
GearDB: A GC-free Key-Value Store on HM-SMR Drives with Gear Compaction

Ting Yao1,2, Jiguang Wan1*, Ping Huang2, Yiwen Zhang1, Zhiwen Liu1,
Changsheng Xie1, and Xubin He2

1WNLO, School of Computer Science and Technology,
Huazhong University of Science and Technology, China

1Key Laboratory of Information Storage System, Ministry of Education of China
2Temple University, USA

Abstract
Host-managed shingled magnetic recording drives (HM-
SMR) give a capacity advantage to harness the explosive
growth of data. Applications where data is sequentially writ-
ten and randomly read, such as key-value stores based on
Log-Structured Merge Trees (LSM-trees), make the HM-
SMR an ideal solution due to its capacity, predictable per-
formance, and economical cost. However, building an LSM-
tree based KV store on HM-SMR drives presents severe
challenges in maintaining the performance and space effi-
ciency due to the redundant cleaning processes for applica-
tions and storage devices (i.e., compaction and garbage col-
lections). To eliminate the overhead of on-disk garbage col-
lections (GC) and improve compaction efficiency, this pa-
per presents GearDB, a GC-free KV store tailored for HM-
SMR drives. GearDB proposes three new techniques: a new
on-disk data layout, compaction windows, and a novel gear
compaction algorithm. We implement and evaluate GearDB
with LevelDB on a real HM-SMR drive. Our extensive ex-
periments have shown that GearDB achieves both good per-
formance and space efficiency, i.e., on average 1.71× faster
than LevelDB in random write with a space efficiency of
89.9%.

1 Introduction

Shingled Magnetic Recording (SMR) [12] is a core technol-
ogy driving disk areal density increases. With millions of
SMR drives shipped by drive vendors [32, 17], SMR presents
a compelling solution to the big data challenge in an era of
explosive data growth. SMR achieves higher areal densi-
ty within the same physical footprint as conventional hard
disks by overlapping tracks, like shingles on a roof. SMR
drives are divided into large multi-megabyte zones that must
be written sequentially. Reads can be processed precisely
from any uncovered portion of tracks, but random writes
risk corrupting data on overlapped tracks, imposing random

*Corresponding author. Email: jgwan@hust.edu.cn

write complexities [10, 12, 3]. The sequential write restric-
tion makes log-structured writes to shingled zones a common
practice [38, 32, 33], creating a potential garbage collection
(GC) problem. GC reclaims disk space by migrating valid
data to produce empty zones for new writes. The data migra-
tion overhead of GC severely degrades system performance.

Among the three SMR types (i.e., drive-managed, host-
managed, and host-aware), HM-SMR presents a preferred
option due to its capacity, predictable performance, and low
total cost of ownership (TCO). HM-SMR offers an ideal
choice in data center environments that demand predictable
performance and control of how data is handled [15], espe-
cially for domains where applications commonly write data
sequentially and read data randomly, such as social media,
cloud storage, online backup, life sciences as well as me-
dia and entertainment [15]. The key-value data store based
on Log-Structured Merge trees (LSM-trees) [37] inherent-
ly creates that access pattern due to its batched sequential
writes and thus becomes a desirable target application for
HM-SMR.

LSM-tree based KV stores, such as Cassandra [28],
RocksDB [9], LevelDB [11], and BigTable [5], have become
the state-of-art persistent KV stores. They achieve high write
throughput and fast range queries on hard disk drives and op-
timize for write-intensive workloads. The increasing demand
on KV stores’ capacities makes adopting HM-SMR drives
an economical choice [24]. Researchers from both academi-
a and industry have been attempting to build key-value da-
ta stores on HM-SMR drives by modifying applications to
take advantage of the high capacity and predictable perfor-
mance of HM-SMR, such as Kinetic from Seagate [41], SM-
R based key-value store from Huawei [31], SMORE form
Netapp [32], and others [47, 38, 48].

However, building an LSM-tree based KV store on
HM-SMR drives comes with a serious challenge: the
redundant cleaning processes on both LSM-trees and
HM-SMR drives harm performance. In an LSM-tree,
the compaction processes are conducted throughout the
lifetime to clean invalid data and keep data sorted in

multiple levels. In an HM-SMR drive, the zones with a
log-structured data layout are fragmented as a result of
data being invalidated by applications (e.g., compactions
from LSM-trees). Therefore, garbage collection must be
executed to maintain sizeable free disk space for writing
new data. Existing applications on HM-SMR drives either
leave the garbage collection problem unsolved [33, 22]
or use a simple greedy strategy to migrate live data from
partially empty zones [32]. Redundant cleaning processes,
the garbage collection for storage devices in particular,
degrade system performance dramatically. To demonstrate
the impact of on-disk garbage collection, we implement a
cost-benefit and a greedy garbage collection strategy similar
to the free space management in log-structured files system
and SSDs [40, 2]. Evaluation results in Section 2.3 indicate
that garbage collection not only causes expensive overheads
on system latency but also hurts the space utilization of
HM-SMR drives. Conventional KV stores on HM-SMR
drives face a dilemma: either obtain high space efficiency
with poor performance or take good performance with poor
space utilization. The space utilization is defined as the ratio
between the on-disk valid data volume and the allocated
disk space.

To obtain both good performance and high space efficien-
cy in building an LSM-tree based KV store on HM-SMR
drives, we propose GearDB with three novel design strate-
gies. First, we propose a new on-disk data layout, where a
zone only stores SSTables from the same level of an LSM-
tree, contrary to arbitrarily logging SSTables of multiple lev-
els to a zone as with the conventional log layout. In this way,
SSTables in a zone share the same compaction frequency,
remedying dispersed fragments on disks. The new on-disk
data layout manages SSTables to align with the underlying
SMR zones at the application level. Second, we design a
compaction window for each level of an LSM-tree, which is
composed of 1/k zones of that level. Compaction windows
help to limit compactions and the corresponding fragments
to a confined region of the disk space. Third, based on the
new data layout and compaction windows, we propose a new
compaction algorithm called Gear Compaction. Gear com-
paction proceeds in compaction windows and descends level
by level only if the newly generated data overlaps the com-
paction window of the next level. Gear compaction not only
improves the compaction efficiency but also empties com-
paction windows automatically so that SMR zones can be
reused without garbage collection. By applying these de-
sign techniques, we implement GearDB based on LevelDB,
a state-of-art LSM-tree based KV store. Evaluating GearDB
and LevelDB on a real HM-SMR drive, test results demon-
strate that GearDB is 1.71× faster in random writes com-
pared to LevelDB, and has an efficient space utilization of
89.9% in a bimodal distribution (i.e., zones are either nearly
empty or nearly full).

2 Background and Motivation

In this section, we discuss HM-SMR and LSM-trees, as well
as challenges and our motivation in building LSM-tree based
KV stores on HM-SMR drives.

2.1 Shingled Magnetic Recording (SMR)

Shingled Magnetic Recording (SMR) techniques provide a
substantial increase in disk areal density by overlapping ad-
jacent tracks. SMR drives allow fast sequential writes and
reads like any conventional HDDs, but have destructive ran-
dom writes. SMR drives are classified into three types based
on where the random write complexity is handled: in the
drive, in the host, or co-operatively by both [17]. Drive-
managed SMR (DM-SMR) implements a translation lay-
er in firmware to accommodate both sequential and ran-
dom writes. It acts as a drop-in replacement of existing
HDDs but suffers highly unpredictable and inferior perfor-
mance [1, 4]. Host-managed SMR (HM-SMR) requires host-
software modifications to reap its advantages [33]. It ac-
commodates only sequential writes and delivers predictable
performance by exposing internal drive states. Host-aware
SMR (HA-SMR) lies somewhere between HM-SMR and
DM-SMR. However, it is the most complicated and obtains
maximum benefit and predictability when it works as HM-
SMR [45]. Research has demonstrated that SMR drives can
fulfill modern storage needs without compromising perfor-
mance [38, 32, 33, 41].

