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a b s t r a c t

The purpose of this note is to prove the existence of a remarkable
structure in an iterated sumset derived from a set P in a Cartesian
square Fn

p ×Fn
p . More precisely, we perform horizontal and vertical

sums and differences on P , that is, operations on the second coordi-
nate when the first one is fixed, or vice versa. The structurewe find
is the zero set of a family of bilinear forms on a Cartesian product
of vector subspaces. The codimensions of the subspaces and the
number of bilinear forms involved are bounded by a function c(δ)
of the density δ = |P| /p2n only. The proof uses various tools of
additive combinatorics, such as the (linear) Bogolyubov theorem,
the density increment method, as well as the Balog–Szemerédi–
Gowers and Freiman–Ruzsa theorems.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Let F = Fp be a finite field of fixed prime order and V be a vector space of dimension n over F.
In this paper, the dimension n is the asymptotic parameter and all the O(·) and o(·) may depend on p
but not n. By the density of a subset A ⊂ V we mean |A|

|V |
. The classical Bogolyubov theorem states the

following:

Theorem 1 (Bogolyubov). If A ⊂ V is a set of density α > 0, then the sumset

A + A − A − A := {a1 + a2 − a3 − a4 | (a1, . . . , a4) ∈ A4
}

contains a vector subspace of codimension c(α).
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The notation A + A − A − A is often abbreviated as 2A − 2A. Note that Bogolyubov’s original
argument [2] works in Z instead of vector spaces, but at least since Green’s survey [4] on finite field
models, it has been applied to the vector space setting, where it gives c(δ) = O(δ−2). The best bound
is due to Sanders [8, Theorem 11.1], who showed that c(δ) = O(log4 δ−1). The very short proof of
the polynomial bound as well as a simplified exposition of Sanders’ breakthrough can be found in the
excellent survey [9]. Sanders’ result is usually stated and proven for p = 2 but holds for any p, the
implied constant depending on p. We point out that the corresponding statement for A−A is not true
both in vector spaces (see [5, Theorem 9.4]) and in Z (a result of Kříž [6]).

The purpose of this note is to prove a bilinear version of Theorem 1, that is, for dense subsets of
V × V . Before stating our result, we first need some definitions. For a subset P ⊂ V × V , we define
vertical and horizontal additive operations on P as follows:

P
V
± P = {(x, y1 ± y2) | ((x, y1), (x, y2)) ∈ P2

}

and

P
H
± P = {(x1 ± x2, y) | ((x1, y), (x2, y)) ∈ P2

}

where V and H mean vertical and horizontal. Note that V is also the name of the ambient space, but
this should not create any confusion. We denote by φV the operation

P ↦→ (P
V
+ P)

V
− (P

V
+ P)

and define the operation φH similarly.

Theorem 2. For any δ > 0, there exists a constant c(δ) > 0 such that the following holds. Let
P ⊂ V × V have density δ. There exist subspaces W1 ≤ V ,W2 ≤ V of codimension r1, r2 and a family
Q = (Q1, . . . ,Qr3 ) of bilinear forms on W1 × W2 such that

φHφVφH (P) ⊃ {(x, y) ∈ W1 × W2 | Q1(x, y) = · · · = Qr3 (x, y) = 0} (1)

wheremax(r1, r2, r3) ≤ c(δ). Moreover c(δ) can be taken as O(exp(exp(exp(logO(1) δ−1)))).

Our proof actually gives max(r1, r3) = O(logO(1) δ−1). We point out that Gowers and Milićević [3]
independently proved a result very similar to Theorem 2. However, their method and bounds are
different from ours. They proved max(r1, r2, r3) = O(exp(exp(logO(1) δ−1))).

In view of our bounds for r1 and r3 and the fact that the roles of r1 and r2 are symmetric, it is quite
reasonable to conjecture the following.

Conjecture 3 (Polylogarithmic Bilinear Bogolyubov). In Theorem 2, one can take c(δ) = O(logO(1) δ−1).

If P is a Cartesian product A × B for some subsets A, B ⊂ V , then using Theorem 1 once on each
coordinate, we obtain a product A′

× B′ of subspaces of codimension O(log4 δ−1). Also it is easy to
see that c(δ) ≫ log δ−1 by considering a set such as the right-hand side of Eq. (1). Conjecture 3 says
that, like in the linear case, this lower bound on δ should not be too far off the truth. The conjecture
remains equally interesting and useful for the application we have in mind if O(1) operations φV or
φH are required instead of 3.

Conjecture 3 was very recently proven by [7], at the cost of requiring a somewhat larger number
of iterations of φH and φV , namely φHφVφHφVφVφH instead of φHφVφH .

A quick application

Our application concernsmatrices of low rank. Suppose a two-parameter, bilinearly varying family
of matrices is often of rank at most ϵ. Then it must be of rank O(ϵ) on a whole bilinear set. We now
state this application precisely. Let Matm(F) be the space ofm × m matrices with coefficients in F.
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Corollary 4. Suppose that we have a bilinear map ψ : Fn
× Fn

→ Matm(F). Suppose that the set

Pϵ = {(f , g) ∈ Fn
× Fn

| rank(ψ(f , g)) ≤ ϵ}

has density δ > 0. Then the set

P64ϵ = {(f , g) ∈ Fn
× Fn

| rank(ψ(f , g)) ≤ 64ϵ}

contains a set of the form (1) where the codimensions and the cardinality of the family of bilinear forms
are at most c(δ).

