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ABSTRACT

We present a portable and highly-scalable framework that targets
problems in the astrophysics and numerical relativity communities.
This framework combines together the parallel DENDRO octree with
wavelet adaptive multiresolution and an automatic code-generation
physics module to solve the Einstein equations of general relativity
in the BSSNOK formulation. The goal of this work is to perform
advanced, massively parallel numerical simulations of binary black
hole and neutron star mergers, including Intermediate Mass Ratio
Inspirals (IMRIs) of binary black holes with mass ratios on the
order of 100:1. These studies will be used to study waveforms for
use in LIGO data analysis and to calibrate approximate methods
for generating gravitational waveforms. The key contribution of
this work is the development of automatic code generators for
computational relativity supporting SIMD vectorization, OpenMP,
and CUDA combined with efficient distributed memory adaptive
data-structures. These have enabled the development of efficient
codes that demonstrate excellent weak scalability up to 131K cores
on ORNL’s Titan for binary mergers for mass ratios up to 100.
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1 INTRODUCTION

We present a portable and highly-scalable algorithm and framework
that targets problems in the astrophysics and numerical relativity
communities. The key challenges in developing such codes are re-
lated to the complexity of the underlying equations with a need
to solve partial differential equations for dynamic, curved space-
times, the need for extreme scales across the domain and extreme
refinement at the location of black holes, and the need to perform
extremely long simulations (in terms of the number of timesteps).
These translate to the need for a simple interface to encode the
mathematical formulations, large-scale parallelism to handle the ex-
treme scale, highly localized refinement or adaptivity and extreme
performance and scalability on modern heterogeneous architec-
tures. This work addresses and demonstrates all these qualities in
our state-of-the-art computational relativity framework DENDRO-
GR for the simulation of gravitational waves resulting from binary
black hole mergers.

In 2015, shortly after beginning its first observing run, the Laser
Interferometer Gravitational-Wave Observatory (LIGO) [1, 70] made
the first direct detection of gravitational waves from the merger
of two black holes [5]. Since that time, gravitational waves from
ten other binary black hole mergers [4, 6, 9, 10] have been detected
by LIGO and the European Virgo detectors [2, 12]. In August 2017,
LIGO/Virgo detected gravitational waves from the merger of a neu-
tron star binary [3]. This latter detection was particularly exciting
because of electromagnetic radiation from the resulting gamma-ray
burst was detected by the Fermi Gamma-Ray Burst Monitor [34],
INTEGRAL [67], and several other observatories [8]. The combi-
nation of gravitational and electromagnetic observations of binary
mergers are giving new insight into the physics of black holes (BH)
and neutron stars (NS) [7, 11, 13].

Gravitational waves carry the imprint of their origins in the
complicated pattern of their waveform. The information therein
can be extracted through a careful comparison of the gravitational
wave signal with a library of possible waveforms constructed us-
ing approximate methods and results from numerical simulations.
Waveform information from numerical relativity is particularly
important for certain black hole binary configurations, including
black hole binaries with arbitrary spin configurations [19], orbital
eccentricity, and dissimilar masses [36, 44]. With regard to the lat-
ter case—referring to the the mass ratio of a binary as g = m;/my,
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Figure 1: This figure illustrates the calculation of a single Runge-Kutta (RK) time step, computing the solution at the advanced
time, up 1, from data at the previous time step, u,. For computational efficiency, spatial and time derivatives are evaluated on
equispaced blocks (unzipped); a sparse grid constructed from wavelet coefficients is used for communication and to store the
final solution (zipped). For each RK stage s we perform the unzip operation which results in a sequence of blocks which are
used to compute the solution on the internal block (), using the padding values at the block boundary ( ) followed by a zip
operation in between RK stages while the final update (i.e. next time step) performed using the zip version of the variables.
All application code at the block level is autogenerated and currently supports SIMD vectorization, OpenMP and CUDA.

where m; is the mass of the larger BH-nearly equal mass (g ~ 1)
BH binaries have been extensively studied in recent years [49, 72].
Codes developed for these binaries are accurate and well tuned,
so the problem is well-understood and numerical results are confi-
dently used in the LIGO data-analysis pipeline. However, configura-
tions with larger q remain mostly beyond the capabilities of current
techniques in numerical relativity.

The size of the smaller black hole adds an extra length-scale to
the problem, compared to the g ~ 1 case. The need to resolve this
scale, together with the large range of other important length scales
for the binary system, make this a very challenging computational
problem. It requires a highly adaptive and efficient computational
algorithm tuned to binaries in this region of parameter space. The
small spatial scale also requires an equally small time step, requir-
ing an increasing number of simulation steps as q¢ becomes larger.
This necessitates the need for highly efficient codes on modern
supercomputers that are increasingly heterogeneous in nature. The
central goal of our effort is to create a general purpose code to study the
evolution of spacetimes with black holes or neutron stars, including
black hole binaries with ¢ ~ 100. Here we present our portable,
highly-scalable, extensible, and easy-to-use framework for general
relativity (GR) simulations that will be forward-compatible with
next-generation heterogeneous clusters.

