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1. Introduction. For two sets X,Y we denote by X + Y the sumset
{x+ y : x ∈ X, y ∈ Y } and by kX the k-fold sumset X + · · ·+X (k times).
A set H ⊂ Z is called an essential component if σ(A +H) > σ(A) for any
A ⊂ Z with 0 < σ(A) < 1, where σ(A) is the Schnirelmann density of A.
In [8], Wirsing constructed essential components in Z with small counting
functions. He also proved the following finite version of his main result.

Theorem 1.1 ([8, Theorem 4]). Let n ≥ 1 and A ⊂ Z be any subset of
[1, 2n]. Let H = {±2k : k ≥ 0} ∪ {0} and B = (A+H) ∩ [1, 2n]. Then

|B| ≥ |A|+
√

2

n
|A|
(
1− |A|

2n

)
.

Wirsing’s argument is elementary, very simple and surprisingly effective.
In this note, we will adapt it to prove an analogous result for vector spaces
over a finite field. The adaptation is straightforward for Fn2 , but less so for Fnp
if p ≥ 3.

Theorem 1.2. Let p be a prime and e1, . . . , en be a basis of Fnp . Put
H = {e1, . . . , en} ∪ {0}. Then for any A ⊂ Fnp , we have

|A+H| ≥ |A|+ c(p)√
n
|A|
(
1− |A|

pn

)
for some constant c(p) > 0. We can take c(2) =

√
2 and c(p) = Ω(p−3/2).

As an application, we will quickly deduce the following generalization of
a theorem of Sanders [7, Theorem 1.2]. By the density of a subset A ⊂ X
in X, we mean |A|/|X|.
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Theorem 1.3. Let p be a prime. Then there is a constant c′(p) > 0 such
that the following holds. If A ⊂ Fnp has density α > 1/2− c′(p)√

n
, then A− A

contains a subspace of codimension 1.

Sanders’ theorem is a special case of Theorem 1.3 when p = 2. In Sec-
tion 2 we will prove a general result for Cartesian products (Theorem 2.1).
The main Theorems 1.2 and 1.3 are proved in Sections 3 and 4, respectively.

2. Wirsing’s argument for Cartesian products. Let (qk)
∞
k=1 be a

sequence of positive integers. Write Ik = {0, 1, . . . , qk − 1}. Define

Qn =
n∏

k=1

Ik.

The Hamming distance between two elements x = (x1, . . . , xn) and y =
(y1, . . . , yn) of Qn is

(2.1) d(x,y) := |{1 ≤ i ≤ n : xi 6= yi}|.

For a set A ⊂ Qn and r ≥ 0, we define the neighborhood of A with
radius r as

B(A, r) = Bn(A, r) = {x ∈ Qn : there exists y ∈ A such that d(x,y) ≤ r}.
We will prove the following:

Theorem 2.1. For any set A ⊂ Qn, we have

(2.2) |Bn(A, 1)| ≥ |A|+

√
2∑n

i=1(qi − 1)
|A|
(
1− |A|
|Qn|

)
.

Remark 2.2. After writing this paper, we learned that in the special
case Qn = {0, 1}n, Theorem 2.1 appeared as [2, Theorem 3] with a very
similar argument.

We will need the following estimate in the proof of Theorem 2.1.

Lemma 2.3. For any non-negative real numbers x1, . . . , xm, we have

(2.3)
∑

1≤i≤j≤m
(xi + xi+1 + · · ·+ xj)

2 ≤ m
( m∑
i=1

(x1 + · · ·+ xi)
)2
.

Proof. This follows simply from comparing coefficients. For 1 ≤ k ≤ m,
the coefficient of x2k in LHS is k(m + 1 − k), while its coefficient in RHS
is m(m + 1 − k)2. For 1 ≤ k < l ≤ m, the coefficient of xkxl in LHS is
2k(m+ 1− l), while its coefficient in RHS is 2m(m+ 1− l)(m+ 1− k).

Proof of Theorem 2.1. Let ζn be a sequence of positive reals to be de-
termined later. Ultimately, we will make the choice ζn =

√
2/
∑n

i=1(qi − 1),
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but for now we will write them as generic numbers. The conditions imposed
on the ζn’s will come from the proof.

We will prove by induction on n that for any A ⊂ Qn, we have

(2.4) |Bn(A, 1)| ≥ |A|+ ζn|A|
(
1− |A|
|Qn|

)
.

When n = 1 and A ⊂ Q1, we have B1(A, 1) = Q1. We easily see that (2.4)
is true whenever

(2.5) ζ1 ≤
q1

q1 − 1
.