The authors exploit this corollary,with the conjectured boundon c(δ) in Theorem2, in a companion
paper [1].

Proof. We apply Theorem 2 to P . Note that the set P ′ it produces is included in P64ϵ by the bilinearity
of ψ and the fact that rank(A + B) ≤ rank A + rank B for any two matrices A and B. □

The organization of the paper is as follows. In Section 2we recall somebasic facts andpreliminaries.
The heavy lifting part of our argument is an iteration scheme, Proposition 11. In Section 3 we show
how this proposition implies Theorem 2. Section 4 is devoted to proving Proposition 11.

2. Preliminaries

The symbolEwill be at somepoint used in its usual probabilistic sense, but itwill frequently denote
an average, thus Ex∈X =

1
|X |

∑
x∈X . Similarly, Px∈X (x ∈ Y ) =

|Y |

|X |
for sets Y ⊂ X .

We now briefly recall some basic facts about the Fourier transform and convolutions. Let V be a
finite F-vector space; in fact, all spaces considered will be finite in this paper, so we may not always
specify this hypothesis. Then we denote by V̂ its dual, the set of characters on V . A character χ ∈ V̂
takes values in the pth roots of unity, that is, 1, ω, . . . , ωp−1 where ω = exp(2iπx/p). The trivial
character is χ = 1. Let f : V → C be a function. Then the Fourier transform f̂ is defined on V̂ by

f̂ (χ ) = Ex∈V f (x)χ (x).

In particular, if A ⊂ V has density α and indicator function 1A, we have 1̂A(1) = α. Besides, we have
1̂−A = 1̂A.

If W is an affine subspace of V of direction
−→
W , thus W = a +

−→
W for some a ∈ V , and f : W → C

is a function, we define the function f̃ on the vector space
−→
W by f̃ (v) = f (a + v). We then define the

Fourier transform of f relative to W as the Fourier transform of f̃ on
−→
W . We will abuse notation and

denote by Ŵ the dual of
−→
W . Thus the notion of Fourier transform depends on the ambient (potentially

affine) space one is considering, but when no ambiguity is possible, the space considered may not be
made explicit.

Besides, if f , g : V → C are two functions, we define their convolution f ∗ g : V → C by

f ∗ g(x) = Ey∈V f (y)g(x − y).

We define the U2 norm by

∥f ∥4
U2(V ) = Ex∈V |f ∗ f (x)|2 .

A quadruple (x1, x2, x3, x4) ∈ V 4 satisfying x1 + x2 = x3 + x4 is called an additive quadruple.
Observe that if f = 1A is the indicator function of the subset A ⊂ V , then

∥1A∥
4
U2(V ) =

⏐⏐{(x1, x2, x3, x4) ∈ A4
| x1 + x2 = x3 + x4}

⏐⏐
|V |

3

and we refer to this quantity as the density of additive quadruples in A. Again ifW is an affine subspace
of V and f : W → C is a function, we will write ∥f ∥U2(W ) = ∥f̃ ∥U2(

−→
W ). Observe that the connection

with the additive quadruples of A ⊂ W is preserved, because additive quadruples are invariant by
translation. When it is obvious from the context which space one is considering, one will simply
write ∥f ∥U2 .
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We recall without proof a few basic properties of the Fourier transform.

(1) Parseval’s identity is the statement that

Ex∈V |f (x)|2 =

∑
χ∈V̂

⏐⏐⏐f̂ (χ )⏐⏐⏐2 .
In particular, for a subset A ⊂ V of density α, we have

∑
χ∈V̂

⏐⏐1̂A(χ )
⏐⏐2 = α.

(2) The Fourier transform of a convolution is the product of the Fourier transforms, that is

f̂ ∗ g = f̂ ĝ.

(3) Combining the previous two points, we see that the U2 norm of a function is the L4 norm of its
Fourier transform, that is

∥f ∥U2(V ) = ∥f̂ ∥4.

In particular if f = 1A for a subset A of density α, Parseval’s identity implies that

α4
≤ ∥1̂A∥

4
4 = α4

+

∑
χ∈V̂ , χ ̸=1

⏐⏐1̂A(χ )
⏐⏐4 ≤ α4

+ α max
χ∈V̂ , χ ̸=1

⏐⏐1̂A(χ )
⏐⏐2 . (2)

When a set A ⊂ W of density α has about as few additive quadruples as it can, that is,
α4

≤ ∥1A∥
4
U2(W )

≤ α4(1+ϵ), wewill call it ϵ-pseudorandom. In particular, A is ϵ-pseudorandom
in W if maxχ∈Ŵ , χ ̸=1

⏐⏐1̂A(χ )
⏐⏐ ≤ α3/2ϵ1/2.

(4) The Fourier inversion formula is the statement that

f =

∑
χ∈V̂

f̂ (χ )χ. (3)

Our first lemma says that if A is sufficiently pseudorandom in terms of its density then 2A − 2A is
the whole space.

Lemma 5. Let W be an affine subspace of V and A ⊂ W have density α. If ∥1A − α∥U2(W ) < α, or
equivalently,∑

χ ̸=1

⏐⏐1̂A(χ )
⏐⏐4 < α4, (4)

then 2A − 2A =
−→
W . Consequently, if maxχ∈Ŵ , χ ̸=1

⏐⏐1̂A(χ )
⏐⏐ < α3/2 then 2A − 2A =

−→
W .