Like many production HA/HM-SMR drives [42, 18, 15],
the drive used in this study is divided into 256 MB-sized
zones. Each zone accommodates strict sequential writes by
maintaining a write pointer to resume the subsequent write.
A guard region separates two adjacent zones. A zone with-
out valid data can be reused as an empty zone via resetting
the zone’s write pointer to the first block of that zone. All
the intricacies of HM-SMR are exposed to the software by
a new command set, the T10 Zone Block Commands [19].
To comply with the SMR sequential write restrictions, appli-
cations or operating systems are required to write data in a
log-structured fashion [38, 32, 33, 4, 27]. However, the log-
structured layout imposes additional overhead in the form of
garbage collection (GC). GC blocks foreground requests and
degrades system performance due to live data migration.

2.2 LSM-trees and Compaction

Log-Structured Merge trees (LSM-trees) [37] exploit the
high-sequential write bandwidth of storage devices by writ-
ing sequentially [39]. Index changes are first deferred and
buffered in memory, then cascaded to disks level by level via
merging and sorting. The Stepped-Merge technique is a vari-
ant of LSM-trees [21], which changes a single index into k
indexes at each level to reduce the cost of inserts.

…

L2

L1

Ln

L0

Memory

Disk

Cm

R
ea

d

Merge & Sort

SSTable

Compaction

Figure 1: A compaction process in an LSM-tree based KV
store. This figure shows the LSM-tree data structure, which
is composed of a memory component and a multi-leveled disk
component. Compaction is conducted level by level to merge
SSTables from the lower to higher levels.

…HM-SMR L1 L1 … L2 LnL2 Ln L1 … LnL0 L2L0 L2

Zone 1 Zone 2 Li SSTable in Li

Figure 2: Conventional on-disk data layout with log-
structured writes. This figure shows that the convention-
al log write causes SSTables of different levels mixed in the
zones on HM-SMR drives.

Due to their high update throughput, LSM-trees and their
variants have been widely used in KV stores [39, 8, 24, 5,
28]. LevelDB [11] is a popular key-value store based on
LSM-trees. In LevelDB, the LSM-tree batches writes in
memory first and then flushes batched data to storage as
sorted tables (i.e., SSTable) when the memory buffer is full.
SSTables on storage devices are sorted and stored in multiple
levels and merged from lower levels to higher levels. Level
sizes increase exponentially by an amplification factor (e.g.,
AF=10). The process of merging and cleaning SSTables is
called compaction, and it is conducted throughout the life-
time of an LSM-tree to clean invalid/stale KV items and keep
data sorted on each level for efficient reads [37, 43]. Figure 1
illustrates the compaction in an LSM-tree data structure (e.g.,
LevelDB). When the size limit of Li is reached, a compaction
starts merging SSTables from Li to Li+1 and proceeds in the
following steps. First, a victim SSTable in Li is picked in a
round-robin manner, along with any SSTables in Li+1 whose
key range overlaps that of the victim SSTable. Second, these
SSTables are fetched into memory, merged and resorted to
generate new SSTables. Third, the new SSTables are writ-
ten back to Li+1. Those stale SSTables, including the victim
SSTable and the overlapped SSTables, then become invalid,
leaving dispersed garbage data in the disk space.

2.3 Motivation
The log-structured write fashion required by HM-SMR
drives could lead to excessive disk fragments and therefore

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40 45 50 55

Pe
rc

en
ta

ge

Time (x10 min)

Valid data space occupation

Ldb-CB

Ldb-Greedy

Figure 3: Cost of garbage collections. The green line shows
the ratio of valid data volumes to the test disk space; the oth-
er two lines show the ratio of time consumption of garbage
collections in every ten minutes during the random loading.

necessitates costly garbage collections to deal with them.
Specifically, in an LSM-tree based KV store on HM-SMR
drives, compaction cleans invalid KV items in LSM-trees
but leaves invalid SSTables on the disk. Especially, the ar-
bitrarily sequential writes of the conventional log result in
SSTables from multiple levels that have different compaction
frequency being mixed in the same zones, as shown in Fig-
ure 2. As compaction procedures constantly invalidate SSTa-
bles during the lifespan of LSM-trees, the fragments on HM-
SMR drives become severely dispersed, necessitating many
GCs. Due to the high write amplification of LSM-trees [29]
(i.e., more than 12×) and the huge volume of dispersed
fragments caused by compaction, passive GCs become in-
evitable. Passive GCs are triggered when the free disk space
is under a threshold (i.e., 20% [36]) and clean zone space by
migrating valid data from zones to zones.

To demonstrate the problems of garbage collections in the
LSM-tree based KV store on HM-SMR drives, we imple-
ment LevelDB [11], a state-of-art LSM-tree based KV s-
tore, on a real HM-SMR drive using log-structured writes
to zones. We implement both greedy and cost-benefit GC s-
trategies [40, 2, 32] to manage the free space on HM-SMR
drives. The greedy GC cleans the zone with the most invalid
data by migrating its valid data to other zones. Cost-benefit
GC selects a zone by considering the age and the space uti-
lization of that zone (u) according to Equation 1 [40]. We
define the age of a zone as the sum of SSTables’ level (∑n

0 Li),
based on the observation that SSTables in a higher level live
longer and have a lower compaction frequency, where n is
the number of SSTables in the zone and Li is the level of an
SSTable. The cost includes reading a zone and writing back
u valid data.

bene f it
cost

=
FreeSpaceGain×ZoneAge

cost
=

(1−u)×∑
n
0 Li

1+u
(1)

With the parameters described in Section 5, we randomly
load 20 million KV items to an HM-SMR drive using only 70

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210

Z
o

n
e

 s
p

a
ce

 u
ti

li
za

ti
o

n

Zone Number

Ldb-CB
Ldb-Greedy

(a) Zone space utilization (b) CDF of zone space utilization

Figure 4: Zone space utilization. Figure a shows the zone
space utilization of each zone after random loading the first
40 GB database, plotting in the order of increasing space
utilization. Figure b shows the CDF of the zone space uti-
lization.

500

700

900

1100

1300

1500

1700

50% 60% 70% 80% 90% 100%

O
p

e
ra

ti
o

n
s/

s

Disk space utilization

Ldb-CB
Ldb-Greedy
GearDB

Figure 5: The throughput vs. different space utilization.
This figure shows that in the conventional KV store on an
HM-SMR drive, the system performance decreases with the
space utilization. It is unable to get both good performance
and space efficiency simultaneously.

GB disk space comprised of 280 shingled zones. The valid
data volume of the workload is about 54 GB, approximating
80% of the disk space, due to duplicated and deleted KV en-
tries. Through this experiment, we have made the following
observations. First, we calculate the valid data volume and
the GC time every ten minutes during the load process. As
shown in Figure 3, the time consumption of GC grows with
the valid data volume. When valid data grows to about 70%
of the disk space, more than half of the time in that ten min-
utes is spent to perform GC. GC accounts for more than 80%
of the execution time when valid data reaches 76% of the
disk space. The test results demonstrate that garbage collec-
tion takes a substantial proportion of the total execution time,
downgrading the system performance dramatically. Because
SSTables from different levels in a zone are mixed, multiple
zones show similar age in cost-benefit GC policy. The sim-
ilar zone ages make greedy and cost-benefit policies present
almost the same performance, as they both prefer reclaiming
zones with the most invalid data.

