European Journal of Combinatorics 77 (2019) 102-113

journal homepage: www.elsevier.com/locate/ejc

Contents lists available at ScienceDirect

European Journal of Combinatorics

European Journal
of Combinatorics

A bilinear Bogolyubov theorem N

Pierre-Yves Bienvenu ?, Thai Hoang Lé"

Check for
updates

2 Institut Camille-Jordan, Université Lyon 1, 43 boulevard du 11 novembre 1918 69622 Villeurbanne

cedex, France

b Department of Mathematics, The University of Mississippi, University, MS 38677, United States

ARTICLE INFO

ABSTRACT

Article history:

Received 8 August 2018

Accepted 15 November 2018
Available online 14 December 2018

The purpose of this note is to prove the existence of a remarkable
structure in an iterated sumset derived from a set P in a Cartesian
square ]F; X ]FE. More precisely, we perform horizontal and vertical
sums and differences on P, that is, operations on the second coordi-
nate when the first one is fixed, or vice versa. The structure we find
is the zero set of a family of bilinear forms on a Cartesian product
of vector subspaces. The codimensions of the subspaces and the
number of bilinear forms involved are bounded by a function c(§)
of the density § = |P|/p*" only. The proof uses various tools of
additive combinatorics, such as the (linear) Bogolyubov theorem,
the density increment method, as well as the Balog-Szemerédi-
Gowers and Freiman-Ruzsa theorems.
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1. Introduction

Let F = F, be a finite field of fixed prime order and V be a vector space of dimension n over F.
In this paper, the dimension n is the asymptotic parameter and all the O(-) and o(-) may depend on p

|A]

but not n. By the density of a subset A C V we mean .. The classical Bogolyubov theorem states the

following:

Vi

Theorem 1 (Bogolyubov). IfA C V is a set of density « > 0, then the sumset

A+A—A—-A={a1+a—as—as|(a,...,a,) €AY}

contains a vector subspace of codimension c(«).
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The notation A + A — A — A is often abbreviated as 2A — 2A. Note that Bogolyubov’s original
argument [2] works in Z instead of vector spaces, but at least since Green’s survey [4] on finite field
models, it has been applied to the vector space setting, where it gives c(8) = 0(82). The best bound
is due to Sanders [8, Theorem 11.1], who showed that c(§) = O(log* ~'). The very short proof of
the polynomial bound as well as a simplified exposition of Sanders’ breakthrough can be found in the
excellent survey [9]. Sanders’ result is usually stated and proven for p = 2 but holds for any p, the
implied constant depending on p. We point out that the corresponding statement for A — A is not true
both in vector spaces (see [5, Theorem 9.4]) and in Z (a result of KfiZ [6]).

The purpose of this note is to prove a bilinear version of Theorem 1, that is, for dense subsets of
V x V. Before stating our result, we first need some definitions. For a subset P C V x V, we define
vertical and horizontal additive operations on P as follows:

PP = {0ty £2) | (%), (x.¥2)) € P}

and

pip= {1 £x2,9) | (%1, ), (X2,¥)) € P*}

where V and H mean vertical and horizontal. Note that V is also the name of the ambient space, but
this should not create any confusion. We denote by ¢y the operation
v v v
P+— (P+P)—(P+P)

and define the operation ¢y similarly.

Theorem 2. For any § > O, there exists a constant c(§) > 0 such that the following holds. Let
P C V x V have density 8. There exist subspaces W; < V, W, < V of codimension rq, r, and a family
Q=(Qi, ..., Q) of bilinear forms on Wy x W, such that

Sudvdu(P) D {(x,y) € Wi x W | Qi(x,y) = - = Qr(x, ) = 0} (1)
where max(ry, 1y, 13) < ¢(8). Moreover c(8) can be taken as O(exp(exp(exp(log®™ §=1)))).

Our proof actually gives max(ry, r3) = 0(log®? §=1). We point out that Gowers and Milicevi¢ [3]
independently proved a result very similar to Theorem 2. However, their method and bounds are
different from ours. They proved max(ry, r, r3) = O(exp(exp(log®? §-1))).

In view of our bounds for r; and r3 and the fact that the roles of r; and r, are symmetric, it is quite
reasonable to conjecture the following.

Conjecture 3 (Polylogarithmic Bilinear Bogolyubov). In Theorem 2, one can take c(8) = O(log®" §—1).