Proof. For any x ∈
−→
W , by the Fourier inversion formula (3), we have

1A ∗ 1A ∗ 1−A ∗ 1−A(x) =

∑
χ∈Ŵ

⏐⏐1̂A(χ )
⏐⏐4 χ (x) ≥ α4

−

∑
χ ̸=1

⏐⏐1̂A(χ )
⏐⏐4 > 0.

This implies that x ∈ 2A − 2A. □

We also need the following standard fact which relates the lack of pseudorandomness to density
increment.

Lemma 6 ([4, Lemma 3.4]). Let W be an affine subspace of V and A ⊂ W have density α. Suppose there
exists χ ∈ Ŵ , χ ̸= 1 such that

⏐⏐1̂A(χ )
⏐⏐ ≥ β . Then there exists an affine subspace H ≤ W of codimension

1 such that the density of A ∩ H on H is at least α + β/2.

Our next tool is a regularity lemma.

Lemma 7. Let W be an affine subspace of V and A ⊂ W have density α. Let ϵ > 0. For any t, there exists
an affine subspace H ≤ W of codimension O(tϵ−1 logα−1) such that

⏐⏐A′
⏐⏐ = α′ |H| (where A′

= A ∩ H)
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with α′
≥ α and for any affine subspace F of codimension at most t of H, |A∩F |

|F |
≤ α(1 + ϵ). Consequently,

for any affine subspace F of codimension at most t of H, we also have |A∩F |

|F |
≥ α(1 − ptϵ).

Proof. Let us prove the first conclusion. IfW does the trick already, we do nothing. If not, there exists
a subspace H of codimension at most t such that |A∩H|

|H|
> α(1 + ϵ). We replace W by H , and A by

A ∩ H . And we iterate. We duplicate the density in at most ϵ−1 iterations. And we may duplicate up
to logα−1 times before hitting 1. At every iteration we may lose up to t dimensions. Whence the first
conclusion. The second conclusion follows from summing the upper bound over all cosets of F . □

In particular, when t = 1, the following corollary says thatwe can always suppose that a set A ⊂ W
is pseudorandom, at the cost of passing to a subset in an affine subspace.

Corollary 8. Let W be an affine subspace of V and A ⊂ W have density α. Let ϵ > 0. Then there exists
an affine subspace H ≤ W of codimension O((αϵ)−1/2 logα−1) such that A′

= A∩H has density ≥ α and
is ϵ-pseudorandom in H.

Proof. We use Lemma 6 with β = α3/2ϵ1/2, and Lemma 7 with t = 1 and ϵ′
= α1/2ϵ1/2/2 to obtain

the conclusion. □

Our next tool is a standard lemma resulting from the combination of the Balog–Szemerédi–Gowers
and Freiman–Ruzsa theorems. A useful reference for this lemma is [5, Lecture 2]. We reproduce the
proof as we want to incorporate the quasipolynomial bound of Sanders [8, Theorem 11.4] for the
Freiman–Ruzsa theorem.

Lemma 9. Let W ≤ V be F-vector spaces and A ⊂ W have density α. Let c > 0 be a constant. Suppose
ξ : A → V is such that are at least c |A|

3 additive quadruples in the graph Γ = {(y, ξ (y)) | y ∈ A}. Then
there is a subset S ⊂ A such that ξ|S coincides with an affine-linear map. Moreover, the density of S in A
can be taken quasipolynomial in c−1, that is, |S| ≫ |A| exp(− logO(1) c−1).

Proof. First, the Balog–Szemerédi–Gowers theorem implies that there exists a set A′
⊂ A satisfying⏐⏐A′

⏐⏐ ≥ C |A| that induces a subgraphΓ ′
⊂ Γ satisfying

⏐⏐Γ ′
+ Γ ′

⏐⏐ ≤ C ′ |Γ |, where both C and C ′ can be
taken polynomial in c−1. Using the Freiman–Ruzsa theorem (with Sanders’ bounds from [8, Theorem
11.4]), we get a subgraph Γ ′′

⊂ Γ ′ corresponding to a subset A′′
⊂ A′ satisfying

⏐⏐Γ ′′
⏐⏐ ≥ D

⏐⏐Γ ′
⏐⏐ and⏐⏐span(Γ ′′)

⏐⏐ ≤ E
⏐⏐Γ ′′

⏐⏐withD polynomial and E quasipolynomial in c−1. WriteH = span(Γ ′′) ≤ W ×V
and π : H → W the canonical projection of W × V to the first coordinate restricted to H . Then
π (H) ⊃ A′′ by definition. Because |H| ≤ E

⏐⏐A′′
⏐⏐, the size of the kernel of π is at most E. Then we can

partition H into at most E cosets of some subspace H ′ so that π is injective on each of them. By the
pigeonhole principle, there exists such a coset that has a large intersection with Γ ′′, that is, an x ∈ W
such that⏐⏐(x + H ′) ∩ Γ ′′

⏐⏐ ≥
⏐⏐Γ ′′

⏐⏐ /E.
Let now ∆ = (x + H ′) ∩ Γ ′′ and S be the corresponding subset of A′′, that is, ∆ = {(y, ξ (y)) | y ∈ S}.
The map π|x+H ′ is a bijection onto its image, an affine space M ≤ V . Its inverse function is an affine
map ψ : M → W such that (s, ψ(s)) ∈ Γ ′′ for all s ∈ S, that is, ψ(s) = ξ (s). Moreover,

|S| = |∆| ≥
⏐⏐A′′
⏐⏐ /E ≥ K |A|

where K is quasipolynomial in c−1. □

We will also need the following lemma.

