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LINEAR AND QUADRATIC UNIFORMITY OF THE MOBIUS
FUNCTION OVER F[7]

PIERRE-YVES BIENVENU AND THAI HOANG LE

Abstract. 'We examine correlations of the Mobius function over F,[f] with
linear or quadratic phases, that is, averages of the form

1
— Y w(HXQU)) (1
4 deg f<n
for an additive character x over IF, and a polynomial Q € I, [x()., ..., Xp—1] of degree
at most 2 in the coefficients xg, ..., x,—1 of f = an x;t*. As in the integers,

it is reasonable to expect that, due to the random-like behaviour of w, such sums
should exhibit considerable cancellation. In this paper we show that the correlation
(1) is bounded by O (g =1/4+emy for any € > 0 if Q is linear and O(q’"r) for
some absolute constant ¢ > 0 if Q is quadratic. The latter bound may be reduced
to O(q_'“",”) for some ¢’ > 0 when Q(f) is a linear form in the coefficients of f2,
that is, a Hankel quadratic form, whereas, for general quadratic forms, it relies on a
bilinear version of the additive-combinatorial Bogolyubov theorem.

§1. Introduction. Let p be a prime and ¢ = p°® be a prime power (s > 1).
Let F; be the field over g elements and I, [¢] be the ring of polynomials over F,,.
The Mobius function on [F[#] is defined, as its counterpart in the integers, by

(—=1)*  where k is the number of monic irreducible factors of f
uw(f) = if f is squarefree,
0 otherwise.

In the integers, a folklore conjecture predicts that i is so random-like that it does
not correlate with any bounded “reasonable” or “low-complexity” function F, in
the sense that

> umFn) =o(x). @)

n<x

For instance, linear or quadratic phases, that is, functions F defined by n >
e(an) or n — e(an?), should satisfy equation (2). Davenport [S] proved such
a statement for linear phases and Green and Tao for general nilsequences
[7, 8]. We do not attempt to define nilsequences here, but note that they include
sequences formed by regular polynomials such as F(n) = e(an® + Bn + y) as
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506 P-Y. BIENVENU AND T. H. LE

well as “generalized polynomials” such as F'(n) = e(|lna]nf). Together with
Green and Tao’s work [6] on the inverse theorem for the Gowers U3 norm, this
implies that || 1lly3(ny = ON—+oo(1).

In this paper we examine similar correlations over [, [¢], that is, we aim to
show that

> WAHF() =o(g")
deg f<n

for “reasonable” functions F. Quadratic and linear phases correspond to
functions of the form x(Q(f)) for an additive character x over I, and a
polynomial Q € Fy[xo,...,x,—1] of degree at most 2 in th/e\ coefficients
(X0, ..., xXn—1) € IFZ of f=3,_, x;t'. Recall that the group [, of additive
characters is isomorphic to (the additive group of) F,. To express the
isomorphism, let Tr : F, — F, be the trace map. For a € I, let us denote

2mi Tr(a)
eq(a) = exp(T>.

Then the isomorphism I, — ]?; is given by r — x,, where, for any r € I, the
character x, is defined by x,(x) = e, (rx).
We now state our main results.

THEOREM 1. Foranye > Qand x € IF‘;, for any linear form £ € F,[xo, ...,
Xn—1], we have

D HXU)) Keg gPHTO" 3)

deg f<n

uniformly in n and ¢.

It suffices to prove Theorem 1 for y = x;. In the integer case, Davenport [5]
showed that for any A > 0, we have

N

Y ulme(na) <a N(log N)™

n=1
uniformly in ¢ € R/Z, where the implied constant is ineffective due to the
possible existence of Siegel zeroes. Under the generalized Riemann hypothesis
(GRH), the best result is due to Baker and Harman [1] and Montgomery and
Vaughan (unpublished), who showed that, for any € > 0,

N
Z,u(n)e(noz) Ke N3/A+e €Y}

n=1

uniformly in @ € R/Z. Our exponent %—i—e in (3) matches the one in (4) (though it

is reasonable to conjecture that in both cases the best exponent is %—I—e). However,
our proof of (3) differs from that of (4) in some respects. In particular, our
proof of (3) uses L-functions of arithmetically distributed relations introduced
by Hayes [9] as opposed to Dirichlet L-functions. We remark that very recently
and independently of us, Porritt [15] has proved a result similar to Theorem 1.
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UNIFORMITY OF THE MOBIUS FUNCTION OVER F,[/] 507

Regarding quadratic polynomials, we have the following similar, but weaker,
result. It depends on the polylogarithmic bilinear Bogolyubov theorem [11,
Theorem 1.3], a quantitative improvement of a structural result in additive
combinatorics, the bilinear Bogolyubov theorem from our companion paper [3].
We introduce this theorem in §2.3.

THEOREM 2. Assume that p> 2. There exists a constant ¢ > 0 such that the
following holds. For any x € I , we have

1 ¢
0 Y w(HXQU) Lgq™" (5)

deg f<n
uniformly in n and the quadratic polynomial Q in Fy[xo, ..., xs—1].

Note that the quality of (5) is superior to Green and Tao’s bound for
nilsequences in [8], namely that if s(n) is a nilsequence, then, for any A > O,
one has

N
> um)s(n) Ks.a Nlog™* N. (6)

n=1
We have another result for quadratic phases similar to n — e(an® + fn). In
this case, our bound is easier to prove and gives a polynomial saving. We need
some extra notation to state our result (see §2.1 for more precise definitions). On
IF,[2], there is a natural norm | f| = qdeg /. The completion of F, [#] with respect
to this norm is F, ((1/¢)), the ring of formal Laurent series in 1/¢. OnF, ((1/1)),
we define the additive character e(a) = e;(()—1), where (o)1 denotes the

coefficient of r~! in .

THEOREM 3. There exists a constant € > 0 (independent of q) such that

D w(Pef® +Bf) <4 47" (7)

deg f<n
uniformly inn and a, B € F,((1/1)).

Note that we do not require p > 2 in Theorem 3, since when p = 2 the
map f +— (af? + Bf)_; is linear and Theorem 3 follows from Theorem 1.
When p is odd, the symmetric matrix of the quadratic form f — (af?)_jisa
Hankel matrix, i.e., a matrix whose (i, j)th entry depends only on i + j. Thus,
Theorem 3 can be reformulated in terms of Hankel matrices alone. We remark
that in the integers, under GRH we have bounds with polynomial savings for the
sum Y p(n)e(an®) (see [10, 20]).