If P is a Cartesian product A x B for some subsets A, B C V, then using Theorem 1 once on each
coordinate, we obtain a product A’ x B’ of subspaces of codimension O(log® 5~1). Also it is easy to
see that ¢(8) > log §~! by considering a set such as the right-hand side of Eq. (1). Conjecture 3 says
that, like in the linear case, this lower bound on § should not be too far off the truth. The conjecture
remains equally interesting and useful for the application we have in mind if O(1) operations ¢y or
¢y are required instead of 3.

Conjecture 3 was very recently proven by [7], at the cost of requiring a somewhat larger number
of iterations of ¢y and ¢y, namely ¢y dy Py Py Py Py instead of Py py dy.

A quick application

Our application concerns matrices of low rank. Suppose a two-parameter, bilinearly varying family
of matrices is often of rank at most €. Then it must be of rank O(¢) on a whole bilinear set. We now
state this application precisely. Let Mat,,(FF) be the space of m x m matrices with coefficients in F.
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Corollary 4. Suppose that we have a bilinear map  : F" x F" — Mat,,(IF). Suppose that the set

Pe ={(f,g) e F" x F" | rank(¥/(f, g)) < €}
has density § > 0. Then the set

Pose = {(f.g) € F" x F" | rank(¥(f, g)) < 64e}

contains a set of the form (1) where the codimensions and the cardinality of the family of bilinear forms
are at most c(§).

The authors exploit this corollary, with the conjectured bound on ¢(8) in Theorem 2, in a companion
paper [1].

Proof. We apply Theorem 2 to P. Note that the set P’ it produces is included in Pg4. by the bilinearity
of ¢ and the fact that rank(A + B) < rank A + rank B for any two matrices Aand B. O

The organization of the paper is as follows. In Section 2 we recall some basic facts and preliminaries.
The heavy lifting part of our argument is an iteration scheme, Proposition 11. In Section 3 we show
how this proposition implies Theorem 2. Section 4 is devoted to proving Proposition 11.

2. Preliminaries

The symbol E will be at some point used in its usual probabilistic sense, but it will frequently denote

an average, thus Eycx = \x erx Similarly, Pyex(x € Y) = m forsetsY C X.

We now briefly recall some basic facts about the Fourier transform and convolutions. Let V be a
finite F-vector space; in fact, all spaces considered will be finite in this paper, so we may not always
specify this hypothesis. Then we denote by V its dual, the set of characters on V. A character x € V
takes values in the pth roots of unity, that is, 1, w, ..., w?~! where v = exp(2imx/p). The trivial
characteris x = 1.Letf : V — C be a function. Then the Fourier transform f is defined on V by

F0) = Exerf(0x ().
In particular, if A C V has density « and indicator function 14, we have 1/,\4(1) = «. Besides, we have
1—A = 1A
If W is an affine subspace of V of direction W thus W = =a+ w forsomea € V,andf : W — C
is a function, we define the functlonf on the vector space W byf( )_)f(a + v). We then define the
Fourier transform of f regtlve to W as the Fourier transform of f on W. We will abuse notation and

denote by W the dual of W . Thus the notion of Fourier transform depends on the ambient (potentially
affine) space one is considering, but when no ambiguity is possible, the space considered may not be
made explicit.

Besides, if f, g : V — C are two functions, we define their convolution f x g : V — C by

fg(x) =Eyerf(V)glx —y).
We define the U? norm by
||f||?,2(v) = Exev f *f(x)°

A quadruple (x;, X2, X3, X4) € V4 satisfying x; 4+ x, = x3 + x4 is called an additive quadruple.
Observe that if f = 14 is the indicator function of the subset A C V, then

|{ (X1, X2, X3,X4) € A* | X1 + X, = x3 +X4}|

Al = v
and we refer to this quantity as the density of additive quadruples in A. Again if W is an affine subspace
of Vandf : W — C s a function, we will write ||f || y2qyy = ||f||u2(w Observe that the connection

with the additive quadruples of A C W is preserved, because addltlve quadruples are invariant by
translation. When it is obvious from the context which space one is considering, one will simply
write [|f |[y2.
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We recall without proof a few basic properties of the Fourier transform.

