

1 **Comparison of Life Cycle Environmental Impacts from Meal Kits and Grocery Store**
2 **Meals**

3 Brent R. Heard^{a*}, Mayur Bandekar^b, Benjamin Vassar^c, Shelie A. Miller^{a,b},

4 ^a Center for Sustainable Systems, School for Environment and Sustainability, University of
5 Michigan, 440 Church Street, Ann Arbor, Michigan 48109, United States

6 ^b Program in the Environment, University of Michigan, 440 Church Street, Ann Arbor, Michigan
7 48109, United States

8 ^cA. Alfred Taubman College of Architecture and Urban Planning, University of Michigan, 2000
9 Bonisteel Blvd, Ann Arbor, Michigan, 48109, United States

10 *Corresponding Author: brheard@umich.edu

11 Keywords: E-Commerce, Food waste, Packaging, Supply Chain Management, Food Retailing,
12 Last-Mile Transportation

13

14 **Abstract**

15 Meal kits contain ingredients for cooking a meal that are pre-portioned, packaged, and delivered
16 to a consumer's residence. Life cycle environmental impacts associated with climate change,
17 acidification, eutrophication, land use, and water use are compared for five dinner recipes
18 sourced as meal kits and through grocery store retailing. Inventory data are obtained from direct
19 measurement of ingredients and packaging, supplemented with literature data for supply chain
20 and production parameters. Results indicate that, on average, grocery meal greenhouse gas
21 emissions are 33% higher than meal kits (8.1 kg CO₂e/meal compared with 6.1 kg CO₂e/meal
22 kit). Other impact categories follow similar trends. A Monte Carlo analysis finds higher median
23 emissions for grocery meals than meal kits for four out of five meals, occurring in 100% of
24 model runs for two of five meals. Results suggest that meal kits' streamlined and direct-to-
25 consumer supply chains (-1.05 kg CO₂e/meal), reduced food waste (-0.86 kg CO₂e/meal), and
26 lower last-mile transportation emissions (-0.45 kg CO₂e/meal), appear to be sufficient to offset
27 observed increases in packaging (0.17 kg CO₂e/meal). Additionally, meal kit refrigeration packs
28 present an average emissions decrease compared with retail refrigeration (-0.37 kg CO₂e/meal).
29 Meals with the largest environmental impact either contain red meat or are associated with large
30 amounts of wasted food. The one meal kit with higher emissions is due to food mass differences
31 rather than supply chain logistics. Meal kits are an evolving mode for food supply, and the
32 environmental effects of potential changes to meal kit provision and grocery retailing are
33 discussed.

34

35

36

37

38

39 **Highlights**

40 • Meal kits are an emerging food product with understudied environmental impacts
41 • Meal kits have lower average greenhouse gas emissions than grocery store meals
42 • Grocery meals are not pre-portioned, resulting in higher food loss and waste
43 • Meal kits typically have higher packaging impacts than grocery meals
44 • Grocery store meals have higher last-mile transportation emissions than meal kits
45

46 **Graphical Abstract**

48

49

50

51

52

53

54

55

56

57

58

59 **Introduction**

60 Meal kit services are rapidly emerging, with transformative potential in the food industry. This
61 study is a life cycle assessment of the greenhouse gas emissions for supplying a meal as a
62 meal kit, compared with the emissions for supplying the same meal through traditional grocery
63 retailing.

64 Meal kits are delivered in boxes containing a recipe and its ingredients, which are pre-portioned
65 and often individually-packaged. Meal kit delivery services ship their meals in boxes containing
66 refrigeration packs through a mail delivery service that delivers the meal kits to consumers'
67 homes. Meal kits are an alternative to the traditional means of preparing meals from ingredients
68 purchased at a grocery store. Grocery store meals are typically comprised of ingredients
69 shipped to stores from a regional distribution center, retailed at a store, and purchased by
70 consumers who travel round-trip to that store.

71 The meal kit industry is valued at approximately \$1.5 billion in the United States and is
72 experiencing annual growth of 25% (Wilson et al., 2017). 9% of U.S. consumers surveyed by
73 The Nielsen Company have purchased a meal kit, and 25% of total consumers reported that
74 they would consider trying a meal kit in the next six months following the survey date,
75 presenting this industry with a substantial opportunity for growth (The Nielsen Company, 2018).

76 It is essential that the environmental impacts of food production, provision, and use be
77 assessed. The food system is estimated to comprise 19-29% of global anthropogenic
78 greenhouse gas (GHG) emissions (Vermeulen et al., 2012), and changes in retail stocking and
79 sourcing, food preservation technologies, and consumer behavior have been identified as key
80 GHG mitigation opportunities in high income countries (Niles et al., 2018). In addition, consumer
81 perceptions of packaging waste often dominate conversations about the environmental impact
82 of meal kit services (Stein, 2017); however, a full life cycle perspective that takes into account
83 the entire food supply chain is required to understand the actual impact of these services
84 relative to traditional methods of food procurement.

85 Meal kits represent a fundamental shift in how food is supplied. Meals are pre-portioned for
86 consumers and delivered to their doorsteps, circumventing the process of consumers acquiring
87 and portioning ingredients for a meal themselves, but still providing the experience of cooking
88 their meal at home. In this way, meal kits are not just a novel physical product, but also displace
89 the typical grocery shopping experience for U.S. consumers, creating a systemic change. As
90 such, meal kits are a transformative technology (Miller and Keoleian, 2015), presenting both
91 direct changes to meals themselves (pre-portioning and packaging ingredients), but also indirect
92 changes to the food supply chain (delivering food to the household, rather than retailing in a
93 grocery store followed by consumer transportation).

94 **The Environmental Impacts of Meal Kits**

95 The popular perception of meal kits' environmental impacts tends to be negative, with many
96 consumers expressing concerns regarding the amount of packaging included in meal kits (Stein,
97 2017) and the contents of their refrigeration packs (Butler, 2017). This study compares the life
98 cycle environmental impacts of meals sourced from meal kit services and a grocery store to
99 determine whether the increased packaging associated with meal kits is offset by potential
100 reductions in food waste.

101 Pre-portioning food has the potential to reduce household food waste; however, pre-portioning
102 also requires individual packaging with higher surface-to-volume ratios than packaging bulk
103 foods. Therefore, pre-portioned food included in a meal kit has an inherent environmental
104 tradeoff between reduced emissions associated with lower food loss and increased emissions
105 associated with additional packaging.

106 The environmental impacts of household and retail food waste are substantial, and are the
107 stages in the food chain responsible for the largest percentages of food waste in the developed
108 world (Gustavsson et al., 2011). Total food waste comprises an estimated 2% of the U.S.'
109 national greenhouse gas emissions (Venkat, 2011). The potential for reducing food waste with
110 the addition of packaging has been studied, though the net emissions change is dependent on
111 food type (Heller et al., 2018). For the overall food sector, food packaging has long been a
112 subject of environmental concern, with packaging for food comprising nearly two-thirds of total
113 packaging waste volume, and with 31% of U.S. municipal solid waste in 2005 found to be
114 packaging-related (Marsh and Bugusu, 2007).

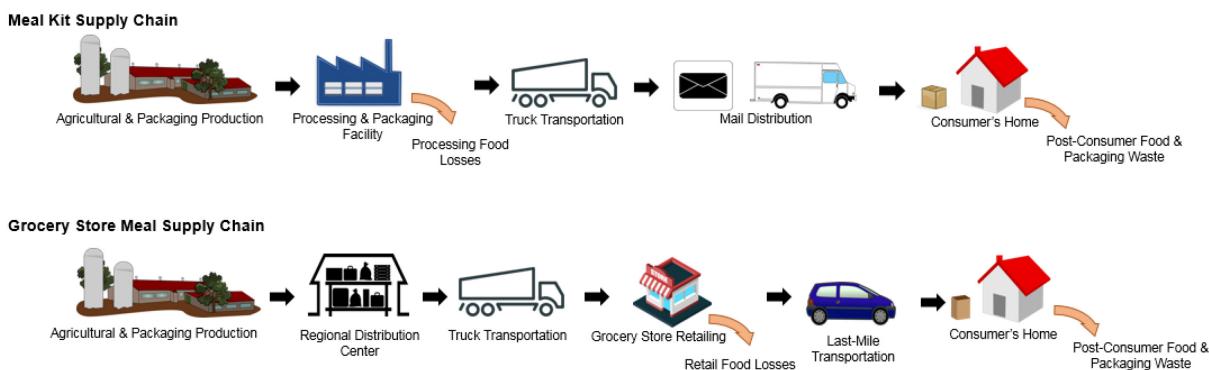
115 Meal kit delivery services are one manifestation of the emergence of e-commerce shopping as
116 an alternative to traditional retailing. Technical considerations for online grocery shopping with
117 home delivery have been assessed in the transportation and logistics literatures (Marker Jr and
118 Goulias, 2007; Pan et al., 2017; Punakivi et al., 2001; Yang and Strauss, 2017; Yrjölä, 2001),
119 with their findings likely applying to meal kit delivery as well.

120 As an emerging food product, the environmental impacts of meal kits are still in the early stages
121 of being evaluated. It is critical that the environmental implications of supplying meals as meal
122 kits be understood, providing an opportunity to identify areas of high environmental impacts
123 which can be mitigated, and elements providing relative environmental improvements which can
124 be promoted, while this product is still developing and expanding in the marketplace.
125 Additionally, e-commerce and direct-to-consumer supply chains present the potential to replace
126 traditional brick-and-mortar supermarket retailing in developing food systems. Estimations of the
127 relative emissions impacts of meal kits compared with grocery store meals present valuable
128 contributions to the growing literature on food e-commerce and alternative meal provisioning.

129
130 **Methods**

131 This study is a comparative life cycle assessment of meal kits and grocery store meals. The
132 recipes for five two-person meals containing a range of proteins were sourced and prepared
133 from both a meal kit service and a grocery store. Inventory data was collected for climate
134 change, acidification, eutrophication, land use, and water use impact categories these meals.

135 The functional unit of the analysis is one prepared meal, using a two-person serving recipe.
136 Five different proteins were selected to analyze the range of results associated with different
137 meal ingredients: one containing seafood, one red meat, one poultry, and two vegetarian
138 recipes. These are referred to as salmon, cheeseburger, chicken, pasta, and salad meals,
139 respectively. Meal kits were purchased from Blue Apron and selected from the available options
140 at the time of analysis, based on supplying the most diverse set of proteins. Grocery meals were
141 purchased from a local grocery store and cooked to match the recipes supplied with the meal
142 kits in the closest quantity available to recipe requirements. While meals from only one meal kit
143 vendor are tested, they are representative of the product and supply chain being studied, with
144 the potential for variation in factors such as individual ingredient packaging and supply chains


145 affecting both meal kits and grocery meals. The choice of functional unit as “one prepared meal”
146 rather than a mass-based functional unit is intentional and reflects the assumption that
147 consumers are likely to follow quantities stated in the recipe and will not adjust for mass. The
148 researchers followed the recipe provided by the meal kit, which specifies quantities of items
149 (e.g. 2 hamburger buns, 3 carrots) which do not control for mass differences between sourced
150 ingredients, which a typical consumer would be unlikely to adjust for. The implications and
151 sensitivity of results to this choice are discussed in the results section.