Second, we record the space utilization of each occupied
zone on the HM-SMR drive after loading 10 million KV
items. Figure 4 (a) shows the percentage of valid data in each
zone (in a sorted way), and Figure 4 (b) shows the cumula-

tive distribution function (CDF) of the zone space utilization.
Both greedy and cost-benefit have an unsatisfactory average
space efficiency of 60%. More specifically, 85% zones have
a space utilization ranging from 45% to 80%. We contend
that this space utilization distribution results in the signifi-
cant amount of time spent in doing GC, as discussed above.
The more live data in zones that is migrated, the more disk
bandwidth is needed for cleaning and not available for writ-
ing new data. A better and more friendly space utilization
would be a bimodal distribution, where most of the zones are
nearly full, a few are empty, and the cleaner can always work
with the empty zones, eliminating the overhead of GC, i.e.,
valid data migration. In this way, we can achieve both high
disk space utilization and eliminate on-disk garbage collec-
tion overheads. This forms the key objective of our GearDB
design, as discussed in the next section.

Third, by changing the threshold of GC (from 100% to
50%) on the 110 GB restricted disk capacity, we test 6 groups
of 80 GB random writes to show the performance variation-
s with disk space utilization. The disk space utilization,
or space efficiency, is defined as the ratio of the on-disk
valid data volume to the allocated disk space. As shown in
Figure 5, system performance decreases with space utiliza-
tion. Running on an HM-SMR drive, LevelDB faces a dilem-
ma where it only delivers a compromised trade-off between
performance and space utilization. Our goal in designing
GearDB is to achieve higher performance and better space
efficiency simultaneously. The red triangle mark in Figure
5 denotes the measured performance and space efficiency of
GearDB, i.e., 89.9% space efficiency and 1489 random load
IOPS.

In summary, with log-structured writes, existing KV s-
tores on HM-SMR suffer from redundant cleaning processes
in both LSM-trees (i.e., compaction) and HM-SMR drives
(i.e., garbage collection). The expensive GC degrades sys-
tem performance, decreases space utilization, and creates a
suboptimal trade-off between performance and space effi-
ciency.

3 GearDB Design

In this section we present GearDB and three key techniques
to eliminate the garbage collection and improve compaction
efficiency. GearDB is an LSM-tree based KV store that
achieves both high performance and space efficiency on an
HM-SMR drive. Figure 6 shows the overall architecture
of GearDB’s design strategies. First, we propose a new
on-disk data layout that provides application-specific data
management for HM-SMR drives, where a zone only serves
SSTables from one level to prevent data in different levels
from being mixed and causing dispersed fragments. Sec-
ond, based on the new on-disk data layout, we design a com-
paction window for each LSM-trees level. Compactions only
proceed within compaction windows, which restricts frag-

T10 Zone Block Command

HM-SMR
(Zone Block Device)

Gear Compaction

A New On-disk Data Layout

Compaction Window

HM-controller

LSM-trees

GearDB

Put/Get/Delete

 L0 L0

Zone 1 Zone 2 Zone 3

L0 L1 L1 L1 L2 L2 L2 Ln Ln Ln

Zone 4

Li SSTable in Li

Figure 6: The architecture of GearDB. This figure shows
the overall structure of GearDB with three design strategies.
GearDB accesses the HM-SMR drive directly via the T10
zone block command. For the data layout on an HM-SMR
drive, SSTables form the same level are located in integral
zones, and each zone only serves SSTables from the same
level. Li© represents the SSTable from Li.

ments in compaction windows. Third, we propose a novel
compaction algorithm, called gear compaction, based on the
new data layout and compaction windows. Gear compaction
divides the merged data of each compaction into three por-
tions and further compacts with the overlapped data in the
compaction window of the next level. Gear compactions au-
tomatically empty SMR zones in compaction windows by
invalidating all SSTables, so that zones can be reused with-
out the need to garbage collection. We elaborate on the three
strategies in the following subsections.

3.1 A New On-disk Data Layout
As discussed in Section 2.3, data fragments on HM-SMR
drives are widely dispersed due to log-structured writes and
compactions, which causes SSTables from different levels to
be mixed within zones (Figure 2). To alleviate this problem,
we propose a new data layout to manage HM-SMR drives in
GearDB.

The key idea of the new data layout is that each zone only
serves SSTables from one level, as shown in Figure 6. We
dynamically assign zones to different levels of an LSM-tree.
Initially, each level in use is attached to one zone. As the
data volume of a level increases, additional zones are allo-
cated to that level. Once a zone is assigned to Level Li, it
can only store sequentially written SSTables from Li until it
is released as an empty zone by GearDB. When an LSM-tree
reaches a balanced state, each level is composed of multiple
zones according to its size limit. Among the zones of each
level, only one zone accepts incoming writes, named a writ-
ing zone. Sequential writes in each zone strictly respect the
shingling constraints of HM-SMR drives.

Since SSTables in a zone belong to the same level, they
share the same compaction frequency (or the same hotness).

Writing Full

Compaction
window

Empty

Writing Full

Compact
ion

window
Empty

Figure 7: Zone state transitions in GearDB. In GearDB,
multiple zones are allocated to each level according to the
data size of that level. These zones can be in three states dur-
ing their lifetime, namely writing zone, full zone, and empty
zone. Zones, including full zones and writing zones, rotate to
construct a compaction window.

This data layout results in less fragmented disk space and
offers convenience for the following design strategies, which
potentially leads to the desired bimodal distribution and thus
allows us to achieve high system performance at low cost.
Additionally, sequential read performance is improved due
to better spatial locality.

3.2 Compaction Windows
With our new data layout, each level in an LSM-tree has mul-
tiple zones corresponding to its data volume or size limit. To
further address the dispersed fragments on HM-SMR drives
based on the new data layout, we propose a compaction win-
dow for each level. A compaction window (CW) for a level is
composed of a group of zones belonging to the level, which
is used to limit compactions and fragments.

Specifically, GearDB presets a compaction window for
each level of the LSM-tree. To construct a compaction win-
dow, a certain number of zones are picked from the zones
belonging to that level in a rotating fashion. The compaction
window size (Scwi) of level Li is given by Equation 2, where
the compaction window size of each level is 1/k of the level
size limit (LLi). Hence, the compaction window size increas-
es by the same amplification factor as the size for each level.
By default, the compaction window size is 1

4 of the corre-
sponding level size. Note that the compaction window of L0
and L1 comprises the entire level since these two levels only
take one zone in our study.

Scwi =
1
k
×LLi (1≤ k ≤ AF) (2)

Compaction windows are not designed to directly improve
the system performance. However, by limiting compaction-
s within compaction windows, the corresponding fragments

are restricted to compaction windows instead of spanning
over the entire disk space. Therefore, system performance
benefits from gear compactions. Since a zone full of invalid
data can be reused as an empty zone without data migration,
compaction windows that filled with invalid SSTables can be
released as a group of empty zones to serve future write re-
quests. When zones of a compaction window are released,
another group of zones of that level is selected to form a new
compaction window. Different zones in a level rotate to con-
stitute the compaction window, guaranteeing every SSTable
gets involved in compactions evenly.

To facilitate the management of underlying SMR zones in
GearDB, we divide zones into three states, namely writing
zone, full zone, and empty zone. Each level only maintain-
s a writing zone for sequentially appending newly arrived
SSTables. Figure 7 shows the diagram of zone state transi-
tions. 1© A writing zone becomes a full zone once it is filled.
2© 3© A writing zone or full zone can be added into a com-

paction window by rotation. 4©When all SSTables of a com-
paction window have been invalidated by gear compactions,
the zones become empty and 5© ready to serve write requests
without incurring device-level garbage collection.

3.3 Gear Compaction

Based on our new data layout and compaction windows, we
develop a new compaction algorithm in this section. Gear
compaction aims to automatically clean compaction win-
dows during compactions and thus eliminate costly and re-
dundant garbage collections.