(1) Parseval’s identity is the statement that
N 2
Exev FROP = Y [f0)

xev
. . ~ 2
In particular, for a subset A C V of density «, we have erv ‘lA(X)‘ =a.
(2) The Fourier transform of a convolution is the product of the Fourier transforms, that is
fxg=f&.
(3) Combining the previous two points, we see that the U% norm of a function is the L; norm of its
Fourier transform, that is

||f||U2(V) = |If lla-
In particular if f = 1, for a subset A of density «, Parseval’s identity implies that
~ ~ 2
af < |1allf =o' + Z |1A(X)| <a*+a max |1A )|
= Xev x#1
X€V, x#1
When aset A C W of density @ has about as few additive quadruples as it can, that is,
< |1a ||u2(w a*(14¢€), we will call it e-pseudorandom. In particular, A is e-pseudorandom
inWifmax, . . |[1a(x)] < @¥2€'/2.
(4) The Fourier inversion formula is the statement that

F=Y_foox. (3)

eV

(2)

Our first lemma says that if A is sufficiently pseudorandom in terms of its density then 2A — 2A is
the whole space.

Lemma 5. Let W be an affine subspace of V and A C W have density a. If |14 — ally2wy < @, or
equivalently,

~, 4
> 00| < e, (4)
x#1
— . —~ —
then 2A — 2A = W. Consequently, if max . 1 |1a(x)| < @2 then2A —2A=W.

—
Proof. For any x € W, by the Fourier inversion formula (3), we have
1A*]A*17A*17A Z|]A >O[4—Z|ﬁ(x)|4>0
xeWw x#1
This implies that x € 2A — 2A. O
We also need the following standard fact which relates the lack of pseudorandomness to density
increment.

Lemma 6 ([4 Lemma 3.4]). Let W be an affine subspace of V. and A C W have density «. Suppose there

exists x € W x # 1such that |1A | > B. Then there exists an affine subspace H < W of codimension
1 such that the density of AN H on H is at least o + B/2.

Our next tool is a regularity lemma.

Lemma 7. Let W be an affine subspace of V and A C W have density «. Let € > 0. For any t, there exists
an affine subspace H < W of codimension O(te ™! log ™) such that |A’| = o' |H| (where A = ANH)
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with &' > & and for any affine subspace F of codimension at most t of H, 40l < (1 + €). Consequently,

[F]
for any affine subspace F of codimension at most t of H, we also have ‘Algf' > a(1—ple).
Proof. Let us prove the first conclusion. If W does the trick already, we do nothing. If not, there exists
a subspace H of codimension at most ¢t such that ‘AIQIT” > o1+ €). We replace W by H, and A by
AN H. And we iterate. We duplicate the density in at most ¢! iterations. And we may duplicate up
to loga~! times before hitting 1. At every iteration we may lose up to t dimensions. Whence the first
conclusion. The second conclusion follows from summing the upper bound over all cosets of F. O

In particular, when t = 1, the following corollary says that we can always suppose thatasetA C W
is pseudorandom, at the cost of passing to a subset in an affine subspace.

Corollary 8. Let W be an affine subspace of V and A C W have density «. Let ¢ > 0. Then there exists
an affine subspace H < W of codimension O((ae)~ /2 log 1) such that A’ = AN H has density > « and
is e-pseudorandom in H.

Proof. We use Lemma 6 with 8 = a*?¢'/2, and Lemma 7 with t = 1and €’ = «'/2¢'/?/2 to obtain
the conclusion. O

Our next tool is a standard lemma resulting from the combination of the Balog-Szemerédi-Gowers
and Freiman-Ruzsa theorems. A useful reference for this lemma is [5, Lecture 2]. We reproduce the
proof as we want to incorporate the quasipolynomial bound of Sanders [8, Theorem 11.4] for the
Freiman-Ruzsa theorem.

Lemma9. Let W < V be F-vector spaces and A C W have density «. Let c > 0 be a constant. Suppose
& : A — V is such that are at least ¢ |A|® additive quadruples in the graph I' = {(y, £(¥)) | y € A}. Then
there is a subset S C A such that &5 coincides with an affine-linear map. Moreover, the density of S in A
can be taken quasipolynomial in ¢!, that is, |S| > |A| exp(— log®® ¢~ 1).

Proof. First, the Balog-Szemerédi-Gowers theorem implies that there exists a set A’ C A satisfying
]A’| > C |A| that induces asubgraph I’ C I' satisfying |F’ + F/| < C'|I'|,where both C and C’ can be
taken polynomial in ¢c~!. Using the Freiman-Ruzsa theorem (with Sanders’ bounds from [8, Theorem
11.4]), we get a subgraph I"” C I'’ corresponding to a subset A” C A’ satisfying |1"”| >D |F | and
|span(I"")| < E |I"”| with D polynomial and E quasipolynomial in ¢ ~'. Write H = span(I"") < W x V
and 7 : H — W the canonical projection of W x V to the first coordinate restricted to H. Then
n(H) D A” by definition. Because |H| < E |A”|, the size of the kernel of 7 is at most E. Then we can
partition H into at most E cosets of some subspace H’ so that 7 is injective on each of them. By the
pigeonhole principle, there exists such a coset that has a large intersection with I"”, that is,anx € W
such that

|x+H)NT"| > |r"|/E.