152 Direct measurements for the mass of all meal components were obtained using a standard
153 digital kitchen scale. Masses were obtained for the food and packaging for each meal, including
154 food which had to be purchased from the grocery store in a larger quantity than that specified by
155 the recipe and leftover food generated during cooking exceeding the intended meal portion
156 prescribed by the recipe. To the extent possible, researchers prepared the meal in the way a
157 typical consumer would. Measurements collected are detailed in Supporting Information 1.
158 Assessing dimensions of sustainability beyond GHGs is an important element in providing a
159 comprehensive assessment of a food product (Nemecek et al., 2016; Pelletier, 2015).
160 Environmental impact factors for greenhouse gases, eutrophication, acidification, land use, and
161 water use for food, packaging, distribution, and end-of-life processes were collected from the
162 literature and life cycle assessment databases, detailed in Supporting Information 2. These
163 impact categories are selected due to the relevance of these impacts for the food system and
164 their interpretability for stakeholders, corresponding to considerations for inclusion identified by
165 (Schaubroeck et al., 2018), in addition to considerations of data availability.

166 GHG emissions are estimated for the agricultural production, packaging, distribution, supply
167 chain losses, consumption, and waste generation associated with each meal. Due to data
168 limitations, other impact categories are estimated for food production, waste, and packaging
169 production

170 The methods description which follows explicitly describes the calculation of GHG emissions, as
171 that is the most-comprehensive assessment made of the meals in this study. The calculations of
172 environmental impacts for food production, losses, and waste as well as for packaging follow
173 the same steps for other impact categories as for emissions; just using characterization factors
174 for those impacts rather than CO₂e.

175 This study's boundary begins with the production of food and packaging materials and
176 concludes with the end-of-life for food waste and packaging. A visual depiction of the supply
177 chains compared is displayed in Figure 1.

179 Figure 1: Visual depiction of the meal kit and grocery meal supply chains examined.

180 Cradle-to-gate emissions factors for food and packaging production were obtained from the
181 literature and used to characterize these processes. The quality and agricultural inputs
182 associated with ingredients are assumed to be the same between both meals. In some cases,
183 these emission factors include transportation to wholesaler, depending on data availability.
184 Transportation emissions between production processes and processing and packaging or
185 regional distribution centers modeled in this study are assumed to be equivalent between both
186 meal kits and grocery store meals, and are not explicitly estimated. For meal kits, emissions
187 from processing losses, transportation to a mail distribution center by truck, last-mile distribution
188 by package delivery vehicle, and end-of-life disposal are assessed. Emissions for grocery meals
189 include the transportation of grocery meal ingredients from a regional distribution center to
190 grocery store, retail refrigeration in the store and retailing losses, consumer round-trip
191 transportation to the store, and end-of-life disposal. The emissions burden for household food
192 waste includes emissions embodied from the production and supply of that food, in addition to
193 an assessment of end-of-life waste disposal emissions.

194 Unconsumed food from both the unused, sourced ingredients and prepared meal can become
195 either leftovers or food waste. Leftovers are assumed to be food consumed at a later time,
196 either reheating an uneaten portion of the prepared meal or using the unused, raw ingredients in
197 a different meal preparation. Leftovers are treated as a co-product of the meal, and are not
198 reported in meal or waste totals. Co-product allocation is conducted on a mass basis. Food
199 waste refers to excess ingredients that are not used for the prepared meal or subsequent
200 meals, as well as uneaten portions of the meal that are discarded. The proportion of food that
201 ends up as food waste are taken from literature values based on U.S. consumption patterns,
202 further described in Table 1. End-of-life emissions are calculated for food waste and packaging
203 materials for both meals, with landfilling considered in the default scenario, though packaging
204 recycling is also examined as an alternative.

205 Emissions from cooking at home, refrigerated storage at the meal kit processing facility and
206 grocery regional distribution center, and all processing and logistics are considered to be
207 approximately equivalent between the two systems, and are not estimated due to data
208 limitations. Potential correlation in the impacts of systems considered in this study is not
209 assessed due to data limitations. Allocation is conducted on a mass basis for foreground and
210 background systems. Capital goods (i.e. buildings, processing machinery, transportation
211 vehicles) are outside of this study's scope. For the recycling scenario, net emissions factor data
212 uses the typical "zero burden approach," not carrying emissions occurring prior to the waste
213 material arriving at the plant (Turner et al., 2015). Allocation choices for multifunctional
214 processes are accepted from the databases and literature studies drawn upon.

215 The calculation procedure for meal kit and grocery meal emissions is detailed as follows.

216 The food comprising the meals studied is

217 Eqn. 1

$$218 \quad Q_{M_E} = Q_{E_E} + Q_{L_E} + Q_{W_E}$$

219 where Q_{M_E} is the vector of mass of food entering the household by food type (F) (in grams)

220 Q_{EE} is the food prepared and eaten by the consumer,

221 Q_{L_F} is leftover food not eaten at the meal but consumed at a later time, either as reheated
222 portion of the cooked meal or using the unused, raw ingredients in a different meal preparation
223 and Q_{W_F} is the food waste associated with discarded ingredients that are not used for the
224 prepared meal or subsequent meals, as well as uneaten portions of the cooked meal.

225 Food produced to create the meal is:

226 Eqn. 2

$$227 Q_{C_F} = \frac{Q_{M_F}}{(1-R_{X_F})}$$

228 where Q_{C_F} is the vector of food created (g)

229 and R_{X_F} is the loss rate from processing for the meal kit, or grocery store retailing for the grocery
230 meal (%).

231 For the grocery meal, where food is packaged prior to loss at retail, the quantity of packaging
232 created is calculated in the same way.

233 Environmental impacts from the agricultural production of foods E_C are calculated as:

234 Eqn. 3

$$235 E_C = \sum_{F_1}^{F_n} Q_{C_F} * C_F$$

236 Food production emissions E_C are allocated to food consumed the meal considered E_F (kg
237 CO₂e), leftovers, and food waste by mass.

238 Packaging emissions are calculated and allocated the same way, with emissions from
239 packaging allocated to the meal consumed as E_P (kg CO₂e). Supply chain emissions are also
240 allocated to the meal consumed, leftovers, and food waste by mass (unless otherwise noted),
241 reflecting how these emissions are embodied in these foods. The emissions total allocated to
242 post-consumer food waste emissions total (kg CO₂e) is described by E_W .

243 Meal kit processing food losses and grocery meal retail losses Q_X (kg CO₂e) are calculated as:

244

$$245 Q_X = \sum_{F_1}^{F_n} Q_{C_F} * R_{X_F}$$

246 Emissions from processes occurring prior to losses (food production for meal kits, food
247 production along with transportation to retail and grocery store operation for grocery meals) are
248 allocated by mass to Q_M and Q_X in the supply chain, with emissions allocated to losses E_X (kg
249 CO₂e).

250 Food loss is distinct from food waste in that it occurs prior to reaching the consumer, reflecting
251 definitions recommended in the literature (Corrado et al., 2017). In this study, food waste refers

252 to edible food which has reached the consumer, but is ultimately not consumed (either as
253 unused, discarded ingredients or as uneaten portions of the cooked meal).

254 Multiple meals can be delivered in the same box and purchased during the same grocery store
255 trip. Emissions associated with these shared emissions (i.e. last-mile transportation, meal kit
256 box, refrigeration packs, and grocery store bags) are allocated based on the number of meals.
257 The reported mass of shipping boxes, refrigeration packs, and plastic bags is an average
258 among those procured.

259 Emissions from packaging not specific to individual foods E_B (kg CO₂e) are calculated as

260 Eqn. 4

$$261 E_B = \sum \frac{Q_B * C_B}{N}$$

262 where Q_B is the vector of packaging elements in a meal kit box, or quantity of plastic for a
263 grocery store bag (in g)

264 C_B is the vector of production emissions for each packaging type and meal kit box element (in
265 kg CO₂e/g)

266 and N is the number of meal kits per box or grocery meals per bag. Emissions are allocated
267 based on number of meals according to the definition of functional unit as one prepared meal.

268 Emissions from freight truck transportation are calculated based on the mass transported Q_{T_F} ,
269 which includes food and packaging. Trucking transportation emissions for the transportation of
270 meals E_S (kg CO₂e) are calculated as:

271 Eqn. 5

$$272 E_S = \sum_{F_1}^{F_n} Q_{T_F} * D_T * C_T$$

273 where C_T is trucking emissions (kg CO₂e/ g-km)

274 and D_T is km traveled.

275 Transportation emissions allocated by mass to the meal considered are E_T .

276 Grocery store operation emissions E_G (kg CO₂e) are assigned as:

277 Eqn. 6

$$278 E_G = \sum_{F_1}^{F_n} ([Q_{C_F} * H_{D_F} * C_D] + [Q_{C_F} * H_{W_F} * C_A]) * R$$

279 Where Q_{C_F} is food entering the store (g), some of which is retailed with refrigeration

280 H_{D_F} is hours in display cabinet by food type

281 C_D is display cabinet operation and refrigerant leakage emissions (kg CO₂e/g-h)

282 H_{WF} is hours in walk-in cooler by food type
 283 C_A is walk-in cooler emissions (kg CO₂e/g-h)
 284 and R is equal to one if food is retailed in grocery stores with refrigeration, and zero if not
 285 (resulting in no assigned emissions, see Supporting Information 3).
 286 Emissions from store operation allocated by mass to the meal are E_R .
 287 Last-mile emissions for grocery meals E_{MG} (kg CO₂e) are assumed to be dedicated trips to the
 288 grocery store conducted in a personal vehicle, and defined as:
 289 Eqn. 7

$$290 \quad E_{MG} = \left(\frac{D_L}{V} * C_G \right) \frac{N}{N}$$

291 where D_L is the last-mile distance, calculated on a round-trip basis (km)
 292 V is vehicle fuel efficiency (km/liter gasoline)
 293 C_G is emissions from gasoline combustion (kg CO₂e/liter)
 294 N is the number of grocery meals transported per trip,
 295 and for meal kits E_{MK} (kg CO₂e) as:

296 Eqn. 8

$$297 \quad E_{MK} = \frac{Y * C_I}{N}$$

298 where Y is energy consumed per package delivered by a mail service on a typical route
 299 (MJ/package)
 300 and
 301 C_I are emissions from the combustion of diesel fuel (kg CO₂e/MJ).