We build on our octree-based adaptive mesh refinement (AMR)
framework DENDRO[27]to support the Wavelet Adaptive Multireso-
lution Representation (WAMR) [29, 60, 61]. The fast wavelet trans-
form can be used to create a sparse representation of functions
that retains sharp features and an a priori error bound. We use an
efficient block-decomposition of the distributed octree to produce a
collection of overlapping regular grids (at different levels of refine-
ment) §3.3.1. The block decomposition decouples the distributed
memory parallelism using MPI from the heterogeneity that can

exist within each node. We assume that at the finest level each
node will have at least 1 complete block, although it is possible
to specify the size of the largest block. The Einstein equations of
general relativity describe the spacetime geometry and, expressed
in terms of the BSSNOK formulation [54, 69], there are 24 degrees
of freedom at each spatial location. Given their complexity and
a desire for portable code, we auto-generate the core computa-
tional kernels automatically from the equations written in symbolic
Python (SymPy [43]) (§3.4). The auto-generated code is applied at
the block-level and is therefore very efficient and addresses the
issue of portability and heterogeneity within the node. Our code
generation currently supports vectorization (avx, avx2), OpenMP
and CUDA. The equations are integrated in time using the method
of lines with a third-order Runge-Kutta (RK) integrator. The high-
level overview of our approach is illustrated in Figure 1.

The key contributions of this work include:

Wavelet Adaptive GR. This project builds on the DENDRO AMR li-
brary and GR software packages (for uniform block grids) that have
been developed in our group, with the addition of Wavelet Adaptive
Multiresolution (WAMR). This is the first highly adaptive computa-
tional fully relativistic—i.e., including the full Einstein equations—
code with an arbitrary localized adaptive mesh. Such fine-grained
adaptivity makes it harder to achieve high-performance on hetero-
geneous architectures and reduces code portability. This motivates
the main contribution of this work.

Automatic code-generation. Given the complexity of the Ein-
stein equations, we have developed an automatic code genera-
tion framework for GR using SymPy that automatically generates
architecture-optimized codes. This greatly improves code porta-
bility, use by domain scientists and the ability to add additional
constraints and checks to validate the code. The auto-generated
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code only needs to support shared memory parallelism, since the
distributed memory parallelism is handled by DENDRO. We demon-
strate generators for vectorization, OpenMP and CUDA as well as
an asynchronous operation with work divided across CPU and GPU
cores, along with overlapped communication with computation.
Implementation DENDRO is implemented in C++ using MPI ex-
cept for the automatic code generation framework which is imple-
mented using SymPy. We provide code generators for C++ including
shared memory parallelization using OpenMP and vectorization
avx, avx2 and CUDA. We expect to release our code on Github
under the MIT license upon acceptance.

The rest of the paper is organized as follows. In §2 we summa-
rize the motivating application and review related work. In §3, we
provide details about our computational relativity framework fo-
cusing on the specific contributions of this work. In §4 we provide
experimental results demonstrating the efficacy of our methods
and the scalability and portability of our code. Finally, we conclude
with directions for future research in §5.

2 BACKGROUND

In this section, we discuss the motivating applications and sum-
marize the most relevant work of other groups in this area. As
gravitational waves pass through the Earth, their effect on matter
is extremely small. LIGO searches for gravitational waves by using
laser interferometry to detect changes in the relative position of the
mirrors, to a precision of four orders of magnitude smaller than an
atomic nucleus. The gravitational wave signals in the detector are
often smaller in magnitude than noise from other sources, but the
signals can be extracted using matched filtering [66], which uses
a library of hundreds of candidate waveforms that are convolved
with the data to search for matches. Including complete numerical
waveforms in the waveform library is important to maximize the
detection rate of LIGO-class detectors [71].

The Einstein equations of general relativity describe how the
geometry of spacetime curves in response to the presence and mo-
tion of matter and energy. The Einstein equations contain both
hyperbolic evolution equations and elliptic constraint equations.
Commonly, the hyperbolic equations are solved while the elliptic
equations are used to monitor the quality of the solution [14, 68].
While the equations can be formulated in many different ways, a
few formulations are well adapted for numerical work. One such
formulation is the BSSNOK formulation [20]. The BSSNOK evolu-
tion equations are a set of strongly hyperbolic [65] coupled PDEs
that are first-order in time and second-order in space.

Several computer codes have been developed to solve the Ein-
stein equations for binary BH and neutron star systems. One of the
oldest open source projects in this community is the Cactus Com-
putational Toolkit [22, 35], that provides a modular infrastructure
for solving time-dependent PDEs in parallel using structured grids.
Modules for specific tasks, known as thorns in Cactus parlance, can
be shared and combined to produce a sophisticated evolution code.
The EinsTEIN TooirkIT (ET) is a suite of community-developed
thorns for relativistic physics [32]. It includes thorns for construct-
ing binary BH initial data, for evolving the Einstein equations and/or
the relativistic fluid equations, and for data analysis. Similar codes
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include [33, 46, 47, 56, 74]. Further, the SXS collaboration has devel-
oped SpEC [73], a spectral code for solving the Einstein equations
that has produced the longest and most-accurate binary waveforms
to date.

The challenge of running on modern massively parallel com-
puters is pushing new developments in numerical relativity. The
use of structured grids with block-based AMR, such as used by
Cactus/ET and similar codes, is not ideal for new massively parallel
architectures. These approaches can lead to inefficient refinement,
especially for g > 1. One new approach for the ET is the SENR
project [51, 64], that uses coordinate systems adapted to the bi-
nary to eliminate the need for AMR. Another approach is to use
discontinuous Galerkin (DG) methods, that requires less communi-
cation between processes. The first three-dimensional ADER-DG
simulations of the Einstein equations were performed by Dumb-
ser et al. [31]. The SXS collaboration is developing the SpPECTRE
code [45, 63] that uses task-based parallelism and DG. Thus far only
results for the relativistic MHD equations have been published. To
the best of our knowledge none of these codes support GPUs due
to the complexity of the equations and the need to autogenerate
the code.

