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LINEAR AND QUADRATIC UNIFORMITY OF THE MÖBIUS
FUNCTION OVER Fq[t]

PIERRE-YVES BIENVENU AND THÁI HOÀNG LÊ

Abstract. We examine correlations of the Möbius function over Fq [t] with
linear or quadratic phases, that is, averages of the form

1
qn

∑
deg f<n

µ( f )χ(Q( f )) (1)

for an additive character χ over Fq and a polynomial Q ∈ Fq [x0, . . . , xn−1] of degree
at most 2 in the coefficients x0, . . . , xn−1 of f =

∑
i<n xi t i . As in the integers,

it is reasonable to expect that, due to the random-like behaviour of µ, such sums
should exhibit considerable cancellation. In this paper we show that the correlation
(1) is bounded by Oε(q(−1/4+ε)n) for any ε > 0 if Q is linear and O(q−nc

) for
some absolute constant c > 0 if Q is quadratic. The latter bound may be reduced
to O(q−c′n) for some c′ > 0 when Q( f ) is a linear form in the coefficients of f 2,
that is, a Hankel quadratic form, whereas, for general quadratic forms, it relies on a
bilinear version of the additive-combinatorial Bogolyubov theorem.

§1. Introduction. Let p be a prime and q = ps be a prime power (s > 1).
Let Fq be the field over q elements and Fq [t] be the ring of polynomials over Fq .
The Möbius function on Fq [t] is defined, as its counterpart in the integers, by

µ( f ) =


(−1)k where k is the number of monic irreducible factors of f

if f is squarefree,
0 otherwise.

In the integers, a folklore conjecture predicts that µ is so random-like that it does
not correlate with any bounded “reasonable” or “low-complexity” function F , in
the sense that ∑

n6x

µ(n)F(n) = o(x). (2)

For instance, linear or quadratic phases, that is, functions F defined by n 7→
e(αn) or n 7→ e(αn2), should satisfy equation (2). Davenport [5] proved such
a statement for linear phases and Green and Tao for general nilsequences
[7, 8]. We do not attempt to define nilsequences here, but note that they include
sequences formed by regular polynomials such as F(n) = e(αn2

+ βn + γ ) as
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506 P.-Y. BIENVENU AND T. H. LÊ

well as “generalized polynomials” such as F(n) = e(bnαcnβ). Together with
Green and Tao’s work [6] on the inverse theorem for the Gowers U 3 norm, this
implies that ‖µ‖U 3(N ) = oN→+∞(1).

In this paper we examine similar correlations over Fq [t], that is, we aim to
show that ∑

deg f<n

µ( f )F( f ) = o(qn)

for “reasonable” functions F . Quadratic and linear phases correspond to
functions of the form χ(Q( f )) for an additive character χ over Fq and a
polynomial Q ∈ Fq [x0, . . . , xn−1] of degree at most 2 in the coefficients
(x0, . . . , xn−1) ∈ Fn

q of f =
∑

i<n xi t i . Recall that the group F̂q of additive
characters is isomorphic to (the additive group of) Fq . To express the
isomorphism, let Tr : Fq → Fp be the trace map. For a ∈ Fq , let us denote

eq(a) = exp
(

2π i Tr(a)
p

)
.

Then the isomorphism Fq → F̂q is given by r 7→ χr , where, for any r ∈ Fq , the
character χr is defined by χr (x) = eq(r x).

We now state our main results.

THEOREM 1. For any ε > 0 and χ ∈ F̂q , for any linear form ` ∈ Fq [x0, . . . ,

xn−1], we have ∑
deg f<n

µ( f )χ(`( f ))�ε,q q(3/4+ε)n (3)

uniformly in n and `.

It suffices to prove Theorem 1 for χ = χ1. In the integer case, Davenport [5]
showed that for any A > 0, we have

N∑
n=1

µ(n)e(nα)�A N (log N )−A

uniformly in α ∈ R/Z, where the implied constant is ineffective due to the
possible existence of Siegel zeroes. Under the generalized Riemann hypothesis
(GRH), the best result is due to Baker and Harman [1] and Montgomery and
Vaughan (unpublished), who showed that, for any ε > 0,

N∑
n=1

µ(n)e(nα)�ε N 3/4+ε (4)

uniformly in α ∈ R/Z. Our exponent 3
4+ε in (3) matches the one in (4) (though it

is reasonable to conjecture that in both cases the best exponent is 1
2+ε). However,

our proof of (3) differs from that of (4) in some respects. In particular, our
proof of (3) uses L-functions of arithmetically distributed relations introduced
by Hayes [9] as opposed to Dirichlet L-functions. We remark that very recently
and independently of us, Porritt [15] has proved a result similar to Theorem 1.
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UNIFORMITY OF THE MÖBIUS FUNCTION OVER Fq [t] 507

Regarding quadratic polynomials, we have the following similar, but weaker,
result. It depends on the polylogarithmic bilinear Bogolyubov theorem [11,
Theorem 1.3], a quantitative improvement of a structural result in additive
combinatorics, the bilinear Bogolyubov theorem from our companion paper [3].
We introduce this theorem in §2.3.

THEOREM 2. Assume that p > 2. There exists a constant c > 0 such that the
following holds. For any χ ∈ F̂q , we have

1
qn

∑
deg f<n

µ( f )χ(Q( f ))�q q−nc
(5)

uniformly in n and the quadratic polynomial Q in Fq [x0, . . . , xn−1].

Note that the quality of (5) is superior to Green and Tao’s bound for
nilsequences in [8], namely that if s(n) is a nilsequence, then, for any A > 0,
one has

N∑
n=1

µ(n)s(n)�s,A N log−A N . (6)

We have another result for quadratic phases similar to n 7→ e(αn2
+ βn). In

this case, our bound is easier to prove and gives a polynomial saving. We need
some extra notation to state our result (see §2.1 for more precise definitions). On
Fq [t], there is a natural norm | f | = qdeg f . The completion of Fq [t] with respect
to this norm is Fq((1/t)), the ring of formal Laurent series in 1/t . On Fq((1/t)),
we define the additive character e(α) = eq((α)−1), where (α)−1 denotes the
coefficient of t−1 in α.

THEOREM 3. There exists a constant ε > 0 (independent of q) such that∑
deg f<n

µ( f )e(α f 2
+ β f )�q q(1−ε)n (7)

uniformly in n and α, β ∈ Fq((1/t)).

Note that we do not require p > 2 in Theorem 3, since when p = 2 the
map f 7→ (α f 2

+ β f )−1 is linear and Theorem 3 follows from Theorem 1.
When p is odd, the symmetric matrix of the quadratic form f 7→ (α f 2)−1 is a
Hankel matrix, i.e., a matrix whose (i, j)th entry depends only on i + j . Thus,
Theorem 3 can be reformulated in terms of Hankel matrices alone. We remark
that in the integers, under GRH we have bounds with polynomial savings for the
sum

∑N
n=1 µ(n)e(αnk) (see [10, 20]).

We point out that the motivation to tackle correlations with quadratic phases,
as for the corresponding result in the integers, is the derivation of Gowers norms
estimates ‖µ‖U 3(Fn

q )
= o(1), where the set of polynomials of degree less than

n is identified with Fn
q . We refrain from defining Gowers norms here and refer

instead to [19] for a general theory, but we highlight that the bound ‖µ‖U 3(Fn
q )
=

o(1) allows one to control various linear autocorrelations of µ; for instance, it
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508 P.-Y. BIENVENU AND T. H. LÊ

implies that ∑
deg f,deg g<n

µ( f )µ( f + g)µ( f + 2g)µ( f + 3g) = o(q2n).

