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1. Introduction. For two sets X,Y we denote by X + Y the sumset
{r+y:2€X,yeY}and by kX the k-fold sumset X + ---+ X (k times).
A set H C Z is called an essential component if o(A+ H) > o(A) for any
A C Z with 0 < 0(A) < 1, where o(A) is the Schnirelmann density of A.
In [8], Wirsing constructed essential components in Z with small counting
functions. He also proved the following finite version of his main result.

THEOREM 1.1 ([8, Theorem 4|). Let n > 1 and A C Z be any subset of
[1,2"]. Let H = {£2F : k >0} U {0} and B = (A+ H) N [1,2"]. Then

B > |A+\f|A|( o)

Wirsing’s argument is elementary, very simple and surprisingly effective.
In this note, we will adapt it to prove an analogous result for vector spaces
over a finite field. The adaptation is straightforward for 5, but less so for Fy
if p>3.

THEOREM 1.2. Let p be a prime and e1,... e, be a basis of Fy. Put
H = {e1,...,en} U{0}. Then for any A C Fy, we have

c(p) 141
A+H\>A|+\F|A|< pn>

for some constant c(p) > 0. We can take c(2) = v/2 and c(p) = 2(p~3/?).

As an application, we will quickly deduce the following generalization of
a theorem of Sanders [7, Theorem 1.2|. By the density of a subset A C X
in X, we mean |A|/|X].
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THEOREM 1.3. Let p be a prime. Then there is a constant ¢ (p) > 0 such
that the following holds. If A C ¥} has density o > 1/2 - < (p), then A — A

n

contains a subspace of codimension 1.

Sanders’ theorem is a special case of Theorem 1.3 when p = 2. In Sec-
tion 2 we will prove a general result for Cartesian products (Theorem 2.1).
The main Theorems 1.2 and 1.3 are proved in Sections 3 and 4, respectively.

2. Wirsing’s argument for Cartesian products. Let (gi)72; be a
sequence of positive integers. Write Iy = {0,1,...,qx — 1}. Define

n
k=1
The Hamming distance between two elements x = (x1,...,2,) and y =
(y17 A 7y7'l) Of Qn iS
(2.1) dix,y):={1<i<n:z; #y}|

For a set A C @, and r > 0, we define the neighborhood of A with
radius r as

B(A,r) = By(A,r) = {x € Qy, : there exists y € A such that d(x,y) <r}.
We will prove the following:

THEOREM 2.1. For any set A C Q,, we have

2 - A
22) B D2l s ’A'<1 rQn|>‘

REMARK 2.2. After writing this paper, we learned that in the special
case @, = {0,1}", Theorem 2.1 appeared as [2, Theorem 3| with a very
similar argument.

We will need the following estimate in the proof of Theorem 2.1.

LEMMA 2.3. For any non-negative real numbers x1, ..., Ty, we have
m
2
(2.3) > ($i+xi+1+"'+%‘)2§m<z($1+"'+$i)> :
1<i<j<m i=1

Proof. This follows simply from comparing coefficients. For 1 < k < m,
the coefficient of 22 in LHS is k(m + 1 — k), while its coefficient in RHS
is m(m +1— k)2 For 1 < k <1 < m, the coefficient of zpx; in LHS is
2k(m + 1 — 1), while its coefficient in RHS is 2m(m +1—1)(m+1—k). m

Proof of Theorem 2.1. Let (,, be a sequence of positive reals to be de-
termined later. Ultimately, we will make the choice ¢, = /2/> (¢ — 1),
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but for now we will write them as generic numbers. The conditions imposed
on the (,’s will come from the proof.
We will prove by induction on n that for any A C @Q,, we have

(2.4) Ba(A1)] = |A] + GolA| (1 - ,‘;L).

When n =1 and A C @1, we have Bi(A,1) = Q1. We easily see that (2.4)
is true whenever

q1
2.5 < .
(2.5) G < -

For the inductive step, suppose (2.4) is true for all subsets of Q,—; with a
constant (,,_1 in place of (,. For X C J,,—1 and Y C I,,, we write

XY ={(x9)€Qn:xeX, ycY}
Let A C Q.. For any i € I,,, we define
Ai={a€Qn1:(a,i)c A}

Then clearly we have the partition

gn—1

(2.6) A= | | Ae{i}
=0

and consequently

qn—1

(2.7) Al =" Al
=0

Our first observation is that for any ¢ € I,,, we have A; @ I, C B,(A,1).
This leads to the bound

(2.8) [Bn(A; )| = gn|Ail

for any i € I,,. Next, we observe that for ¢ € I,,, we have B,,_1(A;,1) & {i}
C B, (A,1). Clearly the sets B,_1(4;,1) @ {i} are disjoint. Thus we have yet
another bound

qn—1

(2.9) [Bu(A,1)] > D |Buo1 (A 1))

=0
Without loss of generality we may assume |Ag| > |A1] > --- > |Ag,—1|. From
(2.8) and (2.7), we deduce

gn—1
|Bu(A, )] = [A] + ) (14o] — |Ak]).
k=0

We distinguish two cases.
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CASE 1:

A
3™ (|40 — |4 ]) > <n|A|<1— L |).
k=0 n

In this case (2.4) follows immediately.