We have chosen to focus on one type of BH binary that is partic-
ularly difficult to study both numerically and with semi-analytical
approximations. These are Intermediate Mass-Ratio Inspiral (IM-
RIs), BH binaries with mass ratios between 50 < g < 1000. The
successful numerical simulation of IMRIs and their predicted gravi-
tational wave signal is difficult because of the larger difference in
the two mass-scales in the problem. Gravitational waves must be
resolvable far from the binary system while the region around both
black holes must also be accurately simulated. Standard approaches
to black hole simulations often include mesh adaptivity by which
necessary resolution is concentrated in dynamic regions.

DENDRO-GR uses unstructured grids based on the wavelet expan-
sion [41, 60, 61, 75, 76], that produces refinement regions adapted
to features in the solution with a minimum number of points. This
is important for problems with fine-scale features that are not spa-
tially localized, or problems with widely disparate scales, such as
IMRIs. Moreover, the numerical methods are based on the conven-
tional finite difference and finite volume methods that have been
widely used and tested (see, Sec. 3.1). This allows previously written
code to be more easily adapted to the DENDRO framework. Given
the scale of our problem, even with adaptivity, massively parallel
computing resources are required.

A key reason to develop scalable codes is that as the relative
difference in masses becomes larger (~ 100x), the computational
requirements will grow significantly, potentially requiring exascale
resources. A simple calculation illustrates how spatial resolution
requirements increase with ¢. A convenient measure for the size of
a black hole is the radius of its event horizon, which is proportional
to its mass. In a black hole binary, the mass of the smallest black hole
effectively sets the minimum length scale for the simulation. The
total mass of the binary M = m; + my is a global scaling parameter
and is typically fixed to a constant value. Then the mass of the
smaller black hole can be written my = M/(q + 1), showing that the
minimum resolution scale for the binary is inversely proportional
to the mass ratio. Thus, in three spatial dimensions the number of
points required to resolve the smallest black hole grows as ¢°. This
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Figure 2: The above figure depicts underlying wavelet adaptive octree grid structure at time ¢ for binary black hole simulations

of mass ratios of 10 (left) & 1 (right) performed by DENDRO-GR .

presents both a challenging problem in computational relativity as
well as a challenge for high-performance computing. Additionally,
since most modern HPC machines are heterogeneous, and rely on
GPUs for a significant portion of their computational capability,
support for such platforms is important. The successful scaling
of our heterogeneous, adaptive, GR code is the first step in this
direction.

3 METHODOLOGY

Research in relativistic astrophysics requires specialized computa-
tional models for gravitational, plasma, and nuclear physics. The
massively parallel infrastructure that we propose is compatible
with the standard finite difference or finite volume discretizations
that are currently used in these communities. We solve the BSS-
NOK equations using conventional finite-difference discretizations,
standard gauges, and puncture initial data (see § 3.1). We also gen-
erate C++ code automatically for CPUs-OpenMP parallel with
vectorization—and for Nvidia GPUs using CUDA. While this pa-
per focuses on the vacuum Einstein equations, we are currently
working to add modules for the relativistic MHD equations, nuclear
equations of state, and neutrino leakage. In §3.1-3.3, we briefly give
an overview of the overall computational framework and then focus
on the methods that are specific to this work.

3.1 Numerical Methods

There is extensive literature on solving the BSSNOK equations in
general relativity, and some general reviews include [14, 62, 68]. In
this section, we briefly outline our particular choices for solving
these equations. We write the BSSNOK equations in terms of the
conformal factor y [23]. We use the parameterization of the “1+log”
slicing condition and the T'-driver shift used in [56]. Spatial deriva-
tives are calculated using finite difference operators that are O(h?)
in the grid spacing, h, with upwind derivatives for Lie derivative
terms [78]. We calculate derivatives for the Ricci tensor and enforce
the algebraic constraints as described in [21]. Outgoing radiative
boundary conditions are applied to each BSSNOK function. The
BSSNOK equations are integrated in time using an explicit Runge-
Kutta (RK) scheme. The solution at each point is integrated with a
single global time step that is set by the smallest grid spacing and
the Courant condition [26]. The tests in this paper were done using

third order RK with Courant factor A = 0.1. Kreiss-Oliger dissipa-
tion is added [14, 48] to the solution to eliminate high-frequency
noise that can be generated near the black hole singularities.

3.2 Wavelet Adaptive Multiresolution

WAMR uses a basis of interpolating wavelets to create a sparse,
unstructured grid that naturally adapts to the features of the so-
lution [29, 60, 61]. This grid adaptivity is realized by expanding
functions using the fast wavelet transform [41], and thresholding
the solution to create a sparse representation that retains small-scale
features [30]. Wavelet basis functions are localized both spatially
and with respect to scale. In comparison, spectral bases are infin-
itely differentiable, but have global support; basis functions used
in finite difference or finite element methods have small compact
support, but poor continuity properties. As an example, in Figure 2
we show a binary black hole spacetime generated with WAMR
using DENDRO-GR.

3.3 Adaptivity & Distributed Memory
Parallelism

We build on our octree-based adaptive meshing framework DEN-
DRO[27] DENDRO is a scalable distributed memory library written
in C++ using MPI. DENDRO supports generating 2:1 balanced octrees,
i.e., octrees where neighbouring octants differ in size by at most a
factor of two. We have extended this work to support high-order
finite differencing and finite volume computations as well as higher
order finite element computations. Finite difference computations
on adaptive grids are achieved via an unzip operation that decom-
poses the distributed octree into a set of small, node-local structured
data blocks. These blocks are then processed and restored to the
distributed data-structure using a zip operation. This decouples
the distributed memory parallelism that deals with the octree data-
structures and performs data-exchange in the compressed format.
The node-local computations are performed on the structured data
blocks, making it easier to ensure portability of the code.