We point out that the motivation to tackle correlations with quadratic phases,
as for the corresponding result in the integers, is the derivation of Gowers norms
estimates ||M||U3(]FZ) = o(1), where the set of polynomials of degree less than
n is identified with Fy. We refrain from defining Gowers norms here and refer
instead to [19] for a general theory, but we highlight that the bound || || UEn) =
o(1) allows one to control various linear autocorrelations of w; for instance, it
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508 P-Y. BIENVENU AND T. H. LE

implies that

Y wHulSf +ulf +29ulf +3¢) = o(g™).

deg f,deg g<n
For p > 2, it was shown by Green and Tao [6] that the norm ||‘||U3(IF';, ) 18

controlled by correlations with quadratic polynomials’.

However, Theorem 2 only yields a Gowers norm estimate when ¢ = p is a
prime. To see this, fix a group isomorphism ¢ : F, — Fi, and let ¢, : ]FZ —
[F,;" be the group isomorphism it induces in dimension n. For f € Fy, write
f = ¢n(f). Observe that not every IFj-quadratic form P( f) can be realized
as Tr(Q(f)) for some I -quadratic form Q(f); this can be seen by simple
counting. But controlling ||;/,||U3(FZ) precisely requires control of correlations

of p with any IF,-quadratic form P( f ), whereas Theorem 2 only deals with
F;-quadratic forms.

The organization of the paper is as follows. In §2 we collect necessary facts
that will be used in the proofs; in particular, we introduce and motivate Hayes’
theory as well as the bilinear Bogolyubov theorem (Theorem 5). In §3 we prove
a character sum estimate, using standard complex analysis as well as Hayes’
theory, and exploit it to infer Theorem 1 in §4. In §5 we use Vaughan’s identity
to reduce Theorem 2 to a problem in bilinear and quadratic algebra and prove it
in §6 using Theorem 5. Finally, we derive the bound (5) for the Hankel case in
§7, that is, Theorem 3.

§2. Preliminaries.

2.1. Notation and basic facts. A useful reference for the circle method in
function fields, of which the basics are sketched below, is [14]. Let [F,(7) be
the field of fractions of F,[#]. On F,(¢), we can define a norm by |f/g| =
gdee f—degg with the convention deg0 = —oo. The completion of Fy(¢) with
respect to this norm is

n
Fq((%)) = {a = Z a;ti :n € Z,a; € F, forevery i},
i=—00

the set of formal Laurent series in 1/z. It is easy to see that if « is as above and
a, # 0, then || = ¢".

Then F,[t] C Fy(t) C Fy((1/1)), and Fy[t], Fy(¢) and F,((1/1)) are the
analogues of Z, Q and R, respectively.

Letusput T = {a € F;((1/1)) : |a| < 1}. This is analogous to the usual torus
R/Z. LetTr : F; — F, be the trace map. For a € [, let us denote

27i Tr(a)
eq(a) = exp(T)

This is an additive character on F,. All additive characters on [, are given by
a > ey(ra) for some r € IF,.
! This actually holds for p = 2 as well thanks to a theorem of Samorodnitsky [17].
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UNIFORMITY OF THE MOBIUS FUNCTION OVER F,[¢] 509

For o € Fy((1/1)), we write («) 1 to denote the coefficient of = in a. We
define e(a) = ey ((@)—1). This is an additive character on F,((1/7)) and allows
us to do Fourier analysis on F,[¢]. It is analogous to the function x > emix
with a few differences. For example, e(a) = 1 does not imply that a € F,[7].
All additive characters on [, [7] are given by f > e(fa) for some o € T.

We denote by M the set of all monic polynomials in Fy[f], A, the set of all
polynomials of degree n which are monic, G, the set of all polynomials (not
necessarily monic) of degree less than n and Z the set of all monic, irreducible
polynomials. We use the convention that ., —; means }_ ¢ 4, (thatis, a sum
over monic polynomials).

The von Mangoldt function on [F,[#] is defined by

degP if f= P for some monic irreducible P and k > 1,
0 otherwise.

A(f)={

Recall that the “prime number theorem” on F, [7] reads

> A =4q"

deg f=I

2.2. L-functions of arithmetically distributed relations. To prove Theorem 1,
we first observe that any linear form on G, can be represented as a map f +—
(aef)—1 for some o € T. Thus, Theorem 1 can be rephrased as a bound for sums
of the form

> n(hef)

feGn
or, equivalently and more conveniently, of the form

> uHesf).

feA,
Now, if « is approximated by a fraction a/Q of polynomials up to a remainder
B = Zi;lfoo Bit! for some [ > 2, that is, « = a/Q + B, then e(af) =
e(af/Q)e(Bf) depends only on the residue class of f modulo Q and the
coefficients of the terms of degrees at least I — 1 of f = Y !, a;t"™" + 1.
We refer to ay, ..., a; as the first [ coefficients of f (if i > n, then we define
a; = 0). We thus need to understand functions on A, that only depend on the
congruence class modulo a fixed modulus Q and the first / coefficients. Hence,
for! > 0, Q € F,[t], we define an equivalence relation R; g on M as follows:

f =g @mod Ry ) if f =g (mod Q) and the first / coefficients of

f and g are the same.

It is an example of an arithmetically distributed relation, of which Hayes [9, §8]
developed the theory, which we briefly review. The relevant facts can also be
found in [12] or [4].