CASE 2:
4]
(2.10) > (1 = 1) < Glal(1- 51 ).
Using (2.9) and the induction hypothesis for each Ay C Q,—1, we have
Qn_l ‘A ‘
@) 1B Y+ Gl (1- 5 )}
k=0 |Qn71|
C qn_l
= Al + G4l = 3= D Al
|Qn—1| k=0
Moreover,
gn—1 1
(212) Y AP==(14P+ X (A= 14)?),
k=0 n 0<i<j<gn—1

Fori=1,...,q, — 1, put & = |4;_1| — |4;| > 0. Then (2.10) reads
gn—1
A
> (o) < Gl (1 - )
On the other hand,

ST (=14 = D> @itz )’

0<i<j<gn—1 1<i<j<gn—1

Thus Lemma 2.3 implies that
qn—1

2
(213) > 1 < - (14P + (0 - AP (1- 2L,
P n |Qnl

Putting this into (2.11) yields

(2.14) : Ay
B (A, 1) > |A| + Coi]Al — ”‘1<A2 =1 3A2<1— ))
|Bn(A,1)| > |A] + (u1]A] N |A[* + (g — 1), | A N

B rA\) (o , 2( A )2
A+ ClAl[1— _ Sl g — 1A (1 -
A+ G ’( Qul) "0 T VAP e

2 A
> 41+ Gt (1= - 1 1l (1 L),
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Here (2.14) follows from the fact that
A (ALY L
|Qnl Qul/) — 4
Thus (2.4) follows if we have

€2

(2.15) @40—@ﬁn;)zg
We now choose ¢, = /2/> .~ (¢; —1). Then

[ 2 q1
1= <
aa—1"q-1

and (2.5) is satisfied. The condition (2.15) is also satisfied, since

¢=&4@—<—n6)§d40—<—”f>

It is possible to iterate (2.2) to give a non-trivial bound for B(A,r) for
arbitrary =, and this is what Wirsing did in [8, Section 4.3].

3. Proof of Theorem 1.2. We identify F with @, = {0,1,...,p—1}"

via the map
n
(T1y.. o p) inei.
i=1

Let E = {e1,...,e,}. Then B(A, 1) AU(A+E) - (A+(p—-1)-E)) C
A+ (p—1)H, where k- E :={ke; : i = .,n}. Theorem 2.1 implies that

A
A (= DHI 2 4]+ rm "

We will use Pliinnecke’s inequality [5] in the followmg form [6, Theorem 1.2.1]:

if
X + kH
" ;:inf{‘&]‘“‘;XcA,X;é@},

then the sequence {M}C/ k}iozl is decreasing.
For any X C A, X # (), we have

X ~1)H 2 X 2 A
X+ @-DH| | <1—’)21+ <1—H>.

| X| (p—1)n pn (p—1)n pn
Therefore,

1/(p—1)
w7 > (1+ _z_ (1—"?)) 21+C(p)<1—|fi|>
(p=1)n p n p
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for some ¢(p) = 2(p~>/2). Since

A+ H] 1/(p-1)

_ > >
Theorem 1.2 follows. If p = 2, then the use of Pliinnecke’s inequality is
unecessary and we can take ¢(2) = v/2.

4. Proof of Theorem 1.3. Let A C F) be a subset of density o >
1/2 = (p)/+/n. By choosing ¢(p) sufficiently small we can certainly assume
that o > 1/4. Following Sanders, we will first show:

Cramm 1. A— A D (x + U) for some x € F) and a subspace U of
codimension 1 of Fy.

To put it in a different way, S := (A — A)¢ is contained in an affine
subspace of codimension 1. Suppose for a contradiction that this is not true.
Let s be any element of S. Then S—s contains n linearly independent vectors,
say e1,...,en. Put H =1{0,e1,...,e,}. Then s+ H C S. By definition of S,
we have (S + A) N A = (). Hence,

H+ A H+ A S+ A

He Al _ s Hedl _|S+4]
p p p

Sanders deduced a contradiction from this by repeated applications of Pliin-

necke’s inequality and McDiarmid’s inequality. Thanks to Theorem 1.2, we
have a contradiction immediately. Indeed, since

|H + Al c(p) c(p)

(4.1) —a.

3
>a+ P o1—a)>at+ > 82

p vn 16 v/n

we have a contradiction if we choose ¢/(p) < £ ¢(p). Claim 1 follows.
For the rest of the proof we argue similarly to Sanders.

Cram 2. If V # {0} is any subspace of Fy, then A—A DV \ (U + x)

for some subspace U of codimension 1 of V and x € V.

We observe that, by averaging over ¢t € Fy, there is a translate ¢ + A
such that the density of (t + A) NV in V is at least a. Since A — A D
(t+A) NV —(t+ A) NV, Claim 2 follows from Claim 1.

