of which have
faded away due to time elapse. The second improvement
considers different resolution popularities of the same log-
ical photo and checks whether to evict other resolutions of
the same photo when a resolution is being evicted, which
is logical photo heuristic. We called these heuristic modules
when applied to the eviction policy as “smart eviction”.

3.3.1 Time Heuristic
Using time heuristic, prefetched photos are timestamped to
be distinct from cached photos and they are also put in the
LRU queue along with cached photos. The heuristic tries to
leverage the immediacy access characteristic as shown in Fig-
ure 5. When making an eviction decision, prefetched photos
that have been in the cache longer than a configured length
period of time are evicted because they lose immediacy. On
the other hand, prefetched photos whose frequencies are
less than a specified frequency will be evicted preferentially
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Algorithm 1 Prefetching method

1: procedure ONLINECACHINGSERVICE

2: caching service ...
3: if currenttime is prefetchingtime then
4: CREATETHREAD(
5: PREFETCHER(NPR, interval, currenttime))
6: CACHEPOLICY(targetphoto)
7: caching service ...
8:
9: function CACHEPOLICY(targetphoto)

10: if targetphoto is in caching pool then
11: return the photo
12: else
13: if caching pool is full then
14: EVICT(photosize) . use one Evict!!
15: or SMARTEVICT1(photosize) . use one Evict!!
16: or SMARTEVICT2(photosize) . use one Evict!!
17: insert the photo to the cache
18:
19: function PREFETCHER(NPR, interval, currenttime)
20: timestamp← currenttime− interval

21: while timestamp < currenttime do
22: for each uploaded logical photo at timestamp do
23: n← 1

24: while n <= NPR do
25: prefetching resolution Rez-n
26: n← n+ 1

27: timestamp← timestamp+ 1

28:
29: function SMARTEVICT1(photosize)
30: maintain a ghost FIFO queue for prefetched photos
31: while cachesize+photosize > cachecapacity and ghost

queue is not empty do
32: tmpphoto← pop tail of ghost queue
33: if tmpphoto.tt > TT and tmpphoto.ft < FT then
34: evict tmpphoto

35: cachesize← cachesize− tmpphoto.size

36: EVICT(photosize)
37:
38: function SMARTEVICT2(photosize)
39: maintain a ghost hashmap mapping logical photos

to physical photos in cache
40: while cachesize+ photosize > cachecapacity do
41: tmpphoto← pop tail of cache queue
42: for each rez in tmpphoto.logical do
43: if rez.freq ≤ LT then
44: evict tmpphoto.logical.rez

45: cachesize←
46: cachesize− tmpphoto.logical.rez.size

since they are likely to be low-frequency photos and have
already finished their accessing in lifetime. We use two
thresholds to control the eviction decision named timeout
threshold (TT ) and frequency threshold (FT ) respectively. Poli-
cies using time heuristic first evicts those prefetched photos
whose request times are lower than a configured FT or TT .
If there are no prefetched photos satisfying the conditions,
then it falls through using FIFO cache algorithm. The time
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Fig. 7: Popularities of resolutions associated to a logical
photo. The request is counted in intervals of one hour. Note
that the y-axis is in log scale.

heuristic can detect and remove invalid prefetches efficiently
since invalid prefetching photos receive no request. The
procedure of time heuristic eviction policy is presented in
Function SMARTEVICT1 at Line 29-36 in Algorithm 1.

3.3.2 Logical Photo Heuristic
The logical photo heuristic is not restricted to prefetching
method but a more general eviction strategy for photo
cache. It leverages the fact that resolutions of the same
logical photo exhibit similar popularity trend. As Figure
7 shows, all resolutions of the same photo reach peaks or
troughs narrowly simultaneously despite they share differ-
ent frequencies. Most of the requests to a photo happen
within a short period of time after it is uploaded and all
resolutions receive very few requests when the logical photo
becomes cold. This trend reflects the reality that popularity
goes down along with time. It is the logical photo that
determines the popularity and the resolution only reflects
the access distribution. The logical photo heuristic leverages
such feature and evicts all homologous resolutions of the
evicted photo simultaneously upon an eviction. However,
we need to avoid evicting a hot resolution along the evicting
of a cold resolution. To ensure that, we take an additional
decision to check how many times resolutions have been
requested. When evicting a specific resolution, policies with
logical photo heuristic will evict other homologous resolutions
whose frequencies fall below a certain threshold, named
logical threshold (LT ). Function SMARTEVICT2 of Algorithm
1) (Line38-46) depicts the procedure in detail. Moreover, the
logical photo heuristic is compatible with the time heuristic,
and they could be applied at the same time.