3.3.1 Zip - Unzip. The main objective of the unzip and zip oper-
ations is to enable stencil computations on a given adaptive grid.
The distributed octree can be decomposed into a set of regular
grid blocks of different sizes—basically a set of octants that are
all at the same level of refinement. Due to the memory allocation
and performance, we enforce block sizes to be powers of two. In
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order to perform stencil operations on these blocks, we need in-
formation from neighboring blocks, similar to how we need ghost
layers in the distributed case. In the context of blocks, we refer
to this layer as the padding. During meshing, we compute and
save the octree-to-block decomposition, i.e., in which octants are
grouped together as a block. The computation of octree-to-block de-
composition primarily involves a top-down traversal over the local
octants, and stopping when all elements in the block are at the same
level. The block membership of elements is stored and used during
the zip and unzip operations. All simulation variables are stored
in their most compact or zipped representation, i.e., without any
duplication. During the unzip operation, we convert the zipped rep-
resentation to the block representation with padding, the unzipped
representation. This involves copying the data within the block, and
copying-potentially with interpolation-from neighboring octants.
All block internal nodes are non-hanging by construction and can
be directly copied. Nodes on the block boundary and padding might
be hanging hence might need to be interpolated during the copy.
The 2:1 balance condition guarantees that at most a single interpo-
lation is performed for any given octant. In our implementation,
we overlap the communication of ghost nodes with unzip, which
improves the scalability of our approach. The stencil and other
update operations are only performed on the block as the padding
is read-only. At the end of the update, the simulation variables are
zipped back, i.e., injected back to the zipped representation. This
step does not involve any interpolations or communication and is
very fast. Note that several key operations such as RK update &
inter-process communications operate using the zip representation,
and are extremely efficient.

3.4 Symbolic interface

The Einstein equations are a set of non-linear, coupled, par-
tial differential equations. On discretization, one can end up with
24 or more equations with thousands of terms. Writing, optimiz-
ing and maintaining code for this is very challenging. Sustain-
ability and keeping it relevant for new architectural changes are
additional difficulties. To address these issues, we have developed
a symbolic interface to DENDRrO. We leverage symbolic python
(SymPy) as the backend for this along with the python package cog
to embed python code within our application-level C++ code. The
Dendro_sym package allows us to write the discretized versions
of the equations similar to how they are written mathematically
and enable improved usability for non-computational scientists.
Dendro_sym provides several functions supporting curved geome-
tries, including computing Lie derivatives, Christoffel symbols, the
Ricci tensor etc. This greatly simplifies programming computational
relativity formulations in curved spacetime. An example for the
BSSNOK equations are shown in Figure 3, with the equations on
the left and the corresponding python code on the right.

3.5 Code Generation

There are several advantages to using a symbolic interface like
Dendro_sym for the application-specific equations. First, it greatly
improves the sustainability of the code by separating the high-
level description of the equations from the low-level optimizations,
which can be handled by architecture-specific code generators.
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Note that, there are several significant attempts such as Kranc[42]
and NRPy [64] on symbolic code generation for computational
relativity due to the complexity of the BSSNOK equations. Our
model of using structured blocks at the node-level and separation
from distributed memory parallelism makes it easy to support ad-
ditional architectures. We currently support avx, avx2, OpenMP
and CUDA code-generators. Since these are applied at a block level,
it is straightforward to schedule these blocks across cores or GPUs.
Note that the auto-generated code consists of several derivative
terms that are spatially dependent as well as other point-wise up-
date operations. We perform common subexpression elimination
(CSE) [25] to minimize the number of operations (see Figure 4).
Additionally, we auto-vectorize the pointwise operations and have
specialized implementations based on the stencil-structure for the
derivative terms. We now describe the strategy for each of the
currently supported generators.

3.5.1 Custom Functions: Derivative Computations. Compared to Eu-
clidean space computations, GR computations can be complicated
due to the number of variables and curvature tensors involved. Eval-
uating the BSSNOK equations on a single grid point requires 282
derivative computations on different variables. The derivative com-
putations are incorporated into the symbolic framework through
the use of custom functions. Currently, for the GR equations in vac-
uum, we have grad, grad2, adv and kograd where these functions
represent first derivative (in direction i, 5 point stencil), second
derivative (in direction ij, 25 point stencil), upwind/downwind (in
direction i, which is used to evaluate £ 57 point stencil) and Kriess-
Oliger dissipation operators (on direction i, 7 point stencil). The
approach taken towards the computing and storage of derivative
stencils must be optimized to exploit the memory hierarchies on
different architectures.

3.5.2  SIMD vectorization. The RHS computation consists of two
distinct data-access patterns, derivative computations that are stan-
dard stencil computations and depend on spatial locality, and the
RHS expressions that use the derivatives and the evolved variables
in a pointwise fashion. The focus of this work is on the second
part, and we use hand-tuned vector code for all stencil operations.
Several efficient packages exist [24, 38, 39] for vectorizing stencil
codes, and can be easily incorporated within our framework. While
our code-generation framework is capable of generating stencil
codes, our focus in this work is to automatically vectorize the RHS
expressions. Since these are applied in a pointwise fashion, it is
straightforward to generate the vectorized load and stream/store
commands given the length of the SIMD register and the dimen-
sions of the datablock. The complexity for the generation is related
to the depth of several of the expression tree and the number of
dependencies that a given expression might have. The expression
tree is analyzed and pattern matching is used to generate corre-
sponding intrinsic code. Currently the following transformations
are performed,

e Replace conditional statements with algebraic expressions.
This is needed for advective derivatives with upwinding
where the stencils are dependent on the sign of another vari-
able. We use the vectorized compare functions (e.g. _mm256_