Lemma 10. Let A be a finite set and T ⊂ {(a1, a2, a3, a4) ∈ A4
| aiare pairwise distinct}. Then there is a

partition A = ∪
4
i=1Ai such that |T ∩ A1 × A2 × A3 × A4| ≥ |T |/256.
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Proof. We use the probabilistic method. For a random partition of A where each y ∈ A is assigned a
part Ai with i ∈ {1, 2, 3, 4} chosen independently, uniformly with probability 1/4, we have

E[|T ∩ A1 × A2 × A3 × A4|] = E
∑

(x1,...,x4)∈T

4∏
i=1

1xi∈Ai =

∑
(x1,...,x4)∈T

E
4∏

i=1

1xi∈Ai . (5)

Let (x1, . . . , x4) ∈ T . In particular the xi are pairwise distinct. Then by uniform distribution and
independence, for any (m1, . . . ,m4) ∈ [4]4, we have

P(xi ∈ Ami for each i ∈ [4]) = 4−4.

Together with Eq. (5), this implies that

E[|T ∩ A1 × A2 × A3 × A4|] = |T | /256

so there must be a partition with |T ∩ A1 × A2 × A3 × A4| ≥ |T | /256. □

3. Deducing the main theorem from an iteration scheme

Outline of the proof

We first make a reduction and give an outline of the proof of the main theorem. Let P ⊂ V × V
have density δ > 0. Write P = ∪y∈VBy × {y}. Because P has density δ, the set A of elements y ∈ V
such that

⏐⏐By
⏐⏐ ≥ δ |V | /2 has density at least δ/2. Using the linear Bogolyubov theorem (Theorem 1)

on each set By for y ∈ A, we see that φH (P) contains a set P ′
= ∪y∈AVy × {y} where Vy is a subspace of

codimension at most r = O(log4 1/δ). From now on, we will assume that

P = ∪y∈AVy × {y},

where A ⊂ V has density α ≥ δ/2. A priori the subspaces Vy have nothing to do with each other. We
will start an iterative process. At each step we will find a common structure (either linear or bilinear)
for the Vy. In the end the Vy are very well structured, and this will enable us to show that φHφV (P)
contains the desired bilinear structure.

The iteration scheme

Let V ∗ be the linear dual of V , that is, the set of linear forms on V . For (x, ξ ) ∈ V × V ∗, we denote
x · ξ = ξ (x). For a set U ⊂ V , we let U⊥

= {ξ ∈ V ∗
| ∀x ∈ U, x · ξ = 0}. Also, for a set T ⊂ V ∗, we let

T⊥
= {x ∈ V | ∀ξ ∈ T , x · ξ = 0}. Our iteration scheme is as follows.

Proposition 11. Let V be an F-vector space, and W be an affine subspace. Let r ≤ dim V be an integer
and α > 0. Let ϵ = p−r/256. Then there exists a constant c(r, α) such that the following holds. Let A ⊂ W
be an ϵ-pseudorandom subset of density α. Let P = ∪y∈AVy × {y} ⊂ V × W where each Vy is a subspace
of codimension at most r. Suppose there exist s ≤ r and affine maps ξ1, . . . , ξs from W to V ∗ and spaces
Uy ≤ V ∗ for y ∈ A of dimension at most r − s such that V⊥

y = span(ξj(y))j∈[s] + Uy. Then at least one of
the following statements holds.

(1) (Termination) The set φV (P) contains

{(x, y) ∈ X3 × W2 | x ·
−→
ξ1 (y) = · · · = x ·

−→
ξs (y) = 0}

where
−→
ξ denotes the linear part of an affine map ξ , W2 is the direction of W and X3 is a subset of

density at least p−r/12 in V .
(2) (Reduction of codimension) There exist a set S ⊂ A of density c(r, α), a subspace V ′

≤ V of
codimension atmost 3r+10 and subspaces V ′

y ≤ V ′ of codimension atmost r−1 (inside V ′) for each
y ∈ S such that P ⊃

⋃
y∈S V

′
y × {y}. Moreover, there exist affine maps ξ ′

1, . . . , ξ
′

s−1 from W to V ′∗

and spaces U ′
y ≤ V ′∗ for y ∈ S of dimension at most r − s such that (V ′

y)
⊥

= span(ξj(y))j∈[s−1] +U ′
y

(where (V ′
y)

⊥ is defined in V ′).
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(3) (Linearization) There exist a set S ⊂ A of density c(r, α) and an affine map ξs+1 : W → V and a
space U ′

y < Uy such that for all y ∈ S, we have V⊥
y = span(ξ1(y), . . . , ξs+1(y)) + U ′

y.

Moreover c(r, α) can be taken quasipolynomial in α−1pr , that is,

c(r, α) = Ω(exp(− logO(1)(α−1pr ))).

Since the statement of Proposition 11 looks complicated, an explanation is in order.We can think of
the maps ξ1, . . . , ξs as the number of simultaneous constraints that the spaces (Vy)y∈A have to satisfy.
(Thus at the beginning, s = 0 since we do not have any information on the Vy yet.) At each step, either
the codimension of the Vy in V is reduced (the second alternative) or the number of constraints is
increased (the third alternative). Clearly this process must stop when r = 0 (i.e., Vy = V for all y)
or when s = r (i.e., all the Vy are given by r simultaneous constraints). In either case the Vy are very
structured, which gives us the desired bilinear structure. We will now make this argument rigorous
while keeping track of the bounds.