Gear Compaction Algorithm. A gear compaction pro-
cess starts by compacting L0 and L1, called active com-
paction. Active compaction triggers subsequent passive
compactions, and compactions progress from lower levels
to higher levels. For a conventional compaction between Li
and Li+1 in LevelDB, the merge-sorted data are directly writ-
ten back to the next level (i.e., Li+1). However, for a gear
compaction between Li and Li+1, the merge-sorted data is
divided into three parts according to its key range, including:
out of Li+2’s compaction window, out of Li+2’s key range,
and within Li+2’s compaction window. These three parts of
the merged data do not stay in memory. Instead, they are
respectively 1) written to Li+1, 2) dumped to Li+2, or 3) pro-
cessed to passive compactions (i.e., compacted with over-
lapped SSTables in the CW of Li+2). The dump operation
(i.e., step 2) helps to reduce the further write amplification
of writing the data to Li+1 and dumping it to Li+2. To avoid
data being compacted to the highest level directly, Li+2 can
only join the gear compaction if Li+1 reaches its size limit
and Li+2 reaches the size of its compaction window. As a re-
sult, GearDB maintains the temporal locality of LSM-trees,
where newer data resides in lower levels.

Figure 8 illustrates the gear compaction process. Step
1, the active compaction is performed between L0 and L1,

L0

L1

L2

L3

1

5

6

4

In_cw
L2

Out_cw
L2

Out_cw
L3

Out
L3

In_cw
L3

2
3

Out
L2

SSTable on disks

Sorted data in memory

Figure 8: Process of gear compaction. The active com-
paction of L0 and L1 drives passive compactions in higher
level. The resultant data of each compaction is divided into
three parts according to its key range, including out of Li’s
compaction window (Out cw Li), in Li’s compaction window
(In cw Li), and out of Li’s key range (Out Li).

and the resultant data in memory is divided into three part-
s according to their key range, i.e., out of L2’s compaction
window, out of the next level, and within L2’s compaction
window. Step 2, the data whose key range overlaps SSTa-
bles that is out of L2’s compaction window is written back to
L1. Step 3, the data whose key range does not overlap L2’s
SSTables is dumped to L2, avoiding further compaction and
the associated write amplification. Step 4, the data whose
key range overlaps with SSTables in L2’s compaction win-
dow remains in memory for further passive compaction with
the overlapped SSTables in L2’ s compaction window. This
gear compaction process proceeds recursively in compaction
windows, level by level, until either the compaction reaches
the highest level or the regenerated data does not overlap the
compaction window of the next level. Thus, gear compaction
only proceeds within compaction windows and therefore in-
valid SSTables only appear in compaction windows.

The gear compaction process is described in Algorithm
1. Lines 7-17 illustrate the key range division (detailed later
in “sorted data division”). Active compaction starts from
L0 and L1, and passive compaction continues level by level
until the merge and sort results of Li and Li+1 do not overlap
Li+2’s compaction window (Line 19 and 24). In addition,
if the data volume written to Li+2 is less than the size of
an SSTable (e.g., 4 MB), we write it back to Li+1 together
with other data written to Li+1. In this way, the size of each
SSTable is kept at about 4 MB to ensure no small SSTable
increases the overhead of metadata management.

Sorted data division. To divide the sorted data during
gear compaction (e.g., Li and Li+1) into the above mentioned
three categories, GearDB needs to compare the key range
of the sorted data with the key ranges of SSTables in Li+2.
As in LevelDB, SSTables within a level do not overlap in
GearDB. However, key ranges of some SSTables might not
be successive. Key range gaps between SSTables complicate
the division of the sorted data, and we need to compare the
sorted datas keys with individual SSTables. Excessive com-

ALGORITHM 1: Gear Compaction Algorithm
Input: Vi: victim SSTable in Li

1 do
2 DoGearComp← false;
3 Oi+1 ← GetOverlaps (Vi); /*Oi+1: overlapped SSTables in

Li+1’s compaction window*/

4 result← merge-sort(Vi, Oi+1);
5 iter.key←MakeInputIterator(result);
6 for iter.first to iter.end do
7 if key In CW Li+2 then
8 write to buffer; /*wait in memory for the passive

compaction*/

9 else
10 if key Out CW Li+2 then
11 write to Li+1;
12 else
13 if key Out Li+2 then
14 write to Li+2;
15 end
16 end
17 end
18 end
19 if buffer ! = Null then
20 i++;
21 Vi ←GetVictims(buffer);
22 DoGearComp← true;
23 end
24 while DoGearComp == true;

parisons can slow down the division and increase the cost
of gear compaction and metadata management. To remedy
this problem, we divide each level into large granularity key
ranges. Specifically, for SSTables in CW and out of CW re-
spectively, if the key range gap between SSTables does not
overlap with other SSTables in that level, we combine the
key ranges into a large consecutive range. As a result, the
sorted data only needs to compare with the minimum and
maximum keys of several key ranges to do the division. For
example, suppose the compaction window of Li+2 has two
SSTables with respective key ranges of a−b and c−d. We
check other SSTables in Li+2 to find if any SSTable overlap-
s the key range b− c. If not, we amend the key range of
Li+2’s compaction window as a− d to reduce the key range
comparison during division.

How compaction windows are reclaimed. As discussed
above, gear compactions only proceed within compaction
windows. Since a compaction window filled with invalid da-
ta can be simply released as empty zones, compaction win-
dows are reclaimed automatically by gear compactions. As a
result, redundant garbage collection that requires valid data
migration is avoided. To invalidate all SSTables in the CW
of Li+1, the SSTables in Li whose key ranges overlap with

Li

Li+1

A Compaction window (CW) in L i

Li+2

Ln

A CW in Li+2

A CW in Li+1

Figure 9: Compaction windows are reclaimed in a gear
fashion. The red, green, and yellow sectors represent the
compaction windows of Li, Li+1, and Li+2. Compaction win-
dows are reclaimed by compaction like a group of gears. Re-
claim k compaction windows (CW) in Li mimics a full round
moving of a gear, which leads to one move in the driven gear,
that is cleaning one compaction window in Li+1, and so on.

Li+1’s CW must be involved in gear compactions. Once all
zones of Li rotationally join the compaction window, we get
these SSTables in Li. In this fashion, when all compaction
windows in Li are reclaimed, the compaction window of Li+1
is reclaimed. As shown in Figure 9, when gear compactions
clean k compaction windows in Li, one compaction window
in Li+1 is cleaned correspondingly; when gear compactions
clean k compaction windows in Li+1, one compaction win-
dow in Li+2 is cleaned; and so on. This process of releasing
compaction windows works like a group of gears, where a
complete rotation (i.e., k steps) in a driving gear (i.e., Li)
triggers one move in a driven gear (i.e., Li+1), which gives
our name as “gear compaction.”

In summary, GearDB maintains the balance of LSM-trees
by keeping the amplification factor of adjacent levels un-
changed, keeping SSTables sorted and un-overlapped in each
level, and rotating the compaction window at each level. The
benefits of gear compaction include: 1) compactions and
fragments are limited to the compaction window of each
level; 2) compaction windows are reclaimed automatically
during gear compactions, thereby eliminating the expensive
on-disk garbage collections since compaction windows filled
with invalid SSTables can be reused as free space; and 3)
gear compaction compacts SSTables to a higher level with
fewer reads and writes and no additional overhead.

4 Implementation

To verify the efficiency of GearDB’s design strategies, we
implement GearDB based on LevelDB 1.19 [11], a state-

of-art LSM-tree based KV store from Google. We use the
libzbc [16] interface to access a 13 TB HM-SMR drive from
Seagate. Libzbc allows applications to implement direct ac-
cesses to HM-SMR drives via T10/T13 ZBC/ZAC command
set [20, 19], facilitating Linux application development.