ICS ’19, June 26-28, 2019, Phoenix, AZ, USA

Milinda Fernando, David Neilsen, Eric W. Hirschmann, and Hari Sundar

Ora = Lpga-2aKk,
Gl = DB B+ (@B
&B' = 8, —nB' + 1387 8;B' — 147 9,
Orvij = Lpiij—22A
dix = Lpx+ix(aK-0up)
d:Ai; = LpAij+x(-DiDja+aRy) T+
a (KAy - 24, 4K),
8K = pFoLK-D'Dija+
a (Aiinj + %Kz),
ot = oo p+ %f"fajakﬁ" +p ;T -
ﬁ@m+§ﬁ@ﬁh4AU@a+
2a (r"ijkAfk 16418 - gyifajK

from dendro_sym import =*
a_rhs = dendro.Lie(b, a) - 2*a*K

b_rhs = [3/4 = f(a) * B[i] +
12%xvec_j_del_j(b, b[i]) for i in e_i]

B_rhs = [Gt_rhs[i] - eta * B[i] +
13 * vec_j_del_j(b, B[il) -

14 * vec_j_del_j(b, Gt[il)

for i in e_i]

gt_rhs = dendro.Lie(b, gt) - 2*a*At

chi_rhs = dendro.Lie(b, chi) +
2/3%chix(a*K - del_j(b))

At_rhs = dendro.Lie(b, At) + chi =*
dendro.TF(-DiDj(a) + a*dendro.Ricci) +
ax(KxAt -2xAt_ikAtKj)

K_rhs = vec_k_del_k(K) - DIDi(a) +
ax(1/3*KxK + A_ij_A_IJ(At))

Figure 3: The left panel shows the BSSNOK formulation of the Einstein equations. These are tensor equations, with indices
i,j,...taking the values 1, 2, 3. On the right we show the Dendro_sym code for these equations. Dendro_sym uses SymPy and other
tools to generate optimized C++ code to evaluate the equations. Note that Lg, D, 0 denote Lie derivative, covariant derivative

and partial derivative respectively, and we have excluded 9;I"} from Dendro_sym to save space. (See [14, 20] for more information

about the equations and the differential operators.)

Figure 4: Computational graph for d;« generated after Com-
mon Sub-expression Elimination (CSE) for the entire BSS-
NOK system of equations. Note that the prefix, Dendro_, de-
notes sub-expressions frequently used for evaluation of the
BSSNOK equations. Simpler equations, such as 0;a, result
in smaller graphs while complex equations which involve
the extrinsic curvature tensor (K;;) can result in larger, more
complicated graphs with as many as 250 — 350 vertices. Dur-
ing the code generation phase, CSE is mainly utilized for re-
ducing the number of FLOP needed for BSSNOK evaluation.

cmp_pd ) to convert the comparison into a vectorized vari-
ables with 1s and 0s, and solve an equation in 2 variables to
get the corresponding vectorized expression.

Replace functions with specialized implementations if avail-
able. These are cases where hand-written codes are available,
such as the derivative functions.

Replace integer powers by repeated multiplications. Our ex-

pressions contain a large number of integer powers, that

within SymPy get generated using the pow function. We pre-
process to replace these using multiplications and divisions

(for negative powers).

SymPy MUL and ADD operators support multiple arguments,

whereas the intrinsics only support two at a time, so we split

these expressions in a binary tree fashion.

e We perform a number of simplifications involving SymPy
MUL/DIV and MUL by —1 followed by ADD in lieu of subtrac-
tion. Since subtraction intrinsics are available, these patterns
are identified from the SymPy expression and converted to
subtraction intrinsics.

e Convert ab + ¢ into Fused-Multiply-Add (FMA(a, b, c)). Sim-

ilarly for subtraction.

3.5.3 OpenMP. We use a simple strategy for OpenMP paralleliza-
tion. Since in the typical use case, the number of data-blocks per
node is much larger than the number of available threads, these
blocks are scheduled across the threads using omp parallel for
with dynamic scheduling with a chunk size of 1. It is easy to change
this parallelization strategy for cases where we have a larger num-
ber of cores. In such cases, the OpenMP parallelization is pushed
one level deeper into the outmost loop of the block computation.

3.54 CUDA. Due to the limited shared memory available in GPUs,
generating GPU specific code is more involved compared to CPU
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code generation. The complete input and output variables (24 X
2) do not fit in the GPU shared memory even for the smallest
block size of 113. GPU shared memory management is an active
research area in the field, and there are significant attempts [40, 52]
at stencil code generation for GPU architectures. Performing stencil
computations while keeping the data on the GPU global memory
is highly inefficient, therefore we use sub blocks of size m>, where
m depends on the GPU architecture. GPU code is generated using
patterns such that load (global to shared memory), compute and
store (shared to global memory) aims to minimize the number of
global memory accesses. For example once a variable is loaded from
global to shared memory (say «), all the required derivatives are
computed (0xa, aya, 0, ), avoiding the need to load « again for
stencil computations.