For the inductive step, suppose (2.4) is true for all subsets of Qn−1 with a
constant ζn−1 in place of ζn. For X ⊂ Qn−1 and Y ⊂ In, we write

X ⊕ Y = {(x, y) ∈ Qn : x ∈ X, y ∈ Y }.

Let A ⊂ Qn. For any i ∈ In, we define

Ai = {a ∈ Qn−1 : (a, i) ∈ A}.
Then clearly we have the partition

(2.6) A =

qn−1⊔
i=0

Ai ⊕ {i},

and consequently

(2.7) |A| =
qn−1∑
i=0

|Ai|.

Our first observation is that for any i ∈ In, we have Ai ⊕ In ⊂ Bn(A, 1).
This leads to the bound

(2.8) |Bn(A, 1)| ≥ qn|Ai|
for any i ∈ In. Next, we observe that for i ∈ In, we have Bn−1(Ai, 1) ⊕ {i}
⊂ Bn(A, 1). Clearly the sets Bn−1(Ai, 1)⊕{i} are disjoint. Thus we have yet
another bound

(2.9) |Bn(A, 1)| ≥
qn−1∑
i=0

|Bn−1(Ai, 1)|.

Without loss of generality we may assume |A0| ≥ |A1| ≥ · · · ≥ |Aqn−1|. From
(2.8) and (2.7), we deduce

|Bn(A, 1)| ≥ |A|+
qn−1∑
k=0

(|A0| − |Ak|).

We distinguish two cases.
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Case 1:
qn−1∑
k=0

(|A0| − |Ak|) ≥ ζn|A|
(
1− |A|
|Qn|

)
.

In this case (2.4) follows immediately.

Case 2:

(2.10)
qn−1∑
k=0

(|A0| − |Ak|) ≤ ζn|A|
(
1− |A|
|Qn|

)
.

Using (2.9) and the induction hypothesis for each Ak ⊂ Qn−1, we have

|Bn(A, 1)| ≥
qn−1∑
k=0

{
|Ak|+ ζn−1|Ak|

(
1− |Ak|
|Qn−1|

)}
(2.11)

= |A|+ ζn−1|A| −
ζn−1
|Qn−1|

qn−1∑
k=0

|Ak|2.

Moreover,

(2.12)
qn−1∑
k=0

|Ak|2 =
1

qn

(
|A|2 +

∑
0≤i<j≤qn−1

(|Ai| − |Aj |)2
)
.

For i = 1, . . . , qn − 1, put xi = |Ai−1| − |Ai| ≥ 0. Then (2.10) reads
qn−1∑
i=1

(x1 + · · ·+ xi) ≤ ζn|A|
(
1− |A|
|Qn|

)
.

On the other hand,∑
0≤i<j≤qn−1

(|Ai| − |Aj |)2 =
∑

1≤i≤j≤qn−1
(xi + xi+1 + · · ·+ xj)

2.

Thus Lemma 2.3 implies that

(2.13)
qn−1∑
k=0

|Ak|2 ≤
1

qn

(
|A|2 + (qn − 1)ζ2n|A|2

(
1− |A|
|Qn|

)2)
.

Putting this into (2.11) yields

(2.14)
|Bn(A, 1)| ≥ |A|+ ζn−1|A| −

ζn−1
|Qn|

(
|A|2 + (qn − 1)ζ2n|A|2

(
1− |A|
|Qn|

)2)
= |A|+ ζn−1|A|

(
1− |A|
|Qn|

)
− ζn−1
|Qn|

· (qn − 1)ζ2n|A|2
(
1− |A|
|Qn|

)2
≥ |A|+ ζn−1

(
1− (qn − 1)

ζ2n
4

)
|A|
(
1− |A|
|Qn|

)
.



Theorems of Wirsing and Sanders 385

Here (2.14) follows from the fact that
|A|
|Qn|

(
1− |A|
|Qn|

)
≤ 1

4
.

Thus (2.4) follows if we have

(2.15) ζn−1

(
1− (qn − 1)

ζ2n
4

)
≥ ζn.

We now choose ζn =
√
2/
∑n

i=1(qi − 1). Then

ζ1 =

√
2

q1 − 1
≤ q1
q1 − 1

and (2.5) is satisfied. The condition (2.15) is also satisfied, since

ζ2n = ζ2n−1

(
1− (qn − 1)

ζ2n
2

)
≤ ζ2n−1

(
1− (qn − 1)

ζ2n
4

)2
.

It is possible to iterate (2.2) to give a non-trivial bound for B(A, r) for
arbitrary r, and this is what Wirsing did in [8, Section 4.3].

3. Proof of Theorem 1.2. We identify Fnp with Qn = {0, 1, . . . , p−1}n
via the map

(x1, . . . , xn) 7→
n∑

i=1

xiei.