4 EVALUATION

In this section, we evaluate the efficacy of the prefetcher
added to an OC. We write a simulator to drive our trace
experiments. The simulator is written in Python and is open
sourced on Github2. It provides a flexible framework to
support various cache replacement policies, including FIFO,
LRU, and SxLRU. The simulator takes the photo access
traces as its input and uses the configured cache capacity
and cache policy for simulation. As in the production sys-
tem, the entire cache space is managed as a single cache

2. https://github.com/sunsihtf/simple-cache-policy-simulator
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pool and the cache granularity is a variable-sized photo
file. Individual photo files are replaced out from the cache
space according to the replacement policy. In the end, it
outputs various statistics including hit ratio and byte hit
ratio. Otherwise specified, we use the LRU cache algorithm
as the default algorithm, which is also used in the running
QQPhoto system. We set the standard cache space as 0.01X ,
where X is QQPhoto cache size, because we use one-
hundredth of the original photos. We use NPR to represent
the number of prefetching resolutions, e.g., NPR = 1 means
we prefetch the most popular resolution of each uploaded
photo. We compare different cache algorithms in terms of hit
ratio, average request latency, and network traffic. To calculate
the average request latency, we use the following equation:

latency = HR×AV Ghit latency +MR×AV Gmiss latency,

where AV Ghit latency and AV Gmiss latency are 11.62ms and
127.0ms, respectively, according to our trace records. In
addition, we implement an offline prefetching method that
prefetches the exact resolutions by leveraging the future hint
which is denoted as offline and the Belady’s MIN algorithm
for comparisons. The configurations of NPR and prefetch
interval dictate which recently uploaded photo files are
prefetched to the cache. At every prefetching time, the
prefetcher prefetches the NPR most popular photo resolu-
tions uploaded during the previous interval. If smart evic-
tion policy is employed, the prefetched photos are tagged to
support their early being evicted if they have stayed longer
than a configured period of time. We use the first 5-days
traces for warm-up and collect statistics of the next 4-days
traces.

4.1 Hit Ratio Improvements

We explore the hit ratio improvements introduced by the
prefetcher in cases of various values of the factors impacting
hit ratios, mainly including the values of NPR and the
time length of the prefetch interval. Figure 8 gives the hit
ratio improvements introduced by the prefetcher relative to
the original LRU cache algorithm at varying NPR values,
cache sizes and prefetching intervals. We reveal the effects
of NPR and prefetch interval on the hit ratio improvements
via conducting three sets of experiments.

First, we vary the values of NPR while keeping the
same prefetch interval value. Figure 8a, 8b and 8c depict dif-
ferent NPRs under certain fixed prefetch intervals. As it is
depicted, in almost all these cases, our prefetcher improves
the hit ratios over the original LRU cache algorithm except
for some large NPRs at small cache capacities because ag-
gressively prefetching photo resolutions leads to more pol-
lutions. Similarly, at small caches, it is more likely for cache
pollutions to happen. Therefore, we see smaller hit ratio
improvements at small caches. Moreover, when NPR is big-
ger than 3, we observe no increased hit ratio improvements
due to prefetching less popular resolutions. As the cache
size increases, the improvements of smaller NPR(= 1, 2, 3)
values are slightly smaller than that of larger NPRs values
(up to 3%), which is consistent with the intuition that if
there is more cache space then we can do prefetching more
aggressively to gain more hit ratio improvements. Overall,
compared to the original LRU, even the least aggressive

prefetching with NPR = 1, interval = 1h delivers an
improvement of 3.9% at a cache capacity of X , and the most
aggressive prefetching with NPR = 5, interval = 1 second
achieves an improvement of 7.4%.

To illustrate the influence of prefetch interval more
clearly, Figure 8d, 8e and 8f depict three different intervals
of 1 second, 10 minutes and 1 hour under NPRs of 1, 3 and
5. As it is shown in the figures, smaller intervals are more
beneficial and the differences among prefetching intervals
also increase as the value of NPR increases. However, there
still exists a big gap between the prefetching method and
the theoretically optimal offline prefetch method. But it is re-
markable that the prefetching method surpasses the optimal
Belady’s MIN algorithm with relatively large NPRs and
high cache capacities since the prefetcher eliminates most
of compulsory misses while Belady’s MIN algorithm falls
short at compulsory misses.