It is easy to check that M /R, ¢ is a semigroup with respect to multiplication
on [F,[t]. The equivalence class of a polynomial f € IF,[t] is invertible in
M/R; g if and only if (f, Q) = 1.
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510 P-Y. BIENVENU AND T. H. LE

Put G, 9 := (M/R; ), the set of invertible elements. This is a group of
cardinality q1¢>(Q), where ¢(Q) = #(F,[t]/(Q))*. Note that G, o is simply

(Fqlrl/ (O
For a character A on G, g, we extend it to all of M by setting A(f) = 0 if
(f, Q) # 1. We define the L-function associated with A as

1
Ls.))=)Y_ MO e
feM
which converges absolutely for $i(s) > 1. It is convenient to put
(o.¢]
Lz n) =Y MHZED =" Y ). ®)
fEM n=1 fGAn

Then L(s, A) = L(g~*, 1). We have the Euler product formula
L n) =] —rp)zrer)! ©9)
PeT

for |z| < 1/q.
In the same range of z, we also have

1
L(z, )

o
=[Ja=a@)%e?) =" uHr(pztel =3 " > uHr).
P feM n=1 feA,
(10)
The character constantly equal to 1 on Gy, ¢ is called the principal character.
When A is not the principal character, £(z, 1) is a polynomial of degree d(A) <
[ 4+ deg Q [9, Lemma 8.2]. The generalized Riemann hypothesis states that
all roots of £(z, 1) have modulus ¢~/% or 1 for any character . modulo an
arithmetically distributed congruence relation such as R; ¢. Weil’s proof (for
Dirichlet characters) was extended to these generalized characters by Rhin [16]
(see, in particular, Ch. 2, §§4-6). In other words, we can write

d)
Liz,» =[]0 -w2), (11)
i=1
where |o;| = q1/2 orlfori=1,...,d()). Inparticular, £(z, A) can be extended
to an entire function and (10) remains valid when |z| < g~/ 2,
When A is the principal character of G, ¢, we have
E(Z, )‘.) — l_[ (1 _ ZdegP)—l
PeT,
(P,0)=1
— l_[ (1 _ ZngP) l_[(l _ ZngP)—l
PeZ, Pel
PlQ
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UNIFORMITY OF THE MOBIUS FUNCTION OVER F, [¢] 511

— 1_[ (1 _ZdegP)l

PeT, -4z
PIQ

Consequently, £(z, 1) can be extended to a meromorphic function and

w(H=0-q [la-z%H"1 a2
E(z )»)

n=1  feA, (f,0)=I1 PeZ,
P|Q

for all |z| # 1.

2.3. The bilinear Bogolyubov theorem. When proving Theorem 2, we will
suppose for a contradiction that

D u(f+ X)) > €eq”

feGy

Let M be the n x n symmetric matrix corresponding to Q and k an integer. For
any a € Gg41, consider the map L, : G,—x — G, that maps f to af. We also
write L, to denote its n X (n — k) coordinate matrix in the canonical basis (i.e.,
the basis of monomials). For any (a, b) € G2, ., let Myp= LgMLb + LZMLa;
it is a symmetric (n — k) X (n — k) matrix.

After exploiting Vaughan’s identity in Section 5.2, we will find that for some
n < k < n, M has the property that the set of pairs

k+1°

Py :={(a,b) € Git1 X Gry1ltk My p < h}
is large; that is, it contains at least §¢>**2 pairs for some parameters § and h
(depending on € and n). We will want to convert this information about the ranks
of many M, j into one on the rank of M itself. However, we need these pairs to
have some special structure in order to extract some information; in particular, it
would be extremely convenient if the set

(@) | G, j) €{0,... . k}*} (13)

could be in Py, because M,i ,; is then simply a submatrix of M. Unfortunately,
its large size alone does not force P}, to contain such a nice structure, but, to boost
our chances, we are ready to do some additive smoothing, that is, adjoining to
our set P elements such as (a; — a», b) whenever (ap, b) and (ap, b) are in P;
and the same on the second coordinate. The rank remains controlled under this
operation, because rk M, 4, » =1tk (Mg, p — Mg, ») < 2h. Now our companion
paper [3] shows that additive smoothing does indeed produce useful structures.
Here is the result we get [3, Corollary 4].

PROPOSITION 4. For any &, there exists a constant c(8) such that the
following holds. If | P,| > 8q***2, then there exist F,-subspaces Wi, W5 of the
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512 P-Y. BIENVENU AND T. H. LE

F-vector space Gy of codimensions ry, ry and IF ,-bilinear forms Q1, ..., O,
on Wi x Wy such that Peap, = {(a, b) € Gl%+1 Itk M, » < 64h} contains the set

{(X»Y) e Wi x W, | Ql(x,)’):"': Qr(-x7y):0}

and max(r, ri,rp) < c(d).

We call this statement a bilinear Bogolyubov theorem, by analogy with the
original (linear) Bogolyubov theorem. We found that we can take c(8) to be
0(exp(exp(exp(log0(l) 1/6)))), where the implied constants may depend on
g, but, unfortunately, because § will be as small as, say, n=>, this bound for
c(8) is too large. By analogy with Sanders’ bound for the linear Bogolyubov
theorem [18], it is reasonable to imagine [3, Conjecture 3] that the linear and
bilinear codimensions r, ry, ro could be taken as small as polylogarithmic in
8~!. In [3], we show that indeed we can take r and one of r; and r, to
be polylogarithmic in §~'. Recently, Hosseini and Lovett [11, Theorem 1.3]
lowered ¢(8) to log@® s~ at the cost of replacing 64 in Proposition 4 by a
larger constant.

THEOREM 5 (Polylogarithmic bilinear Bogolyubov). For any 8, if |Py| >
8q*t2 then there exist F,-subspaces W1, W of the ¥ ,-vector space Gy of
codimensions ry, rp and ¥ ,-bilinear forms Q1, ..., Q, on Wi x Wy such that

Py, ={(a,b) G%Jrllrk M, p < 2°h) contains the set

{(,y) e Wi x W2 | Q1(x,y) =--- = Qr(x,y) =0} (14)

and max(r, ri,rp) < 0(10g80 s~ .

Applied with § = ¢, this means that the codimensions should be O (n9(©)).
The reason why sets of the form (14) are so desirable for us is the following
lemma.

LEMMA 6. Let W be an I¥ ,-vector space of dimension n and Q1, ..., Q, be
quadratic forms on W. If n > 2r(r + 1), then the set of isotropic vectors

X={xeW|Qix)="--=0rkx) =0} (15)
contains at least (1 — p~1/2)p"=2' 0+ elements.