Proof of Theorem 2 using Proposition 11. Applying Corollary 8 with ϵ = p−r/256 and r =

O(logO(1) α−1), we obtain an affine subspaceW (0) of V of codimension

O((ϵα)−1/2 logα−1) = O(pr/2α−2/3)

such that the set A0 := A ∩ W (0) has density α0 ≥ α and is ϵ-pseudorandom in W0. We set
V (0)

= V , P0 = ∪y∈A0Vy × {y} ⊂ P and apply Proposition 11 with the tuple (V (0),W (0), A0, P0) and
s0 = 0, r0 = r .

If the first alternative of Proposition 11 holds, we stop.
Suppose the second alternative of Proposition 11 holds. We set V (1)

⊂ V (0) to be the subspace
V ′ given by the second alternative, of codimension O(r). We are also given subspaces V (1)

y ≤ V (1) of
codimension at most r1 = r − 1 such that P ⊃

⋃
y∈A V

(1)
y × {y}.

Suppose the third alternative holds. We obtain a set S ⊂ A0 of density c(r, α0) in W (0), an affine
map ξ1 : W0 → V ∗ and subspaces U (1)

y ≤ V ∗
y of dimension at most r1 ≤ r − 1 such that

V⊥
y = span(ξ1(y)) + U (1)

y . Then we let V (1)
= V and V (1)

y = Vy. We can find an affine subspace
W (1)

⊂ W (0) of codimension O(pr/2α−2/3
0 ) inW (0) such that the set A1 := S ∩W (1) is ϵ-pseudorandom

and has density α1 ≥ c(r, α0) in W (1). Let s1 = 1 and r1 = r .
Set P1 =

⋃
y∈A1

V (1)
y × {y}. We have P0 ⊃ P1.

We can now apply Proposition 11with (V (1),W (1), A1, P1, r1, s1) and start an iterative process. This
iterative process stopswhenever one can apply the first item of Proposition 11, orwhen r−s vanishes.
When applying either of the last two alternatives, at least one of the parameters r or r − s is decreased
by at least one, while the other one cannot increase, so the iteration does eventually stop.

At the ith stage, we obtain a subspace V (i)
⊂ V of codimension O(ri), an affine subspace W (i)

⊂ V
of codimension

O(exp(logC
i
α−1)),

where C is a constant (depending at most on p), an ϵ-pseudorandom set Ai ⊂ W (i) of density

αi = Ω(exp(− logC
i
α−1))

and a set

Pi = ∪y∈AiV
(i)
y × {y} ⊂ V (i)

× W (i)

where each V (i)
y ⊂ V (i) has codimension ri ≤ r . The bounds for αi and codimVW (i) follow from solving

the recursive relations

αi+1 = Ω(exp(− logO(1)(α−1
i pri ))),

so that

logα−1
i+1 ≤ logO(1)(α−1

i pri ) + O(1) ≤ logC α−1
i
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(recall that ri ≤ r = O(log4 α−1)), and

codimW (i)W (i+1)
= O(pri/2α−2/3

i ).

Moreover, we have affine maps ξ1, . . . , ξsi fromW i to V (i)∗ and subspaces U (i)
y ≤ V (i)∗ of dimension

at most ri − si such that (V (i)
y )⊥ = span(ξ1(y), . . . , ξs1 (y)) + U (i)

y . Furthermore, P ⊃ Pi. Suppose the
algorithm stops after the ith iteration, where i ≤ 2r . Note that we have si ≤ r ,

codimV (i)
= O(r2) = O(logO(1) α−1),

and

codimW (i)
= O(exp(logC

r
α−1)) = O(exp(exp(exp(logO(1) α−1)))).

There are two possibilities.

Case 1: ri = si, and

Pi = {(x, y) ∈ V (i)
× Ai | x · ξ1(y) = · · · = x · ξsi (y) = 0}

where ξ1, . . . , ξsi are affine maps from W (i) to V (i)∗, Ai ⊂ W (i) is a set of density γ := αi =

Ω
(
exp(− exp(exp(logO(1) α−1)))

)
.

Case 2: The first alternative of Proposition 11 holds, and

φV (Pi) ⊃ {(x, y) ∈ X × W2 | x ·
−→
ξ1 (y) = · · · = x ·

−→
ξsi (y) = 0},

where ξ1, . . . , ξsi are affine maps from W (i) to V (i)∗, X ⊂ V (i) is a set of density Ω
(
p−ri

)
=

Ω
(
exp

(
− logO(1) α−1

))
and W2 is the direction of W (i).

Since the two cases are similar, we will work with Case 1. By translating P by (0, a) for some a ∈ Ai
if necessary, we may assume that W (i) is a vector subspace of V . Let η :=

1
10γ

3/2p−r−1. Applying
Lemma 7 with t = r + 1, there is a subspace H ≤ W (i) of codimension O(rη−1 log γ−1) such that⏐⏐A′
⏐⏐ = γ ′ |H| (where A′

= Ai ∩ H) with γ ′
≥ γ and for any subspace F of codimension at most r + 1

of H , |A′
∩F|

|F |
≤ γ (1 + η).

For each x ∈ V (i), let Bx = {y ∈ H | x · ξ1(y) = · · · = x · ξsi (y) = 0}. Then Bx is a subspace of
codimension at most r inside H . Let Ax = A′

∩ Bx. We claim that 2Ax − 2Ax =
−→
Bx .