As shown in Figure 6, GearDB maintains a standard in-
terface for users, including GET/PUT/DELETE. The gear
compaction is implemented on LSM-trees by modifying the
conventional compaction processes of LevelDB. At the low-
est level, we implement an HM-SMR controller to: 1) write
sequentially in zones and manage per-zone write pointers us-
ing the new interface provided by libzbc; 2) map SSTables
to dedicate zones and map zones to specific levels; and 3)
manage the compaction window of each level. The mapping
relationship is maintained by: 1) a Lbdfile structure denoting
the indirection map of an SSTable and its zone location; 2)
a zone info structure recording all SSTables of a zone; and
3) a zone info list[Li] structure containing all zones of Lev-
el Li. Ldbfiles maintain the metadata of each SSTable. The
size of the Ldbfile dominates the size of the metadata in the
HM-SMR controller, and the other two structures only link
Ldbfiles and zones with pointers (8 bytes). These data struc-
tures consume a negligible portion of memory, e.g., for an
80GB database, the overall metadata of the HM-SMR con-
troller is less than 4 MB.

To keep metadata consistent, a conventional zone is allo-
cated on HM-SMR drives to persist the metadata together
with the version changes of the database after each com-
paction. In LevelDB, a manifest file is used to record the
initial state of the database and the changes of each com-
paction. To recover from a system crash, the database starts
from the initial state and replays the version changes. GearD-
B rebuilds the database in the same way.

Other implementation details worth mentioning include:
1) for sequential write workloads that incur no compaction,
GearDB dumps zones to the higher level by revising the
zone info list[Li] to avoid data migration. 2) To accelerate
the compaction process in both GearDB and LevelDB, we
fetch victim SSTables and overlapped SSTables into mem-
ory in the unit of SSTables instead of blocks. More details
of the implementation can be found in our open source code
with the link provided in Section 7.

5 Evaluation

GearDB is designed to deliver both high performance and
space efficiency for building key-value stores on HM-SMR
drives. In this section, we conduct extensive experiments
to evaluate GearDB by focusing on answering the follow-
ing questions: 1) what are the performance advantages of
GearDB? (Section 5.1); 2) what factors contribute to these
performance benefits? (Section 5.2); and 3) What space effi-
ciency can GearDB achieve? (Section 5.3). In addition, we
discuss the results of sensitivity studies of CW size, the per-

Table 1: System configuration for experiments

Linux 64-bit Linux 4.15.0-34-generic
CPU 8 * Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
Memory 32 GB
HM-SMR 13TB Seagate ST13125NM007

Random 4 KB request (IOPS): 163(R)
Sequential (MB/s): 180(R), 178(W)

0

200

400

600

800

1000

1200

1400

1600

Ldb-CB Ldb-Greedy GearDB

O
pe

ra
tio

ns
/s

(a) Random load

0

5000

10000

15000

20000

25000

Ldb-CB Ldb-Greedy GearDB

(b) Sequential load

Figure 10: Load performance. GearDB shows its advan-
tage in both random load and sequential load compared to
LevelDB.

formance of GearDB vs. SMRDB [38], and the performance
of GearDB vs. LevelDB on HDDs(Section 5.4).

We compare GearDB performance against LevelDB (ver-
sion 1.19) [11] with greedy GC (Ldb-Greedy) and cost-
benefit GC (Ldb-CB) policies. Our test environment is listed
in Table 1. By default, we use 16-byte keys, 4 KB values,
and 4 MB SSTables.

5.1 Performance Evaluation
In this section, we first evaluate the read and write perfor-
mance of LevelDB and GearDB using the db bench micro-
benchmark released with LevelDB. Then, we evaluate per-
formance using YCSB macro-benchmark suite [7].

5.1.1 Load Performance

We evaluate random load performance by inserting 20 mil-
lion key-value items (i.e., 80 GB) in a uniformly distributed
random order. Since the random load benchmark includes
repetitive and deleted keys, the actual valid data volume of
the database is around 54 GB. We restrict the capacity of
our HM-SMR drive by using only the first 280 shingled
zones (i.e., 70 GB). The final valid data takes up 77.14%
of the usable disk space. The random write performance is
shown in Figure 10 (a). GearDB outperforms Ldb-Greedy
and Ldb-CB by 1.71× and 1.73× respectively. The two Lev-
elDB solutions have lower throughput because of the time-
consuming compaction and redundant GCs. Compaction in
LevelDB produces write amplification and dispersed frag-
ments on disk. Costly garbage collections clean disk space
by migrating valid data, thus slowing down the random write
performance. GearDB delivers better performance because

0

1000

2000

3000

4000

5000

6000

7000

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000

O
p
er
at
io
n
s/
s

Time(s)

Ldb-Greedy Ldb-CB GearDB

Figure 11: Detail of random load. This figure shows the in-
cremental performance of every 1 GB randomly loaded dur-
ing the process of loading an 80 GB database. GearDB has
higher throughput and a shorten execution time for loading
the same sized database compared to LevelDB.

fragments are limited to compaction windows, garbage col-
lections are eliminated by gear compactions, and compaction
efficiency is improved. We further investigate detailed rea-
sons for GearDB’s performance improvements in Section
5.2.

Figure 11 shows the incremental throughput by recording
the performance for every 1 GB of randomly loaded data
(i.e., 250k KV entries). We make four observations from
this figure. First, GearDB is faster than LevelDB for ran-
domly loading the same volume of data. Second, GearDB
achieves higher throughput than LevelDB, and the perfor-
mance advantage becomes more pronounced as the volume
of the database grows. Third, both LevelDB and GearD-
B’s performance decrease with time, because the overhead
of compaction and GCs (only LevelDB has GCs) increases
with the data volume. Fourth, the performance variation of
GearDB comes from the variation of the data volume in gear
compactions. On the contrary, LevelDB shows less fluctua-
tion in performance due to the relatively stable data volume
involved in each compaction.

Similarly, we evaluate the sequential load performance by
inserting 20 million KV items in sequential order. No com-
pactions or garbage collections were incurred for sequential
writes. Figure 10(b) shows that GearDB is 1.37× and 1.39×
faster than Ldb-Greedy and Ldb-CB respectively. This per-
formance gain is attributed to the more efficient dump strat-
egy of GearDB as presented in Section 4. GearDB dumps
SSTables to the next level by simply revising the metadata of
zones.

5.1.2 Read Performance

Read performance is evaluated by reading one million key-
value items from the randomly loaded database. Figure 12
shows the results. The performance of sequential reads is
much better than random reads due to the natural character-
istics of disk drives. GearDB gets its performance advantage
in both random and sequential reads because it consolidates

0

5

10

15

20

25

Ldb-CB Ldb-Greedy GearDB

O
pe

ra
tio

ns
/s

(a) Random read

0

2000

4000

6000

8000

10000

12000

14000

16000

Ldb-CB Ldb-Greedy GearDB

(b) Sequential read

Figure 12: Read performance.

0

200

400

600

800

1000

1200

1400

1600

Ldb-CB Ldb-Greedy GearDB

O
p
er
at
io
n
s/
s

(a) Workload Load

52.17 46

58

129

3637 37

49

108

29

36

37

47

103

30

0

20

40

60

80

100

120

140

A B C D E

O
pe

ra
ti
on

s/
s

Ldb-CB Ldb-Greedy GearDB

(b) Workloads A-E

Figure 13: Throughput on Macro-benchmarks. This fig-
ure shows the throughput of three key-value stores on load
and other five workloads. In the left figure, the x-axis repre-
sents different workloads. The load workload corresponds to
constructing an 80 GB database. Workload A is composed
with 50% reads and 50% updates; Workload-B has 95%
reads and 5% updates; Workload-C includes 100% read-
s; Workload-D has 95% reads and 5% latest keys insert;
Workload-E has 95% range queries and 5% keys insert.