For p > 2, it was shown by Green and Tao [6] that the norm ‖·‖U 3(Fn
p)

is

controlled by correlations with quadratic polynomials1.
However, Theorem 2 only yields a Gowers norm estimate when q = p is a

prime. To see this, fix a group isomorphism φ : Fq → Fs
p and let φn : Fn

q →

Fsn
p be the group isomorphism it induces in dimension n. For f ∈ Fn

q , write
f̃ = φn( f ). Observe that not every Fp-quadratic form P( f̃ ) can be realized
as Tr(Q( f )) for some Fq -quadratic form Q( f ); this can be seen by simple
counting. But controlling ‖µ‖U 3(Fn

q )
precisely requires control of correlations

of µ with any Fp-quadratic form P( f̃ ), whereas Theorem 2 only deals with
Fq -quadratic forms.

The organization of the paper is as follows. In §2 we collect necessary facts
that will be used in the proofs; in particular, we introduce and motivate Hayes’
theory as well as the bilinear Bogolyubov theorem (Theorem 5). In §3 we prove
a character sum estimate, using standard complex analysis as well as Hayes’
theory, and exploit it to infer Theorem 1 in §4. In §5 we use Vaughan’s identity
to reduce Theorem 2 to a problem in bilinear and quadratic algebra and prove it
in §6 using Theorem 5. Finally, we derive the bound (5) for the Hankel case in
§7, that is, Theorem 3.

§2. Preliminaries.

2.1. Notation and basic facts. A useful reference for the circle method in
function fields, of which the basics are sketched below, is [14]. Let Fq(t) be
the field of fractions of Fq [t]. On Fq(t), we can define a norm by | f/g| =
qdeg f−deg g with the convention deg 0 = −∞. The completion of Fq(t) with
respect to this norm is

Fq

((
1
t

))
=

{
α =

n∑
i=−∞

ai t i
: n ∈ Z, ai ∈ Fq for every i

}
,

the set of formal Laurent series in 1/t . It is easy to see that if α is as above and
an 6= 0, then |α| = qn .

Then Fq [t] ⊂ Fq(t) ⊂ Fq((1/t)), and Fq [t],Fq(t) and Fq((1/t)) are the
analogues of Z,Q and R, respectively.

Let us put T = {α ∈ Fq((1/t)) : |α| < 1}. This is analogous to the usual torus
R/Z. Let Tr : Fq → Fp be the trace map. For a ∈ Fq , let us denote

eq(a) = exp
(

2π i Tr(a)
p

)
.

This is an additive character on Fq . All additive characters on Fq are given by
a 7→ eq(ra) for some r ∈ Fq .

1 This actually holds for p = 2 as well thanks to a theorem of Samorodnitsky [17].
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UNIFORMITY OF THE MÖBIUS FUNCTION OVER Fq [t] 509

For α ∈ Fq((1/t)), we write (α)−1 to denote the coefficient of t−1 in α. We
define e(α) = eq((α)−1). This is an additive character on Fq((1/t)) and allows
us to do Fourier analysis on Fq [t]. It is analogous to the function x 7→ e2π i x

with a few differences. For example, e(α) = 1 does not imply that α ∈ Fq [t].
All additive characters on Fq [t] are given by f 7→ e( f α) for some α ∈ T.

We denote by M the set of all monic polynomials in Fq [t], An the set of all
polynomials of degree n which are monic, Gn the set of all polynomials (not
necessarily monic) of degree less than n and I the set of all monic, irreducible
polynomials. We use the convention that

∑
deg f=l means

∑
f ∈Al

(that is, a sum
over monic polynomials).

The von Mangoldt function on Fq [t] is defined by

3( f ) =
{

deg P if f = Pk for some monic irreducible P and k > 1,
0 otherwise.

Recall that the “prime number theorem” on Fq [t] reads∑
deg f=l

3( f ) = ql .

2.2. L-functions of arithmetically distributed relations. To prove Theorem 1,
we first observe that any linear form on Gn can be represented as a map f 7→
(α f )−1 for some α ∈ T. Thus, Theorem 1 can be rephrased as a bound for sums
of the form ∑

f ∈Gn

µ( f )e(α f )

or, equivalently and more conveniently, of the form∑
f ∈An

µ( f )e(α f ).

Now, if α is approximated by a fraction a/Q of polynomials up to a remainder
β =

∑
−l
i=−∞ βi t i for some l > 2, that is, α = a/Q + β, then e(α f ) =

e(a f/Q)e(β f ) depends only on the residue class of f modulo Q and the
coefficients of the terms of degrees at least l − 1 of f =

∑n
i=1 ai tn−i

+ tn .
We refer to a1, . . . , al as the first l coefficients of f (if i > n, then we define
ai = 0). We thus need to understand functions on An that only depend on the
congruence class modulo a fixed modulus Q and the first l coefficients. Hence,
for l > 0, Q ∈ Fq [t], we define an equivalence relation Rl,Q on M as follows:

f ≡ g (mod Rl,Q) if f ≡ g (mod Q) and the first l coefficients of
f and g are the same.

It is an example of an arithmetically distributed relation, of which Hayes [9, §8]
developed the theory, which we briefly review. The relevant facts can also be
found in [12] or [4].

It is easy to check that M/Rl,Q is a semigroup with respect to multiplication
on Fq [t]. The equivalence class of a polynomial f ∈ Fq [t] is invertible in
M/Rl,Q if and only if ( f, Q) = 1.
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510 P.-Y. BIENVENU AND T. H. LÊ

Put Gl,Q := (M/Rl,Q)
×, the set of invertible elements. This is a group of

cardinality qlφ(Q), where φ(Q) = #(Fq [t]/(Q))×. Note that G0,Q is simply
(Fq [t]/(Q))×.

For a character λ on Gl,Q , we extend it to all of M by setting λ( f ) = 0 if
( f, Q) 6= 1. We define the L-function associated with λ as

L(s, λ) =
∑
f ∈M

λ( f )
1
| f |s

,

which converges absolutely for <(s) > 1. It is convenient to put

L(z, λ) =
∑
f ∈M

λ( f )zdeg( f )
=

∞∑
n=1

zn
∑
f ∈An

λ( f ). (8)

Then L(s, λ) = L(q−s, λ). We have the Euler product formula

L(z, λ) =
∏
P∈I

(1− λ(P)zdeg P)−1 (9)

for |z| < 1/q .
In the same range of z, we also have

1
L(z, λ) =

∏
P

(1−λ(P)zdeg P)=
∑
f ∈M

µ( f )λ( f )zdeg f
=

∞∑
n=1

zn
∑
f ∈An

µ( f )λ( f ).

(10)
The character constantly equal to 1 on Gl,Q is called the principal character.

When λ is not the principal character, L(z, λ) is a polynomial of degree d(λ) <
l + deg Q [9, Lemma 8.2]. The generalized Riemann hypothesis states that
all roots of L(z, λ) have modulus q−1/2 or 1 for any character λ modulo an
arithmetically distributed congruence relation such as Rl,Q . Weil’s proof (for
Dirichlet characters) was extended to these generalized characters by Rhin [16]
(see, in particular, Ch. 2, §§4–6). In other words, we can write

L(z, λ) =
d(λ)∏
i=1

(1− αi z), (11)

where |αi | = q1/2 or 1 for i = 1, . . . , d(λ). In particular, L(z, λ) can be extended
to an entire function and (10) remains valid when |z| < q−1/2.