By Lemma 5, it suffices to show
⏐⏐1̂Ax (χ )

⏐⏐ < γ
3/2
x for any χ ̸= 1, where γx is the density of Ax in Bx.

Suppose for a contradiction that this is not true. Then Lemma 6 implies that there is a hyperplane F
of Bx on which the density of A is at least γx + γ

3/2
x /2. From Lemma 7 we also have γx ≥ γ (1− ηpr+1).

Therefore,

γx + γ 3/2
x /2 ≥ γ (1 − ηpr+1) +

1
2
γ 3/2(1 − ηpr+1)3/2

≥ γ (1 − ηpr+1) +
1
2
γ 3/2(1 − 2ηpr+1)

≥ γ −
1
10
γ 3/2

+
2
5
γ 3/2

= γ +
3
10
γ 3/2 > γ + η. (6)

This contradicts the assumption onH since F is a subspace of codimension atmost r+1 ofH . Therefore,
2Ax − 2Ax =

−→
Bx and

φV (P) ⊃ ∪x∈V (i){x} ×
−→
Bx = {(x, y) ∈ V (i)

× H | x ·
−→
ξ1 (y) = · · · = x ·

−→
ξ si (y) = 0}.

Since the codimension of H in W (i) is O(rη−1 log γ−1), Theorem 2 follows in this case. In Case 2, a
similar argument shows that φHφV (P) contains the desired bilinear structure. □

4. Proof of Proposition 11

First we suppose that there exists a linear combination of the affine maps ξ1, . . . , ξs that has small
rank as an affine map, that is, a nonzero λ = (λ1, . . . , λs) ∈ Fs

p such that ξ ′

0 =
∑s

j=1 λjξj satisfies
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rk
−→
ξ ′

0 < 3r + 10. By completing λ into a basis of Fs
p, we obtain affine maps ξ ′

0, . . . , ξ
′

s−1 from W to
V ∗ such that span(ξ ′

0(y), . . . , ξ
′

s−1(y)) = span(ξ1(y), . . . , ξs(y)) for any y ∈ A. Let V ′
= span(ξ ′

0(y) |

y ∈ A)⊥, then the codimension of V ′ in V is ≤ 3r + 10. For each y ∈ A, let V ′
y < V ′ be given by

(V ′
y)

⊥
= span(ξ ′

1(y), . . . , ξ
′

s−1(y)) + U ′
y where U ′

y is the projection of Uy onto V ′∗. Then dimU ′
y ≤ r − s

and codimV ′V ′
y ≤ r − 1. Since V ′

y < Vy, we have P ⊃
⋃

y∈A V
′
y ×{y}. This proves the second alternative

(with S = A).
So let us now suppose that there exists no nonzero λ ∈ Fs

p such that ξ ′

0 =
∑

j∈[s] λjξj satisfies

rk
−→
ξ ′

0 < 3r + 10. For x ∈ V , let Ax = {y ∈ A | x ∈ Vy} ⊂ W . Thus∑
x∈V

|Ax| = |P| = |A||V |p−r
= αp−r

|W | |V |. (7)

Also, let Bx = {y ∈ W | x · ξ1(y) = · · · = x · ξs(y) = 0}; it is an affine subspace of codimension at most
s, and Ax ⊂ A ∩ Bx.

Claim 1. Px∈V (codimBx < s) ≤ ϵp−r/4. (Recall that ϵ = p−r/256.)

Proof. Note that
−→
Bx = {y ∈

−→
W | y ·

−→
ξ1 (x) = · · · = y ·

−→
ξs (x) = 0}

is a subspace of codimension s unless there exists a nonzero λ ∈ Fs
p such that

∑s
j=1 λj

−→
ξj (x) = 0.

For any fixed such λ, the set of x that satisfy this relation is a linear subspace, namely the kernel Kλ of∑s
j=1 λj

−→
ξj whose codimension equals the rank of

∑s
j=1 λj

−→
ξj , hence at least 3r+10. Hence |Kλ| /|V | ≤

p−3r−10. Because there are at most pr tuples λ to consider, we conclude that Px∈V (codimBx < s) ≤

pr · p−3r−10
≤ ϵp−r/4, and Claim 1 is proved. □

Claim 2. Let αx be the density of Ax in Bx, then Ex∈Vαx ≥ αps−r (1 − ϵ/4).

Proof. Let X = {x ∈ V | codimBx = s}, then we have

Ex∈Vαx =
1

|V |

∑
x∈V

|Ax|

|Bx|
≥

1
|V |

∑
x∈X

|Ax|

|Bx|

= psEx∈V
|Ax|

|W |
− ps

1
|V |

∑
x∈Xc

|Ax|

|W |

≥ αps−r
− αps

|X c |

|V |
≥ αps−r (1 − ϵ/4)

where we have used (7) and the trivial bound |Ax| ≤ |A| = α|W |. □

Proposition 11 will follow from Lemmas 12 and 13.

Lemma 12. At least one of the following statements holds.

(1) For at least p−r |V | /12 elements x ∈ V , we have 2Ax − 2Ax =
−→
Bx (the direction of Bx).

(2) Among additive quadruples y1 + y2 = y3 + y4 in A, a proportion at least p−4rϵ has the property
that codim

⋂4
i=1 Vyi < 4r − s.

The quantity codim
⋂4

i=1 Vyi , in a sense, measures the linear dependence between the Vyi . Recall
that the Vyi all have codimension r and satisfy s simultaneous constraints. If codim

⋂4
i=1 Vyi < 4r − s,

then we will be able to find a new linear dependence between them.