SSTables of the same level. Our new data layout helps re-
duce the seek time of searching and locating SSTables by
ensuring each zone stores SSTables from just one level.

5.1.3 Macro-benchmark

To evaluate performance with more realistic workloads, we
run the YCSB benchmark [7] on GearDB and LevelDB. The
YCSB benchmark is an industry standard macro-benchmark
suite delivered by Yahoo!. Figure 13 shows the results of
the macro-benchmark in load and five other representative
workloads. GearDB is 1.56× and 1.64× faster than Ldb-CB
and Ldb-Greedy on the load workload for the same reason-
s discussed in Section 5.1.1. Workloads A-E are evaluated
based on the randomly loaded database. The performance
gains of GearDB under workloads A-E are 1.44×, 1.24×,
1.22×, 1.25×, and 1.23× compared to LevelDB, which are
consistent with the results of micro-benchmarks.

5.2 Performance Gain Analysis

In this section, we investigate GearDB’s performance im-
provement when compared to LevelDB.

Operation Time Breakdown. To figure out the advan-

2.2%, 542 7.0%, 998 3.2%, 783

72.5%, 17510

89.9%, 12861

71.7%, 17473

1.8%, 434

3.2%, 452

1.9%, 466

23.5%, 5670 23.1%, 5638

0

5000

10000

15000

20000

25000

30000

Ldb-Greedy GearDB Ldb-CB

Ti
m

e
(s

)

Other Comp GC Log

Figure 14: Random load time breakdown. This figure
shows the time spent (the y-axis) on different operations
when we randomly load an 80 GB database. The numbers
next to each bar show their time consumption and the ratio to
the overall run time. For LevelDB, compaction and garbage
collections take the most significant percentage of the over-
all runtime. GearDB eliminates the garbage collections and
improves compaction efficiency.

Figure 15: Compaction analysis. This figure shows the la-
tency of every individual compaction during the 80 GB ran-
dom load.

tages and disadvantages of GearDB and LevelDB, we break
down the time of all KV store operations (i.e., log, com-
paction, garbage collection, and other write operations) for
the random load process. As shown in Figure 14, we ob-
serve that compared to Ldb-Greedy and Ldb-CB: 1) GearDB
adds no overhead to any operations; and 2) GearDB’s per-
formance advantage mainly comes from the more efficient
compaction and eliminated garbage collection. LevelDB has
a longer random load time because garbage collections take
about a quarter of the overall runtime and the compaction is
less efficient than GearDB. We record the detailed informa-
tion of garbage collections for Ldb-CB and Ldb-Greedy as
follows: 1) the overall garbage collection time is 5,638 s and
5,670 s, which account for 23.14% and 23.47% of the overall
random load time (24,360 s and 24,156 s); and 2) the migra-
tion data volume in garbage collection is 417 GB and 430
GB, which is 25.53% and 25.77% of the overall disk writes.

Compaction Efficiency. To understand the compaction
efficiency of the three key-value stores specifically, we

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90

W
ri

te
 A

m
pl

ef
ic

at
io

n
(t

im
es

)

Random load volume (GB)

GearDB Ldb-Greedy Ldb-CB

Figure 16: Write amplification. This figure shows the write
amplification factor of three KV systems when we load dif-
ferent sizes of the database (i.e., from 1 GB to 80 GB).

record the compaction latency for every compaction dur-
ing the random loading process, which is shown in Figure
15. From this figure, we make the following three obser-
vations. First, GearDB dramatically reduces the number of
compactions (i.e., 53,311 and 53,203 less than Ldb-Greedy
and Ldb-CB respectively). Since GearDB continues gear
compaction to higher levels when key ranges overlap with
the compaction window of the adjacent level, more data are
compacted in one compaction process, reducing the number
of compactions. Second, the average compaction latency of
GearDB is higher than LevelDB because gear compaction
involves more data in each compaction. Third, the overall
compaction latency is 1.80× shorter in GearDB than Lev-
elDB with greedy or cost-benefit strategies.

Write Amplification. Write amplification (WA) is an im-
portant factor in the performance of key-value stores. We
calculate the write amplification factor by dividing the over-
all disk-write volume by the total volume of user data writ-
ten. The WA of the three systems is shown in Figure 16.
In both LevelDB and GearDB, the WA increases with the
volume of the database as the compaction data volume in-
creases. Ldb-Greedy and Ldb-CB have a similar large write
amplification because they need to migrate data in both com-
pactions and garbage collections. GearDB reduces the write
amplification since it performs no on-disk garbage collec-
tions.

5.3 Space Efficiency Evaluation
Figure 17 shows a comparison of zone usage and zone s-
pace utilization after randomly loading 20, 40, 60, and 80
GB databases. From these results, we find GearDB occu-
pies fewer zones than LevelDB after loading the same size
database. For example, GearDB saves 71 zones (i.e., 17.75
GB) when storing a 40 GB database. Moreover, GearDB
has higher zone space utilization than LevelDB, i.e., GearD-
B’s average space utilization of loading the 80 GB database
is 89.9%. We show the corresponding CDFs of zone space
utilization in Figure 17. These results show that GearDB re-
stricts fragments in a small portion of occupied zones (i.e.,

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100 120 140 160

Zo
ne

 s
pa

ce
 u

ti
liz

at
io

n

Zone number

Ldb-CB

Ldb-Greedy

GearDB

(a) 20 GB

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250

Zone number

Ldb-CB

Ldb-Greedy

GearDB

(b) 40 GB

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300

Zone number

Ldb-CB

Ldb-Greedy

GearDB

(c) 60 GB

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300

Zone number

Ldb-CB

Ldb-Greedy

GearDB

(d) 80 GB

(e) CDF 20 GB (f) CDF 40 GB (g) CDF 60 GB (h) CDF 80 GB

Figure 17: Zone space utilization. Figures a-d show the zone space utilization of each occupied zone when we randomly load
20, 40, 60, and 80 GB database. Figures e-h show the corresponding CDF of the zone space utilization. The results show that
our design consistently maintains a high space efficiency.

compaction windows). GearDB achieves a bimodal zone s-
pace utilization, where most zones are nearly full, and a few
zones are nearly empty since they are in compaction win-
dows. This bimodal distribution not only improves space
utilization but also wipes out garbage collections, since an
empty zone can be reused by resetting write pointers with-
out incurring data migration. LevelDB suffers from low s-
pace utilization, especially for smaller databases, since few-
er GCs are triggered when the database is small. Once more
garbage collections are triggered, LevelDB’s space efficien-
cy improves at the cost of system performance. However,
GearDB achieves a high space utilization during its lifetime
without sacrificing system performance. The overall perfor-
mance and space efficiency gain of GearDB is denoted by
the red triangle mark in Figure 5.

5.4 Extended Evaluations

Sensitivity Study of the Compaction Window Size. We e-
valuate GearDB with 5 different compaction window sizes
by changing the k in Equation 2 (i.e., k=2, 4, 6, 8, 10).
The experimental setup is the same as used for the micro-
benchmarks. Consistently, GearDB maintains a random load
throughput ranging from 1,314 to 1,470 operations/s, and a
space utilization ranging from 86% to 91%. Since the com-
paction window size does not have a significant influence on
system performance and space efficiency, we set k = 4 as the
default CW size for GearDB.