Stencil operations : For a given symbolic variable that needs to
be evolved, Dendro_sym evaluates the SymPy expression tree and
computes its dependence on derivative terms (i.e. stencils applied
to input variables). In order to maximize the data reuse, we per-
form load operations from global memory to shared memory for
a specific tile (Tr,), compute all the derivatives required by apply-
ing high-order stencils in shared memory and subsequently store
the computed stencil from shared memory to global memory. For
example, consider the BSSNOK variable a. After the load opera-
tion all the derivatives grad_i, agrad_i, kograd_i and grad_ij
for i,j € {1, 2,3} are computed (see Figure 5). Note that in order to
evaluate the BSSNOK formulation at a single grid point, we need
to perform 282 stencil operations. In order to reduce the global
memory footprint by derivative variables, we use a reusable deriva-
tive workspace where the size of the workspace is bounded by the
maximum data block size and the number of SM units in the GPU.

BSSNOK evaluation: Once all the derivatives are computed,
we can proceed to evaluate the BSSNOK equations at each grid
point. Note that due to the limited shared memory it is not feasi-
ble to compute all the BSSNOK equations at once. Therefore we
compute each BSSNOK equation separately in a staged manner.
The dependencies and therefore the memory footprint for each
variable is different and the code-generator automatically generates
appropriately tiled code based on the architectural parameters. An
outline of the CUDA code for the evaluation of BSSNOK equation
is provided in the algorithm 1 to illustrate the overall structure of
the generated CUDA code.

Algorithm 1 GPU kernel for BSSNOK evaluation

1: D « malloc()

2: for dow € SymVarDerivs

3 __shared V1 « loadG2S(w)

4 __shared V2 « apply_stencil(V1)
5 storeS2G(V2, D[w])

6: for w € SymEqus do

7: for v, Dv € Dependencies(w) do
8-

9

0

1

> allocate memory for derivatives

> variable (v) & derivative(Dv)
__shared V; « loadG2S(v)
__shared V; « loadG2S(Dv)

w_rhs « compute(w)

storeS2G(w_rhs)

> shared mem. computation

3.6 Parallelizing across CPU and GPUs

The automatic code generation is also setup to perform computa-
tions in a true heterogeneous manner. During meshing, while the
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Figure 5: An example of load, compute and store for deriva-
tive computation for BSSNOK variable a. Depending on the
GPU architecture, specific sub-block size is determined dur-
ing code generation. The number of iterations required to
process the entire data block will depend on the computed
tile size. Note that for simplicity, in the figure only dx and
0y computation is shown, but during actual code generation
the derivatives required for each variable are determined
and computed after a single load operation and executing
a store operation for each derivative that has computed.

octree-to-block decomposition is computed (§3.3.1) we also tag the
blocks as being on the inter-process boundary or being internal.
The CPU initiates asynchronous transfer of data in the ghost re-
gion (via MPI). Simultaneously, it initiates a data transfer stream to
transfer the interior blocks to the GPU followed by an additional
stream to compute the RHS. The GPU then transfers the computed
RHS update variables back to the CPU. By the use of streams, we
get very good overlap of data-transfer with computation. Once the
ghost layer is obtained, we have two options. Firstly, the CPU can
process while the GPU processes the interior blocks. Alternatively,
if the compute capabilities are heavily in favor of the GPU, then it
is possible to transfer the boundary blocks to the GPU as well at
this stage. The second strategy is illustrated in Figure 6.

3.7 Putting it all together

Algorithm 2 Overview of our approach

1: M « initialize mesh
2: u « initialize variables (M)
3: while t < T do

4 forr =1:3do > Runge-Kutta stages
5: B, &t « Unzip(M, u) > §3.3.1
6: for b € B do
7: Compute derivatives > Machine generated code §3.4
8 Compute U, ps(b) > Machine generated code §3.4
9: Urps < Zip(M, B, G, ps) > §3.3.1
10: RK update
11: t— t+dt
12: if need remesh M then
13: M’ « remesh(M)
14: u’ « Intergid_Transfer(M, M’, u)

We use a 3% order Runge-Kutta time stepper, to perform time
evolution. A given RK stage is computed by performing unzip opera-
tions with overlapped exchange of the ghost layer for the evolution
variables, computation of the derivatives and right-hand-side (rhs)
(using the code generated by the symbolic framework) for all local
blocks and finally performing a zip operation to get the computed
zipped rhs variables. The RK update is then performed on the zipped
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Figure 6: Illustration of the overlapped data-exchanges with computation. On the left a sub-domain assigned to a single node
is illustrated, along with the ghost region in red. The subdomain is separated into boundary and interior data blocks. The
CPU initiates ghost-layer data exchange with other nodes via MPI and simultaneously initiates a stream for asynchronous
data transfer of the interior blocks to the GPU. The GPU starts processing the data blocks as they arrive in an asynchronous
manner and transfers the results back to the CPU. On completion of the ghost exchange, the CPU processes the boundary
blocks. In this figure, the data-exchange blocks are outlined in blue and the computation blocks in magenta.
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Figure 7: Performance on different autogenerated codes on a
single node of Titan. We evaluated a normal distribution of
blocks levels with increasing grain sizes. The GPU on Titan
is the Nvidia K20.

variables. A complete outline of our approach for simulating binary
BH mergers demonstrating how the various components come
together is listed in Algorithm 2 and illustrated in Figure 1.

4 RESULTS

Experimental Setup: The large scalability experiments reported
in this paper were performed on Titan. Titan is a Cray XK7 super-
computer at Oak Ridge National Laboratory (ORNL) with a total of
18,688 nodes, each consisting of a single 16-core AMD Opteron 6200
series processor Nvidia Kepler graphics processing units (GPUs),
with a total of CPU 299,008 cores. Each node has 32GB of memory.
It has a Gemini interconnect and 600TB of memory across all nodes.