Let E = {e1, . . . , en}. Then B(A, 1) = A∪ (A+E)∪ · · · (A+ (p− 1) ·E)) ⊂
A+ (p− 1)H, where k · E := {kei : i = 1, . . . , n}. Theorem 2.1 implies that

|A+ (p− 1)H| ≥ |A|+

√
2

(p− 1)n
|A|
(
1− |A|

pn

)
.

Wewill use Plünnecke’s inequality [5] in the following form [6, Theorem 1.2.1]:
if

µk := inf

{
|X + kH|
|X|

: X ⊂ A, X 6= ∅
}
,

then the sequence {µ1/kk }
∞
k=1 is decreasing.

For any X ⊂ A, X 6= ∅, we have

|X + (p− 1)H|
|X|

≥ 1 +

√
2

(p− 1)n

(
1− |X|

pn

)
≥ 1 +

√
2

(p− 1)n

(
1− |A|

pn

)
.

Therefore,

µ
1/(p−1)
p−1 ≥

(
1 +

√
2

(p− 1)n

(
1− |A|

pn

))1/(p−1)
≥ 1 +

c(p)√
n

(
1− |A|

pn

)
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for some c(p) = Ω(p−3/2). Since
|A+H|
|A|

≥ µ1 ≥ µ1/(p−1)p−1 ,

Theorem 1.2 follows. If p = 2, then the use of Plünnecke’s inequality is
unecessary and we can take c(2) =

√
2.

4. Proof of Theorem 1.3. Let A ⊂ Fnp be a subset of density α >
1/2− c′(p)/

√
n. By choosing c′(p) sufficiently small we can certainly assume

that α ≥ 1/4. Following Sanders, we will first show:

Claim 1. A − A ⊃ (x + U)c for some x ∈ Fnp and a subspace U of
codimension 1 of Fnp .

To put it in a different way, S := (A − A)c is contained in an affine
subspace of codimension 1. Suppose for a contradiction that this is not true.
Let s be any element of S. Then S−s contains n linearly independent vectors,
say e1, . . . , en. Put H = {0, e1, . . . , en}. Then s+H ⊂ S. By definition of S,
we have (S +A) ∩A = ∅. Hence,

(4.1)
|H +A|
pn

=
|s+H +A|

pn
≤ |S +A|

pn
≤ 1− α.

Sanders deduced a contradiction from this by repeated applications of Plün-
necke’s inequality and McDiarmid’s inequality. Thanks to Theorem 1.2, we
have a contradiction immediately. Indeed, since

|H +A|
pn

≥ α+
c(p)√
n
α(1− α) ≥ α+

3

16

c(p)√
n
,

we have a contradiction if we choose c′(p) ≤ 3
32c(p). Claim 1 follows.

For the rest of the proof we argue similarly to Sanders.

Claim 2. If V 6= {0} is any subspace of Fnp , then A− A ⊃ V \ (U + x)
for some subspace U of codimension 1 of V and x ∈ V .

We observe that, by averaging over t ∈ Fnp , there is a translate t + A
such that the density of (t + A) ∩ V in V is at least α. Since A − A ⊃
(t+A) ∩ V − (t+A) ∩ V , Claim 2 follows from Claim 1.

Claim 3. A−A ⊃ (x+ U)c for some subspace U � Fnp and x 6∈ U .

To see that this implies Theorem 1.3, let W be any subspace of codi-
mension 1 of Fnp such that U ⊂ W and x 6∈ W (the existence of W may
be seen from taking a basis of Fnp containing x and a basis of U). Then
A−A ⊃ (x+ U)c ⊃ (x+W )c ⊃W .

We now prove Claim 3. Let U be the smallest subspace of Fnp such that
A − A ⊃ (x + U)c for some x. Such a U exists by Claim 1. We now show
that x 6∈ U . Suppose for a contradiction that x ∈ U , i.e. U c ⊂ A− A. Since
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{0} ⊂ A − A, we have dimU ≥ 1. By Claim 2, there are a subspace U ′ of
codimension 1 of U and y ∈ U such that A−A ⊃ U \ (U ′ + y). Therefore,

A−A ⊃ U c ∪ (U \ (U ′ + y)) = (U ′ + y)c

contradicting the minimality of U .