Let now A = (x + H’) N I"” and S be the corresponding subset of A”, thatis, A = {(y, £(¥)) | y € S}.
The map w4 is a bijection onto its image, an affine space M < V. Its inverse function is an affine
map ¢ : M — W such that (s, y(s)) € I'" for all s € S, that is, ¥(s) = &(s). Moreover,

IS| = 14| = |A"| /E = K|A|
where K is quasipolynomialin c™!'. O

We will also need the following lemma.

Lemma 10. Let A be a finite set and T C {(aq, a2, a3, a4) € A* | a;are pairwise distinct}. Then there is a
partition A = UL A; such that |T N A x Ay x As x Ag| > |T|/256.
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Proof. We use the probabilistic method. For a random partition of A where each y € A is assigned a
part A; with i € {1, 2, 3, 4} chosen independently, uniformly with probability 1/4, we have

4

4
EITNA x Ay x A x Al =E Y [[lsen= D EJ1yen (5)
i=1

(X1,eees x4)€T i=1 (X1,...,X4)€T
Let (x1,...,%4) € T.In particular the x; are pairwise distinct. Then by uniform distribution and
independence, for any (my, ..., m4) € [4]% we have

P(x; € Am, for eachi € [4]) = 47°.
Together with Eq. (5), this implies that
E[IT NA1 x Ay x A3 x A4l] = |T| /256
so there must be a partition with [T NA; X Ay X A3 X A4| > |T| /256. O

3. Deducing the main theorem from an iteration scheme
Outline of the proof

We first make a reduction and give an outline of the proof of the main theorem. LetP C V x V
have density § > 0. Write P = U,cyBy x {y}. Because P has density §, the set A of elementsy € V
such that ]By‘ > § |V| /2 has density at least §/2. Using the linear Bogolyubov theorem (Theorem 1)
on each set B, fory € A, we see that ¢y(P) contains a set P’ = U4V, x {y} where V, is a subspace of
codimension at most r = O(log* 1/3). From now on, we will assume that

P = UyeaV) x ¥},

where A C V has density o > §/2. A priori the subspaces V, have nothing to do with each other. We
will start an iterative process. At each step we will find a common structure (either linear or bilinear)
for the V,. In the end the V, are very well structured, and this will enable us to show that ¢y ¢v(P)
contains the desired bilinear structure.

The iteration scheme

Let V* be the linear dual of V, that is, the set of linear forms on V. For (x, £) € V x V*, we denote
x-&=£&KX).ForasetU c V,weletU-={£ e V*|Vxe U, x-& =0)}.Also, foraset T C V*, we let
T ={x eV |VE €T, x-& = 0. Our iteration scheme is as follows.

Proposition 11. Let V be an F-vector space, and W be an affine subspace. Let r < dimV be an integer
and @ > 0.Let e = p~"/256. Then there exists a constant c(r, «) such that the following holds. Let A C W
be an e-pseudorandom subset of density a. Let P = UyeaVy x {y} C V x W where each V, is a subspace
of codimension at most r. Suppose there exist s < r and affine maps &1, . . ., & from W to V* and spaces
Uy, < V* fory € A of dimension at most r — s such that VyL = span(&;(y))jeis) + Uy. Then at least one of
the following statements holds.

(1) (Termination) The set ¢y (P) contains
() eXs x Wy [x-E10) =---=x- & (y) = 0)

where E) denotes the linear part of an affine map &, W5, is the direction of W and X5 is a subset of
density at leastp~" /12 in V.

(2) (Reduction of codimension) There exist a set S C A of density c(r, ), a subspace V' < V of
codimension at most 3r+ 10 and subspaces Vy’ < V' of codimension at mostr — 1 (inside V') for each
y € Ssuch thatP D UyeS V)ﬁ x {y}. Moreover, there exist affine maps &1, ..., &/_, from W to V"
and spaces U)’, < V™ fory e S of dimension at most r — s such that(V);)L = span(&j(y))jers—1 + UJ/,
(where (V, )~ is defined in V').
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(3) (Linearization) There exist a set S C A of density c(r, «) and an affine map &1 : W — V and a
space U, < Uy such that for ally € S, we have Vyl = span(&1(y), - - -, &41(¥)) + U,

Moreover c(r, o) can be taken quasipolynomial in o~ 'p", that is,
c(r, o) = 2(exp(—log”V(a~'p")).