To evaluate single node performance we use the A1 & B1 clusters
at our local university supercomputing facility. A1 has 385 total
nodes (8292 cores), with the nodes having 16, 20, 24, 28, or 32 cores
each, and memory between 32GB and 1TB each. A1 also includes 4
Nvidia Pascal 100 GPUs. B1 consists of 15 dual socket nodes with
32 cores each and has 3 Nvidia Volta 100 GPUs.
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b
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Figure 8: Performance on different autogenerated codes on
a single node of A1. We evaluated a normal distribution of
blocks levels with increasing grain sizes. The GPU on A1 is
the Nvidia P100.
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Figure 9: Performance on different autogenerated codes on
a single node of B1. We evaluated a normal distribution of
blocks levels with increasing grain sizes. The GPU on B1 is
the Nvidia V100.

4.1 Correctness of code

HAD vs. DENDRO-GR: HAD [37] is a computational framework
for distributed block-adaptive mesh refinement that has been used
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in numerical relativity to study binary mergers of black holes [55,
57-59], and neutron stars [15-18, 50, 56]. To ensure the correctness
of the Sympy based code generation, we evaluate the BSSNOK equa-
tions using HAD and the DENDRO-GR CPU and GPU codes using
smooth, non-zero initial data for all functions (“fake initial data”).
Differences in the evaluation of the equations on a uniform grid
after a single computation of the BSSNOK equations between the
codes are shown in Table 1. The evolution equations for ;A;; are
the most complicated equations, resulting in higher finite-precision
errors for these variables. Extensive validation of the generated
CPU code can be found in [28]

variable [|fill2 [|H - DcpuHm ||Dcpu - Dgpu”OO
O 1.0 0 3.6 x 10715
Orx 12 1.7 x 10713 1.4x 10714
0K 1.0 2.5x 1071 1.0x 1077
9,11 0.16  4.0x10713 2.0x 1071
8,2 0.16 3.1x10713 1.8 x 10710
9,13 0.16 8.0x 10713 9.2x 10714
B! 0.12 0 3.5x 10718
Or? 0.32 0 4.4%10716
a3 0.12 0 1.1x 10716
9;B! 130 4.5x%x10713 2.0x 1071
d,B? 30 3.4x10713 1.8 x 10710
9;B3 21 8.0x 10713 9.2x 10714
0ri11 1.4 1.1x 10713 2.9%x 10715
0ri12 0.21 1.8x 10714 2.2%x 10715
Ori13 0.44 85x10714 4.4x 10716
Btz 1.4 1.1x 10713 3.0x 10715
Ori3 0.39 2.5x 10714 4.4%x 10716
drjzs 073 43x 1071 1.7x 1071
8: A1 14 1.8x 1071 1.4x 1077
0r A1z 1.8 1.9 x 10712 1.7x 1077
8:A13 19 7.7 % 10712 5.9x 1071
0 Az 12 9.1x 10712 1.7x 1077
0 Ag3 2.8 3.0 x 10712 8.9 x 10714
0 As3 6.7 9.1x 10712 7.0x 1078

Table 1: Differences in evaluating the BSSNOK equations
for test initial data using HAD (H), and the DENDRO-GR
CPU (Dcpy) and GPU (Dgpy) codes. The second column shows
the ||.|[2 norm of the test functions f;, and the remain-
ing columns show the ||.||cc norms of differences. Note, all
numbers are given to two significant figures, and numbers
smaller than machine epsilon are given as 0.

Equal mass binary black holes: The BSSNOK equations con-
sist of 24 coupled PDEs evolved in time, while 4 constraint equations
(i.e. momentum and Hamiltonian constraints) are used to monitor
the quality of the solution. In Figure 10, we present how constraint
norms change until the merger event for a simulation of an equal
mass ratio binary done using DENDRO-GR. The constraint norms
serve as an additional test for the accuracy of the generated code
as well as for the overall computational framework.
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4.2 Single Node Performance

Our code separates parallelism into MPI-based distributed memory
parallelism that is handled by DENDRO and autogenerated node-
local parallelism. In this section we evaluate and demonstrate the
performance of our autogeneration framework on different node
configurations including three generations of Nvidia GPUs (Kepler,
Pascal and Volta). The first experiment was performed on Titan
(Figure 7) where we tested the performance of sequential CPU,
OpenMP and CUDA codes for increasing grain sizes. We are able to
achieve significant speedup from the use of GPUs. Similar speedups
are seen for the P100 (Figure 8) and V100 (Figure 9). In all cases, the
codes were autogenerated simply by specifying the configuration
for each GPU. This corresponds to information about the size of
shared memory, number of SMs, etc. We also note the significant
speedup on B1 using V100 compared to the performance on Titan.
Overall, our code should continue to get good performance on
future generations of GPUs.

4.3 Distributed Memory Scalability

While the autogeneration of architecture specific codes is impor-
tant for portability, for large-scale runs we still rely on distributed
memory parallelism. The distributed memory scalability of Dendro
is excellent and in this section we present results on Titan demon-
strating both strong and weak scalability. In Figure 11, we present
weak scalability from 2 to 8,192 nodes on Titan. We operated with
a grain size of 22.5M per process for a largest problem size of 206
billion unknowns. This experiment corresponds to a binary black
hole system with a mass ratio ¢ = 10, a MAXDEPTH 18 and a wavelet
tolerance of 107°. Note that the unknowns per core show a slight
variation because with WAMR we do not have explicit control over
the grid size and WAMR decides the refinement region on the mesh
based on the how wavelets behave during the time evolution. This
is why we have used a normalized RK with dof /p metrics to report
accurate weak scaling results. As can be seen, the weak scalability
is very stable over a wide range of nodes.