More compactly, we can write | X| > p”_o(rz). We now prove Lemma 6. We

introduce the averaging notation Exew = (1/|W]) >, cy-

Proof. The density | X|/|W/| of isotropic vectors is given by

Dt Qi(x) ]Etl t,EerCUZ" tiQi(x)’ (16)
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UNIFORMITY OF THE MOBIUS FUNCTION OVER F, [¢] 513

where w = ¢27/? Letm < n be a parameter to be determined later (in terms
of r). Now, if a quadratic form Q on W x W has rank at least m, we can see that

Erewawl®| < p=m/?

by squaring this expectation (see Lemma 13). Thus, if, for any nonzero
(t1, ..., 1), therank of ), ; Q; is at least m, we see from equation (16) that the
density of isotropic vectors is at least p~" — p~"/2_ Otherwise, there exists a form
Q; such that Q; = > il Q; + R withtk R < m; without loss of generality,
suppose that i = r. Let W’ be the kernel of R, a subspace of codimension less
than m. Then the set

— e WIQI(X) == Qr1(x) = 0) (17)

is a subset X and we will now count isotropic vectors in X’. Thus, incurring a
dimension loss of at most m, we reduce the number of quadratic forms by 1.
We iterate this process until we get a family of quadratic forms for which any
nontrivial linear combination has rank at least m (or an empty family). At that
point, this is a family of at most » forms on a space of dimension at least n — rm.
Thus, it must have at least

n—r(m+1) n—rm—m/2

p -D
isotropic vectors. Taking m = 2r + 1, we obtain the result. O
We will use this lemma in §6 to obtain sets of the form (13) inside Psoy,.

2.4. Divisor bounds. We list some facts regarding the divisor function in
IF,[t] which we will need in the sequel. Let 7(f) denote the number of monic
divisors of f € [F,[¢]. We first have the following result.

LEMMA 7 [13, Lemma 8]. Ifdeg f =n > 1, then

ooz

Consequently, the number of monic irreducible factors of f is Oy(n/logn).

The next result is a bound for the second moment of 7.

LEMMA 8. We have
Edegd:nf(d)z < 4n’.

Proof. We observe that for any irreducible P and any integer k, we have
(P52 = (k + D2

Thus, the Dirichlet series D = Z 02 rea, T(f )2/| £1%) of the function 72
can be written as an Euler product as

+o0
D =[] tk+1)*PI7*. (18)
P k=0
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Next we note the following relations between formal power series:

—+00 —+00 —+00
Z(k + 1)2xk = Z(k +2)(k + DxF — Z(k + xk
k=0 k=0

k=0
14+x

=20-0)" —(1-x0)""=—",

(=07 = (-0 = o

so finally

+00 - 1_x2
D k+ 1= ——— (19)
k=0 (1 -x)

Combining equations (18) and (19) yields

1— |P|—2S
D = P ——
T

We can then express this Euler product in terms of the zeta function of Fy[z].
Letting u = g—*, we obtain

D=¢()*c@2) =1 —qg")(1 ¢ =1 — qu®)(1 — qu)™.

This is a power series S(u) in u and S(u) = ), a,u” =), (S™(0)/nu™,
where a, = 3 o0 4n t(d)?. Now, for n > 3, deriving n times using Leibniz’
formula, we find that

S w) = (1 — qu?)g" (@ x -+ x (n+3))(1 — qu) ™"
—2qung" "4 x - x n+2)(1 —qu)3"

n\ n—2 —2-n
—2q<2>q @Ax---xm+1))A—qu) .

Evaluating in u = 0 gives

S™M (O
n(') =n+3)n+2)n+1)/6—qg 'nn+1)2/6 < 4n?,
q"n!
where the left-hand side is exactly Egeg d:n‘[(d)z. O

§3. Character sum estimates. In this section we prove the following result.

THEOREM 9. Letl >0, Q € Fq[t], deg Q = m > 0 and A be a character of
Gy, @. Then, for any d and € > 0, we have

Z M(f))\(f)‘ Leyg q((l/2)+e)d+e(m+l)_ (20)
feAq

Proof. First we assume that A is not principal. We will prove the following
more precise bound:

Z ,u(f)k(f)‘ < ¢'@/P+dloglog(m-+1)/log (m4D)+0, ((m-+1) /log> (m-+1)) @1
feAq
Our method is a generalization of the proof of [2, Theorem 2].
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Like [2], we deduce (21) from an estimate for log £(z, 1) near the circle |z| =
g~ /2, which is in turn deduced from an estimate for £'(z, A)/L(z, A).

By taking the logarithmic derivatives of (9) and (11), we have two different
expressions for £'(z, A)/£(z, 1). On the one hand, we have

LN
L(z, A) —;azz

where
d(v)

a=-Yy o (22)

according to (11).
On the other hand, according to (9), we have

a= Y APM. (23)
deg f=I
From (22), we have
larl < d(V)q'? (24)
and, from (23), we have
lal < Y. A =4 (25)
deg f=I

Put L = |2log, d())]. Forl > L, we use the bound (24) and, for [ < L, we
use the bound (25). Therefore, for any z, we have

L(z, ) Z I oi—1 - 172, _,1-1
lzI' 7 + E d(M)g ' |z~ (26)
'E(Z A) =1 I=L+1

Let 0 < € < 1/4 be chosen later, R = g~ '/>~¢ and w be arbitrary on the circle
|w| = R. Integrating (26) along the line from 0 to w, and noting that £(0, A) = 1,

we have
(R) < (qu/z)l
llog L(w, 1)| < Z D A —— (27)
=1 I=L+1
The second sum in (27) can be bounded by
d()\) NIV d(A)*RE 1
Rq R . (28
Z( SR e < g @

I=L+1
As for the first sum in (27), we bound it crudely by

L 00 2L
_ d(M)°R
Z(Rq)l < <Rq>Lk2:jo<Rq> < T qr) T < d0)*RY, (29)
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since gR > ¢'/*. By combining (28) and (29), we have
q q y g

gl 1

Hence,

2 plL 1
‘ﬁ(w ) \e"p( q(d(“ K <1+L<1—Rq1/2>>)>' G0

Let Cg be the circle jw| = R = q_l/z_e. From (10), we see that
1

> X(f)u(f)‘ —w—d—ldw‘
fens 27i cx L(w, x)
< 7d
max L. h)
qd(1/2+e)+0q(d(A)l’ZE(l—H/elogd(}\)))' (31)

We now make the choice € = (loglogd(})/logd(})). Recalling that d(A) <
I +m — 1, (21) follows. The bound (21) is stronger than (20) when
loglog(l + m)/log (I + m) is greater than the € in (20). For the finitely many
exceptional pairs (m, [), (20) follows from (31) (with the same €).