302 End-of-life emissions from waste treatment E_O (kg CO₂e) are calculated for food waste
 303 generated as:

304 Eqn. 9

$$305 \quad E_O = \sum_{F_1}^{F_n} Q_{WF} * C_E$$

306 where C_E is the emissions for landfilling food waste (kg CO₂e/g), with U.S. food waste typically
 307 disposed of in landfills (Gunders, 2012). End-of-life emissions are calculated the same way for
 308 packaging specific to foods, and meal kit boxes and grocery bags, and allocated by mass to the
 309 meal and to food waste. End-of-life emissions allocated to the meal assessed are E_E .

310 The emissions total for meals kits is calculated as:

311
$$T_M = E_F + E_P + E_B + E_X + E_T + E_{M_K} + E_W + E_E$$

312 And for grocery meals as:

313
$$T_G = E_F + E_P + E_B + E_X + E_T + E_R + E_{M_G} + E_W + E_E$$

314 A Monte Carlo simulation is used to estimate uncertainty and variability in results, using 10,000
315 parameter simulations and conducted in the statistical software R. A table of Monte Carlo
316 parameters, distribution definitions, and data sources is as follows in Table 1.

317 Best available data for supply chain parameters and associated parameter distributions are
318 drawn from the literature and consultations with individuals working within the meal kit industry.
319 When actual distribution data were unavailable, distributions were assigned triangular
320 distributions associated with an estimated data range due to lack of specific distribution
321 information. Assignment of triangular distributions is a common practice in life cycle assessment
322 (Bjorklund, 2002; Lloyd and Ries, 2007), and alternative distribution selection in Monte Carlo
323 analysis has been demonstrated to have a limited impact on expected values (Lipton et al.,
324 1995).

Parameter	Distribution Type	Key Parameters	Data Source	Comments
Meal kits per box	Binomial	3 (85% probability), 2 (15% probability)	Miller, S.A. (2018, June 21). Personal interview.	
Food retail loss and home waste rates (%)	Triangular distribution	<p>Most-likely percentages described.</p> <p>Retail grain product losses: 12% Consumer grain products waste: 19%</p> <p>Retail fruit loss rate: 9% Consumer fruit waste: 19%</p> <p>Retail vegetables product losses: 8% Consumer vegetables waste: 22%</p> <p>Retail dairy losses: 11% Consumer dairy waste: 20%</p> <p>Retail meat losses: 5% Consumer meat waste: 22%</p> <p>Retail poultry losses: 4% Consumer poultry waste: 18%</p>	(Buzby et al., 2014)	<p>(Buzby et al., 2014)'s report details determinants of loss and waste, which for retail loss includes unpurchased food, damaged food, overstocking, and the culling of aesthetically unpleasing food. At the consumer level, leftovers, misjudged portion sizes, spillage and damage, and psychological attitudes towards food are cited as determinants of food waste, among others.</p> <p>The most-likely percentage is the loss/waste rate for the most-relevant food category (e.g. vegetables for butternut squash), bounded by the minimum and maximum values of retail loss or home waste rates reported. Waste rates are set to zero for</p>

		<p>Retail fish and seafood losses: 8% Consumer fish and seafood waste: 31%</p> <p>Retail eggs losses: 7% Consumer eggs waste: 21%</p>		select spices and common non-perishables, see Supporting Information 3 for details.
Meal kit processing loss rate	Triangular distribution	<p>Most-common loss rate: 10%</p>	(Buzby et al., 2014)	<p>These processing loss rates are defined by general food retail loss rates for food types recorded, with the general retail loss rate set as the most-common value. These values are used as a proxy for processing and packaging losses in meal kit processing facility due to data limitations.</p>
Grocery store retailing	Triangular distributions	<p>Most-common residence time in display cabinets: 48.5 hours</p> <p>Most-common residence time in walk-in coolers: 18.23 hours</p> <p>Most-common emissions from cabinets: 6.62 g CO₂e/kg-hr</p>	(Defra, 2008)	Distributions are bounded by the minimum, average, and maximum emissions values for food types.

		<p>Most-common emissions from refrigerant leakage: 6.01 g CO₂e/kg-hr</p> <p>Emissions from walk-in coolers: 0.43 g CO₂e/kg-hr</p>		
Trucking emissions	Triangular distribution	<p>Most-common emissions: 0.28 g CO₂e/kg-km</p>	(Defra, 2008)	Bounded by the minimum, average, and maximum emissions values for the transportation of food types to retail.
Grocery meal last-mile distance	Normal distribution truncated at zero	<p>Mean one-way distance: 4.43 miles</p>	(USDA Economic Research Service, 2018)	Mean and standard deviation defined from survey question on driving distance between household residence and primary food store.
Grocery meal last-mile vehicle fuel efficiency	Normal distribution truncated at zero	<p>Mean: 23.36 miles per gallon</p>	(U.S. Department of Energy, 2018)	Mean and standard deviation for conventional fuel vehicles.
Number of meals purchased at grocery store	Uniform distribution	<p>Range: 1-5</p>	Practice used by the researchers	The minimum value models a dedicated grocery store trip for the meal considered, and the maximum value models all meals considered being purchased in a single trip
Number of meals per grocery store bag	Uniform distribution	<p>2, 3 (equal probability)</p>	Practice used by the researchers	

Meal kit last-mile delivery energy	Triangular distribution	Most-common value: 10 MJ/package	(Weber et al., 2010)	Energy values are then characterized by diesel's combustion emissions.
Meal kit distance between processing facility and mail distribution center	Triangular distribution	Most-common value: 976.87 km	Researchers' observation from meal kit shipping information	Maximum value defined as 25% greater than this mode, and a minimum value of 50 km is assumed.
Distance between grocery store distribution center and retail store	Triangular distribution.	Most-common value: 47.15 km	Researchers' observation and (The Kroger Co., 2018)	Most-likely value determined with Google Maps as the distance between the closest-identified grocery store brand distribution center and the store used by researchers to purchase grocery store meals. Distribution is bounded with maximum and minimum values defined as plus or minus 25% of the most-likely value

326

327

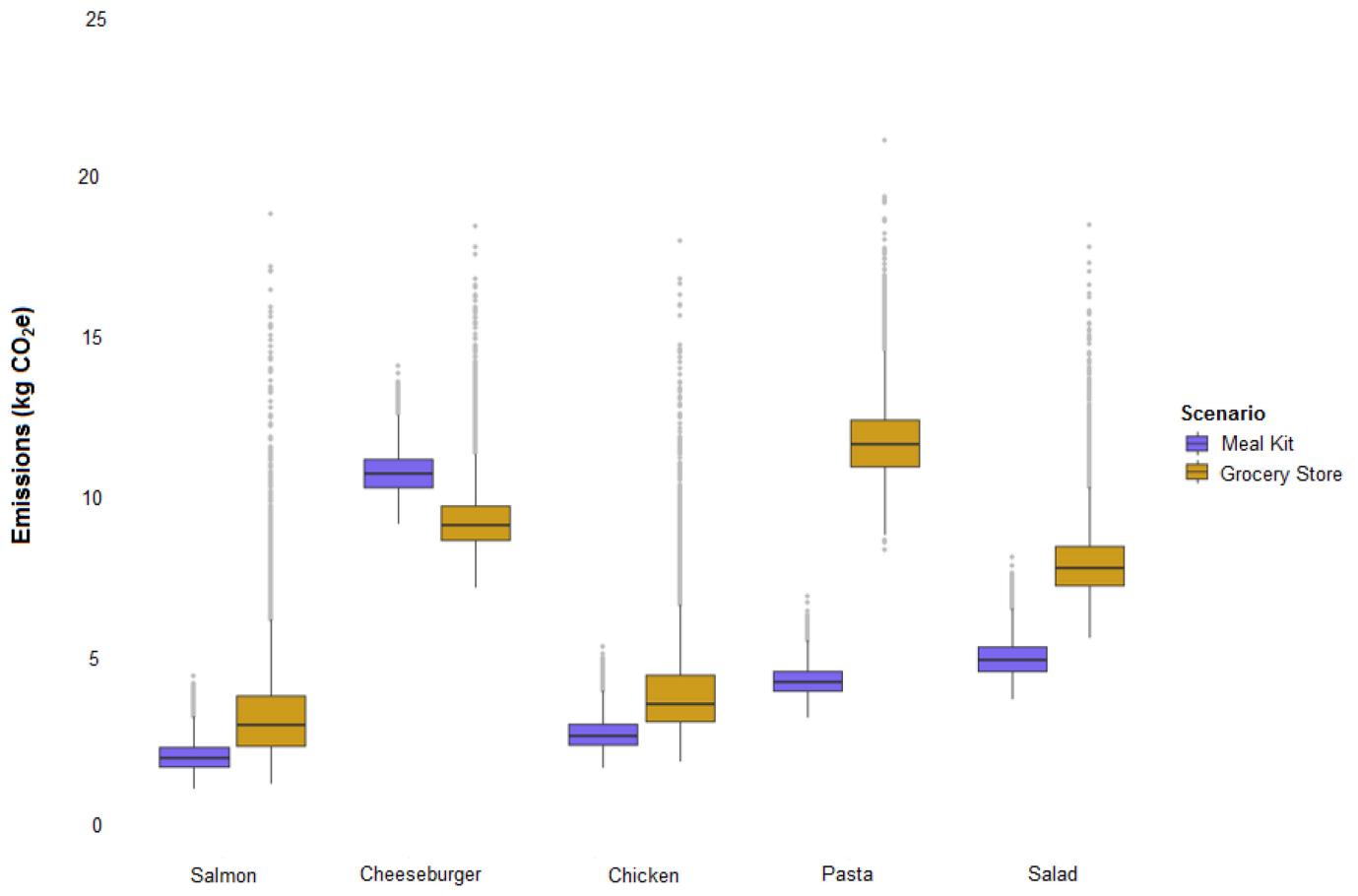
Table 1: Monte Carlo Model and Parameter Descriptions

328 Additional environmental impacts reflecting the production of food, wasted food, and packaging
329 are calculated for acidification, eutrophication, land use, and water use. Overall results for these
330 impact categories are discussed alongside those for GHGs below, with full results tables and
331 details on their calculation available in Supporting Information 5.

332 **Results and Discussion**

333 Differences in emissions for each meal are influenced by two key factors: the overall quantities
334 of food waste and packaging, and the supply chain structure. Generally speaking, meal kits
335 contain larger amounts of packaging but less food due to pre-portioning. Meanwhile, grocery
336 meals have less packaging per meal but larger quantities of food must be purchased, leading to
337 higher household food waste. The two meals also exhibit inherent differences in supply chain
338 structure, particularly with respect to the method of last-mile transportation (delivery truck for a
339 meal kit, consumer vehicle trip for the grocery meal) and food losses in the pre-consumer
340 supply chain (processing losses for meal kits, retail losses for the grocery meal).