In previous sections, we rely on the intuition that the
higher resolution we prefetch, the more benefits we are able
to obtain. To validate this speculation, we evaluate the hit
ratios of prefetching different resolutions. We set NPR = 1
and vary the prefetching popularity rank (see Figure 6).
Figure 8g illustrates the results. The results are consistent
with the resolution distribution pattern. As can be observed
from the figure, prefetching the most popular resolution
(Rez1) results in the highest hit ratios and the hit ratios
decrease if prefetch less popular resolutions.

4.2 Latency and Network Traffic Trade-off

Though larger NPRs values lead to higher hit ratios, ag-
gressive prefetching also faces the problem of more severe
cache pollutions and causes more bandwidth consumption.
To quantify this trade-off, we investigate the average request
latency and incurred network traffic in the condition of 10
minutes prefetch interval with varying NPR values, which
are illustrated in Figure 9a and Figure 9b, respectively.
As excepted, prefetching brings about additional network
traffic and the bigger NPR values result in more network
traffics. On the other hand, prefetching decreases average
request latency as the value of NPR increases.

We therefore use a cost benefit analysis (CBA) to de-
termine the optimal choice of NPR and prefetch interval,
which can be calculated by net benefits as

net benefits = total benefit− total cost

= Wlatency × Latency −Wbandwidth ×Bandwidth.

where W is weight. However it’s hard to determine val-
ues of the weight and thus impossible to calculate the
deterministic net benefits. Fortunately, there are only 8
resolutions that we can prefetch in the QQPhoto system,
which enables us to analyze the problem by enumerating
them. We have investigated the case of capacity X and the
results are listed in Table 4. As demonstrated in the table,
as the value of NPR increases, the additional bandwidth
cost becomes larger and larger while the latency gains get
smaller and smaller. Carefully examining the trade-off table,
we conclude that prefetching only the highest resolutions is
a practically good trade-off point, which reduces the latency
by 6.9% but consumes 4.14% extra network resources.
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Fig. 8: Hit ratios of prefetching at various NPR values and prefetch intervals. Original is the LRU cache replacement
algorithm without prefetching. Belady is the optimal algorithm with no prefetching. NPR is number of prefetching
resolutions.
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Fig. 9: Network traffic and latency of NPR = 1, ..., 8 at the 10 minutes prefetch
interval.

TABLE 4: Network traffic and latency
trade-offs at cache capacity of X

NPR network traffic latency

1 4.14% -6.90%
2 21.41% -8.85%
3 29.00% -11.54%
4 61.41% -12.06%
5 88.59% -11.89%
6 151.60% -8.74%
7 153.92% -9.54%
8 156.33% -10.01%
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Fig. 10: Resolution popularity evolu-
tion in the traces.

Fig. 11: Hit ratio of FIFO, LRU
and S3LRU with and without a
prefetcher at NPR = 1, interval =
10m.

Fig. 12: The amount of uploaded
photos every 10 minutes.

4.3 Resolution Popularity Evolution

In the preceding section, we have seen that prefetching
only the highest resolutions is a suitable choice. However,
we cannot ensure a resolution is always the most popular

resolution. To solve the problem, we study how resolution
popularity changes overtime. Figure 10 plots resolution
distribution evolution in the 9-days traces. As can be seen,
all the resolutions remain at a relatively stable state. Rez1
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always occupies the highest proportion. The second tier
Rez2, Rez3 and Rez4 are much lower and stays stable most
of the time except for a few occasional fluctuations and the
remaining resolutions also exhibit similar tendency. As we
discussed before, an on-line profiler can help if there are
many fluctuations.

4.4 Optimal Prefetch Interval

We have examined so far three different intervals (1s,
10m, 1h) for our evaluations. However there might exist
other better intervals than the current best choice. Time-
varying workload dictates that it is impossible to find a
consistently optimal interval. We subjectively suppose the
max hit ratio loss (the bias between actual interval and
real time (1s) interval) should not exceed 1%. Thereby,
the problem is transformed to figure out the max interval
in which the hit ratio loss is less than 1%. It turned out
that interval = 10min was the optimal resolution whose
maximum loss is 0.95%. On the other hand, to estimate the
impacts to backend, the quantity of uploaded photos during
every interval = 10min is counted as Figure 12 depicts. The
day7 bursts into a very high number which is an exception
and will not be considered 3. Generally speaking, the peak
number of uploaded photos is approximately 5000 at late
afternoon everyday. Taking sampling into account, the peak
prefetch will exceed 500,000.