P.-Y. Bienvenu and T.H. Lê / European Journal of Combinatorics 77 (2019) 102–113 111

Proof. Let Q be the set of additive quadruples y = (y1, . . . , y4) of A. Letm = dimW . We have

Ex∈V∥1Ax∥
4
U2(Bx)

= Ex∈VE y1,...,y4∈Bx
y1+y2=y3+y4

4∏
i=1

1yi∈Ax

≤
1

p3(m−s)

∑
(y1,...,y4)∈A4
y1+y2=y3+y4

Ex∈V1∀i x∈Vyi
(since dim Bx ≥ m − s)

=
1

p3(m−s)

∑
y∈Q

p−codim
⋂

i Vyi

≤ α4(1 + ϵ)
(
Ey∈Q (p3s−codim

⋂
i Vyi )

)
(recall that A is ϵ-pseudorandom)

≤ α4p−4(r−s)(1 + ϵ)(1 + p4r−sPy∈Q (codim
⋂

Vyi < 4r − s)).

So either

Py∈Q

(
codim

4⋂
i=1

Vyi < 4r − s

)
≥ p−4r+sϵ (8)

or

Ex∈V∥1Ax∥
4
U2(Bx)

≤ α4p−4(r−s)(1 + ϵ)(1 + p4r−s
· p−4r+sϵ) = α4p−4(r−s)(1 + ϵ)2. (9)

Eq. (8) is exactly the second clause of Lemma 12, so assume instead that (9) holds. We infer that

Ex∈V∥1Ax − αx∥
4
U2 = Ex∈V (∥1Ax∥

4
U2 − α4

x )

≤ Ex∈V∥1Ax∥
4
U2 − α4p−4(r−s)(1 − ϵ/4)4

≤ α4p−4(r−s)(2ϵ + ϵ2 + ϵ)

≤ 4ϵα4p−4(r−s)
=: γ

wherewe used Jensen’s inequality, the lower boundEx∈Vαx ≥ p−(r−s)(1−ϵp−r/4) and the elementary
inequality (1 − ϵ/4)4 ≥ 1 − ϵ. Thus, if X1 := {x ∈ V | ∥1Ax − αx∥

4
U2(Bx)

≤ 4prγ }, by Markov’s
inequality, we have |X1| ≥ |V | (1 − p−r/4). Also, because αx ≤ αps for any x ∈ V , the set
X2 := {x ∈ V | αx > αp−(r−s)/2} has density at least p−r (1/2 − ϵ/4) ≥ p−r/3. So X3 := X1 ∩ X2
must have density at least p−r/12 by inclusion–exclusion.

Besides, if ϵ = 1/(256pr ), then for x ∈ X3 we have ∥1Ax − αx∥
4
U2 ≤ 4prγ < α4

x and then
2Ax − 2Ax =

−→
Bx by Lemma 5. □

We now prove Proposition 11. When the first outcome of Lemma 12 holds, we see that φV (P)
contains {(x, y) ∈ X3 × W2 | x ·

−→
ξ1 (y) = · · · = x ·

−→
ξs (y) = 0} where W2 is the direction ofW .

The real challenge lies in extracting something from the second outcome of Lemma 12. This is the
purpose of the next lemma.

Lemma 13. Suppose r > s and a proportion at least κ of the additive quadruples (y1, . . . , y4) of A have
the property that codim

⋂4
i=1 Vyi < 4r − s. Then there is a subset S ⊂ A of density σ = σ (r, α, κ) such

that one of the following holds.

(1) There is a subspace V ′
≤ V of codimension one such that Vy ⊂ V ′ for all y ∈ S. Moreover, there

exist affine maps ξ ′

1, . . . , ξ
′

s−1 from W to V ′∗ and spaces U ′
y ≤ V ′∗ of dimension at most r − s such

that (Vy)⊥ = span(ξ ′

1(y), . . . , ξ
′

s−1(y)) + U ′
y (where (Vy)⊥ is defined in V ′).
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(2) There is an affine map ξs+1 : W → V ∗ and a subspace U ′
y ≤ V ∗ of dimension at most r − s − 1

such that V⊥
y = span(ξj(y) | j ∈ [s + 1]) + U ′

y.

Moreover σ can be taken to be quasipolynomial1 in ακp−r .

Applying Lemma13with κ = p−4rϵ = p−5r/256, the first alternative implies the second statement
of Proposition 11 since codimV ′Vy ≤ r − 1, while the second alternative yields the third one of
Proposition 11. Our goal is now to prove Lemma 13.

Proof of Lemma 13. Let ξs+1, . . . , ξr be (not necessarily linear) maps from A to V ∗ such that
Uy = span(ξs+1(y), . . . , ξr (y)) for any y ∈ A. The number of additive quadruples in A is at least
α4 |W |

3
= α |A|

3, and we assume at least κα |A|
3 of them have the property that the 4r vectors ξj(yi)

satisfy at least s+ 1 linearly independent equations. For any additive quadruple in A, we already have
s obvious equations

ξj(y1) + ξj(y2) = ξj(y3) + ξj(y4) for j ∈ [s], (10)

so there needs to be one more (independent) equation. Because there are only p4r possible linear
equations

r∑
j=1

4∑
i=1

ai,jξj(yi) = 0, (11)

the pigeonhole principle implies that we can find (ai,j) ∈ F4r
\ {0} (linearly independent from the

vectors bi,j = 1j=j0 for j0 ∈ [s]) such that there are at least κα |A|
3 /p4r quadruples (y1, . . . , y4) ∈ W 4

for which y1 + y2 = y3 + y4 and Eq. (11) holds. Let T be that set of quadruples. Write ai = (ai,j)j=1,...,r .
We distinguish two cases.