341 Emissions reported for the five meals studied are median values for each meal, unless
342 otherwise noted. For simplicity, greenhouse gas equivalent emissions are the focus of the
343 discussion in the main text. Results for other impact categories are summarized at the end of
344 the results section, as the overall trends are largely similar across impact categories.


345 Emissions totals and ranges for each meal studied are displayed in Figure 2. The average
346 grocery store meal is calculated as having 2 kg CO₂e/meal higher emissions than an equivalent
347 meal kit. For context, the average emissions were calculated to be 6.1 kg CO₂e/meal for a meal
348 kit and 8.1 kg CO₂e/meal for a grocery store meal, with the latter exceeding meal kit emissions
349 by a 33% difference. Median grocery store meal emissions exceed the median meal kit
350 emissions for four out of five meal types examined. The grocery store meal emissions exceed
351 those for meal kits by 28% for the salmon, 23% for the chicken, 124% for the pasta, and 43%
352 for the salad. Emissions for the meal kit cheeseburger are 15% higher than those for the
353 grocery store.

354 Emissions for the grocery store meal exceed those for meal kits in over 95% of Monte Carlo
355 model runs for the pasta and salad meals (in 100% of model runs), as well as 84% of model
356 runs for the salmon, and 86% for the chicken. Meal kit emissions exceed those from the grocery
357 store for the cheeseburger in 90% of runs.

358 Figure 3 provides an analysis of the contributions of each life cycle stage to emissions totals,
359 with 3a displaying median emissions contributions and 3b showing the relative contribution of
360 each element to the meal's emissions total.

361

Total Emissions

Meal

362

363 Figure 2: Total estimated emissions (kg CO₂e) for the five meals studied supplied as a meal kit or via a grocery store.
364 Black lines indicate median emissions for each meal by type, and boxes indicate emissions within the 25th and 75th
365 percentiles of model runs. Grey dots indicate values falling outside of this range, which may be considered outliers.
366 These more-extreme values have an upward bias, reflecting higher-emissions intensity cases to create, supply, and
367 consume meals.

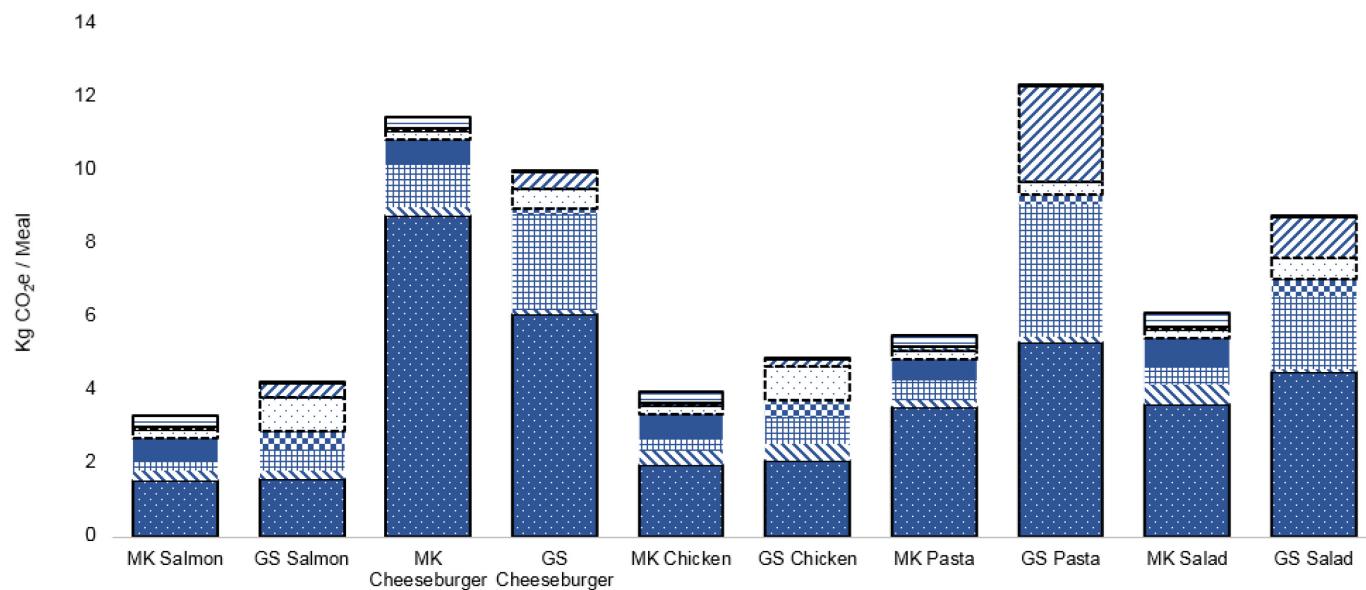
368

369

370

371

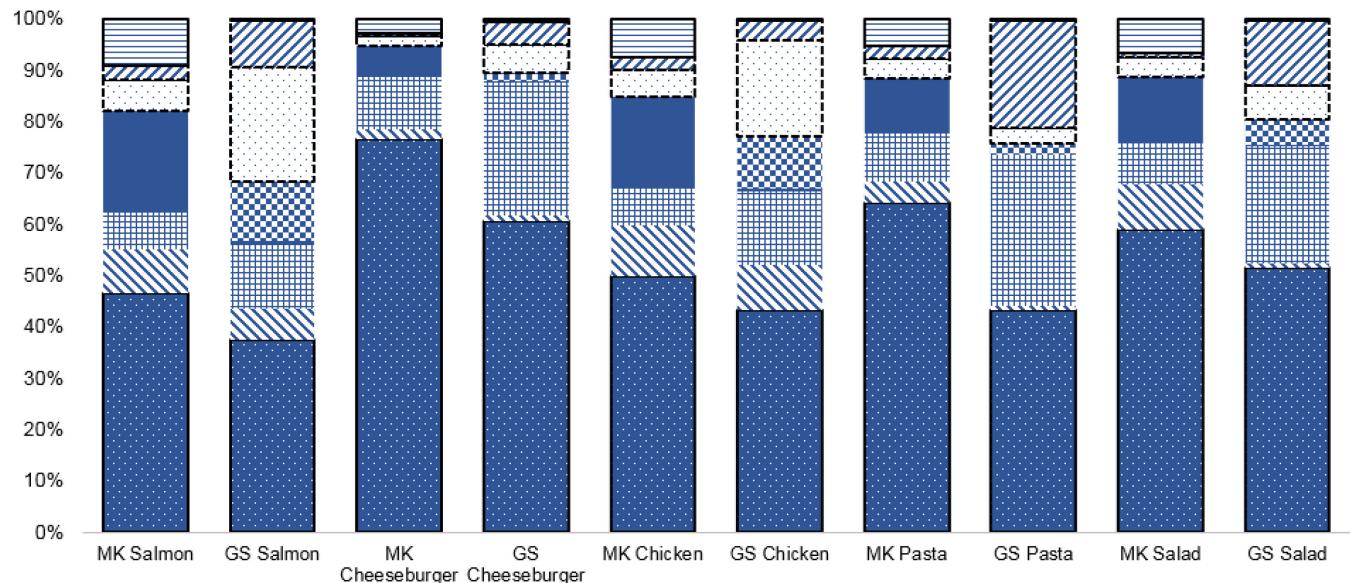
372


373

374

375

A)


Median Meal Emissions Contributions

376

B) ■ Food ▲ Packaging △ Processing/Retail Loss ■ Transportation to Mail/Store □ Store Operation ▨ Last Mile ▨ Food Waste ▨ End-of-Life

Median Meal Emissions Contributions (Percentage)

■ Food ▲ Packaging △ Processing/Retail Loss ■ Transportation to Mail/Store □ Store Operation ▨ Last Mile ▨ Food Waste ▨ End-of-Life

377

378 Figure 3: Median emissions (kg CO₂e) for each contributing element to meal emissions by meal type. MK indicates
379 meal kit and GS indicates grocery store meals. Solid lines surround portions of the supply chain more-directly within a
380 consumers' control. Emissions and contributions are displayed in absolute terms in the upper chart, and by
381 percentage of total emissions in the lower chart.

382

384 The most noticeable supply chain difference presented by meal kits is skipping brick-and-mortar
385 retailing. This direct-to-consumer model presents a large emissions savings through retail food
386 loss reduction: averaging 1.35 kg CO₂e/meal. The quantity of retail losses for the pasta and
387 salad meals are over three times larger than the quantity of food loss in the meal kit supply
388 chain (processing losses) by 361 g and 325 g, respectively. Many grocery store retailing losses
389 occur in connection to inherent challenges from this business model, including overstocking
390 food due to difficulty in predicting the number of customers, eliminating blemished or
391 unappealing foods which may not appeal to shoppers, and holiday food items which remain
392 unpurchased following the holiday (Buzby and Hyman, 2012).

393 Additionally, the embodied emissions in grocery retail loss are higher than those for meal kit
394 processing losses since they occur further down the supply chain. As such, retail food loss
395 contains embodied transportation and store refrigeration emissions not included in meal kit
396 processing losses. Retail losses comprise 29% of the emissions total reported for the pasta
397 grocery meal and 23% for the salad, compared with 10% and 8% from meal kit processing
398 losses for the same meals.

399 Post-consumer food waste is also major driver in the environmental impact of meals. Emissions
400 from food waste from grocery meals exceeds those for meal kits in all five meals by an average
401 difference of 0.86 kg CO₂e/meal, ranging from a difference of 0.1 kg CO₂e for the chicken meal
402 to 2.5 kg CO₂e for the pasta meal. Food waste comprises an average of 10% of a grocery store
403 meal's emissions, compared with 2% of average meal kit emissions. This difference is
404 attributable to meal kits pre-portioning ingredients, leaving fewer ingredients that are later
405 subject to household food waste rates. The median values of food waste per meal are shown in
406 absolute (kg CO₂e) and percentage terms in Figure 3 and detailed in Supporting Information 4.
407 Note that the food waste contributions in Figure 3 refer only to post-consumer wastes;
408 processing and retail losses are displayed separately.