GearDB vs. SMRDB. SMRDB [38] is an HM-SMR
friendly KV store, which enlarges the SSTable to a zone size
(e.g., 256 MB) to prevent overwriting and reduces the num-
ber of levels to two to reduce compactions. We implement
and then evaluate SMRDB using db bench. Test results show

that SMRDB is slower than GearDB by 1.97× for random
loading. SMRDB brings severe compaction latency due to
the large data volume involved in each compaction. GearD-
B has similar sequential read performance, and 1.68× faster
random read performance compared to SMRDB since the
large SSTable increases the overhead of fetching KV items
in SSTables.

GearDB on HM-SMR vs. LevelDB on HDD. To further
demonstrate the potential of GearDB, we compare GearD-
B on HM-SMR to LevelDB on a Seagate hard disk drive
(ST1000DM003). The original LevelDB uses the standard
file system interface (i.e., Ext4 in our evaluation), and we call
it Ldb-hdd. The basic performance evaluation on db bench
shows that GearDB on HM-SMR outperforms Ldb-hdd by
2.38× for randomly loading an 80 GB database. GearDB
has higher sequential write performance and similar random
read performance with Ldb-hdd. However, Ldb-hdd has the
superiority on sequential read (i.e., 7.02× faster) due to the
file system cache. Our GearDB bypasses the file system and
thus does not benefit from the cache.

6 Related Work

GearDB is an LSM-tree based key-value store tailored for
HM-SMR drives, which aims to realize both good perfor-
mance and high space utilization. We first discuss existing
works that exploit HM-SMR drives without compromising
system performance. ZEA provides HM-SMR software ab-
stractions that map zone block addresses to the logical block
addresses of HDDs [33]. SMRDB [38] is an HM-SMR
friendly KV store described and evaluated in Section 5.4.
Caveat-Scriptor [23] and SEALDB [47] allow to write any-
where on HM-SMR drives by letting the host write beware.

Kinetic [41] provides KV Ethernet HM-SMR drives plus an
open API to support object storage. Huawei’s key-value s-
tore (KVS) [31] provides simple and redundant KV access-
es on HM-SMR drives via a core design of a log-structured
database. SMORE [32] is an object store on an array of HM-
SMR drives, which also accesses disks in a log-structured
approach. HiSMRfs [22] stores file metadata on SSDs and
stores file data on SMR drives.

Next, we discuss research to enhance and improve LSM-
trees by reducing the write amplification caused by com-
pactions. Lwc-tree [48] performs lightweight compactions
by appending data to SSTables and only merging metadata.
PebblesDB [39] mitigates writes by using guards to maintain
partially sorted levels. WiscKey [29] separates keys from
values and compacts keys only, thus reducing compaction
overhead by eliminating value migrations. VTtrees [44] use
an extra layer of indirection to avoid reprocessing sorted da-
ta, at the cost of fragmentation. TRIAD [34] uses a holistic
of three technologies on memory, disk, and log to reduce
write amplification. Blsm [43] proposes a new merge sched-
uler to synchronize merge completions, and hence obviates
upstream writes from waiting downstream merges. LSM-
trie [46] de-amortizes compaction overhead with hash-range
based compaction for better read performance. [25] and
[24, 13] optimize LSM-trees tailored for specific storage de-
vices and specific application scenarios. In contrast, GearDB
improves system performance via providing a new data lay-
out that facilitates the data fetching in compaction and elim-
inating write amplification from redundant GC.

Third, recent works have sought to optimize or manage
SSDs at the application layer [30, 14, 35]. They aim to solve
the double logging problem in both FTLs and append-only
applications via new block I/O interfaces [30] or application-
driven FTLs [14]. However, there still exists the need to
employ GC policies for reclaiming flash segments in FTLs.
By contrast, GearDB eliminates the overhead of disk space
cleaning via three design strategies.

Finally, SSD streams [6, 26] associate data with similar
update frequencies or lifetimes to the same stream and place
it into the same unit for multi-stream SSD. The data layout
of GearDB shares the initial consideration of separating data
with similar lifetimes. However, the methodology is differ-
ent entirely, e.g., [6] assigns write requests of multiple levels
to dedicated streams.

7 Conclusion

In this paper, we present GearDB, an LSM-tree based key-
value store tailored for HM-SMR drives. GearDB is de-
signed to achieve both good performance and high space
utilization with three techniques: a new data layout, com-
paction windows, and a novel gear compaction algorithm.
We implement GearDB on a real HM-SMR drive. Experi-
mental results show that GearDB improves the overall sys-

tem performance and space utilization, i.e., 1.71× faster than
LevelDB in random write with a space efficiency of 89.9%.
GearDB’s performance gains mainly come from efficien-
t gear compaction by eliminating garbage collections. The
open source GearDB is available at https://github.com/PDS-
Lab/GearDB.

8 Acknowledgement

We thank our shepherd Bill Jannen and the anonymous re-
viewers for their insightful comments and feedback. We
also thank Seagate Technology LLC for providing the
sample HM-SMR drive to run our experiments. This
work was sponsored in part by the National Natural
Science Foundation of China under Grant No.61472152,
No.61300047, No.61432007, and No.61572209; the 111
Project (No.B07038); the Director Fund of WNLO. The
work performed at Temple was partially supported by the
U.S. National Science Foundation grants CCF-1717660 and
CNS-1702474.

References
[1] AGHAYEV, A., AND DESNOYERS, P. Skylight—a window on shin-

gled disk operation. In 13th USENIX Conference on File and Storage
Technologies (FAST 15) (2015), pp. 135–149.

[2] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T., DAVIS, J. D.,
MANASSE, M. S., AND PANIGRAHY, R. Design tradeoffs for SSD
performance. In USENIX Annual Technical Conference (2008).

[3] AMER, A., LONG, D. D. E., MILLER, E. L., PARIS, J.-F., AND
SCHWARZ, S. J. T. Design issues for a shingled write disk system. In
Proceedings of the 2010 IEEE 26th Symposium on MSST (2010).

[4] CASSUTO, Y., SANVIDO, M. A. A., GUYOT, C., HALL, D. R.,
AND BANDIC, Z. Z. Indirection systems for shingled-recording disk
drives. In Proceedings of the 2010 IEEE 26th Symposium on MSST
(2010), pp. 1–14.

[5] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WALLACH,
D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND GRUBER,
R. Bigtable: A distributed storage system for structured data. In
Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI’06) (2006), pp. 205–218.

[6] CHOI, C. Increasing ssd performance and lifetime
with multi-stream technology. https://www.snia.org/
sites/default/files/DSI/2016/presentations/sec/

ChanghoChoi Increasing SSD Performance-rev.pdf, 2016.

[7] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN, R.,
AND SEARS, R. Benchmarking cloud serving systems with YCSB. In
Proceedings of the ACM Symposium on Cloud Computing (SOCC’10)
(2010).

[8] DAYAN, N., ATHANASSOULIS, M., AND IDREOS, S. Monkey: Op-
timal navigable key-value store. In Proceedings of the 2017 ACM
International Conference on Management of Data (2017), ACM, p-
p. 79–94.

[9] FACEBOOK. RocksDB, a persistent key-value store for fast storage
enviroments. http://rocksdb.org/.

[10] FELDMAN, T., AND GIBSON, G. Shingled magnetic recording: Are-
al density increase requires new data management. USENIX; login:
Magazine 38, 3 (2013), 22–30.

[11] GHEMAWAT, S., AND DEAN, J. Leveldb. https://github.com/
Level/leveldown/issues/298, 2016.

[12] GIBSON, G., AND GANGER, G. Principles of operation for shingled
disk devices. Carnegie Mellon University Parallel Data Lab Technical
Report CMU-PDL-11-107 (2011).

[13] GOLAN-GUETA, G., BORTNIKOV, E., HILLEL, E., AND KEIDAR, I.
Scaling concurrent log-structured data stores. In Proceedings of the
Tenth European Conference on Computer Systems (EuroSys) (2015).