Cramm 3. A— A D (z+U) for some subspace U < F) and x ¢ U.

To see that this implies Theorem 1.3, let W be any subspace of codi-
mension 1 of Fy such that U C W and x ¢ W (the existence of W may
be seen from taking a basis of F containing = and a basis of U). Then
A-AD(z+U)D(x+W)*DW.

We now prove Claim 3. Let U be the smallest subspace of ;) such that
A—A D (z+U)° for some z. Such a U exists by Claim 1. We now show
that z & U. Suppose for a contradiction that z € U, i.e. U C A — A. Since
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{0} € A— A, we have dimU > 1. By Claim 2, there are a subspace U’ of
codimension 1 of U and y € U such that A— A D U \ (U’ 4 y). Therefore,

A—A>UUUN\ (U +v)) = U +y)°

contradicting the minimality of U.

5. Further discussions. It is instructive to compare Theorem 2.1 with
other estimates for B(A,1). The case @, = {0,1}" (i.e., the hypercube) has
been extensively studied in the context of vertex isoperimetric inequalities
for graphs. Harper’s theorem [3] says that among all sets A C {0,1}" of
size k, |B(A,1)| is minimized when A is the first k elements in the simplicial
ordering. For x = (z1,...,2,), Yy = (y1,---,9n) € {0,1,...}", weset x < y
in the simplicial ordering if either Y ;" & < > " i, OF D v i = > i1 Ys
and for some j we have x; > y; and z; = y; for all ¢ < j. In particular, if
|A| =37 (), then |B(A, 1)| is minimized when A is a Hamming ball with
radius r. Our bound (2.2) is weaker than Harper’s when the density of A
is small, but is comparable when the density of A is bounded away from 0
and 1 (see (5.4) below).

Bollobas and Leader [1, Theorem 8| generalized Harper’s theorem to
Qn = [1i_; Ir, though their notion of Hamming distance is quite different
from ours. Just as Harper’s theorem, their result is optimal, but it does not
seem straightforward to extract from their result an explicit bound like (2.2).

McDiarmid’s inequality [4, Corollary 7.6| states that if AC Q. =][;_; Ik,
then

|B(A, )] |Qnl r?
(5.1) o >1- Al exp<—2n>.
The bound (5.1) is useful when r is large (for an application, see [9]), but
sometimes it is worse than trivial (e.g. when the density of A in @, is close
to 0 or 1). On the other hand, the bound given by (2.2) is always non-trivial.
Pliinnecke’s inequality implies that for any sets A, B in a commutative

group, we have
|A+ BJ\"
el < (P55 1

This gives the following bound.
PROPOSITION 5.1. If A C Qn = [}y Ix, then

1 _ 14
(5.2) |B(A,1)] > |A| + nyAy<1 |Qn|>'

Proof. We identify each I with a commutative group G on ¢ elements
and @, with the group @) _, Gi. Then B(A,1) = A+ B, where
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B=|J{x=(0,...,0,240,...,0) € Qu : x4 € Gi}.

@il < (B4
IAI
which implies

oz () " b )

as desired. =

Clearly nB = @, hence

In the special case where q; = - -+ = ¢, = q, Theorem 2.1 becomes

COROLLARY 5.2. Let ¢ > 2 and Q, = {0,1,...,q — 1}". Then for any
A C Qp, we have

(5.3) |B (A1|>|A|—|—1/ |A\ 1—61‘

The factor v/n in (5.3) is best possible in terms of order of magnitude.
To see this, we take ¢ = 2 and

A= {(xl,...,xn) € {0,1}": z:;f’f < Z}

Then .
B(A,1>={<x1,...,xn>e{o,1}“:;xigZH}
and
1Al [BAD] 1 |
o) s = e <2+0(R)

where the last inequality follows from the central limit theorem (or from the
fact that the largest binomial coefficient () is O(2"/y/n)).

On the other hand, there are many reasons to believe that the factor
Vg —1 in (5.3) should not be there. Indeed, in the spirit of the previous
example, we take

A:{(xl,...,xn)e{(),l,. q—1}”-le_ q_l }

Then it is easy to see that

B(A,l) D {(.%1,...,3%)6{0’1"”7q_1}n.zxz_ q_ln_‘_l)}
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For this particular A, the central limit theorem implies

1 |A]
B 14+ g 1al(1- ),
O(vn) |Qn|
where O(y/n) is independent of ¢. Furthermore, neither of the bounds (5.1)
and (5.2) depends on the ¢;’s. Thus it is natural to ask:

QUESTION 5.3. Is there a function f : [0,1] — R such that f > 0 on
(0,1) and
|B(A,1)|

2a+inf(04)

|Qn| vn
for all Qn = 11—y I and A C Q,, of density a?

If the answer to Question 5.3 is affirmative, then the constant ¢(p) in
Theorem 1.2 can be taken to be £2(p~!) and it is easy to see that this is best
possible.
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