Case 1: One of the four families a1, . . . , a4, say a4, satisfies a4,j = 0 for any j > s. Then we can use the
Eqs. (10) to eliminate y4 in Eq. (11). We obtain φ1 + φ2 + φ3 = 0 for some vectors φi ∈ V⊥

yi for i ∈ [3],
not all equal to 0. Write r(φ) =

⏐⏐{y ∈ A | φ ∈ V⊥
y }
⏐⏐ for any φ ∈ V ∗. Then we have

p−4rκα |A|
3

≤ |T | ≤

∑
φ1,φ2∈V∗,

(φ1,φ2)̸=(0,0)

r(φ1)r(φ2)r(−φ1 − φ2) ≤ 2 max
φ∈V∗\{0}

r(φ)

⎛⎝∑
φ∈V

r(φ)

⎞⎠2

.

A double counting argument shows that
∑

φ∈V∗ r(φ) ≤ pr |A|. So maxφ∈V∗\{0} r(φ) ≥
1
2καp

−6r |A|,
which implies that there exists a linear form φ ∈ V ∗

\ {0} such that for a noticeable proportion of
y ∈ A, we have φ ∈ V⊥

y . Name S0 ⊂ A this set of elements y ∈ A, then |S0| ≥
1
2καp

−6r |A|. Let V ′
= φ⊥,

then codimVV ′
= 1 and Vy ≤ V ′ for any y ∈ S0. Let S1 := {y ∈ A : φ ∈ span(ξ1(y), . . . , ξs(y))} and

S2 := S0 \ S1. So max(|S1| , |S2|) ≥
1
4καp

−6r |A|. We distinguish two subcases.

Case 1a: |S1| ≥
1
4καp

−6r |A|. Since there are atmost pr possibleways towriteφ as a linear combination
of ξ1(y), . . . , ξs(y), there is a nonzero λ = (λ1, . . . , λs) ∈ Fs

p and a subset S3 ⊂ S1 of size ≫ καp−7r

such that φ =
∑s

i=1 λiξi(y) for any y ∈ S3. By completing λ into a basis of Fs
p, we can find affine maps

ξ ′

1, . . . , ξ
′

s−1 : W → V ∗ such that span(ξ1(y), . . . , ξs(y)) = span(φ, ξ ′

1(y), . . . , ξ
′

s−1(y)) for any y ∈ S3.
Considering now Vy as a subspace of V ′, and thus defining its orthogonal as a subspace of V ′∗, we have

V⊥

y = span(ξ ′

1(y), . . . , ξ
′

s−1(y)) + U ′

y

for any y ∈ S3, where U ′
y is the projection of Uy on V ′∗. Thus the first alternative of Lemma 13 follows

with S = S3.

Case 1b: |S2| ≥
1
4καp

−6r |A|. For y ∈ S2, let U ′
y ≤ V⊥

y be such that

V⊥

y = span(ξ1(y), . . . , ξs(y), φ) ⊕ U ′

y,

1 Polynomial under the polynomial Freiman–Ruzsa conjecture.
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then dimU ′
y ≤ r − s − 1. Projecting to V ′, we have

V⊥

y = span(ξ1(y), . . . , ξs(y)) + U ′

y

for any y ∈ S2 and replacing U ′
y by U ′

y + span(ξs(y)), the first alternative of Lemma 13 follows with
S = S2.

Case 2: None of the four families satisfies ai,j = 0 for any j > s. We shall aim at linearity instead of
constancy. Removing quadruples for which two entries are equal (there are O(|A|

2) such quadruples),
we still have a set T ′ of quadruples satisfying

⏐⏐T ′
⏐⏐ ≥ C |A|

3 for some constant C ≫ καp−4r . Applying
Lemma 10, we can pick a partition A = A1 ∪ A2 ∪ A3 ∪ A4 such that the set

T ′′
= T ′

∩ A1 × A2 × A3 × A4

satisfies
⏐⏐T ′′
⏐⏐ ≥ C |A|

3 /256. For i ∈ [4] and y ∈ Ai, set ξ ′

s+1(y) = zi
∑

j∈[r] ai,jξj(y) where z1 = z2 = 1
and z3 = z4 = −1. Observe that ξ ′

s+1(y) is a nonzero vector in V⊥
y . For i ∈ [4], let ji > s be

any index such that ai,ji ̸= 0. For y ∈ Ai, let U ′
y = span(ξs+1(y), . . . , ξ̂ji (y), . . . , ξr (y)), where the

hat denotes an omitted form; this is a space of dimension at most r − s − 1. We have V⊥
y =

span(ξ1(y), . . . , ξs(y), ξ ′

s+1(y))+U ′
y. Further, for a quadruple y ∈ T ′′, we observe that (yi, ξ ′

s+1(yi))i∈[4] is
an additive quadruple. So there are at least C |A|

3 /256 additive quadruples in the graph {(y, ξ ′

s+1(y)) |

y ∈ A}. We then invoke Lemma 9 to obtain a set S ⊂ A of quasipolynomial (in C) density in A, such
that ξ ′

s+1 coincides with an affine map on S. This concludes the proof. □
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