4.5 Applicability

To validate that our prefetching method has wide appli-
cability, we integrate it with the basic FIFO and an ad-
vanced S3LRU to see how it improves over other cache
algorithms. Figure 11 depicts the hit ratios of FIFO and
S3LRU with prefetcher as well as LRU for comparison.
The results indicate that our prefetcher improves the hit
ratios for all three algorithms. Similar to previous results,
the improvement is smaller at small cache capacities and
goes higher at large capacities. It should be noted that the
prefetcher causes negative impacts on S3LRU at small cache
capacities because the lowest queue in S3LRU is too small
to hold both prefetched photos and cached photos, causing
excessive cache pollutions.

4.6 Cache Lifetime Distribution

In this section, we investigate the cache lifetime of
prefetched photos, which provides the insights into
prefetching efficiency. Three kinds of photos are measured,
namely, the prefetched and non-prefetched (due to demand
cache misses) photos in prefetch method and all the photos
in the method without an prefetcher. Figure 13 depicts the
cumulative distribution function of their access frequency in
the cache. In the non-prefetch method, nearly 75% uploaded
photos receive only one request and about 97% receive
no more than 10 requests. In the prefetch method, non-
prefetched photos take up 84.0% of all uploaded photos and
their frequency distribution is similar to that in the non-
prefetch method and prefetched photos only take up 16%.
What’s more, 51.7% of them receive no requests and are

3. It was the Chinese largest festival—the Spring Festival

invalid prefetches. The low prefetch efficiency is reasonable
because the proportion of prefetched resolutions is less
than 40% and the more than 60% rest are wasted. For the
same reason, the ratio of non-prefetched photos in cache is
relatively high.

4.7 Smart eviction

In Section 3, we have discussed the two smart eviction
strategies for prefetching method. The time heuristic intend
to improve evictions by adjusting TT and FT . Figure 14
illustrates hit ratios under various TT and FT . While the hit
ratio differences are small, still it’s clear that the correlation
between TT and hit ratio is positive and it is negative
between FT and hit ratio. It’s because a higher TT results
in prefetched photos residing longer in the cache to receive
more hits. By contrast, a lower FT prevents prefetched pho-
tos from staying in cache longer and therefore their chances
to be evicted increase. Besides, no matter how to adjust
the two parameters, smart eviction cannot outperform the
normal LRU policy, i.e., treating prefetched photos the same
as cached photos.

Logical photo heuristic tries to evict several resolutions
simultaneously on a replacement. Since most of photos
only receive very limited requests, to make every possible
request being hit, we set the LT at a very low value, i.e.,
LT = 1. LT = 1 indicates a prefetched photo receives no
request or only one request will be evicted with priority.
Thus we can filter invalid prefetches and only one-time-
request photos. Figure 15 illustrates hit ratios and network
traffic traffic under various NPRs at cache capacity of X
and interval = 10m and LT = 1. The heuristic helps
improving hit ratios over the original prefetching method at
a small margin at small NPRs. Nevertheless, the gain gets
smaller as NPR increases and eventually becames negative.
The reason is because higher NPR results in higher chances
to be evicted as more resolutions are detected on evictions,
thereby the long reuse distance photos get higher chances
to be evicted. The network consumption under the heuristic
is nearly the same as before since the hit ratio brings no
explicit change as all savings are derived from hit ratio
improvement, and the negligible change results in no waves
on network traffic.

5 RELATED WORK

Cache is a classical while still ever-appealing research topic
as its main philosophical principle is universally applicable
as long as there exist differences between two neighboring
levels in terms of performance. Caching is ubiquitously
existent in almost all computer systems and it has been a
primary technique to improve system performance in a cost-
effective manner. During the past decades, various cache
algorithms have been proposed and researched in a wide
range of contexts including traditional, main memory cache,
flash cache in the secondary storage.