Since the statement of Proposition 11 looks complicated, an explanation is in order. We can think of
the maps &y, . .., & as the number of simultaneous constraints that the spaces (V,),ea have to satisfy.
(Thus at the beginning, s = 0 since we do not have any information on the V, yet.) At each step, either
the codimension of the V) in V is reduced (the second alternative) or the number of constraints is
increased (the third alternative). Clearly this process must stop whenr = 0 (i.e, V), = V for all y)
or when s = r (i.e, all the V), are given by r simultaneous constraints). In either case the V, are very
structured, which gives us the desired bilinear structure. We will now make this argument rigorous
while keeping track of the bounds.

Proof of Theorem 2 using Proposition 11. Applying Corollary 8 with ¢ = p™/256 and r =
0(log®" ¢=1), we obtain an affine subspace W of V of codimension

O((ea) 2 loga™") = O(p"?a~2/3)
such that the set Ag = A N W© has density &y > « and is e-pseudorandom in W,. We set
VO =V, Py = Uyea,Vy x {y} C P and apply Proposition 11 with the tuple (V(®, W®, Ay, Py) and
So=0,1r9g=T.

If the first alternative of Proposition 11 holds, we stop.

Suppose the second alternative of Proposition 11 holds. We set V(! < V(© to be the subspace
V’ given by the second alternative, of codimension O(r). We are also given subspaces Vﬁl) < v of
codimension at mostry = r — 1such thatP O [ J,c, V}E]) x {y}.

Suppose the third alternative holds. We obtain a set S C Ay of density c(r, «g) in W®, an affine
map & : Wy — V* and subspaces U)(,” < V; of dimension at most r; < r — 1 such that
Vb = span(&1(y)) + USV. Then we let V() = v and V{" = V,. We can find an affine subspace
w® ¢ WO of codimension O(p'/2; */?) in W(® such that the set A; := SN W is e-pseudorandom
and has density oq > c(r, ap)in WV, Let s; = 1and r; =r.

SetP; = UyeA1 V}EU x {y}. We have Py D P;.

We can now apply Proposition 11 with (V(), W), Ay, Py, rq, 1) and start an iterative process. This
iterative process stops whenever one can apply the first item of Proposition 11, or when r —s vanishes.
When applying either of the last two alternatives, at least one of the parameters r or r —s is decreased
by at least one, while the other one cannot increase, so the iteration does eventually stop.

At the ith stage, we obtain a subspace V() c V of codimension O(ri), an affine subspace W® c v
of codimension

O(exp(log” a ")),
where C is a constant (depending at most on p), an e-pseudorandom set A; ¢ W of density
a; = 2(exp(—log< &~ 1))
and a set
Py = Uyea VP x {y} ¢ VI x w®
where each V}Ei) c V@ has codimension r; < r. The bounds for «; and codim, W follow from solving
the recursive relations
air1 = 2(exp(—log”V(e; 'p"),
so that

loga; !, < log®(e; 'p't) + 0(1) < log€ o; !
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(recall that r; < r = O(log* &~ 1)), and
codimy, oW = o(p"/2a; 2.

Moreover, we have affine maps &1, . . ., &, from W' to V(* and subspaces Uﬁ") < V* of dimension

at most r; — s; such that (Vy('))l = span(§1(y), ..., &, () + U}(,i). Furthermore, P O P;. Suppose the
algorithm stops after the ith iteration, where i < 2r. Note that we have s; <,

codimV®? = 0(r?) = 0(log®V o™ 1),
and
codimW® = 0(exp(log® ') = O(exp(exp(exp(log” "’ &~ 1)))).
There are two possibilities.
Case 1:r; = s;, and
Pi={(xy) eV x A | x-&(y) = =x - &(y) = 0}
where &, ..., &, are affine maps from W& to Vi A; ¢ W® is a set of density y = o =
£2 (exp(— exp(exp(log”® o~ 1)))).
Case 2: The first alternative of Proposition 11 holds, and