We now consider the case where X is principal. From (12), on the circle |z| =
q_l/z, we have

1
— 1_ 1_ degP —1
‘L(M) M—qzl J] 1—z%eP

PeZ,P|Q

< l_[ fdegP/Z)f
P€eZ,P|Q

< l—[ (1—g~1/21
PEZ,P|Q
— (1 _q—]/Z)—k g qu(m/logm)’ (32)

where k is the number of monic irreducible factors of O and (32) follows from

Lemma 7. Integrating z~¢~!(1/L(z, 1)) along the circle |z| = ¢~!'/? and using
(32), we see that
Z ,u(f) < qd/Z-‘qu(m/logm)’ (33)
fedn (f,0)=1
from which (20) follows. ([l

We remark that (12) readily gives a formula for ) FeAn (f.0)=1 w(f), but it
is not immediate to derive (33) from this formula.

§4. Exponential sum estimates. We say that a function F : M — Cis Ry o-
periodic if it is constant on each equivalence class of R; ¢. In other words, F' is
R, p-periodic if F(f) depends only on the residue class of f modulo Q and the
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first / coefficients of f. We say that F is 1-bounded if | F(f)| < 1 forany f € M.
First we show that p is orthogonal to R; g-periodic functions by adapting the
argument of [7, Proposition 3.2].

PROPOSITION 10. Suppose that deg Q = m. For any R; g-periodic and
1-bounded function F : M — C and € > 0, we have

Y F(H(f) Leg gMHHOCTmHD,
feA,

where the bound is uniform in F.

Proof. We first consider the case where F(f) = 0 whenever (f, Q) # 1.
This means that F is a functionon G; g. Let K = |G, g| = g'o(Q) < ¢!t and
Al, ..., Ak be the characters of G, . Define the Fourier coefficients of F' by

F() =Efec,  F(HR()

for any character A of G; g. Then F(f) = ZZI(=1 f(ki)ki(f). Plancherel’s
formula implies that

K
D IFO)P =Efe o F(HIF < 1. (34)
i=1
We have
K
> F(f)u(f)' Z ) D (f)u(f)‘
feA, i=1 feA,
Leng g"/FHe0HHm Z |F ()] (35)
i=l1
< g"/Arettm g1/2 (36)

< qn/2+(l+m)/2+e(n+l+m).

Here (35) follows from Theorem 9 and (36) follows from the Cauchy—Schwarz
inequality and (34).

Next we consider the general case where F(f) is not necessarily 0 when
(f, Q) # 1. If f is square-free, (f, Q) = D, we can write f = Dg, where g is
square-free and (g, Q) = 1. Hence,

Yo FhHwH = )Y Y. F(Du(D)l(g.0)=1

feA, DeM,D|Q, degg=n—degD,
D square-free g square-free

= Y wD > FDu@lge=1. G

DeM,D|Q deg g=n—deg D,
g square-free
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518 P-Y. BIENVENU AND T. H. LE

Now the function g — F(Dg)u(g)l, 0)=1 is R; g-periodic and vanishes on
elements of M that are not coprime to Q. By the above, we infer that

Z F(Dg),u(g) 1 (¢.0)=1 <<€’q q(n—deg D) /2+(+m)/2+€(n+m—+I)

deg g=n—deg D,
g square-free

for any € > (. Furthermore, still for any € > 0, we observe that

Y g2 1(Q) Keyg 101 = g
Dio

by Lemma 7. This completes the proof. (|

We will now use Proposition 10 and the ideas outlined at the beginning of
§2.2 to prove the following exponential sum estimate.

THEOREM 11. Given any € > 0, for all « € T and n, we have

D ulef) Keqgq O (38)
feA,

and
D w(Pe(f)Keqq O (39)
f€Gy

The first bound implies the second bound, because

n—1
D uhef) =YY" > plhelacs),

feG, ceF: k=0 feAy

so we only need to prove the bound (38). It is easy to see that any linear form on
G, can be written as f +— («f)_1 (i.e., the coefficient of t~linw f) for some
o € T. Thus, Theorem 1 follows from Theorem 11.

Proof. By Dirichlet’s approximation theorem, we can find a, g € Fy[z],
g # 0,degg < |n/2] such that @ — a/g| < 1/q"/?)|g|. Put B = a — a/g.

Then
> wPeaf) =Y u(f)e(ﬂ)ew).
fGAn feAn g

Since |B| < g~/217deg e see that e(Bf) depends only on the first n —
ln/2] —deg g coefficients of f. Also, e(af/g) depends only on the residue class
of f modulo g. Applying Proposition 10 to (I, Q) = (n — |[n/2] —deg g, g), for
any € > 0, we have

a
Z n(fe (l)e(ﬂf) Ke g qUFODtn=1n/2]~deggdeg )
feh, 8

— q((l+e)/2)(2n—Ln/2J)<<€’qq(3/4+é)n’
as desired. O

Downloaded from https://www.cambridge.org/core. IP address: 99.61.69.233, on 25 Jul 2019 at 16:13:44, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/50025579319000032


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579319000032
https://www.cambridge.org/core

UNIFORMITY OF THE MOBIUS FUNCTION OVER F, [¢] 519

As we show next, this implies that if a function is determined by the values
of a few linear forms, it does not correlate with the Mobius function.

COROLLARY 12. Let ¢ > 0 be a constant. Let F : Fy, — C be 1-bounded
and suppose that r < cn. Let £y, ..., £, be linear forms on G,. Then, for any
€ >0,

Z W(f A+ 1VFEL)s o () Keg gB/HTETO,
feGa

Obviously, this is interesting only if ¢ < 1/4.

Proof. Theorem 11 immediately implies that for any linear form £ on G,,, we
have

D (S +1eg(U(f)) Keg g, (40)
feGn

For any a = (ay,...,a,) € IE‘;, let V4 < G, be the affine subspace defined
by the equations ¢; (f) = a; for i € [r]. Then one can write

D AFES), () =D F@ Y u(f+1").  (@41)

feGy aclF) feVa

Now we observe that

.....

i€lr]
so that
Youf+M=E g [ xit=ad Y w(r+ [T x()
feVa i€lr] feag, i€lr]

and, by the triangle inequality,

Do+

feVa

Yo+ T] xiwi(f))‘.

f€Gy i€lr]

< max
=
xeF,

Recall from §2.1 that each y; is of the form y; (x) = e, (#;x), so that
r
[ xir) =eq (Z ti (f)>.
ielr] i=1

We then apply (40) to the linear form £ = ) t;£;. This shows that

ielr]

<q B/4+e)n )

Do+

f€Va

Inserting this bound in equation (41) and using the fact that | F/| < 1, this gives
the desired result. O

§5. Quadratic phases and Vaughan’s identity. From now on, we suppose that
the field IF, we work with has characteristic p > 2. Recall thatg = p® and s > 1.
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5.1. Quadratic phases. We call a quadratic form on IFZ a homogenous

polynomial of degree 2, that is, a map of the form F(x) = x” Mx, where M
is a symmetric matrix. The corresponding (symmetric) bilinear form is the map

B(x,y) = xTMy.