409 Post-consumer food waste is particularly large for the pasta and salad grocery meals. Food
410 waste generated at the household comprises a much greater share of emissions for the pasta
411 and salad grocery meals than the others, at 21% and 13%, respectively, compared to 9% for the
412 salmon, 4% for the cheeseburger, and 4% for the chicken. Both of these meals are comprised
413 of a number of ingredients which must be purchased from grocery stores in larger quantities
414 than called for in the recipe studied, yielding larger quantities of unused foods than for meal kits,
415 which are then subject to household waste rates. These include kale, butternut squash, pasta,
416 farro, cheese, eggs, and mushrooms (see Supporting Information 1). For some items with a
417 long shelf life (i.e. vinegars, spices), the waste rates are extremely low and modeled at 0%,
418 whereas products such as fresh vegetables and dairy products have higher expected waste
419 rates (24%, 20% (Buzby et al., 2014)). Unused quantities of these ingredients are multiplied by
420 their corresponding consumer level food waste rates, which is based on estimates of post-
421 consumer food waste for a variety of items for American households. It is possible that the
422 home cook would not purchase every ingredient in a recipe or provide substitutions for less
423 common items, in which case the difference emissions between the grocery store and meal kit
424 recipes would be less.

425 Since the meal kit supply chain bypasses brick-and-mortar retailing, there is higher supply chain
426 truck transportation emissions (0.67 kg CO₂e/meal), and more-robust packaging for shipping the

427 meal to the consumer. Meal kits also present the means to reduce post-consumer food waste
428 through pre-portioning, but have added individual packaging for the portioned ingredients.

429 As Figure 3a indicates, packaging emissions for meal kits (including their shipping boxes)
430 exceed those for grocery store meals (including grocery store bags) for four out of five meals
431 studied, with the average increase being 0.17 kg CO₂e/meal. The exception is the chicken meal,
432 in part due to some of the grocery meal's ingredients being packaged with metal and styrofoam
433 instead of plastic. When analyzing overall contributions to total meal kit emissions, packaging
434 emissions represent a larger share of meal kit emissions for all five meals (with an average of
435 7% compared to 4% of emissions from grocery store).

436 The environmental impacts associated with the production of food packaging have found to
437 typically be less than those for food (Silvenius et al., 2011), indicating that if the addition of
438 packaging would reduce food loss and waste, it may be a net environmental benefit. However,
439 engaging with consumers and retailers in reducing food waste also presents a means through
440 which to decrease these emissions without adding emissions burdens from packaging. Retail
441 food loss could be reduced through interventions including lowering the storage temperature for
442 food (Eriksson et al., 2016), the recovery of retail food loss to provide nutrition for the
443 undernourished and/or socioeconomically disadvantaged (Giuseppe et al., 2014), and the
444 improved use of analytics to predict customer shopping behavior which could mitigate
445 overstocking. (Neff et al., 2015) find that many consumers are receptive to food waste
446 prevention efforts, and perceive themselves as wasting less food than they do: with nearly ¾ of
447 (U.S.) respondents believing they dispose of less food than the average American. Behaviors
448 leading to the creation of food waste are complex and cannot be reduced to a single variable
449 (Schanes et al., 2018); however, establishing household routines surrounding food such as
450 meal planning (including leftover reuse and planned shopping) (Stancu et al., 2016) present
451 promise in reducing post-consumer food waste generation.

452 Irrespective of the method of procurement, embodied emissions of food dominate all other
453 sources of emissions, for all meals analyzed. Emissions from food production comprise an
454 average of 59% of meal kit emissions and 47% of grocery store emissions, highlighting the
455 substantial role which agricultural production emissions play in determining overall food product
456 emissions. These emissions range from comprising 77% of the meal kit cheeseburger meal to
457 37% of the salmon meal kit's emissions, which is expected given the high emission-intensity of
458 beef production. Food production emissions are the key reason that emissions for the meal kit
459 exceed those of the grocery meal for the cheeseburger. The beets and hamburger buns
460 received in the meal kit had masses over two-and-a-half times in excess of those purchased at
461 the grocery store. These differences highlight the heterogeneity in food ingredients, and how
462 customer purchasing decisions associated with size of ingredients can affect the emissions
463 associated with a recipe. The methodological choice of a functional unit of "one prepared meal"
464 rather than "kg prepared meal" was intentional to highlight the importance of how variability in
465 masses of ingredients that meet a recipe's specifications (e.g. 2 hamburger buns) can impact an
466 analysis. Figure 4 depicts emissions contributions showing the relative differences in meal kits
467 and grocery meals if the masses of food prepared in the recipe were identical.

468 For meals comprised of emissions-intense ingredients (such as beef), whether the food is
469 supplied as a meal kit or through a grocery store effects the overall emissions total less, since
470 agricultural production comprises most of its emissions footprint. In this case, the choice of
471 protein source affects the meal's emissions to a greater degree than how it's supplied.

472 In the meal kit box, refrigeration is provided by refrigeration packs. Median emissions from meal
473 kit shipping packaging amount to approximately 3% of the average meal kit's emissions, with
474 refrigeration packs contributing the smallest quantity of emissions to this total (0.3%). Despite
475 having the largest mass of any box element, the refrigeration packs are assumed to be entirely
476 water, reflecting a water-based formulation used by the meal kits studied (Miller, S.A. (2018,
477 June 21). Personal interview.). It should be noted, however, that not all meal kits may use
478 water-based refrigerant packs, and that the use of chemical-based refrigerants would increase
479 emissions. If the refrigerant pack mass is characterized by an emissions factor for 98% water
480 and 2% ethylene glycol, it's per-meal emissions increase from 0.0004 kg CO₂e to 0.0427 kg
481 CO₂e, increasing median emissions associated with the meal kit shipping packaging by 25%,
482 but not altering overall study results. A fundamental difference in the supply chain for meal kits
483 is that they are not subject to retail refrigeration, instead receiving refrigeration from refrigeration
484 packs. Refrigeration packs present a new, non-traditional means of achieving food refrigeration
485 within the food supply chain. The emissions associated with supplying water for these packs is
486 dwarfed by the emissions of retail refrigeration, with an average of 0.37 kg CO₂e/meal.

487 Refrigeration is an essential element of a modern food supply chain and connected with notable
488 direct and indirect environmental impacts (Heard and Miller, 2016). It should be noted that the
489 relative emissions in this comparison has the potential to vary based on refrigeration pack
490 composition, and to change with improvements to grocery stores. The grocery store system
491 modeled uses an HFC refrigerant (Defra, 2008) which are being phased down resulting from the
492 Kigali Amendment to the Montreal Protocol (United Nations Environment Programme, 2016).
493 The environmental impacts of supermarket refrigeration may be reduced in the future with the
494 substitution of natural refrigerants and energy efficiency improvements.

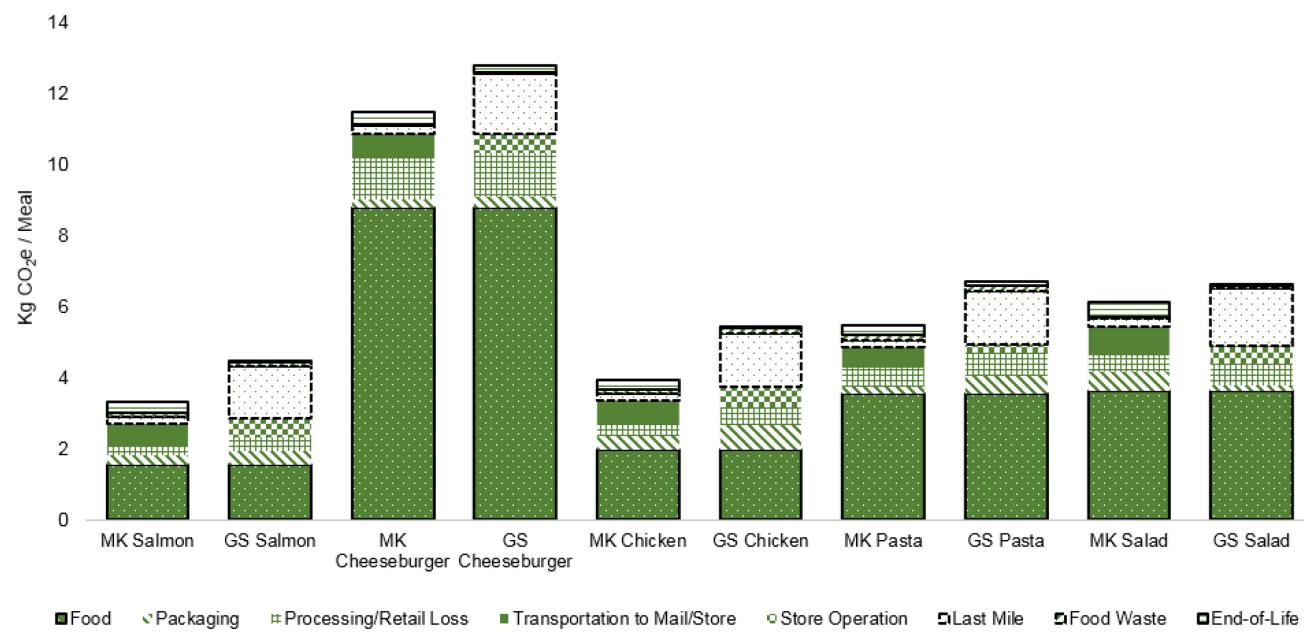
495 Last-mile emissions comprise a greater share of the grocery store meal emissions than for meal
496 kits (11% compared to 4% for an average meal). Average grocery meal last-mile emissions
497 exceed those for meal kits by 0.45 kg CO₂e/meal. Last-mile transportation for a grocery meal is
498 a round-trip made by the consumer, with variance in vehicle type, distance, and number of
499 meals transported per trip. On the other hand, the last-mile transportation emissions for meal
500 kits is delivery by a package or mail service via truck on an optimized route.

501 These findings align with those from studies of grocery home delivery services, estimating that
502 grocery delivery reduces emissions compared to traditional consumer grocery shopping. In
503 examining a system of grocery orders in Finland, (Siikavirta et al., 2003) find that depending on
504 the delivery mode examined, last-mile emissions with grocery home delivery range from 0.25 to
505 0.96 kg CO₂e/order compared with 1.17 kg CO₂e/order if all ordering customers used their own
506 cars to make shopping trips. (Wygonyk and Goodchild, 2012) estimate emissions of 0.326 kg
507 CO₂e/customer when delivering stores are randomly-assigned to customers, and 0.079 kg
508 CO₂e/customer when stores are proximity-assigned to customers. Optimizing delivery with
509 respect to customer distance yields the highest emissions savings estimated by Siikavirta, as
510 well. Wygonik & Goodchild estimate emissions of 0.595 and 0.567 kg CO₂e/customer for
511 passenger travel to obtain groceries, with and without proximity-assignment, respectively. Our
512 study estimates average meal kit last-mile emissions at 0.22 kg CO₂e/meal, compared with 0.67
513 kg CO₂e/meal for the grocery meal. These values align with Wygonik & Goodchild's per-order
514 estimates for randomly-assigned grocery delivery and consumer travel to the grocery store,
515 respectively. While lower than Siikavirta et al.'s estimates, the estimated percentage reduction
516 in last-mile emissions presented by average meal kit emissions compared to grocery meals is
517 68%, falling within the upper range of improvement calculated by Siikavirta (18-87%).