Traditional cache algorithms typically aim to achieve
global efficiency via taking advantage of temporal or spatial
locality. Widely used cache algorithms include First-In-First-
Out (FIFO), Least Recently Used (LRU), Least Frequently
Used (LFU), LRU-K [23], ARC [21], SxLRU, LIRS [24],
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Fig. 13: CDF of photos frequency during cache lifetime in different methods at NPR = 1, interval = 10m
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Multiple Queue [22], etc. Some of these cache algorithms
simply use recency and frequency, while others are more
adaptable to workloads. An offline optimal cache algorithm
called Belady’s MIN [25], [26] is often used as the theoretical
up-bound limit to judge a cache algorithm. This optimal
algorithm is based on the good foreknowledge about future
access patterns, which are hard to obtain in practice. Cache

modeling and simulation is a commonly used means to
comparatively evaluate various cache algorithms [27].

Flash-based SSDs are gaining increasing popularity in
storage systems and are commonly used as a cache front-
end of HDD-based storage [28], [29], [30], [31], [32]. There
also exist numerous works studying cache algorithms for
flash cache. Most of the cache algorithms in this line focus on
reducing write amplification via employing flash-friendly
cache designs. Nitro [33] and Pannier [34] reduce flash
cache writes via employing de-duplication/compression
and container-based cache granularity, respectively. Kim et
al. [35] implement a write admission policy for non-volatile
memory cache, which does not admit all writes to the
cache but critical writes in terms of application performance.
CloudCache [36] uses Reuse Working Set (RWS) cache
model to estimate workloads cache demand and admits
RWS in the cache. CacheDedup [37] improves on the LRU
and ARC cache algorithms to make them deduplication-
aware. LARC [38] a variation of ARC algorithm, filters low
popular blocks and prevents them entering the cache to
reduce cache replacements. Cheng et al. [26] explore the
offline optimal flash cache algorithms that consider both
cache performance and flash lifespan. RIPQ [4] enables
advanced cache algorithms to efficiently work in Facebook’s
photo cache by eliminating small random writes to flash
cache.

A lot of more recent cache research interest has been
devoted to the key value caches, as key value systems have
become widespread in the cloud [15], [16], [39]. Cliffhanger
[15] constructs and leverages the hit rate curve gradient
of local eviction queue by leveraging shadow queues and
dynamically adjust cache resource allocations according
to workloads changes. Memshare [16] reserves a mini-
mal amount of memory for applications and dynamically
partitions the remaining pooled memory resources among
multiple-tenant applications using a log-structured mem-
ory design. Hyperbolic caching [13] decays cached items
priorities at various rates and continuously reorders many
items at once, taking in account multiple factors when
determining the priorities of cached items. MIMIR [14] adds
a lightweight online profiler which hooks to the cache re-
placement policy and obtains the graphs of overall cache hit
ratio. It then uses that information to dynamically right-size
adjust cache memory size. Moirai [40] is a software defined
caching architecture that allows cache operators to flexibly
control cache resources in multi-tenant data centers. Dual
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cost cache [41] is a cache algorithm that aims to minimize
the sum of read-miss and write-hit cost when making cache
replacement decisions.

Huang et al. [2] presents a comprehensive analysis on
the characteristics of Facebook’s photo caching workloads
and investigates the effects of different cache algorithms on
an Edge cache. They find that using advanced algorithms
can improve hit rate and reduce a significant amount of
downstream request. However, we present a deep analysis
on the photo cache from the largest Chinese social network
company from the cache algorithm prospective and propose
to add prefetching to improve photo cache efficiency based
on social network workloads access immediacy.

Prefetching is also a widely used technique to improve
performance by prefetching the likely requested data into
the cache stage in advance. It has been demonstrated ef-
fective in LLC and main memory prefetching [42], [43],
[44], while a recent study has shown that prefetching may
negatively impact cloud workloads with long temporal
reuse patterns [45]. Our prefetcher in this work performs
prefetching based on the immediacy feature of cloud photo
caching.

6 CONCLUSION

Tencent’s QQPhoto employs photo caching to speed up
photo access requests and the cache performance affects
user experiences. We present a comprehensive analysis on
the QQphoto workloads and find that a key factor limiting
cache hit ratio is compulsory misses of the first time accesses
to photos. Moreover, photo accesses exhibit immediacy
characteristic, i.e., photos tend to be more likely accessed in
a recent period of time immediately following uploading. To
improve QQPhoto caching efficiency, we propose prefetch-
ing the most popular resolutions of recently uploaded pho-
tos to the cache. Our results have shown that with the
prefetcher photo access latency is cut by an average of 6.9%
while sacrificing only 4.14% additional network cost. As the
future work, we plan to improve prefetching accuracy using
machine learning methods. We are also closely working
with the QQPhoto engineer team to explore the possibility
of materializing our solution in the production system.
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