When λ is the principal character of Gl,Q , we have

L(z, λ) =
∏

P∈I,
(P,Q)=1

(1− zdeg P)−1

=

∏
P∈I,
P|Q

(1− zdeg P)
∏
P∈I

(1− zdeg P)−1
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UNIFORMITY OF THE MÖBIUS FUNCTION OVER Fq [t] 511

=

∏
P∈I,
P|Q

(1− zdeg P)
1

1− qz
.

Consequently, L(z, λ) can be extended to a meromorphic function and

1
L(z, λ) =

∞∑
n=1

zn
∑

f ∈An,( f,Q)=1

µ( f ) = (1− qz)
∏

P∈I,
P|Q

(1− zdeg P)−1 (12)

for all |z| 6= 1.

2.3. The bilinear Bogolyubov theorem. When proving Theorem 2, we will
suppose for a contradiction that∑

f ∈Gn

µ( f + tn)χ(Q( f )) > εqn.

Let M be the n × n symmetric matrix corresponding to Q and k an integer. For
any a ∈ Gk+1, consider the map La : Gn−k → Gn that maps f to a f . We also
write La to denote its n × (n − k) coordinate matrix in the canonical basis (i.e.,
the basis of monomials). For any (a, b) ∈ G2

k+1, let Ma,b = LT
a M Lb+ LT

b M La ;
it is a symmetric (n − k)× (n − k) matrix.

After exploiting Vaughan’s identity in Section 5.2, we will find that for some
n � k 6 n, M has the property that the set of pairs

Ph := {(a, b) ∈ Gk+1 × Gk+1|rk Ma,b 6 h}

is large; that is, it contains at least δq2k+2 pairs for some parameters δ and h
(depending on ε and n). We will want to convert this information about the ranks
of many Ma,b into one on the rank of M itself. However, we need these pairs to
have some special structure in order to extract some information; in particular, it
would be extremely convenient if the set

{(t i , t j ) | (i, j) ∈ {0, . . . , k}2} (13)

could be in Ph , because Mt i ,t j is then simply a submatrix of M . Unfortunately,
its large size alone does not force Ph to contain such a nice structure, but, to boost
our chances, we are ready to do some additive smoothing, that is, adjoining to
our set P elements such as (a1 − a2, b) whenever (a1, b) and (a2, b) are in P;
and the same on the second coordinate. The rank remains controlled under this
operation, because rk Ma1−a2,b = rk (Ma1,b−Ma2,b) 6 2h. Now our companion
paper [3] shows that additive smoothing does indeed produce useful structures.
Here is the result we get [3, Corollary 4].

PROPOSITION 4. For any δ, there exists a constant c(δ) such that the
following holds. If |Ph | > δq2k+2, then there exist Fp-subspaces W1,W2 of the
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512 P.-Y. BIENVENU AND T. H. LÊ

Fp-vector space Gk+1 of codimensions r1, r2 and Fp-bilinear forms Q1, . . . , Qr
on W1 ×W2 such that P64h = {(a, b) ∈ G2

k+1|rk Ma,b 6 64h} contains the set

{(x, y) ∈ W1 ×W2 | Q1(x, y) = · · · = Qr (x, y) = 0}

and max(r, r1, r2) 6 c(δ).

We call this statement a bilinear Bogolyubov theorem, by analogy with the
original (linear) Bogolyubov theorem. We found that we can take c(δ) to be
O(exp(exp(exp(logO(1) 1/δ)))), where the implied constants may depend on
q , but, unfortunately, because δ will be as small as, say, n−5, this bound for
c(δ) is too large. By analogy with Sanders’ bound for the linear Bogolyubov
theorem [18], it is reasonable to imagine [3, Conjecture 3] that the linear and
bilinear codimensions r, r1, r2 could be taken as small as polylogarithmic in
δ−1. In [3], we show that indeed we can take r and one of r1 and r2 to
be polylogarithmic in δ−1. Recently, Hosseini and Lovett [11, Theorem 1.3]
lowered c(δ) to logO(1) δ−1, at the cost of replacing 64 in Proposition 4 by a
larger constant.

THEOREM 5 (Polylogarithmic bilinear Bogolyubov). For any δ, if |Ph | >
δq2k+2, then there exist Fp-subspaces W1,W2 of the Fp-vector space Gk+1 of
codimensions r1, r2 and Fp-bilinear forms Q1, . . . , Qr on W1 × W2 such that
P29h = {(a, b) ∈ G2

k+1|rk Ma,b 6 29h} contains the set

{(x, y) ∈ W1 ×W2 | Q1(x, y) = · · · = Qr (x, y) = 0} (14)

and max(r, r1, r2) 6 O(log80 δ−1).

Applied with δ = q−nc
, this means that the codimensions should be O(nO(c)).

The reason why sets of the form (14) are so desirable for us is the following
lemma.

LEMMA 6. Let W be an Fp-vector space of dimension n and Q1, . . . , Qr be
quadratic forms on W . If n > 2r(r + 1), then the set of isotropic vectors

X = {x ∈ W | Q1(x) = · · · = Qr (x) = 0} (15)

contains at least (1− p−1/2)pn−2r(r+1) elements.

More compactly, we can write |X | � pn−O(r2). We now prove Lemma 6. We
introduce the averaging notation Ex∈W = (1/|W |)

∑
x∈W .

Proof. The density |X |/|W | of isotropic vectors is given by

Ex∈WEt1,...,tr∈Fpω
∑

i ti Qi (x) = Et1,...,trEx∈Wω
∑

i ti Qi (x), (16)
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UNIFORMITY OF THE MÖBIUS FUNCTION OVER Fq [t] 513

where ω = e2π i/p. Let m 6 n be a parameter to be determined later (in terms
of r ). Now, if a quadratic form Q on W ×W has rank at least m, we can see that

|Ex∈Wω
Q(x)
| 6 p−m/2

by squaring this expectation (see Lemma 13). Thus, if, for any nonzero
(t1, . . . , tr ), the rank of

∑
i ti Qi is at least m, we see from equation (16) that the

density of isotropic vectors is at least p−r
−p−m/2. Otherwise, there exists a form

Qi such that Qi =
∑

j 6=i t j Q j + R with rk R < m; without loss of generality,
suppose that i = r . Let W ′ be the kernel of R, a subspace of codimension less
than m. Then the set

X ′ = {x ∈ W ′|Q1(x) = · · · = Qr−1(x) = 0} (17)

is a subset X and we will now count isotropic vectors in X ′. Thus, incurring a
dimension loss of at most m, we reduce the number of quadratic forms by 1.
We iterate this process until we get a family of quadratic forms for which any
nontrivial linear combination has rank at least m (or an empty family). At that
point, this is a family of at most r forms on a space of dimension at least n− rm.
Thus, it must have at least

pn−r(m+1)
− pn−rm−m/2

isotropic vectors. Taking m = 2r + 1, we obtain the result. �

We will use this lemma in §6 to obtain sets of the form (13) inside P29h .

2.4. Divisor bounds. We list some facts regarding the divisor function in
Fq [t] which we will need in the sequel. Let τ( f ) denote the number of monic
divisors of f ∈ Fq [t]. We first have the following result.