518 The end-of-life impacts for both meals are small relative to their other emissions contributions:
519 comprising an average of 6% for the meal kits' and 0.4% for the grocery meals' emissions. End-
520 of-life emissions are higher for the meal kit for all five meals, attributable to the emissions
521 associated with landfilling the packaging from the meal kit box. Recycling meal packaging
522 results in an emissions decrease for meals and meal types, by an average of 14% for meal kits
523 and 4% for grocery meals, reflecting the larger quantity of packaging associated with the meal
524 kit. An analysis of end-of-life treatment options for plastic film recycling finds recycling to present
525 substantial environmental benefits over landfilling or incineration through allowing the
526 substitution of recycled plastics for the production of plastic from virgin materials (Hou et al.,
527 2018); relevant to meal kits given their prominent use of individual plastic packaging for
528 ingredients.

529 A thesis by Fenton studies the relative environmental impacts of meal kits and grocery store
530 equivalent meals, finding that meal kits provide an average GHG reduction of 4% (and average
531 energy use reduction of 20%) (Fenton, 2017). Our study's overall findings align with those from
532 Fenton, whose analysis finds meal kits yielding lower food waste, higher packaging, and lower
533 last-mile transportation emissions (Fenton, 2017). Fenton's study measures total emissions for
534 meal kits and grocery meals as the sum of emissions from building energy use, last-mile
535 transportation, product packaging, food waste (both at retail/warehousing and post-consumer),
536 and end-of-life material management. In contrast to this study, emissions for the production of
537 food consumed in the studied meal, and meal kit transportation to the mail distribution center
538 are not included in the emissions total assessed. Additionally, Fenton's analysis differs from this
539 study in how supply chain boundaries are defined, beginning the meal kit supply chain at a post-
540 processing regional refrigerated warehouse, and the grocery store supply chain at the retail
541 store. When subtracting the average food production emissions for food consumed at the meal
542 from average meal emissions, this study's estimates for meal kit emissions are 0.3 kg CO₂e
543 lower than Fenton's, and 1.5 kg CO₂e higher for the grocery meal.

544 The environmental impacts of alternative meal structures have also been studied. (Davis and
545 Sonesson, 2008) compare the environmental impacts of a homemade and frozen "semi-
546 prepared" chicken meals, though differing in ingredients and recipe. They find the semi-
547 prepared meal to have higher GHG emissions than the homemade alternative, largely due to
548 the emissions associated with waste treatment in its supply chain. In a comparison of ready-
549 made meals and home-cooked equivalents, Rivera et al. find home-cooked meals to have lower
550 environmental impacts due to a lack of meal manufacturing, reduced refrigeration, and lower
551 waste quantities in the meal's life cycle (Rivera et al., 2016). Sonneson et al. compare the
552 environmental impacts of home-cooked, semi-prepared, and ready-to-eat meals and found the
553 three meal types to have very similar environmental impacts, concluding that the differences
554 between them were too small to draw meaningful comparisons of their relative environmental
555 impacts (Sonesson et al., 2005).


556 Additional impact categories for food, food loss, food waste, and packaging have also been
557 assessed. The acidification and land use impacts for the grocery meal exceed those for meal
558 kits for all five meals, by an average difference of 57% and 56%, respectively. Due to data
559 constraints, packaging is considered separately for eutrophication and water use (see
560 Supporting Information 5). The impacts of grocery meal food, food loss, and food waste exceed
561 those for meal kits for all five meals, by an average of 69% for eutrophication and 67% for water
562 use. The water use burdens for meal kit packaging exceed those for grocery meals for four out

563 of five meals (the exception being the pasta meal, attributable to glass, metal, and cardboard in
564 its ingredients' packaging). Eutrophication impacts for packaging are small for both meal types,
565 but with meal kit packaging eutrophication exceeding that for grocery meals for salmon, chicken,
566 and salad meals (with the grocery meal cheeseburger and pasta meals containing greater
567 amounts of cardboard, paper, or glass than for the other meals). These results broadly align
568 with trends seen in emissions: typically higher impacts from food categories for grocery meals,
569 and typically higher impacts from packaging for meal kits.

570 Figure 3 depicts the results from actual meals prepared using the masses of ingredients
571 sourced via both a meal kit service and the grocery store. This study assumes that consumers
572 cook meals according to a recipe, which often lists quantities of ingredients rather than a
573 specific mass of food, despite large potential variability in ingredient mass. Figure 3 shows how
574 the variability in the masses of ingredients used to cook the same recipe can affect overall
575 results, which are particularly evident in the cheeseburger, pasta, and salad meals. In order to
576 isolate the differences associated with the actual procurement mechanism of grocery store
577 versus meal kit, Figure 4 depicts a scenario where the mass of food procured from the grocery
578 store is assumed to be equal to the mass of food supplied by the meal kit company, controlling
579 for heterogeneity in ingredient masses.

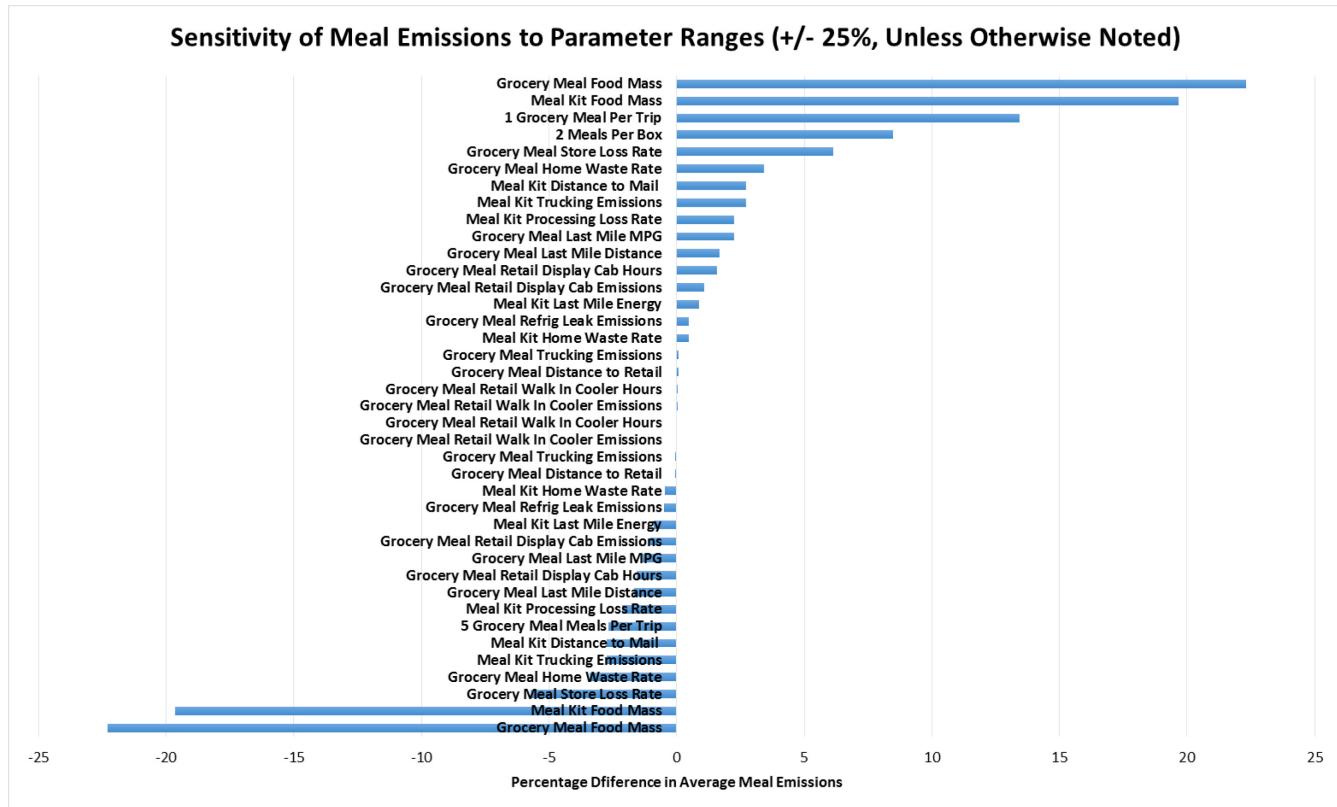
580

Same Meal Mass: Median Emissions Contributions

581

582 Figure 4: Median emissions (kg CO₂e) for contributing elements to meal emissions by meal type if grocery meal
583 ingredients have identical mass to meal kit ingredients. MK indicates meal kit and GS indicates grocery store meals.
584 Solid lines surround portions of the supply chain more-directly within a consumers' control.

585 If it is assumed that the mass of food purchased at the grocery store is identical to that delivered
586 in a meal kit, grocery meal emissions are 10% lower than the scenario using actual measured
587 values; however, emissions from grocery store meals exceed the emissions from meal kits in all
588 five meals under this scenario, exceeding meal kit emissions by an average of 1.1 kg CO₂e.


589 Grocery meal emissions remain higher than those for meal kits due to the added burden of
590 grocery store operation, higher supply chain losses (during retailing, compared with losses
591 during meal kit processing), and more-emitting last-mile transportation. With this change,
592 grocery store emissions now exceed those for meal kits for the cheeseburger meal (by 1.3 kg
593 CO₂e), since larger ingredient masses were responsible for the meal kit cheeseburger having
594 higher emissions when actual data were used. Grocery meal emissions for the pasta and salad
595 meals still exceed those for the meal kits, but by smaller quantities and with less statistical
596 certainty: with grocery store pasta meal emissions exceeding those for meal kits in 85% of
597 model and grocery store salad meal emissions exceeding the meal kit's in 63% of runs
598 (compared with 100%, for both). This alternative scenario of a standardized meal mass does not
599 alter the overall comparative results of this analysis, but does illustrate that the grocery meal
600 supply chain is a more-emissions intensive way to supply a given mass of food. Additionally,
601 these results reveal the notable extent to which grocery meal emissions can be mitigated by
602 reducing over-purchasing.

603

604 **Sensitivity Analysis**

605 In addition to the Monte Carlo analysis that provided a range of potential parameter results, a
606 one-at-a-time perturbation helps determine the extent to which emissions for both meal types
607 are sensitive to their supply chain parameters. Each parameter in the model is fixed at its
608 median value, excepting the parameter of interest, which is individually fixed at a value 25%
609 larger or smaller than its median (or in a few cases, as noted below, at plausible extreme
610 values). Results from this analysis are displayed in Figure 5. Additional sensitivity analysis was
611 conducted by examining changes to some elements of the materials modeled, supply chain
612 scenarios, and additional assumptions.