The rank of F is the rank of the matrix M. It equals the codimension of the
space K of vectors x such that the linear form B, defined by B,(y) = B(x, y)
satisfies By = 0. A quadratic polynomial is a polynomial of degree 2, that is,
a quadratic form plus a linear form. A quadratic phase is a map of the form
®(x) = x(P(x)) for a quadratic polynomial P and an additive character x.
Its rank is the rank of the corresponding quadratic form. Thanks to the following
standard lemma, quadratic phases can be classified, depending on their rank, into
major arcs and minor arcs, by analogy with the circle method.

LEMMA 13 (Gauss sums). Let ®(x) = x (P (x)) be a quadratic phase of rank
at least r. Then
|Exerr ® ()| < g~

Thus, quadratic phases of low rank correspond to major arcs, while the ones
of high rank correspond to minor arcs.

Proof. We use the standard technique called Weyl differencing, consisting of
squaring the expectation to duplicate the variable. We have

Erer ®(0)|* = By @ (x + )P (x)
=Ecnx(P(x + ) = P(x))
= Enx (P(h)Exx (2By(x)),

where all variables range over IFZ. Now, if h ¢ K, the form 2B; is a
nonzero linear form (remember that the characteristic p is not 2), whence
EerF;;XQBh (x)) = EerFqX(X) = 0. This implies that

Erem ®(0)I* < Eners lnex =g

and the claim follows. O

‘We now start the proof of Theorem 2. Let P be a quadratic polynomial on IFZ
and ® = x o P be a quadratic phase. We want to bound the sum

DT u(f+Hef) =D u(HP).

fGGn fEAn

where, by abuse of notation, if f € A,, we write ® () for ®( f —¢"). The general
strategy is the following. We first observe that when & is a quadratic phase of
rank at most cn with ¢ < 1/4, then Corollary 12 concludes: indeed, a quadratic
form of rank » depends on r linear forms only, so a quadratic polynomial of rank
r depends on r + 1 linear forms at most. So, we will show that in order for
to correlate with a quadratic phase @, the corresponding quadratic form needs to
be of small rank (major arcs). This would imply that u cannot correlate with a
quadratic phase at all.
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5.2. Exploitation of Vaughan’s identity. We will show the following result.

PROPOSITION 14. Let 6 > 0. Suppose that szeAn,u(f)Q(f)l > 38q". Then
at least one of the following two statements holds.

(1)  There exists k < n/9 such that for at least one polynomial d of degree k,
the quadratic polynomial on G, _y defined by

w +— P(dw)

has rank at most O (log(n/6)).

(2) There exists k € [n/18, 17n/18] such that for at least (8§/n)° Vg pairs of
polynomials d, d’ of degree k, the quadratic polynomial on G,_y defined
by

w i P(d'w) — P(dw)

has rank at most O (log(n/6)).

Before proving this proposition, we underline that for any d € Gy41, we see
the map w +— dw as a linear map from G,_j to G,, which allows one to see
w +— P(dw) as a quadratic polynomial.

We now start proving the proposition. The first tool we need is Vaughan’s
identity, which reads

u(f)=— E p(a)u() + E (@) (b),
ab|f ablf
dega<u,degb<v dega>u,degb>v

where the sum is over monic polynomials a and b, and 4 = v = n/18 (though in
general they can be chosen arbitrarily). We shall adopt the notational convention
that N = ¢", U = ¢" and so on. Moreover, for f € F,[¢], recall the notation
| f| = ¢/ . Vaughan’s identity implies that

> wHe(f)=-T + T, (42)
feA,
where
T = Z ag Z ®(dw) (43)
|dI<UV WEAnfdegd
and

= ), ba ), wwodw) (44)

VL|dISN/U weAn—degd

are called type I and type II sums, respectively. The sums over d are over monic
polynomials. The coefficients a; are unimportant and all we need to know is that
max(|aq|, |bg]) < 7(d). In the type I sum, we have made the change of variables
d = ab,w = f/d, while in the other one we wrote w = fb,d = f/w. The
splitting into two sums yields the following dichotomy, which we will use to
prove Proposition 14.
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PROPOSITION 15. Make the same hypothesis as in Proposition 14. Then
either there exists k < n/9 so that

Ege, |Epea, , ®dw)* > 82/(16n°) 45)
orthereis ak € [n/18, 17n/18] such that
Ew.wea, [Fadaea, ®dw)®dw)d(dw)dd w) > 8*/256n'%.  (46)

Proof. 1f |y feA, w(H)®P(f)| = 8N, the decomposition (42) implies that
either |T1| > 6N /2 or |T2| = SN /2. Suppose first that |T7| = SN /2. On the
other hand, using the triangle inequality and equation (43), we bound 77 by

< > Zr(d) [Buca, , ®(dw)|

k<u+vdeAi

N
<n max - > 1(d)|Eyea,  Pdw).
dEAk

Fix ak < u+v = n/9 that realizes the maximum in the line above. The Cauchy—
Schwarz inequality then yields

IT11?/N? < n* (Egea, T2(d))(Egen, |Epea, P dw)|).
Now Lemma 8 ensures that
Ege, T2(d) < 4% < 4n°,
so we can affirm that
82N%/4 < |Ti|* < 4n° N?Egea, |Ewea, , D dw)|>.
This means that
2 2 5
Egea Ewea,  @dw)]” = §7/(16n),

which proves equation (45).
Let us now suppose that |T>| > SN /2. Using the triangle inequality and
equation (44), we have

LI< Y )

> M(w)CD(dw)'

V<|dI<N/U wWEA,
<N max Egea, t(d)|Eyea, , 1(w)®dw)].
v<k<n—u

We again fix a k (this time k € [n/18, 17n/18]) that realizes the maximum and
apply the Cauchy—Schwarz inequality together with Lemma 8, obtaining

IT212/N? < 4n° Bgea, B wrea, (W) pu(w)®(dw)®dw).
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This implies that
Eu,wea, . Hw)iw)Eqea, @ dw)®(dw’) > 62/(16n°)
and again we apply Cauchy—Schwarz to eliminate u, which yields
Eu,we, Edaea ®dw)®dw)®@w)d(dw') > 8*/(256n'"").
This is the content of clause (46), so the proof of Proposition 15 is complete. [l

We now derive Proposition 14 using Proposition 15. Suppose first that
equation (45) holds, so there is k < n/9 such that

Edea|Bues,  dw)> > 8, (47)
where 8’ = 82/(16n°). Equation (47) implies that there exists d € Ay such that
Ewea, , @dw)* > 8.