LEMMA 7 [13, Lemma 8]. If deg f = n > 1, then

τ( f ) 6 exp
(

Oq

(
n

log n

))
.

Consequently, the number of monic irreducible factors of f is Oq(n/log n).

The next result is a bound for the second moment of τ .

LEMMA 8. We have
Edeg d=nτ(d)2 6 4n3.

Proof. We observe that for any irreducible P and any integer k, we have
τ(Pk)2 = (k + 1)2.

Thus, the Dirichlet series D =
∑
+∞

n=0
∑

f ∈An
(τ ( f )2/| f |s) of the function τ 2

can be written as an Euler product as

D =
∏

P

+∞∑
k=0

(k + 1)2|P|−ks . (18)
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514 P.-Y. BIENVENU AND T. H. LÊ

Next we note the following relations between formal power series:
+∞∑
k=0

(k + 1)2xk
=

+∞∑
k=0

(k + 2)(k + 1)xk
−

+∞∑
k=0

(k + 1)xk

= 2(1− x)−3
− (1− x)−2

=
1+ x
(1− x)3

,

so finally
+∞∑
k=0

(k + 1)2xk
=

1− x2

(1− x)4
. (19)

Combining equations (18) and (19) yields

D =
∏

P

1− |P|−2s

(1− |P|−s)4
.

We can then express this Euler product in terms of the zeta function of Fq [t].
Letting u = q−s , we obtain

D = ζ(s)4/ζ(2s) = (1− q1−2s)(1− q1−s)−4
= (1− qu2)(1− qu)−4.

This is a power series S(u) in u and S(u) =
∑

n anun
=
∑

n (S
(n)(0)/n!)un ,

where an =
∑

deg d=n τ(d)
2. Now, for n > 3, deriving n times using Leibniz’

formula, we find that

S(n)(u) = (1− qu2)qn(4× · · · × (n + 3))(1− qu)−4−n

− 2qunqn−1(4× · · · × (n + 2))(1− qu)−3−n

− 2q
(

n
2

)
qn−2(4× · · · × (n + 1))(1− qu)−2−n.

Evaluating in u = 0 gives

S(n)(0)
qnn!

= (n + 3)(n + 2)(n + 1)/6− q−1n(n + 1)2/6 6 4n3,

where the left-hand side is exactly Edeg d=nτ(d)2. �

§3. Character sum estimates. In this section we prove the following result.

THEOREM 9. Let l > 0, Q ∈ Fq [t], deg Q = m > 0 and λ be a character of
Gl,Q . Then, for any d and ε > 0, we have∣∣∣∣ ∑

f ∈Ad

µ( f )λ( f )
∣∣∣∣�ε,q q((1/2)+ε)d+ε(m+l). (20)

Proof. First we assume that λ is not principal. We will prove the following
more precise bound:∣∣∣∣ ∑

f ∈Ad

µ( f )λ( f )
∣∣∣∣ 6 q(d/2)+(d log log(m+l)/log (m+l))+Oq ((m+l)/log2(m+l)). (21)

Our method is a generalization of the proof of [2, Theorem 2].
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UNIFORMITY OF THE MÖBIUS FUNCTION OVER Fq [t] 515

Like [2], we deduce (21) from an estimate for logL(z, λ) near the circle |z| =
q−1/2, which is in turn deduced from an estimate for L′(z, λ)/L(z, λ).

By taking the logarithmic derivatives of (9) and (11), we have two different
expressions for L′(z, λ)/L(z, λ). On the one hand, we have

L′(z, λ)
L(z, λ) =

∞∑
l=1

al zl−1,

where

al = −

d(λ)∑
i=1

αl
i (22)

according to (11).
On the other hand, according to (9), we have

al =
∑

deg f=l

3( f )λ( f ). (23)

From (22), we have
|al | 6 d(λ)ql/2 (24)

and, from (23), we have

|al | 6
∑

deg f=l

3( f ) = ql . (25)

Put L = b2 logq d(λ)c. For l > L , we use the bound (24) and, for l 6 L , we
use the bound (25). Therefore, for any z, we have∣∣∣∣L′(z, λ)L(z, λ)

∣∣∣∣ 6 L∑
l=1

ql
|z|l−1

+

∞∑
l=L+1

d(λ)ql/2
|z|l−1. (26)

Let 0< ε < 1/4 be chosen later, R = q−1/2−ε andw be arbitrary on the circle
|w| = R. Integrating (26) along the line from 0 tow, and noting that L(0, λ) = 1,
we have

|logL(w, λ)| 6
L∑

l=1

(Rq)l

l
+

∞∑
l=L+1

d(λ)
(Rq1/2)l

l
. (27)

The second sum in (27) can be bounded by

d(λ)
L

∞∑
l=L+1

(Rq1/2)l 6
d(λ)

L
RLq L/2 1

1− Rq1/2 �
d(λ)2 RL

L
1

1− Rq1/2 . (28)

As for the first sum in (27), we bound it crudely by

L∑
l=1

(Rq)l 6 (Rq)L
∞∑

k=0

(Rq)−k 6
d(λ)2 RL

1− (q R)−1 �q d(λ)2 RL , (29)
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since q R > q1/4. By combining (28) and (29), we have

|logL(w, λ)|�qd(λ)2 RL
(

1+
1

L(1− Rq1/2)

)
.

Hence, ∣∣∣∣ 1
L(w, λ)

∣∣∣∣ 6 exp
(

Oq

(
d(λ)2 RL

(
1+

1
L(1− Rq1/2)

)))
. (30)

Let CR be the circle |w| = R = q−1/2−ε . From (10), we see that∣∣∣∣ ∑
f ∈Ad

λ( f )µ( f )
∣∣∣∣ = ∣∣∣∣ 1

2π i

∫
CR

1
L(w, χ)w

−d−1 dw
∣∣∣∣

6 max
CR

∣∣∣∣ 1
L(w, λ)

∣∣∣∣R−d

6 qd(1/2+ε)+Oq (d(λ)1−2ε(1+1/ε log d(λ))). (31)

We now make the choice ε = (log log d(λ)/log d(λ)). Recalling that d(λ) 6
l + m − 1, (21) follows. The bound (21) is stronger than (20) when
log log(l + m)/log (l + m) is greater than the ε in (20). For the finitely many
exceptional pairs (m, l), (20) follows from (31) (with the same ε).

We now consider the case where λ is principal. From (12), on the circle |z| =
q−1/2, we have ∣∣∣∣ 1

L(z, λ)

∣∣∣∣ = |1− qz|
∏

P∈I,P|Q
|1− zdeg P

|
−1

�

∏
P∈I,P|Q

(1− q− deg P/2)−1

6
∏

P∈I,P|Q
(1− q−1/2)−1

= (1− q−1/2)−k 6 q Oq (m/log m), (32)

where k is the number of monic irreducible factors of Q and (32) follows from
Lemma 7. Integrating z−d−1(1/L(z, λ)) along the circle |z| = q−1/2 and using
(32), we see that ∑

f ∈An,( f,Q)=1

µ( f )� qd/2+Oq (m/log m), (33)

from which (20) follows. �

We remark that (12) readily gives a formula for
∑

f ∈An,( f,Q)=1 µ( f ), but it
is not immediate to derive (33) from this formula.