613

614

615 Figure 5: Percentage difference between emissions (kg CO₂e) for an average meal kit or grocery store meal
 616 calculated when each parameter of interest is fixed to 25% greater or less than its median value (or as otherwise
 617 noted) and other parameters held at their median values.

618 Proportioning ingredients for meals, and the quantities of food losses and waste are connected
 619 with the most-substantial emissions increases or savings. The largest emissions changes in this
 620 sensitivity analysis result from a 25% increase or decrease in food mass for both grocery meals
 621 and meal kits (22% and 20% changes, respectively). Some consumers may be more diligent in
 622 consuming leftovers than others. Grocery meals are sensitive to loss and waste rates for food,
 623 with a retail loss rate 25% higher or lower than the median value resulting in a 6% change in
 624 average meal emissions, and a 25% change in the home waste rate corresponding with a 3%
 625 change. The emissions for both meal types are also sensitive to changes in transportation
 626 parameters, as reflected graphically.

627 If dried foods, which are less-sensitive to spoilage (beans and breadcrumbs in the chicken meal,
 628 pasta in the pasta meal, and farro and dried mushrooms in salad meal), are not subject to a
 629 waste rate, the emissions for these three meals decrease by an average of 0.3% and 2% for the
 630 meal kit and grocery meals, respectively.

631 Substituting polylactide (a bioplastic) for all plastics does not change average meal emissions,
 632 increasing packaging emissions by an average of 0.4 kg CO₂e through increased production
 633 emissions, but also decreasing end-of-life emissions by an average of 0.4 kg CO₂e. Bioplastics
 634 are still emerging and developing, with a review of life cycle assessments including polylactide
 635 noting a wide range of uncertainty associated with overall greenhouse gas emissions
 636 associated with these plastics (Hottle et al., 2013).

637 **Meal Kits and the Future of Food**

638 The results of this analysis indicate that meals supplied from a grocery store tend to have higher
639 life cycle environmental impacts than meal kits, despite popular perceptions of meal kits having
640 worse environmental impacts.

641 Grocery meal emissions exceed those for meal kits in part due to differences in food loss and
642 waste. Pre-portioning ingredients for individual meals helps ensure minimal post-consumer food
643 waste, whereas purchasing ingredients in larger quantities than those called for in the recipes
644 increases the probability of food waste. Additionally, brick-and-mortar grocery retailing practices
645 resulting in food loss are connected to elements of this business model including changes in
646 consumer volume and the incentive to sell visually-appealing food. Food loss and waste carries
647 a substantial environmental burden (FAO Natural Resources and Management Department,
648 2013; Gustavsson et al., 2011), reflecting the environmental-intensity of food production and
649 supply up until the point of loss.

650 An important consideration for potential food waste reduction is the subscription model for meal
651 kits and grocery e-commerce. In an modeling analysis of online grocery retailing with home
652 delivery where consumers either pay per order, or with a one-time subscription fee, it was found
653 that the subscription model incentivized smaller and more-frequent grocery orders, reducing
654 food waste (Belavina et al., 2017). The authors report that the reduction in food waste emissions
655 is larger than emissions added through increased delivery. Additionally, if a meal kit subscription
656 replaces a consumers' grocery store trips, the potential for impulse purchases which may result
657 in food waste is decreased (Graham-Rowe et al., 2014).

658 One consideration not in the scope of this study is the environmental burdens of leftover
659 storage, with a comparison of glass and plastic reusable food containers finding the use phase
660 (consisting of washing containers) to be the hot spot for all environmental impacts (Gallego-
661 Schmid et al., 2018). This finding would indicate that increased instances of meals generating
662 leftovers would be associated with greater use of these containers, which would add an
663 additional environmental burden connected with meals which aren't well-portioned for the
664 consumer.

665 Systems of packaging for distribution in the food supply chain are examined in an integrated
666 framework by (Accorsi et al., 2014) who find a system using reusable plastic containers
667 producing fewer GHG emissions than single-use plastic crates. Multi-use plastic packaging
668 systems decrease the environmental burdens of manufacturing, but the reusable plastic
669 containers system emissions are found to be sensitive to transportation. The transportation
670 system was also found to be an important determinant of the environmental impact of these
671 containers by (Levi et al., 2011) who also note that a lower ratio of packaging weight with
672 respect to the transported product's weight reduces impacts. It should be noted, however, that
673 cardboard and wooden single-use containers are found to have lower emissions than plastic
674 single-use containers (Accorsi et al., 2014), and a cardboard container is found to have lower
675 lifecycle GHG emissions than a reusable plastic container independently of size (Levi et al.,
676 2011).

677 It is also important to note that the largest emissions impacts for both meal kits and grocery
678 store meals is from the production of food, highlighting the necessity of considering the impacts
679 of agricultural production when examining the greenhouse gas emissions associated with
680 meals.

681 For the grocery store meal supply chain, a clear opportunity through which GHG emissions-
682 intensity could be reduced is by improving last-mile transportation. Possible means of
683 decreasing these emissions include grocery home-delivery (Brown and Guiffrida, 2014;
684 Wygonik and Goodchild, 2012), increased use of public transportation (Wiese et al., 2012), and
685 public policy to increase population density, a factor connected to last-mile travel distances
686 (Matthews et al., 2002). Additionally, the transition to low-GWP refrigerants (US Environmental
687 Protection Agency, 2016) and energy efficiency improvements (Leach et al., 2009) may
688 decrease the environmental burdens of grocery store operation.

689 The structure of last-mile delivery may change notably in the coming years from the use of
690 drone delivery. An analysis of life cycle greenhouse gas emissions finds that home-delivery by
691 small drones could produce fewer emissions than ground-based delivery (Stolaroff et al., 2018).
692 Whether these savings would be realized for meal kit or grocery delivery, however, is an open
693 question, with both feasibly requiring the use of larger drones, whose life cycle emissions may
694 exceed those from delivery by a diesel-powered truck (Stolaroff et al., 2018).

695 The relative environmental impacts of meal kits have implications for sustainable development,
696 as well. Lu and Reardon extend an economic modeling framework analyzing competition
697 between supermarket and traditional food retailing in the developing world to also assess
698 competition between supermarkets and e-commerce in the context of retail transition (Lu and
699 Reardon, 2018). Meal kits present the potential to provide access to non-seasonal or non-
700 regional foods, which could increase dietary diversity and reduce variability in food availability.
701 However, these shifts could also increase supply chain distances that could offset these
702 benefits. The pre-portioning aspect of meal kits may also provide the ability to mitigate potential
703 increases in post-consumer food waste occurring with development.

704 The way consumers purchase and receive food is undergoing substantial transformation, and
705 meal kits are likely to be part of it in some way. This analysis indicates that meal kits may offer
706 some improvements over grocery store meals, largely due to reduced food loss and waste
707 throughout the supply chain, and a direct-to-consumer supply chain structure. In order to
708 minimize overall impacts of the food system, there is a need to continue to reduce food loss and
709 waste, while also creating advances in transportation logistics to reduce last-mile emissions and
710 packaging to reduce material use.

711

712 **Acknowledgments**

713 The authors thank Alison Grantham and Hannah Koski from Blue Apron, LLC for their input and
714 review of major assumptions. Blue Apron, LLC has not financially contributed to this project nor
715 are there any conflicts of interest to declare.

716

717 **References**

718 Belavina, E., Girotra, K., Kabra, A., 2017. Online Grocery Retail: Revenue Models and
719 Environmental Impact. *Manage. Sci.* 63, 1781–1799. doi:10.2139/ssrn.2520529

720 Bjorklund, A.E., 2002. Survey of Approaches to Improve Reliability in LCA. *Int. J. Life Cycle
721 Assess.* 7, 64–72.

722 Brown, J.R., Guiffrida, A.L., 2014. Carbon emissions comparison of last mile delivery versus
723 customer pickup. *Int. J. Logist. Res. Appl.* 17, 503–521.
724 doi:10.1080/13675567.2014.907397

725 Butler, K., 2017. The Truth About Meal-Kit Freezer Packs [WWW Document]. Mother Jones.
726 URL <https://www.motherjones.com/environment/2017/06/meal-kit-freezer-packs-blue-apron-hello-fresh/> (accessed 2.8.18).

728 Buzby, J.C., Farah-Wells, H., Hyman, J., 2014. The Estimated Amount, Value, and Calories of
729 Postharvest Food Losses at the Retail and Consumer Levels in the United States,
730 Economic Information Bulletin. doi:10.2139/ssrn.2501659

731 Buzby, J.C., Hyman, J., 2012. Total and per capita value of food loss in the United States. *Food
732 Policy* 37, 561–570. doi:10.1016/j.foodpol.2013.04.003

733 Corrado, S., Ardente, F., Sala, S., Saouter, E., 2017. Modelling of food loss within life cycle
734 assessment: From current practice towards a systematisation. *J. Clean. Prod.* 140, 847–
735 859. doi:10.1016/j.jclepro.2016.06.050

736 Davis, J., Sonesson, U., 2008. Life cycle assessment of integrated food chains - A Swedish
737 case study of two chicken meals. *Int. J. Life Cycle Assess.* 13, 574–584.
738 doi:10.1007/s11367-008-0031-y

739 Defra, 2008. Greenhouse Gas Impacts of Food Retailing (No. Defra Project code FO405).

740 Eriksson, M., Strid, I., Hansson, P.A., 2016. Food waste reduction in supermarkets - Net costs
741 and benefits of reduced storage temperature. *Resour. Conserv. Recycl.* 107, 73–81.
742 doi:10.1016/j.resconrec.2015.11.022

743 FAO Natural Resources and Management Department, 2013. Food Wastage Footprint Impacts
744 on natural resources: Technical Report (No. AR429).

745 Fenton, K., 2017. Unpacking the Sustainability of Meal Kit Delivery: A Comparative Analysis of
746 Energy Use, Carbon Emissions, and Related Costs for Meal Kit Services and Grocery
747 Stores. The University of Texas at Austin.

748 Gallego-Schmid, A., Mendoza, J.M.F., Azapagic, A., 2018. Science of the Total Environment
749 Improving the environmental sustainability of reusable food containers in Europe. *Sci. Total
750 Environ.* 628–629, 979–989. doi:10.1016/j.scitotenv.2018.02.128

751 Giuseppe, A., Mario, E., Cinzia, M., 2014. Economic benefits from food recovery at the retail
752 stage : An application to Italian food chains. *Waste Manag.* 34, 1306–1316.
753 doi:10.1016/j.wasman.2014.02.018

754 Graham-Rowe, E., Jessop, D.C., Sparks, P., 2014. Identifying motivations and barriers to
755 minimising household food waste. *Resour. Conserv. Recycl.* 84, 15–23.
756 doi:10.1016/j.resconrec.2013.12.005

757 Gunders, D., 2012. Wasted: How America is losing up to 40 percent of its food from farm to fork
758 to landfill, NRDC Issue Paper. doi:12-06-B

759 Gustavsson, J., Cederberg, C., Sonesson, U., 2011. Global Food Losses and Food Waste:
760 Extent, Causes, and Prevention.