— —
dvP)D{xy)eX x Wy [ x- & (y)="---=x&(y) =0},
where &, ..., & are affine maps from W® to V@ X < V@ is a set of density 2 (p™) =

£2 (exp (—log?V &) and W is the direction of W,

Since the two cases are similar, we will work with Case 1. By translating P by (0, a) for some a € A;
if necessary, we may assume that W is a vector subspace of V. Let n := 1»*?p~"~'. Applying
Lemma 7 with t = r + 1, there is a subspace H < W of codimension O(rn~'logy 1) such that
|A'| =y’ |H| (where A = A; N H) with y’ > y and for any subspace F of codimension at most r + 1

A'NF
of H, | i | <y(1 —1777).
Foreachx € VW, letBy = {y € H | x - &(y) = -+ = x - &,(y) = 0}. Then By is a subspace of

codimension at most r inside H. Let A, = A’ N B,. We claim that 2A, — 2A, = EX)
By Lemma 5, it suffices to show |f;x(x)| < yx3/2 for any x # 1, where y, is the density of A, in B,.
Suppose for a contradiction that this is not true. Then Lemma 6 implies that there is a hyperplane F
of B, on which the density of A is at least y, + ;/X3/2/2. From Lemma 7 we also have y, > y(1—np™*1).
Therefore,

Yx T+ Vx3/2/2

%

1
y(1—np™*h) + 5)/3/2(1 —np't1y2
1
> y(1—np™)+ 5)/3/2(1 —2np™*1)

1 2 3
zy - Ay =gty 4 (6)

This contradicis) the assumption on H since F is a subspace of codimension at most r+1 of H. Therefore,
2A, — 2A, = B, and

$v(P) D Uy} x By = {(x.3) € VO x H | x- &1 (y) = -+ = x- £ 4(y) = O}.

Since the codimension of H in W is O(rp~'log 1), Theorem 2 follows in this case. In Case 2, a
similar argument shows that ¢y ¢y (P) contains the desired bilinear structure. O

4. Proof of Proposition 11

First we suppose that there exists a linear combination of the affine maps &1, . . ., & that has small
rank as an affine map, that is, a nonzero A = (Aq,...,As) € IF; such that & = st.zl Aj&; satisfies
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rkgg < 3r 4 10. By completing A into a basis of F;, we obtain affine maps £, ..., £/_; from W to
V* such that span(&;(y), ..., &_,(¥)) = span(&(y), ..., &(y)) foranyy € A. Let V' = span(§;(y) |
y € A)', then the codimension of V’ in V is < 3r 4+ 10. For each y € A, let V, < V' be given by
(V,))* = span(§{(y). . ... §_,(y)) + U, where U} is the projection of U, onto V"*. Then dim U, < r —s
and codimy/ VJ; <r —1.Since V}ﬁ < Vy,wehaveP > | V}j x {y}. This proves the second alternative
(with S = A).

So let us now suppose that there exists no nonzero A € F, such that §; = » ., A;§; satisfies

rké0 <3r+10.Forx e V,letAy ={y €e A| x € V,} C W.Thus

yeA

Y Al =PI = A|IVIp” = ap T [W[ V. (7)
xeV
Also,letBy, = {y e W | x- &(y) = --- = x- &(y) = 0}; it is an affine subspace of codimension at most

s,and Ay C AN By.
Claim 1. Pycy(codimBy < s) < ep~" /4. (Recall that e = p~" /256.)
Proof. Note that

Bi=lyeW |y E(X)= =y &(x) =0

—
is a subspace of codimension s unless there exists a nonzero A € IE‘S such that ZS 1A & (x) = 0.
For any f1xed such A, the set of x that satisfy this relation i isa linear subspace namely the kernel K;, of
Z] 1A 51 whose codimension equals the rank ofz 1A SJ ,hence atleast 3r +10. Hence |K; | /|V| <
p~319, Because there are at most p’ tuples A to con51der we conclude that Pycy(codimB, < s) <
p"-p>1% < ¢p~"/4, and Claim 1 is proved. O

Claim 2. Let «, be the density of Ay in By, then Eycyay > ap® (1 — €/4).

Proof. Let X = {x € V | codimB, = s}, then we have

S A 1 A

1% - sl

e |V| |B| VI & |l
|Ax| 1 Al

S

A1
wi v & w

= pSEer

S—r s |XC| s—r
Zap T —ap—= Zap ' (1—¢€/4)
where we have used (7) and the trivial bound |A,| < |A| = «¢|W]|. O
Proposition 11 will follow from Lemmas 12 and 13.