§4. Exponential sum estimates. We say that a function F : M → C is Rl,Q-
periodic if it is constant on each equivalence class of Rl,Q . In other words, F is
Rl,Q-periodic if F( f ) depends only on the residue class of f modulo Q and the
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UNIFORMITY OF THE MÖBIUS FUNCTION OVER Fq [t] 517

first l coefficients of f . We say that F is 1-bounded if |F( f )| 6 1 for any f ∈ M .
First we show that µ is orthogonal to Rl,Q-periodic functions by adapting the
argument of [7, Proposition 3.2].

PROPOSITION 10. Suppose that deg Q = m. For any Rl,Q-periodic and
1-bounded function F : M → C and ε > 0, we have∑

f ∈An

F( f )µ( f )�ε,q q(1/2+ε)(n+m+l),

where the bound is uniform in F.

Proof. We first consider the case where F( f ) = 0 whenever ( f, Q) 6= 1.
This means that F is a function on Gl,Q . Let K = |Gl,Q | = qlφ(Q) 6 ql+m and
λ1, . . . , λK be the characters of Gl,Q . Define the Fourier coefficients of F by

F̂(λ) = E f ∈Gl,Q F( f )λ( f )

for any character λ of Gl,Q . Then F( f ) =
∑K

i=1 F̂(λi )λi ( f ). Plancherel’s
formula implies that

K∑
i=1

|F̂(λi )|
2
= E f ∈Gl,Q |F( f )|2 6 1. (34)

We have ∣∣∣∣∑
f ∈An

F( f )µ( f )
∣∣∣∣ = ∣∣∣∣ K∑

i=1

F̂(λi )
∑
f ∈An

λi ( f )µ( f )
∣∣∣∣

�ε,q qn/2+ε(n+l+m)
K∑

i=1

|F̂(λi )| (35)

6 qn/2+ε(n+l+m)K 1/2 (36)

6 qn/2+(l+m)/2+ε(n+l+m).

Here (35) follows from Theorem 9 and (36) follows from the Cauchy–Schwarz
inequality and (34).

Next we consider the general case where F( f ) is not necessarily 0 when
( f, Q) 6= 1. If f is square-free, ( f, Q) = D, we can write f = Dg, where g is
square-free and (g, Q) = 1. Hence,∑

f ∈An

F( f )µ( f ) =
∑

D∈M,D|Q,
D square-free

∑
deg g=n−deg D,

g square-free

F(Dg)µ(Dg)1(g,Q)=1

=

∑
D∈M,D|Q

µ(D)
∑

deg g=n−deg D,
g square-free

F(Dg)µ(g)1(g,Q)=1. (37)
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518 P.-Y. BIENVENU AND T. H. LÊ

Now the function g 7→ F(Dg)µ(g)1(g,Q)=1 is Rl,Q-periodic and vanishes on
elements of M that are not coprime to Q. By the above, we infer that∑

deg g=n−deg D,
g square-free

F(Dg)µ(g)1(g,Q)=1 �ε,q q(n−deg D)/2+(l+m)/2+ε(n+m+l)

for any ε > 0. Furthermore, still for any ε > 0, we observe that∑
D|Q

q−(deg D)/2 6 τ(Q)�ε,q |Q|ε = qεm

by Lemma 7. This completes the proof. �

We will now use Proposition 10 and the ideas outlined at the beginning of
§2.2 to prove the following exponential sum estimate.

THEOREM 11. Given any ε > 0, for all α ∈ T and n, we have∑
f ∈An

µ( f )e(α f )�ε,qq(3/4+ε)n (38)

and ∑
f ∈Gn

µ( f )e(α f )�ε,qq(3/4+ε)n. (39)

The first bound implies the second bound, because

∑
f ∈Gn

µ( f )e(α f ) =
∑
c∈F∗q

n−1∑
k=0

∑
f ∈Ak

µ( f )e(αc f ),

so we only need to prove the bound (38). It is easy to see that any linear form on
Gn can be written as f 7→ (α f )−1 (i.e., the coefficient of t−1 in α f ) for some
α ∈ T. Thus, Theorem 1 follows from Theorem 11.

Proof. By Dirichlet’s approximation theorem, we can find a, g ∈ Fq [t],
g 6= 0, deg g 6 bn/2c such that |α − a/g| < 1/qbn/2c|g|. Put β = α − a/g.
Then ∑

f ∈An

µ( f )e(α f ) =
∑
f ∈An

µ( f )e
(

a f
g

)
e(β f ).

Since |β| < q−bn/2c−deg g , we see that e(β f ) depends only on the first n −
bn/2c−deg g coefficients of f . Also, e(a f/g) depends only on the residue class
of f modulo g. Applying Proposition 10 to (l, Q) = (n−bn/2c− deg g, g), for
any ε > 0, we have∑

f ∈An

µ( f )e
(

a f
g

)
e(β f )�ε,q q((1+ε)/2)(n+n−bn/2c−deg g+deg g)

= q((1+ε)/2)(2n−bn/2c)
�ε,qq(3/4+ε)n,

as desired. �
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UNIFORMITY OF THE MÖBIUS FUNCTION OVER Fq [t] 519

As we show next, this implies that if a function is determined by the values
of a few linear forms, it does not correlate with the Möbius function.

COROLLARY 12. Let c > 0 be a constant. Let F : Fr
q → C be 1-bounded

and suppose that r 6 cn. Let `1, . . . , `r be linear forms on Gn . Then, for any
ε > 0, ∑

f ∈Gn

µ( f + tn)F(`1( f ), . . . , `r ( f ))�ε,q q(3/4+c+ε)n.

Obviously, this is interesting only if c < 1/4.

Proof. Theorem 11 immediately implies that for any linear form ` on Gn , we
have ∑

f ∈Gn

µ( f + tn)eq(`( f ))�ε,q q(3/4+ε)n. (40)

For any a = (a1, . . . , ar ) ∈ Fr
q , let Va 6 Gn be the affine subspace defined

by the equations `i ( f ) = ai for i ∈ [r ]. Then one can write∑
f ∈Gn

µ( f + tn)F(`1( f ), . . . , `r ( f )) =
∑
a∈Fr

q

F(a)
∑
f ∈Va

µ( f + tn). (41)

Now we observe that

1Va( f ) = Eχ=(χ1,...,χr )∈F̂q
r
∏
i∈[r ]

χi (`i ( f )− ai ),

so that∑
f ∈Va

µ( f + tn) = Eχ∈F̂q
r
∏
i∈[r ]

χi (−ai )
∑
f ∈Gn

µ( f + tn)
∏
i∈[r ]

χi (`i ( f ))

and, by the triangle inequality,∣∣∣∣∑
f ∈Va

µ( f + tn)

∣∣∣∣ 6 max
χ∈F̂q

r

∣∣∣∣ ∑
f ∈Gn

µ( f + tn)
∏
i∈[r ]

χi (`i ( f ))
∣∣∣∣.

Recall from §2.1 that each χi is of the form χi (x) = eq(ti x), so that∏
i∈[r ]

χi (`i ( f )) = eq

( r∑
i=1

ti`i ( f )
)
.

We then apply (40) to the linear form ` =
∑

i∈[r ] ti`i . This shows that∣∣∣∣∑
f ∈Va

µ( f + tn)

∣∣∣∣� q(3/4+ε)n.

Inserting this bound in equation (41) and using the fact that |F | 6 1, this gives
the desired result. �

§5. Quadratic phases and Vaughan’s identity. From now on, we suppose that
the field Fq we work with has characteristic p > 2. Recall that q = ps and s > 1.
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520 P.-Y. BIENVENU AND T. H. LÊ

5.1. Quadratic phases. We call a quadratic form on Fn
q a homogenous

polynomial of degree 2, that is, a map of the form F(x) = xT Mx , where M
is a symmetric matrix. The corresponding (symmetric) bilinear form is the map

B(x, y) = xT My.