5. Further discussions. It is instructive to compare Theorem 2.1 with
other estimates for B(A, 1). The case Qn = {0, 1}n (i.e., the hypercube) has
been extensively studied in the context of vertex isoperimetric inequalities
for graphs. Harper’s theorem [3] says that among all sets A ⊂ {0, 1}n of
size k, |B(A, 1)| is minimized when A is the first k elements in the simplicial
ordering. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ {0, 1, . . .}n, we set x < y
in the simplicial ordering if either

∑n
i=1 xi <

∑n
i=1 yi, or

∑n
i=1 xi =

∑n
i=1 yi

and for some j we have xj > yj and xi = yi for all i < j. In particular, if
|A| =

∑r
i=0

(
n
i

)
, then |B(A, 1)| is minimized when A is a Hamming ball with

radius r. Our bound (2.2) is weaker than Harper’s when the density of A
is small, but is comparable when the density of A is bounded away from 0
and 1 (see (5.4) below).

Bollobás and Leader [1, Theorem 8] generalized Harper’s theorem to
Qn =

∏n
k=1 Ik, though their notion of Hamming distance is quite different

from ours. Just as Harper’s theorem, their result is optimal, but it does not
seem straightforward to extract from their result an explicit bound like (2.2).

McDiarmid’s inequality [4, Corollary 7.6] states that if A⊂Qn=
∏n

k=1 Ik,
then

(5.1)
|B(A, r)|
|Qn|

≥ 1− |Qn|
|A|

exp

(
− r

2

2n

)
.

The bound (5.1) is useful when r is large (for an application, see [9]), but
sometimes it is worse than trivial (e.g. when the density of A in Qn is close
to 0 or 1). On the other hand, the bound given by (2.2) is always non-trivial.

Plünnecke’s inequality implies that for any sets A,B in a commutative
group, we have

|kB| ≤
(
|A+B|
|A|

)k

|A|.

This gives the following bound.

Proposition 5.1. If A ⊂ Qn =
∏n

k=1 Ik, then

(5.2) |B(A, 1)| ≥ |A|+ 1

n
|A|
(
1− |A|
|Qn|

)
.

Proof. We identify each Ik with a commutative group Gk on qk elements
and Qn with the group

⊕n
k=1Gk. Then B(A, 1) = A+B, where
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B =

n⋃
k=1

{x = (0, . . . , 0, xk, 0, . . . , 0) ∈ Qn : xk ∈ Gk}.

Clearly nB = Qn, hence

|Qn| ≤
(
|B(A, 1)|
|A|

)n

|A|,

which implies

|B(A, 1)| ≥ |A|
(
|A|
|Qn|

)−1/n
≥ |A|+ 1

n
|A|
(
1− |A|
|Qn|

)
as desired.

In the special case where q1 = · · · = qn = q, Theorem 2.1 becomes

Corollary 5.2. Let q ≥ 2 and Qn = {0, 1, . . . , q − 1}n. Then for any
A ⊂ Qn, we have

(5.3) |B(A, 1)| ≥ |A|+

√
2

(q − 1)n
|A|
(
1− |A|
|Qn|

)
.

The factor
√
n in (5.3) is best possible in terms of order of magnitude.

To see this, we take q = 2 and

A =

{
(x1, . . . , xn) ∈ {0, 1}n :

n∑
i=1

xi ≤
n

2

}
.

Then

B(A, 1) =

{
(x1, . . . , xn) ∈ {0, 1}n :

n∑
i=1

xi ≤
n

2
+ 1

}
and

(5.4)
1

2
≤ |A|
|Qn|

≤ |B(A, 1)|
|Qn|

≤ 1

2
+O

(
1√
n

)
,

where the last inequality follows from the central limit theorem (or from the
fact that the largest binomial coefficient

(
n
r

)
is O(2n/

√
n)).

On the other hand, there are many reasons to believe that the factor√
q − 1 in (5.3) should not be there. Indeed, in the spirit of the previous

example, we take

A =

{
(x1, . . . , xn) ∈ {0, 1, . . . , q − 1}n :

n∑
i=1

xi ≤
(q − 1)n

2

}
.

Then it is easy to see that

B(A, 1) ⊃
{
(x1, . . . , xn) ∈ {0, 1, . . . , q − 1}n :

n∑
i=1

xi ≤
(q − 1)(n+ 1)

2

}
.
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For this particular A, the central limit theorem implies

|B(A, 1)| ≥ |A|+ 1

O(
√
n)
|A|
(
1− |A|
|Qn|

)
,

where O(
√
n) is independent of q. Furthermore, neither of the bounds (5.1)

and (5.2) depends on the qi’s. Thus it is natural to ask:

Question 5.3. Is there a function f : [0, 1] → R such that f > 0 on
(0, 1) and

|B(A, 1)|
|Qn|

≥ α+
1√
n
f(α)

for all Qn =
∏n

k=1 Ik and A ⊂ Qn of density α?

If the answer to Question 5.3 is affirmative, then the constant c(p) in
Theorem 1.2 can be taken to be Ω(p−1) and it is easy to see that this is best
possible.
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