Lemma 12. At least one of the following statements holds.

(1) For atleast p~" |V| /12 elements x € V, we have 2A, — 2A, = EX) (the direction of By).
(2) Among additive quadruples y1 + y> = y3 + V4 in A, a proportion at least p~* ¢ has the property
that codim (), V, < 4r —s.

The quantity codim (), Vj,, in a sense, measures the linear dependence between the V. Recall
that the V), all have codimension r and satisfy s simultaneous constraints. If codim ﬂ; Vy, < 4r —s,
then we will be able to find a new linear dependence between them.
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Proof. Let Q be the set of additive quadruplesy = (y1, ..., y4) of A. Let m = dim W. We have

4

4
Eer”]Ax”Uz(B) IEerIE Y1.Y4€Bx | | 1yleAX
+ +
Yitya=y3tya oy

1 . .
= Im Z EerlVieryi (since dimB, > m — s)

(V1.--y4)eA
Y1+y2=y3+y4

_ 3(1 : Zp—codim i Vy;
m-—s
p yeQ

a*(1+ €)(Byeq(p* ™ MNi%))  (recall that A is e-pseudorandom)

< a*p™ (1 4 €)(1 4 p* S Pycq(codim ﬂ Vy, < 4r —s)).

So either
4
Pyeq (codimm Vy, < 4r — s) > p~Htse (8)
i=1
or
Evevllalgag, < o@'p™ (1 +e)(1+p" 7 p~¥ ) = o' p™ (1 +- ). (9)

Eq. (8) is exactly the second clause of Lemma 12, so assume instead that (9) holds. We infer that
Exevlla, — oxllfz = Exev([l1a, 152 — o)

< Exev [l a1 — a*p~ (1 — /4"

< a4p74(r75)(26 +€2 +€)

<deatp™H) = y
where we used Jensen’s inequality, the lower bound Excycry > p~~9(1—€p~"/4) and the elementary
inequality (1 — €/4)* > 1 — €. Thus, if X; == {x € V | |14, — “"”lﬂ(s) < 4p"y}, by Markov's
inequality, we have |X;| > |V|(1 — p~"/4). Also, because oy < «p® for any x € V, the set
X, = {x € V| ax > ap~9/2} has density at least p~7(1/2 — €/4) > p~"/3.S0 X3 = X1 N X,

must have density at least p~" /12 by inclusion-exclusion.
Besides, if ¢ = 1/(256p"), then for x € X3 we have |14, — oz,(||2112

%
2A, — 2A, = By by Lemma 5. O

< 4p"y < of and then

We now prove Proposition 1_1) When the flrst outcome of Lemma 12 holds, we see that ¢y (P)
contains {(x,y) e Xs x W, | x- & (¥) = =X- 55 (y) = 0} where W, is the direction of W.

The real challenge lies in extracting somethmg from the second outcome of Lemma 12. This is the
purpose of the next lemma.

Lemma 13. Suppose r > s and a proportion at least « of the additive quadruples (y1, ..., y4) of A have
the property that codim ﬂle V), < 4r — s. Then there is a subset S C A of density o = o(r, a, k) such
that one of the following holds.

(1) There is a subspace V' < V of codimension one such that V, C V' forally € S. Moreover, there
exist affine maps &1, ..., &/_, from W to V" and spaces U)’, < V’™* of dimension at most r — s such
that (Vy)" = span(&{(y), ..., &_,(y)) + U, (where (Vy )~ is defined in V).
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(2) There is an affine map &1 : W — V* and a subspace Uy/ < V* of dimension at mostr —s — 1
such that V;} = span(§(y) | j € [s + 11) + U,.

Moreover o can be taken to be quasipolynomial® in axp™.

Applying Lemma 13 withk = p~# e = p~>" /256, the first alternative implies the second statement
of Proposition 11 since codimy/V, < r — 1, while the second alternative yields the third one of
Proposition 11. Our goal is now to prove Lemma 13.