[14] GONZÁLEZ, J., BJØRLING, M., LEE, S., DONG, C., AND HUANG,
Y. R. Application-driven flash translation layers on open-channel ss-
ds. In Nonvolatile Memory Workshop (NVMW) (2014).

[15] HGST. Hgst delivers world’s first 10tb enterprise hdd for ac-
tive archive applications. http://investor.wdc.com/news-
releases/news-release-details/hgst-delivers-worlds-

first-10tb-enterprise-hdd-active-archive, 2015.

[16] HGST. Libzbc version 5.4.1. https://github.com/hgst/libzbc,
2017.

[17] HGST. Ultrastar Hs14 — 14tb 3.5 inch helium platform enter-
prise smr hard drive. https://www.hgst.com/products/hard-
drives/ultrastar-hs14, 2017.

[18] HGST. Ultrastar dc hc600 smr series, 15TB. https:

//www.westerndigital.com/products/data-center-drives/
ultrastar-dc-hc600-series-hdd, 2018.

[19] INCITS T10 TECHNICAL COMMITTEE. Information technology-
zoned block commands (ZBC). draft standard t10/bsr INCITS 550,
american national standards institute, inc. http://www.t10.org/
drafts.htm, 2017.

[20] INCITS T13 TECHNICAL COMMITTEE. Zoned-device ata command
set (ZAC) working draft.

[21] JAGADISH, H., NARAYAN, P., SESHADRI, S., SUDARSHAN, S.,
AND KANNEGANTI, R. Incremental organization for data recording
and warehousing. In VLDB (1997), vol. 97, pp. 16–25.

[22] JIN, C., XI, W.-Y., CHING, Z.-Y., HUO, F., AND LIM, C.-T. HiSM-
Rfs: A high performance file system for shingled storage array. In Pro-
ceedings of the 2014 IEEE 30th Symposium on MSST (2014), IEEE,
pp. 1–6.

[23] KADEKODI, S., PIMPALE, S., AND GIBSON, G. A. Caveat-Scriptor:
Write anywhere shingled disks. In 7th USENIX Workshop on HotStor-
age (2015).

[24] KAI, R., QING, Z., JOY, A., AND GARTH, G. SlimDB—a space-
efficient key-value storage engine for semi-sorted data. Proceedings
of the VLDB Endowment 10, 13 (2017).

[25] KANNAN, S., BHAT, N., GAVRILOVSKA, A., ARPACI-DUSSEAU,
A., AND ARPACI-DUSSEAU, R. Redesigning lsms for nonvolatile
memory with novelsm. In USENIX Annual Technical Conference
(2018), pp. 993–1005.

[26] KIM, T., HAHN, S. S., LEE, S., HWANG, J., LEE, J., AND KIM,
J. Pcstream: Automatic stream allocation using program contexts. In
10th USENIX Workshop on HotStorage (2018).

[27] KU, S. C.-Y., AND MORGAN, S. P. An smr-aware append-only file
system. In Storage Developer Conference (2015).

[28] LAKSHMAN, A., AND MALIK, P. Cassandra: A decentralized struc-
tured storage system. In The 3rd ACM SIGOPS International Work-
shop on Large Scale Distributed Systems and Middleware (2009).

[29] LANYUE, L., SANKARANARAYANA, P. T., C, A.-D. A., AND H,
A.-D. R. WiscKey: separating keys from values in ssd-conscious s-
torage. In 14th USENIX Conference on File and Storage Technologies
(FAST 16) (2016), pp. 133–148.

[30] LEE, S., LIU, M., JUN, S. W., XU, S., KIM, J., AND ARVIND, A.
Application-managed flash. In 14th USENIX Conference on File and
Storage Technologies (FAST 16) (2016), pp. 339–353.

[31] LUO, Q., AND ZHANG, L. Implement object storage with smr based
key-value store. In Storage Developer Conference (2015).

[32] MACKO, P., GE, X., KELLEY, J., SLIK, D., ET AL. SMORE: A cold
data object store for smr drives. In Proceedings of the 2017 IEEE 33th
Symposium on MSST (2017).

[33] MANZANARES, A., WATKINS, N., GUYOT, C., LEMOAL, D.,
MALTZAHN, C., AND BANDIC, Z. ZEA, a data management ap-
proach for smr. In 8th USENIX Workshop on HotStorage (2016).

[34] MARIA, B. O., DIEGO, D., RACHID, G., WILLY, Z., HUAPENG,
Y., AASHRAY, A., KARAN, G., AND PAVAN, K. TRIAD: creating
synergies between memory, disk and log in log structured key-value
stores. In USENIX Annual Technical Conference (2017).

[35] MARMOL, L., SUNDARARAMAN, S., TALAGALA, N., RANGASWA-
MI, R., DEVENDRAPPA, S., RAMSUNDAR, B., AND GANESAN, S.
NVMKV: A scalable and lightweight flash aware key-value store. In
6th USENIX Workshop on HotStorage (2014).

[36] MARTIN, M., TIM, H., KRSTE, A., AND JOHN, K. Trash day: Coor-
dinating garbage collection in distributed systems. In HotOS (2015).

[37] ONEIL, P., CHENG, E., GAWLICK, D., AND ONEIL, E. The log-
structured merge-tree (lsm-tree). Acta Informatica 33, 4 (1996), 351–
385.

[38] PITCHUMANI, R., HUGHES, J., AND MILLER, E. L. SMRDB: key-
value data store for shingled magnetic recording disks. In Proceedings
of the 8th ACM International Systems and Storage Conference (2015).

[39] RAJU, P., KADEKODI, R., CHIDAMBARAM, V., AND ABRAHAM, I.
Pebblesdb: Building key-value stores using fragmented log-structured
merge trees. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP) (2017), ACM, pp. 497–514.

[40] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and im-
plementation of a log-structured file system. ACM Transactions on
Computer Systems (TOCS) 10, 1 (1992), 26–52.

[41] SEAGATE. The seagate kinetic open storage vision. https:

//www.seagate.com/tech-insights/kinetic-vision-how-
seagate-new-developer-tools-meets-the-needs-of-

cloud-storage-platforms-master-ti/.

[42] SEAGATE. Archive hdds from seagate. http://www.seagate.com/
www-content/product-content/hdd-fam/seagate-

archive-hdd/en-us/docs/100757960a.pdf, 2014.

[43] SEARS, R., AND RAMAKRISHNAN, R. bLSM: A general purpose
log structured merge tree. In Proceedings of the 2012 ACM SIG-
MOD International Conference on Management of Data (SIGMOD
12) (2012).

[44] SHETTY, P., SPILLANE, R. P., MALPANI, R., ANDREWS, B.,
SEYSTER, J., AND ZADOK, E. Building workload-independent stor-
age with VT-trees. In 11th USENIX Conference on File and Storage
Technologies (FAST 13) (2013), pp. 17–30.

[45] WU, F., YANG, M.-C., FAN, Z., ZHANG, B., GE, X., AND H.C.DU,
D. Evaluating host aware smr drives. In 8th USENIX Workshop on
HotStorage (2016).

[46] WU, X., XU, Y., SHAO, Z., AND JIANG, S. LSM-trie: An lsm-tree-
based ultra-large key- value store for small data. In USENIX Annual
Technical Conference (2015).

[47] YAO, T., TAN, Z., WAN, J., HUANG, P., ZHANG, Y., XIE, C., AND
HE, X. A set-aware key-value store on shingled magnetic recording
drives with dynamic band. In 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS) (2018), IEEE, pp. 306–
315.

[48] YAO, T., WAN, J., HUANG, P., HE, X., GUI, Q., WU, F., AND
XIE, C. A light-weight compaction tree to reduce i/o amplification
toward efficient key-value stores. In Proceedings of the 2017 IEEE
33th Symposium on MSST (2017).