Similarly, in Figure 12 we present strong scalability, again for a
binary black hole system with a mass ratio ¢ = 10, a MAXDEPTH 18
and a wavelet tolerance of 107 for a problem size of 10.5 billion
unknowns from 256 to 4096 nodes on Titan. Again, we are able
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Figure 10: Hamiltonian and Momentum constraint equation norm
variation throughout the equal mass ratio binary compact merger
simulation performed using DENDRO-GR. Note that the highest con-
straint violations occurs at the event of the merger.
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to maintain excellent strong scalability over a large range of dis-
tributed nodes.

B derivatives Bl RHS [ unzip [ communication

0.2 |- |
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time (ms) —
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T > P O AV
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number of nodes —

Figure 11: Weak scaling results in ORNL’s Titan for RK/(dof /p)
(averaged over 10 steps) where RK, dof, and p denote the time for a
single RK step, the number of degrees of freedom, and the number
of cores respectively. We show the derivative computation (deriv),
the right hand side computation (rhs), the unzip cost, the wavelet
computation (wavelets) and the communication cost (comm) as an av-
erage over 1.41M unknowns per core in which the number of cores
ranges from 32 to 131,072 cores on 8,192 nodes and for which the
largest problem has 206 billion unknowns. The above results are
generated with a mass ratio g = 10, a MAXDEPTH 18 and a wavelet
tolerance of 107°. Note that the unknowns per core show a slight
variation because with WAMR we do not have explicit control over
the grid size and WAMR decides the refinement region on the mesh
based on the how wavelets behave during the time evolution. This
is why we have used a normalized RK with dof /p metrics to report
accurate weak scaling results.

4.4 FiINsTEIN TooLKIT vs. DENDRO-GR

The EinsTEIN ToorkiT (ET) [32] is a well-known computational
framework to advance and support research in relativistic astro-
physics and gravitational physics. In this section, we present per-
formance comparison results for ET and DENDRO-GR to perform

B derivatives Bl RHS E unzip [ communication

300 - g

T a0 f B

©

(]

E 100 |- g E .
3 BN & & S

number of nodes —

Figure 12: Strong scaling results in ORNL’s Titan for a single
RK step (averaged over 10 steps) with the derivative computation
(deriv), the right hand side (rhs) computation, the unzip cost and
the communication cost (comm) for a fixed problem size of 10.5B
unknowns where the number of cores ranges from 4,096 to 65,536
cores on 4096 nodes. Note that for strong scaling results re-meshing
is disabled in order to keep the problem size fixed.
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Figure 13: Comparison between DENDRO-GR and ET to perform
256 time steps using RK4 time integration as the simulation progress
in A1 cluster using 112 cores. Note that the number of grid points is
different due to the underlying adaptivity framework utilized be-
tween the two frameworks. ET uses block adaptivity with z-axis
symmetry, while DENDRO-GR uses WAMR where adaptivity is de-
termined based on the wavelets, at the runtime and no symmetry is
assumed.

RK time evolutions of the BSSNOK equations. We have used the
roughly equal mass ratio binary black hole configuration provided
in [77] and used the auto-generated CPU code in DENDRO-GR for
the performance comparison. This particular system has mirror
symmetry about the orbital plane, and ET exploits this symme-
try by evolving only the upper half of the domain, reducing the
computational cost by a factor of two. Systems with more generic
initial data, such as black holes with arbitrary spins or neutron
stars with magnetic fields, do not possess mirror symmetry, and
this simplification cannot be used. DENDRO-GR is designed for these
more general spacetimes, and the current version does not support
imposing mirror symmetry on the solutions.

The comparison results presented in Figure 13 are performed
using 4 nodes (112 cores) on the A1 cluster, for 7K time steps using
RK4 time integration. Note that, due to the minimal grid changes in
ET grid, ET shows a stable runtime, while the runtime in DENDRO-
GR fluctuates with the grid point variation due to the use of WAMR.
For large mass ratio configurations, block adaptive approaches leads
to ineflicient refinement patterns compared to WAMR, hence the
performance gap between DENDRO-GR and ET can be expected to
increase for large mass ratio runs.

5 CONCLUSIONS

In the short time that LIGO and Virgo have been searching for
gravitational waves, we have already learned exciting things about
neutron stars [53], the production of heavy elements (such as gold)
and the population of black holes in the universe. When gravita-
tional wave observations are combined with observations of elec-
tromagnetic radiation—from radio waves to gamma rays—there is
a multiplicative effect that magnifies the scientific impact. This is
the promise of multi-messenger astronomy.

The full scientific impact of multi-messenger astronomy is only
realized when the observations are informed by sophisticated com-
puter models of the underlying astrophysical phenomena. DENDRO
provides the ability to run these models in a scalable way, with
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local adaptivity criteria using WAMR. While AMR codes with block-
adaptivity typically lose performance as the number of adaptive
levels increases, DENDRO achieves impressive scalability on a real
application even with many levels of refinement. The combination
of scalability and adaptivity will allow us to study the gravitational
radiation from IMRIs without simplifying approximations in direct
numerical simulations.

The DENDRO code reported on here, with a module for vacuum
black hole spacetimes, is just the first step in creating a highly adap-
tive computational platform for studying relativistic astrophysics
on the next-generation of supercomputers. This work will be fol-
lowed with additional modules for solving the relativistic magneto-
hydrodynamics equations, nuclear equations of state, and radiation
hydrodynamics. For application developers, a key advantage of
DENDRO is the ability to use conventional numerical methods for
these modules.

As LIGO and Virgo are joined by other gravitational wave detec-
tors and observatories around the world, we expect many exciting
discoveries to come.
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