Fix such ad € Ax. Lemma 13 then implies that the quadratic polynomial w +—
P (dw) has rank at most logq & H = O(log(n/$)). This corresponds exactly to
the first statement of Proposition 14.

Suppose instead that equation (46) holds. Then we have k € [n/18, 17n/18]
such that

Euwea, Ed.aes ®dw)®(dw)d(dw)d(d'w') > 4§,
where 8’ = 8%/(256n'0). The triangle inequality ensures that
EgaeaBwea,  x (P(dw) — P(d'w))| > 8.

In particular, for a proportion of at least §/2 pairs of monic polynomials d, d" of
degree k, we have

IEwec, x (Pdw +"7%)) — P (w + "))
= |Ewea, X (P(dw) — P(d'w))| > &'/2.

Observe that for w € G,,_y, the rank of w > P(d(w+""%))— P(d'(w+1""%))
is the same as that of w — P(dw) — P(d’w). Lemma 13 implies that the rank
of w > P(dw) — P(d'w) is at most —21log,(8'/2) = O(log(n/8)). This is
precisely the second part of Proposition 14. So, in every case, Proposition 14
holds.

Downloaded from https://www.cambridge.org/core. IP address: 99.61.69.233, on 25 Jul 2019 at 16:13:44, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/50025579319000032


https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579319000032
https://www.cambridge.org/core

524 P-Y. BIENVENU AND T. H. LE

§6. Using the polylogarithmic bilinear Bogolyubov theorem. Let ¢ > 0O be
a constant to be determined later and let § = ¢~". To prove Theorem 2, it
suffices to show that | rea,m( HP(f)| < 8q" for n large enough. (The bound
for ZfeGn simply follows from summing the bounds for Zfe a, fork =1,
...,n — 1.) For the sake of contradiction, suppose instead that there exists an
unbounded set Z of integers n such that

> u(f)d>(f)' > 8q" (48)

feA,

whenever n € Z. We then apply Proposition 14. Suppose that the first statement
holds. Write P(f) = B(f, f) for some bilinear form B(x, y) on IFZ X IFZ (we
may omit the linear part of P as it modifies the rank by at most 1). Then we
know that the form R; : w — P(dw) on G,_j has rank at most O (n¢) for at
least one d of some degree 0 < k < n/9. Now the rank of the quadratic form Ry
is simply the rank of the bilinear form B restricted to the subspace dG,_; C G,
of codimension k. Thus, the rank of Ry is at least rk B — 2k, which implies that
rk B < 2n/94 O (n°).If n € Z is large enough (remember that Z is unbounded),
this is less than ¢’n for some ¢’ < 1/4. Then Corollary 12 brings the desired
contradiction.

Now let us suppose that the second case of Proposition 14 holds. Let n/18 <
k < 17n/18 be the parameter returned by this proposition. Then the set

Y ={(d,d") € A} | w > P(dw) — P(d’w) has rank at most O (n)}
has size at least q2k+2_0("c). Note that, ford, d’ € Gy,
Pdw) — P(d'w) = B({(d —d)w, (d+d)Hw)

is a quadratic polynomial in w € G,—k. For a,b € Gg41, let B, be the
symmetric bilinear form on F ’;_k X [E‘Z—k (identified with G,,_; x G, ;) defined
by B, »(x,y) = (B(ax, by) + B(ay, bx))/2. Thus, we have a set

X ={(a,b) € Git1 X Giy1 | 1k By p < O(n)}

of density at least n = q*OW) in Gg41 X Ggy1. As discussed in §2.3, we would
like to replace the large set X by a more structured set, namely the zero set
of a (not too large) family of bilinear forms, at the cost of slightly worsening
the bounds on the rank. Theorem 5, an application of the bilinear Bogolyubov
theorem from [11], precisely implies that

X" ={(a,b) € Gkt1 X Giq1 | Tk By < O(n))
contains a set of the form
Y={(ab) e WixWy| Fi(a,b)=---= F.(a,b) =0},
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where Wi, W, are [F,-subspaces of Gy (itself seen as an F,-vector
space of dimension s(k + 1) = O(k)) and max(codimWy, codimW,,r) =
0(og™ n~1) = 0(n¥%).

Now take ¢ = 1/10 and consider a set of indices

I=0=ii<ir<---<iy=|k—¢€k]} C[0,k—€k]

such that ij4y1 —i; < (n — k)/2 for any j and m = O(1). Such a set exists,
because n — k > n/18 > k/18. Consider W = Wi N W, N G, an [F,-vector
space of dimension at least esk — O (n8%¢). Consider the F p-quadratic forms on
W given by F;’J (w) = Fi(t'w, t/w) for any !/ € [r]and i, j € I, where the map
w — t'w is identified with the corresponding IF p-linear map between the vectors
of coefficients. This is still a family of at most O (n8%) bilinear forms. Thus, we
can find at least €2 ( p“k’o(”lﬁoc)) common isotropic vectors in W to these forms,
thanks to Lemma 6. We take ¢ sufficiently small such that the exponent of 7 in the
last equation is less than 1 (¢ = 1/161 is good enough). Then, if k£ (and thus »)
is large enough, there is definitely at least one nonzero polynomial w of degree
at most ek such that Fj(t'w, t/w) = 0 for all i, j € I and [ € [r]. Consequently,
1K Byiy, 1iyy <k = O(n) foralli, j € I.

Consider the (symmetric) matrix M of the F,-bilinear form B restricted to
the space of the multiples of w, written in the basis (wr? )0<i <n—degw- We call
the matrix element B(wt', wt/) the cell (i, j) of M. The rank of B differs from
the rank of M by at most 2¢n, so it suffices to bound the rank of M.

Now let us examine the (symmetric) matrix N; ; of the quadratic form
Biiy, 1iy in the canonical basis of G, —x.