The rank of F is the rank of the matrix M . It equals the codimension of the
space K of vectors x such that the linear form Bx defined by Bx (y) = B(x, y)
satisfies Bx = 0. A quadratic polynomial is a polynomial of degree 2, that is,
a quadratic form plus a linear form. A quadratic phase is a map of the form
8(x) = χ(P(x)) for a quadratic polynomial P and an additive character χ .
Its rank is the rank of the corresponding quadratic form. Thanks to the following
standard lemma, quadratic phases can be classified, depending on their rank, into
major arcs and minor arcs, by analogy with the circle method.

LEMMA 13 (Gauss sums). Let8(x) = χ(P(x)) be a quadratic phase of rank
at least r . Then

|Ex∈Fn
q
8(x)| 6 q−r/2.

Thus, quadratic phases of low rank correspond to major arcs, while the ones
of high rank correspond to minor arcs.

Proof. We use the standard technique called Weyl differencing, consisting of
squaring the expectation to duplicate the variable. We have

|Ex∈Fn
q
8(x)|2 = Ex,h8(x + h)8(x)

= Ex,hχ(P(x + h)− P(x))
= Ehχ(P(h))Exχ(2Bh(x)),

where all variables range over Fn
q . Now, if h /∈ K , the form 2Bh is a

nonzero linear form (remember that the characteristic p is not 2), whence
Ex∈Fn

q
χ(2Bh(x)) = Ex∈Fqχ(x) = 0. This implies that

|Ex∈Fn
q
8(x)|2 6 Eh∈Fn

q
1h∈K = q−r

and the claim follows. �

We now start the proof of Theorem 2. Let P be a quadratic polynomial on Fn
q

and 8 = χ ◦ P be a quadratic phase. We want to bound the sum∑
f ∈Gn

µ( f + tn)8( f ) =
∑
f ∈An

µ( f )8( f ),

where, by abuse of notation, if f ∈ An , we write8( f ) for8( f−tn). The general
strategy is the following. We first observe that when 8 is a quadratic phase of
rank at most cn with c < 1/4, then Corollary 12 concludes: indeed, a quadratic
form of rank r depends on r linear forms only, so a quadratic polynomial of rank
r depends on r + 1 linear forms at most. So, we will show that in order for µ
to correlate with a quadratic phase8, the corresponding quadratic form needs to
be of small rank (major arcs). This would imply that µ cannot correlate with a
quadratic phase at all.
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UNIFORMITY OF THE MÖBIUS FUNCTION OVER Fq [t] 521

5.2. Exploitation of Vaughan’s identity. We will show the following result.

PROPOSITION 14. Let δ > 0. Suppose that |
∑

f ∈An
µ( f )8( f )| > δqn . Then

at least one of the following two statements holds.
(1) There exists k 6 n/9 such that for at least one polynomial d of degree k,

the quadratic polynomial on Gn−k defined by

w 7→ P(dw)

has rank at most O(log(n/δ)).
(2) There exists k ∈ [n/18, 17n/18] such that for at least (δ/n)O(1)q2k pairs of

polynomials d, d ′ of degree k, the quadratic polynomial on Gn−k defined
by

w 7→ P(d ′w)− P(dw)

has rank at most O(log(n/δ)).

Before proving this proposition, we underline that for any d ∈ Gk+1, we see
the map w 7→ dw as a linear map from Gn−k to Gn , which allows one to see
w 7→ P(dw) as a quadratic polynomial.

We now start proving the proposition. The first tool we need is Vaughan’s
identity, which reads

µ( f ) = −
∑
ab| f

deg a6u,deg b6v

µ(a)µ(b)+
∑
ab| f

deg a>u,deg b>v

µ(a)µ(b),

where the sum is over monic polynomials a and b, and u = v = n/18 (though in
general they can be chosen arbitrarily). We shall adopt the notational convention
that N = qn,U = qu and so on. Moreover, for f ∈ Fq [t], recall the notation
| f | = qdeg f . Vaughan’s identity implies that∑

f ∈An

µ( f )8( f ) = −T1 + T2, (42)

where
T1 =

∑
|d|6U V

ad
∑

w∈An−deg d

8(dw) (43)

and
T2 =

∑
V6|d|6N/U

bd
∑

w∈An−deg d

µ(w)8(dw) (44)

are called type I and type II sums, respectively. The sums over d are over monic
polynomials. The coefficients ad are unimportant and all we need to know is that
max(|ad |, |bd |) 6 τ(d). In the type I sum, we have made the change of variables
d = ab, w = f/d , while in the other one we wrote w = f b, d = f/w. The
splitting into two sums yields the following dichotomy, which we will use to
prove Proposition 14.
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PROPOSITION 15. Make the same hypothesis as in Proposition 14. Then
either there exists k 6 n/9 so that

Ed∈Ak |Ew∈An−k8(dw)|
2 > δ2/(16n5) (45)

or there is a k ∈ [n/18, 17n/18] such that

Ew,w′∈An−kEd,d ′∈Ak8(dw)8(dw′)8(d ′w)8(d
′w′) > δ4/(256n10). (46)

Proof. If |
∑

f ∈An
µ( f )8( f )| > δN , the decomposition (42) implies that

either |T1| > δN/2 or |T2| > δN/2. Suppose first that |T1| > δN/2. On the
other hand, using the triangle inequality and equation (43), we bound T1 by

|T1| 6
∑

k6u+v

∑
d∈Ak

τ(d)
N
|d|
|Ew∈An−k8(dw)|

6 n max
k6u+v

N
K

∑
d∈Ak

τ(d)|Ew∈An−k8(dw)|.

Fix a k 6 u+v = n/9 that realizes the maximum in the line above. The Cauchy–
Schwarz inequality then yields

|T1|
2/N 2 6 n2 (Ed∈Ak τ

2(d))(Ed∈Ak |Ew∈An−k8(dw)|
2).

Now Lemma 8 ensures that

Ed∈Ak τ
2(d) 6 4k3 6 4n3,

so we can affirm that

δ2 N 2/4 6 |T1|
2 6 4n5 N 2Ed∈Ak |Ew∈An−k8(dw)|

2.

This means that

Ed∈Ak |Ew∈An−k8(dw)|
2 > δ2/(16n5),

which proves equation (45).
Let us now suppose that |T2| > δN/2. Using the triangle inequality and

equation (44), we have

|T2| 6
∑

V6|d|6N/U

τ(d)
∣∣∣∣ ∑
w∈An−k

µ(w)8(dw)
∣∣∣∣

6 nN max
v6k6n−u

Ed∈Akτ(d)|Ew∈An−k µ(w)8(dw)|.

We again fix a k (this time k ∈ [n/18, 17n/18]) that realizes the maximum and
apply the Cauchy–Schwarz inequality together with Lemma 8, obtaining

|T2|
2/N 2 6 4n5 Ed∈AkEw,w′∈An−kµ(w)µ(w

′)8(dw)8(dw′).
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This implies that

Ew,w′∈An−k µ(w)µ(w
′)Ed∈Ak8(dw)8(dw′) > δ

2/(16n5)

and again we apply Cauchy–Schwarz to eliminate µ, which yields

Ew,w′∈An−kEd,d ′∈Ak8(dw)8(dw′)8(d ′w)8(d
′w′) > δ4/(256n10).