Proof of Lemma 13. Let &1, ..., & be (not necessarily linear) maps from A to V* such that
Uy = span(&1(y), ..., &(y)) for any y € A. The number of additive quadruples in A is at least
o [W|? = « |A]%, and we assume at least x« |A|* of them have the property that the 4r vectors (i)
satisfy at least s + 1 linearly independent equations. For any additive quadruple in A, we already have
s obvious equations

&(1) +§i(v2) = &(y3) + §i(y4) forj € [s], (10)

so there needs to be one more (independent) equation. Because there are only p* possible linear
equations

r 4
DO agv) =0, (11)

j=1 i=1

the pigeonhole principle implies that we can find (a;;) € F4" \ {0} (linearly independent from the
vectors b;; = 1;j, for jo € [s]) such that there are at least ko |AI® /p* quadruples (y1, ..., ys) € W4
for whichy1 +y, = y3 +ysand Eq. (11) holds. Let T be that set of quadruples. Write a; = (a; )j=1,....r-
We distinguish two cases.

Case 1: One of the four families ay, .. ., a4, say ag, satisfies a4 ; = 0 for any j > s. Then we can use the
Egs. (10) to eliminate y, in Eq. (11). We obtain ¢ + ¢, 4+ ¢3 = 0 for some vectors ¢; € Vyf fori e [3],

not all equal to 0. Write r(¢) = |{y € A| ¢ € V;"}| for any ¢ € V*. Then we have

Pkl AP <ITI < Y0 r(@r(@a)r(—¢1 — ¢2) <2 max r(@) | D (@)
o189V, peV*\{0} pev
(¢1.62)#(0,0)

which implies that there exists a linear form ¢ € V* \ {0} such that for a noticeable proportion of
y € A,wehave ¢ € V;".Name Sy C A this set of elements y € A, then [So| > Sxap™® |Al. Let V' = ¢+,
then codimyV’ = 1and V, < V' foranyy € So.LetS; == {y € A: ¢ € span(&;(y), ..., &(y))} and
S2 = Sp \ S1. So max(|Sq[, IS2]) > %K(Xp_sr |A|. We distinguish two subcases.

A double counting argument shows that Z¢ev* r(¢) < p"IAl. So maxgey=\jo; (@) > %Kapfﬁr |A],

Case 1a: |Sq| = %/cap‘sr |A|. Since there are at most p” possible ways to write ¢ as a linear combination
of £1(y), ..., &(y), there is a nonzero A = (Aq,...,As) € ]FfJ and a subset S3 C S of size > kap™”"
such that ¢ = Zle Ai&i(y) for any y € S3. By completing A into a basis of Iy, we can find affine maps

&, ...,& 1 W — V*such that span(£1(y), . . ., &(y)) = span(¢, §;(¥), ..., &_,(y)) forany y € Ss.
Considering now V, as a subspace of V', and thus defining its orthogonal as a subspace of V"*, we have

V;" = span(&(y), ..., & (")) + U,

for any y € S3, where Uy/ is the projection of U, on V"*. Thus the first alternative of Lemma 13 follows
with S = S3.

Case 1b: |S;| > 1kap™® |A|. Fory € Sy, let Uy < VyL be such that
VyL = Span(€1(y)v DRI %_S(y)v ¢) @ U}ln

1 Polynomial under the polynomial Freiman-Ruzsa conjecture.
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then dim U, < r — s — 1. Projecting to V’, we have

V;- = span(&1(y). ... &) + U,

for any y € S, and replacing U;, by U, + span(&s(y)), the first alternative of Lemma 13 follows with
S=25,.

Case 2: None of the four families satisfies a;; = 0 for any j > s. We shall aim at linearity instead of
constancy. Removing quadruples for which two entries are equal (there are O(|A|?) such quadruples),
we still have a set T’ of quadruples satisfying ‘T/| > C |A|? for some constant C > kap~*". Applying
Lemma 10, we can pick a partition A = A; U A; U A3 U A4 such that the set

THZT/QA] XA2 XA3 XA4

satisfies |T”| > C|A[® /256.Fori € [4] andy € A, set &, ,(¥) = zi Y .1 @i j&i(y) where z; = 7, = 1

]
and z3 = z4 = —1. Observe that & ,(y) is a nonzero vector in Vyi. Fori € [4], letj; > s be

—

any index such that a;; # 0.Fory € A; let U; = span(&1(y), ..., &§;(), ..., &), where the
hat denotes an omitted form; this is a space of dimension at most r — s — 1. We have VyL =
span(&1(y), . .., &), &, () + UJ’,. Further, for a quadrupley € T”, we observe that (y;, £, (Vi))ic[4 is
an additive quadruple. So there are at least C |A|*> /256 additive quadruples in the graph {(y, &) |
y € A}. We then invoke Lemma 9 to obtain a set S C A of quasipolynomial (in C) density in A, such
that £/ ; coincides with an affine map on S. This concludes the proof. [
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