761 Heard, B.R., Miller, S.A., 2016. Critical research neeeded to examine the environmental impacts
762 of expanded refrigeration on the food system. *Environ. Sci. Technol.* 50, 12050–12071.

763 doi:10.1021/acs.est.6b02740

764 Heller, M.C., Selke, S.E.M., Keoleian, G.A., 2018. Mapping the Influence of Food Waste in Food
765 Packaging Environmental Performance Assessments. *J. Ind. Ecol.* 00, 1–16.
766 doi:10.1111/jiec.12743

767 Hottle, T.A., Bilec, M.M., Landis, A.E., 2013. Sustainability assessments of bio-based polymers.
768 *Polym. Degrad. Stab.* 98, 1898–1907.

769 Hou, P., Xu, Y., Taiebat, M., Lastoskie, C., Miller, S.A., 2018. Life cycle assessment of end-of-
770 life treatments for plastic film waste. *J. Clean. Prod.* 201, 1052–1060.
771 doi:10.1016/j.jclepro.2018.07.278

772 Leach, M., Hale, E., Hirsch, A., Torcellini, P., 2009. Grocery Store 50% Energy Savings
773 Technical Support Document.

774 Lipton, J., Shaw, W.D., Holmes, J., Patterson, A., 1995. Short Communication: Selecting Input
775 Distributions for Use in Monte Carlo Simulations. *Regul. Toxicol. Pharmacol.* 21, 192–198.

776 Lloyd, S.M., Ries, R., 2007. Characterizing, Propagating, and Analyzing Uncertainty in Life-
777 Cycle Assessment: A Survey of Quantitative Approaches. *J. Ind. Ecol.* 11, 161–179.

778 Lu, L., Reardon, T., 2018. An Economic Model of the Evolution of Food Retail and Supply
779 Chains from Traditional Shops to Supermarkets to E-Commerce. *Am. J. Agric. Econ.* 0, 1–
780 16. doi:10.1093/ajae/aay056

781 Marker Jr, J.T., Goulias, K., 2007. Framework for the Analysis of Grocery Teleshopping (No. 0–
782 566), *Transportation Research Record*. doi:10.3141/1725-01

783 Marsh, K., Bugusu, B., 2007. Food packaging — Roles, Materials, and Environmental Issues. *J.*
784 *Food Sci.* 72. doi:10.1111/j.1750-3841.2007.00301.x

785 Matthews, H.S., Williams, E., Tagami, T., Hendrickson, C.T., 2002. Energy implications of online
786 book retailing in the United States and Japan. *Environ. Impact Assess. Rev.* 22, 493–507.
787 doi:10.1016/S0195-9255(02)00024-0

788 Miller, S.A., Keoleian, G.A., 2015. Framework for Analyzing Transformative Technologies in Life
789 Cycle Assessment. *Environ. Sci. Technol.* 49, 3067–3075. doi:10.1021/es505217a

790 Neff, R.A., Spiker, M.L., Truant, P.L., 2015. Wasted Food: U.S. Consumers' Reported
791 Awareness, Attitudes, and Behaviors. *PLoS One* 1–16. doi:10.1371/journal.pone.0127881

792 Nemecek, T., Jungbluth, N., i Canals, L.M., Schenck, R., 2016. Environmental impacts of food
793 consumption and nutrition: where are we and what is next? *Int. J. Life Cycle Assess.* 21,
794 607–620. doi:10.1007/s11367-016-1071-3

795 Niles, M.T., Ahuja, R., Barker, T., Esquivel, J., Guterman, S., Heller, M.C., Mango, N., Portner,
796 D., Raimond, R., Tirado, C., Vermeulen, S., 2018. Climate change mitigation beyond
797 agriculture : a review of food system opportunities and implications. *Renew. Agric. Food*
798 *Syst.* in press, 1–12. doi:10.1017/S1742170518000029

799 Pan, S., Giannikas, V., Han, Y., Gover-Silva, E., Qiao, B., 2017. Using customer-related data to
800 enhance e-grocery home delivery. *Ind. Manag. Data Syst.* 117, 1917–1933.
801 doi:10.1108/IMDS-10-2016-0432

802 Pelletier, N., 2015. Life Cycle Thinking, Measurement and Management for Food System
803 Sustainability. *Environ. Sci. Technol.* 49, 7515–7519. doi:10.1021/acs.est.5b00441

804 Punakivi, M., Yrjölä, H., Holmström, J., 2001. Solving the last mile issue: reception box or
805 delivery box? *Int. J. Phys. Distrib. Logist. Manag.* 31, 427–439.
806 doi:10.1108/09600030110399423

807 Rivera, X.C.S., Orias, N.E., Azapagic, A., 2016. Life cycle costs and environmental impacts of
808 production and consumption of ready and home-made meals. *J. Clean. Prod.* 112, 214–
809 228. doi:10.1016/j.jclepro.2015.07.111

810 Schanes, K., Dobernig, K., Burcu, G., 2018. Food waste matters - A systematic review of
811 household food waste practices and their policy implications. *J. Clean. Prod.* 182, 978–991.
812 doi:10.1016/j.jclepro.2018.02.030

813 Schaubroeck, T., Ceuppens, S., Duc, A., Benetto, E., Meester, S. De, Lachat, C., Uyttendaele,
814 M., 2018. A pragmatic framework to score and inform about the environmental
815 sustainability and nutritional profile of canteen meals , a case study on a university
816 canteen. *J. Clean. Prod.* 187, 672–686. doi:10.1016/j.jclepro.2018.03.265

817 Siikavirta, H., Punakivi, M., Ka, M., Linnanen, L., 2003. Effects of E-Commerce on Greenhouse
818 Gas Emissions A Case Study of Grocery Home Delivery. *J. Ind. Ecol.* 6, 83–97.
819 doi:10.1162/108819802763471807

820 Silvenius, F., Katajajuuri, J., Grönman, K., 2011. Role of Packaging in LCA of Food Products, in:
821 Finkbeiner, M. (Ed.), *Towards Life Cycle Sustainability Management*. Springer, pp. 359–
822 370. doi:10.1007/978-94-007-1899-9

823 Sonesson, U., Mattsson, B., Nybrant, T., Ohlsson, T., 2005. Industrial processing versus home
824 cooking: an environmental comparison between three ways to prepare a meal. *Ambio* 34,
825 414–421. doi:10.1579/0044-7447-34.4.414

826 Stancu, V., Haugaard, P., Lähteenmäki, L., 2016. Determinants of consumer food waste
827 behaviour: Two routes to food waste. *Appetite* 96, 7–17. doi:10.1016/j.appet.2015.08.025

828 Stein, R., 2017. Meal kits have a packaging problem [WWW Document]. WIRED. URL
829 <https://www.wired.com/story/meal-kits-too-much-packaging/> (accessed 10.9.18).

830 Stolaroff, J.K., Samaras, C., O'Neill, E.R., Lubers, A., Mitchell, A.S., Ceperley, D., 2018. Energy
831 use and life cycle greenhouse gas emissions of drones for commercial package delivery.
832 *Nat. Commun.* 9, 1–13. doi:10.1038/s41467-017-02411-5

833 The Nielsen Company, 2018. Meal Kit Mania: Innovation For Foodies [WWW Document]. URL
834 <http://www.nielsen.com/us/en/insights/news/2018/meal-kit-mania-innovation-for-foodies.print.html>

836 Turner, D.A., Williams, I.D., Kemp, S., 2015. Greenhouse gas emission factors for recycling of
837 source-segregated waste materials. *Resour. Conserv. Recycl.* 105, 186–197.
838 doi:10.1016/j.resconrec.2015.10.026

839 U.S. Department of Energy, 2018. Fuel Economy [WWW Document]. Fuel Econ. Data. URL
840 <https://www.fueleconomy.gov/>

841 United Nations Environment Programme, 2016. The Kigali Amendment to the Montreal
842 Protocol: HFC Phase-down, 28th Meeting of the Parties to the Montreal Protocol, 10-14
843 October, 2016, Kigali, Rwanda.

844 US Environmental Protection Agency, 2016. Transitioning to Low-GWP Alternatives in
845 Commercial Refrigeration.

846 USDA Economic Research Service, 2018. FoodAPS National Household Food Acquisition and
847 Purchase Survey [WWW Document]. FoodAPS Natl. Househ. Food Acquis. Purch. Surv.
848 URL <https://www.ers.usda.gov/data-products/foodaps-national-household-food-acquisition-and-purchase-survey.aspx>

850 Venkat, K., 2011. The Climate Change and Economic Impacts of Food Waste in the United
851 States. *Int. J. Food Syst. Dyn.* 2, 431–446.

852 Vermeulen, S.J., Campbell, B.M., Ingram, J.S.I., 2012. Climate change and food systems.
853 *Annu. Rev. Environ. Resour.* 37, 195–222. doi:10.1146/annurev-environ-020411-130608

854 Weber, C.L., Koomey, J.G., Matthews, H.S., 2010. The energy and climate change implications
855 of different music delivery methods. *J. Ind. Ecol.* 14, 754–769. doi:10.1111/j.1530-
856 9290.2010.00269.x

857 Wiese, A., Toporowski, W., Zielke, S., 2012. Transport-related CO₂ effects of online and brick-
858 and-mortar shopping: A comparison and sensitivity analysis of clothing retailing. *Transp.*
859 *Res. Part D Transp. Environ.* 17, 473–477. doi:10.1016/j.trd.2012.05.007

860 Wilson, R., Steingoltz, M., Craigwell-Graham, J., 2017. Why a Shakeout in the Meal Kit Industry
861 Is Likely.

862 Wygonik, E., Goodchild, A., 2012. Evaluating the Efficacy of Shared-use Vehicles for Reducing
863 Greenhouse Gas Emissions : A U .S. Case Study of Grocery Delivery. *J. Transp. Res.*
864 *Forum* 51, 111–126. doi:10.5399/OSU/JTRF.51.2.2926

865 Yang, X., Strauss, A.K., 2017. An approximate dynamic programming approach to attended
866 home delivery management. *Eur. J. Oper. Res.* 263, 935–945.
867 doi:10.1016/j.ejor.2017.06.034

868 Yrjölä, H., 2001. Physical distribution considerations for electronic grocery shopping. *Int. J.*
869 *Phys. Distrib. Logist. Manag.* 31, 746–761. doi:10.1108/09600030110411419

870

871