Observe that the map u +— t'wu, seen as an [F,-linear map (between vectors
of coefficients), transforms an element ¢/ of the canonical basis of G,_ into a
basis element 7/ T/ w. That means that its matrix in the canonical basis of G,_g
and the basis (wl‘i)()gi<n_deg w is an (n —deg w) x (n — k) matrix, which we can
write by block as

where the central block is an identity block and the other blocks are 0 blocks.

A submatrix of a matrix consisting of consecutive rows and columns is called
a block. Next we observe that

2N;j=L5 ML, +L} ML,

which makes it easy to see that N; ; is the symmetric part of the (n —k) x (n —k)
block of M whose top-left corner is the (i, j) cell of M. Write M; ; for this
block.

We remark that if i = j, this block is a diagonal block of a symmetric matrix
and hence a symmetric matrix, so it must have small rank itself. Hence, the
matrix M contains a number of large diagonal blocks M;; which have small
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Figure 1: Covering M by submatrices and moving away from the diagonal.

rank. To bound the rank of M, it suffices to bound the ranks of all submatrices
M; jfor (i, j) e I 2. Indeed, the matrix M being covered by these submatrices,
we have the bound

rk M < Z rle-,j<|I|2 max rk M; ;.
L Gi,j)el?
(. jer

The cardinality |/| being bounded, bounding the ranks of these blocks suffices
to bound rk M. We now prove by induction on £ — m that M;, ; has small rank,
namely at most 5 ="« Because M;, ;, = MZMU, it suffices to prove it in the case
£ > m. When £ — m = 0, as we have already seen, the corresponding block is
diagonal and of rank at most k. We now suppose that for some ¢ > m we already
know thatrk M;, ; < 5" and we inspect M; . The reader can follow the
proof in Figure 1.

In Figure 1, the dotted (n —k) x (n—k) block M;,, , ;, = E is made of the four
blocks A, B, C, D and it is known to have a symmetric part of small rank. On the
other hand, A, B and D are already known to have rank at most 5¢=mk  because
they are submatrices of M;, ;,, and M;,, ;.. respectively. Now the symmetric
part E 4+ ET admits as bottom-left square block of the size of C the matrix
C + C'T, where C' is the top-right block of B (here it is crucial that i | — iy <
(n — k)/2). As a submatrix of a matrix of small rank, C + C'7 must have small
rank. But C’ has small rank itself as a submatrix of B, whence it follows that
C = (C + C'T)y — C'T has small rank, namely a rank of at most 2 - 5¢"«.
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Hence,

rk M; =rkEgrkA—{—rkB-}-rkC_FrkD<5[+1—mK'

O+15im

This completes the induction proof and implies that tk M = O (k) = O (n°).
Finally, as already noted, the rank of B is at most the rank of M plus 2en.
In particular, given that 2¢ = 1/53, it is surely less than ¢’n for some ¢’ < n/4
if n € Z is large enough. Again invoking Corollary 12, we obtain the desired
contradiction with the hypothesis (48). This concludes the proof of Theorem 2.

§7. The Hankel case. We prove Theorem 3 and again we assume that p > 2.

Ifa= ZT:_OO a jtj , then the matrix of the quadratic form f +— (af?)_; in the

canonical basis of G, is

a_y a_n a_p
a S a-

M= M(@) = 2 n—1
d—pn O—_p—1 -+ A-2p+]

We will follow the same strategy as in §§5.2 and 6 with ®(f) = e(af? + Bf).
Suppose for a contradiction that, for arbitrarily large n, we have

> u(f)d>(f)‘ > 89" (49)

feGy

with § = q_E," for some €’ > 0 to be decided later. We apply Proposition 14.
We discard the first case of that proposition, because in that case the reasoning
of §6 goes through without Theorem 5. The parameter 8’ = (/1)1 is still at
least g —¢" for some € = O(¢’) if n is large enough. Thus, we find a k € [n/18,
17n/18] such that for at least ¢ @~ *+D pairs of polynomials (d, d’) of degree
k, the quadratic phase on G,_ defined by

w > e(a(d* — d?)w?)

has rank at most O(en). Write d — d’ = a and d + d’ = b. We infer that for
at least ¢ =9+ pairs of polynomials a, b of degree at most k, the quadratic
phase

w e(aabwz)

has rank at most cen for some constant ¢ = O(1).
With the notation of the previous section, the symmetric matrix of that form
is
Myp=LIM(@)L, = LI M(a@)L, = M(aab).
Thus, compared to the general case, M, 5, is a product involving M and not a
sum of two products, which makes it much easier to analyse. As in the proof of
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Theorem 2, we will show that M has low rank by covering it by submatrices of
low rank.

By Markov’s inequality, there exists a set X C Gy of size g!=9*+D /2
such that for any a € X, the set

B, :=1{b € Gi41 |tk My p < cen}

has size at least ¢! =&+ /2,

Let n = 2¢. Forany i € {0,...,k — nk} and a € X, by the pigeonhole
principle, there exist two distinct b # b" in B, such that f = b — b =
Zi::”lk cut™ for some coefficients c¢,,. Moreover, we have rk M, s < 2cen.
Write f = f,; to emphasize the dependence. Fix (i, j) € {0, ...,k — 2nk)>.
Again the pigeonhole principle implies that there exist a # a’ € X such that
g=a—a espan(t/,..., t7+?*) and Jfa.i = fo.i-If f is this common value,
we have rk Mg r = O(en). Observe that for such a pair (g, f), we have

where the central block is an (n — k + 2nk) x (n — k) matrix of rank n — k
and the other blocks are 0 blocks. The same holds for L y with a central block
Cy. So, if N is the (n — k + 2nk) x (n — k + 2nk) block of M whose top-left
cellis (j, i), then My r = CgTNCf, so thattk Mg ¢ >tk N — 4nk. As a result,
rk N = O(en).

Covering M by a bounded number of blocks of size (n — k + 2nk) x (n —
k 4+ 2nk), we find that tk M = O(en). By taking € small enough, the bound
O (en) is constrained to be smaller than, say, n/5, for n large enough. Thus, if €
is small enough (that is, if ¢’ is small enough), we get a contradiction between
the hypothesis (49) and Corollary 12. Theorem 3 follows.

It is possible to give an alternative proof of Theorem 3 using the more
traditional language of Diophantine properties of « and 8. We have opted for the
present proof, since it shows parallels between the general case and the special
case.
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