This is the content of clause (46), so the proof of Proposition 15 is complete. �

We now derive Proposition 14 using Proposition 15. Suppose first that
equation (45) holds, so there is k 6 n/9 such that

Ed∈Ak |Ew∈An−k8(dw)|
2 > δ′, (47)

where δ′ = δ2/(16n5). Equation (47) implies that there exists d ∈ Ak such that

|Ew∈An−k8(dw)|
2 > δ′.

Fix such a d ∈ Ak . Lemma 13 then implies that the quadratic polynomial w 7→
P(dw) has rank at most logq(δ

′−1) = O(log(n/δ)). This corresponds exactly to
the first statement of Proposition 14.

Suppose instead that equation (46) holds. Then we have k ∈ [n/18, 17n/18]
such that

Ew,w′∈An−kEd,d ′∈Ak8(dw)8(dw′)8(d ′w)8(d
′w′) > δ′,

where δ′ = δ4/(256n10). The triangle inequality ensures that

Ed,d ′∈Ak |Ew∈An−kχ(P(dw)− P(d ′w))| > δ′.

In particular, for a proportion of at least δ′/2 pairs of monic polynomials d, d ′ of
degree k, we have

|Ew∈Gn−kχ(P(d(w + tn−k))− P(d ′(w + tn−k)))|

= |Ew∈An−kχ(P(dw)− P(d ′w))| > δ′/2.

Observe that forw ∈ Gn−k , the rank ofw 7→ P(d(w+tn−k))−P(d ′(w+tn−k))

is the same as that of w 7→ P(dw) − P(d ′w). Lemma 13 implies that the rank
of w 7→ P(dw) − P(d ′w) is at most −2 logq(δ

′/2) = O(log(n/δ)). This is
precisely the second part of Proposition 14. So, in every case, Proposition 14
holds.
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§6. Using the polylogarithmic bilinear Bogolyubov theorem. Let c > 0 be
a constant to be determined later and let δ = q−nc

. To prove Theorem 2, it
suffices to show that |

∑
f ∈An

µ( f )8( f )| < δqn for n large enough. (The bound
for

∑
f ∈Gn

simply follows from summing the bounds for
∑

f ∈Ak
for k = 1,

. . . , n − 1.) For the sake of contradiction, suppose instead that there exists an
unbounded set Z of integers n such that∣∣∣∣∑

f ∈An

µ( f )8( f )
∣∣∣∣ > δqn (48)

whenever n ∈ Z . We then apply Proposition 14. Suppose that the first statement
holds. Write P( f ) = B( f, f ) for some bilinear form B(x, y) on Fn

q × Fn
q (we

may omit the linear part of P as it modifies the rank by at most 1). Then we
know that the form Rd : w 7→ P(dw) on Gn−k has rank at most O(nc) for at
least one d of some degree 0 6 k 6 n/9. Now the rank of the quadratic form Rd
is simply the rank of the bilinear form B restricted to the subspace dGn−k ⊂ Gn
of codimension k. Thus, the rank of Rd is at least rk B − 2k, which implies that
rk B 6 2n/9+O(nc). If n ∈ Z is large enough (remember that Z is unbounded),
this is less than c′n for some c′ < 1/4. Then Corollary 12 brings the desired
contradiction.

Now let us suppose that the second case of Proposition 14 holds. Let n/18 6
k 6 17n/18 be the parameter returned by this proposition. Then the set

Y = {(d, d ′) ∈ A2
k | w 7→ P(dw)− P(d ′w) has rank at most O(nc)}

has size at least q2k+2−O(nc). Note that, for d, d ′ ∈ Gk+1,

P(dw)− P(d ′w) = B((d − d ′)w, (d + d ′)w)

is a quadratic polynomial in w ∈ Gn−k . For a, b ∈ Gk+1, let Ba,b be the
symmetric bilinear form on Fn−k

q ×Fn−k
q (identified with Gn−k ×Gn−k) defined

by Ba,b(x, y) = (B(ax, by)+ B(ay, bx))/2. Thus, we have a set

X = {(a, b) ∈ Gk+1 × Gk+1 | rk Ba,b 6 O(nc)}

of density at least η = q−O(nc) in Gk+1×Gk+1. As discussed in §2.3, we would
like to replace the large set X by a more structured set, namely the zero set
of a (not too large) family of bilinear forms, at the cost of slightly worsening
the bounds on the rank. Theorem 5, an application of the bilinear Bogolyubov
theorem from [11], precisely implies that

X ′ = {(a, b) ∈ Gk+1 × Gk+1 | rk Ba,b 6 O(nc)}

contains a set of the form

Y = {(a, b) ∈ W1 ×W2 | F1(a, b) = · · · = Fr (a, b) = 0},
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where W1,W2 are Fp-subspaces of Gk+1 (itself seen as an Fp-vector
space of dimension s(k + 1) = O(k)) and max(codimW1, codimW2, r) =
O(log80 η−1) = O(n80c).

Now take ε = 1/10 and consider a set of indices

I = {0 = i1 < i2 < · · · < im = bk − εkc} ⊂ [0, k − εk]

such that i j+1 − i j < (n − k)/2 for any j and m = O(1). Such a set exists,
because n − k > n/18 > k/18. Consider W = W1 ∩ W2 ∩ Gεk , an Fp-vector
space of dimension at least εsk − O(n80c). Consider the Fp-quadratic forms on
W given by F i, j

l (w) = Fl(t iw, t jw) for any l ∈ [r ] and i, j ∈ I , where the map
w 7→ t iw is identified with the corresponding Fp-linear map between the vectors
of coefficients. This is still a family of at most O(n80c) bilinear forms. Thus, we
can find at least�(pεsk−O(n160c)) common isotropic vectors in W to these forms,
thanks to Lemma 6. We take c sufficiently small such that the exponent of n in the
last equation is less than 1 (c = 1/161 is good enough). Then, if k (and thus n)
is large enough, there is definitely at least one nonzero polynomial w of degree
at most εk such that Fl(t iw, t jw) = 0 for all i, j ∈ I and l ∈ [r ]. Consequently,
rk Bt iw,t jw 6 κ = O(nc) for all i, j ∈ I .

Consider the (symmetric) matrix M of the Fq -bilinear form B restricted to
the space of the multiples of w, written in the basis (wt i )06i<n−degw. We call
the matrix element B(wt i , wt j ) the cell (i, j) of M . The rank of B differs from
the rank of M by at most 2εn, so it suffices to bound the rank of M .

Now let us examine the (symmetric) matrix Ni, j of the quadratic form
Bt iw,t jw in the canonical basis of Gn−k .

Observe that the map u 7→ t iwu, seen as an Fq -linear map (between vectors
of coefficients), transforms an element t j of the canonical basis of Gn−k into a
basis element t i+ jw. That means that its matrix in the canonical basis of Gn−k
and the basis (wt i )06i<n−degw is an (n−degw)× (n− k)matrix, which we can
write by block as

L t iw =

 0
In−k

0

 ,
where the central block is an identity block and the other blocks are 0 blocks.

A submatrix of a matrix consisting of consecutive rows and columns is called
a block. Next we observe that

2Ni, j = LT
t iw

M L t jw + LT
t jw

M L t iw,

which makes it easy to see that Ni, j is the symmetric part of the (n−k)×(n−k)
block of M whose top-left corner is the (i, j) cell of M . Write Mi, j for this
block.

We remark that if i = j , this block is a diagonal block of a symmetric matrix
and hence a symmetric matrix, so it must have small rank itself. Hence, the
matrix M contains a number of large diagonal blocks Mi,i which have small
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Figure 1: Covering M by submatrices and moving away from the diagonal.

rank. To bound the rank of M , it suffices to bound the ranks of all submatrices
Mi, j for (i, j) ∈ I 2. Indeed, the matrix M being covered by these submatrices,
we have the bound

rk M 6
∑

(i, j)∈I 2

rk Mi, j 6 |I |2 max
(i, j)∈I 2

rk Mi, j .

The cardinality |I | being bounded, bounding the ranks of these blocks suffices
to bound rk M . We now prove by induction on `−m that Mi`,im has small rank,
namely at most 5`−mκ . Because Mi`,im = MT

im ,i` , it suffices to prove it in the case
` > m. When ` − m = 0, as we have already seen, the corresponding block is
diagonal and of rank at most κ . We now suppose that for some ` > m we already
know that rk Mi`,im 6 5`−mκ and we inspect Mi`+1,im . The reader can follow the
proof in Figure 1.

In Figure 1, the dotted (n−k)×(n−k) block Mi`+1,im = E is made of the four
blocks A, B,C, D and it is known to have a symmetric part of small rank. On the
other hand, A, B and D are already known to have rank at most 5`−mκ , because
they are submatrices of Mi`,im and Mi`+1,im+1 , respectively. Now the symmetric
part E + ET admits as bottom-left square block of the size of C the matrix
C + C ′T , where C ′ is the top-right block of B (here it is crucial that i`+1 − i` <
(n − k)/2). As a submatrix of a matrix of small rank, C + C ′T must have small
rank. But C ′ has small rank itself as a submatrix of B, whence it follows that
C = (C + C ′T ) − C ′T has small rank, namely a rank of at most 2 · 5`−mκ .

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579319000032
Downloaded from https://www.cambridge.org/core. IP address: 99.61.69.233, on 25 Jul 2019 at 16:13:44, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579319000032
https://www.cambridge.org/core
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Hence,

rk Mi`+1,im = rk E 6 rk A + rk B + rk C + rk D 6 5`+1−mκ.

This completes the induction proof and implies that rk M = O(κ) = O(nc).
Finally, as already noted, the rank of B is at most the rank of M plus 2εn.

In particular, given that 2ε = 1/5, it is surely less than c′n for some c′ < n/4
if n ∈ Z is large enough. Again invoking Corollary 12, we obtain the desired
contradiction with the hypothesis (48). This concludes the proof of Theorem 2.

§7. The Hankel case. We prove Theorem 3 and again we assume that p > 2.
If α =

∑m
j=−∞ a j t j , then the matrix of the quadratic form f 7→ (α f 2)−1 in the

canonical basis of Gn is

M = M(α) =


a−1 a−2 · · · a−n

a−2 . .
.

. .
.

a−n−1
... . .

.
. .
. ...

a−n α−n−1 · · · a−2n+1

 .

We will follow the same strategy as in §§5.2 and 6 with 8( f ) = e(α f 2
+ β f ).

Suppose for a contradiction that, for arbitrarily large n, we have∣∣∣∣ ∑
f ∈Gn

µ( f )8( f )
∣∣∣∣ > δqn (49)

with δ = q−ε
′n for some ε′ > 0 to be decided later. We apply Proposition 14.

We discard the first case of that proposition, because in that case the reasoning
of §6 goes through without Theorem 5. The parameter δ′ = (δ/n)O(1) is still at
least q−εn for some ε = O(ε′) if n is large enough. Thus, we find a k ∈ [n/18,
17n/18] such that for at least q(2−ε)(k+1) pairs of polynomials (d, d ′) of degree
k, the quadratic phase on Gn−k defined by

w 7→ e(α(d2
− d ′2)w2)

has rank at most O(εn). Write d − d ′ = a and d + d ′ = b. We infer that for
at least q(2−ε)(k+1) pairs of polynomials a, b of degree at most k, the quadratic
phase

w 7→ e(αabw2)

has rank at most cεn for some constant c = O(1).
With the notation of the previous section, the symmetric matrix of that form

is
Ma,b = LT

a M(α)Lb = LT
b M(α)La = M(αab).

Thus, compared to the general case, Ma,b is a product involving M and not a
sum of two products, which makes it much easier to analyse. As in the proof of
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Theorem 2, we will show that M has low rank by covering it by submatrices of
low rank.

By Markov’s inequality, there exists a set X ⊂ Gk+1 of size q(1−ε)(k+1)/2
such that for any a ∈ X , the set

Ba := {b ∈ Gk+1 | rk Ma,b 6 cεn}

has size at least q(1−ε)(k+1)/2.
Let η = 2ε. For any i ∈ {0, . . . , k − ηk} and a ∈ X , by the pigeonhole

principle, there exist two distinct b 6= b′ in Ba such that f = b′ − b =∑i+ηk
m=i cm tm for some coefficients cm . Moreover, we have rk Ma, f 6 2cεn.

Write f = fa,i to emphasize the dependence. Fix (i, j) ∈ {0, . . . , k − 2ηk}2.
Again the pigeonhole principle implies that there exist a 6= a′ ∈ X such that
g = a − a′ ∈ span(t j , . . . , t j+2ηk) and fa,i = fa′,i . If f is this common value,
we have rk Mg, f = O(εn). Observe that for such a pair (g, f ), we have

Lg =

 0
Cg
0

 ,
where the central block is an (n − k + 2ηk) × (n − k) matrix of rank n − k
and the other blocks are 0 blocks. The same holds for L f with a central block
C f . So, if N is the (n − k + 2ηk) × (n − k + 2ηk) block of M whose top-left
cell is ( j, i), then Mg, f = CT

g NC f , so that rk Mg, f > rk N − 4ηk. As a result,
rk N = O(εn).

Covering M by a bounded number of blocks of size (n − k + 2ηk) × (n −
k + 2ηk), we find that rk M = O(εn). By taking ε small enough, the bound
O(εn) is constrained to be smaller than, say, n/5, for n large enough. Thus, if ε
is small enough (that is, if ε′ is small enough), we get a contradiction between
the hypothesis (49) and Corollary 12. Theorem 3 follows.

It is possible to give an alternative proof of Theorem 3 using the more
traditional language of Diophantine properties of α and β. We have opted for the
present proof, since it shows parallels between the general case and the special
case.
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Math. (Rozprawy Mat.) 95 (1972), 75 pp.
17. A. Samorodnitsky, Low-degree tests at large distances. In STOC’07—Proc. 39th Annu. ACM Symp.

Theory of Computing, ACM (New York, 2007), 506–515.
18. T. Sanders, On the Bogolyubov–Ruzsa lemma. Anal. PDE 5(3) (2012), 627–655.
19. T. Tao and T. Ziegler, The inverse conjecture for the Gowers norm over finite fields via the

correspondence principle. Anal. PDE 3(1) (2010), 1–20.
20. T. Zhan and J.-Y. Liu, Exponential sums involving the Möbius function. Indag. Math. (N.S.) 7(2)
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43 boulevard du 11 novembre 1918,
69622 Villeurbanne cedex,
France
E-mail: pbienvenu@math.univ-lyon1.fr

Thái Hoàng Lê,
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