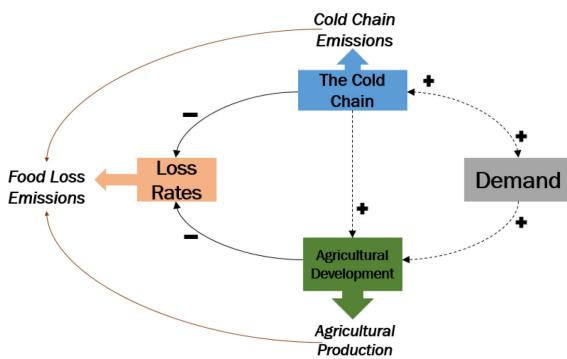


Potential Greenhouse Gas Changes from Refrigerated Supply Chain Introduction in a Developing Food System

Brent R. Heard*, Shelia A. Miller

Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, 440 Church Street, Ann Arbor, Michigan 48109, United States


*Corresponding Author: brheard@umich.edu

7 Keywords: Refrigeration, Food Waste, Food-Energy-Water Nexus, Diet Shifts, Spoilage,
8 Consumption, Sustainable Development Goals

Abstract

10 Refrigeration transforms developing food systems, changing the dynamics of production
11 and consumption. This study models the introduction of an integrated refrigerated
12 supply chain, or “cold chain,” into Sub-Saharan Africa and estimates changes in pre-
13 retail greenhouse gas (GHG) emissions if the cold chain develops similarly to North
14 America or Europe. Refrigeration presents an important and understudied trade-off: the
15 ability to reduce food losses and their associated environmental impacts, but creating
16 environmental impacts to do so. It is estimated that postharvest emissions added from
17 cold chain operation are larger than food loss emissions avoided, by 10% in the North
18 American scenario and 2% in the European scenario. The cold chain also enables
19 changes in agricultural production and diets. Connected agricultural production changes
20 decrease emissions, while dietary shifts facilitated by refrigeration may increase
21 emissions. Modeling these changes indicates the cold chain may increase emissions to
22 supply food to retail by 10% or decrease them by 15%, depending on the scenario.

Visual Abstract

25
26
27
28

29 **Cold Chain Introduction and the Food Supply Chain**

30 This study explores the inherent tradeoff of reducing food loss and the associated
31 embodied GHG emissions by deploying refrigeration, a technology that increases GHG
32 emissions through energy consumption and refrigerant emissions. The analysis first
33 examines only the direct tradeoffs between increased energy and refrigerant emissions
34 compared to the GHG savings of reduced food loss. The study then takes a broader
35 systems-level examination of the potential impacts of introduced refrigeration, including
36 anticipated impacts on the upstream supply chain and dietary shifts brought about by
37 improved access to perishable foods.

38 An integrated refrigerated supply chain, or “cold chain,” can provide benefits for
39 community health, nutrition, and food security.^{1,2} Refrigeration increases access to
40 perishable foods, extends the shelf-life of food, and has the potential to reduce food
41 losses.^{3,4} Access to refrigeration is associated with improved health outcomes, including
42 reduced risk of foodborne illness³ and improved capacity to store antibiotics and
43 vaccines.⁵ The global cold chain market was valued at \$203.14 billion USD in 2018 and
44 is expected to grow 7.6% per year, driven by increased demand in emerging markets.⁶

45 Despite these benefits, refrigeration is energy-intensive and often uses refrigerants with
46 high global warming potentials.⁷ When accounting only for direct energy use and
47 refrigerant leakage, refrigeration is responsible for approximately 1% of the world’s total
48 greenhouse gas (GHG) emissions,⁸ and can represent 3-3.5% of GHG emissions in
49 developed economies such as the UK.⁹

50 In addition to energy use and emissions, refrigeration facilitates increased consumption
51 of more-perishable foods, which tend to be more environmentally-intensive.⁹ Consumer
52 demand for food determines the agricultural production systems required to provide the
53 types and quantities of food demanded. Agricultural industrialization may not initially
54 seem to be a result of the cold chain; however, particularly for perishable goods, cold
55 storage enables more industrialized systems since it expands distribution capacity,
56 facilitating larger production.

57 Food loss and waste is an environmental, economic, and social loss.¹⁰⁻¹³ Additionally,
58 food losses that occur further along the supply chain are more carbon-intense due to
59 additional embodied energy.¹⁴ Approximately one-third of all food produced for human
60 consumption is lost or wasted,¹⁵ and reducing food losses and waste has been
61 identified as a key goal in improving food security.^{10-12,16-18} The cold chain has been
62 identified as a key means for reducing food loss and waste, along with its related GHG
63 emissions.^{4,13,19,20} Therefore, it becomes crucial to develop a better understanding of
64 whether the emissions savings from reduced food loss are offset by increased
65 emissions of the cold chain.

66 The cold chain has critical connections to the Sustainable Development Goals (SDG),
67 with target 12.3 seeking a reduction in food loss and waste along the food supply
68 chain,²² and Goal 2 seeking to improve food security and nutrition.²³

69 The cold chain is a transformative technology which influences, co-develops, and
70 interacts with a number of food system properties ranging from consumer behavior to
71 upstream production methods.⁷ The cold chain fundamentally changes markets and
72 supply chains, necessitating consideration of not only direct, but also indirect and
73 external factors associated with this technology when modeling its environmental
74 impacts.^{7,24} Parfitt et al. characterize the level of postharvest infrastructure and supply
75 chain technology as it directly relates to the overall development of a country, explicitly
76 noting the presence of the cold chain as a hallmark of industrialized countries with
77 advanced food system infrastructure.²¹ Garnett describes cold chain technologies as
78 ubiquitous for a modern food system, embedded in every stage of a product's life
79 cycle.⁹ It has also been noted that supply chains for several goods are now based on
80 the ability to supply chilled or frozen products.²⁵ As such, cold chain introduction is
81 fundamental to food system development.

82 **Study Overview**

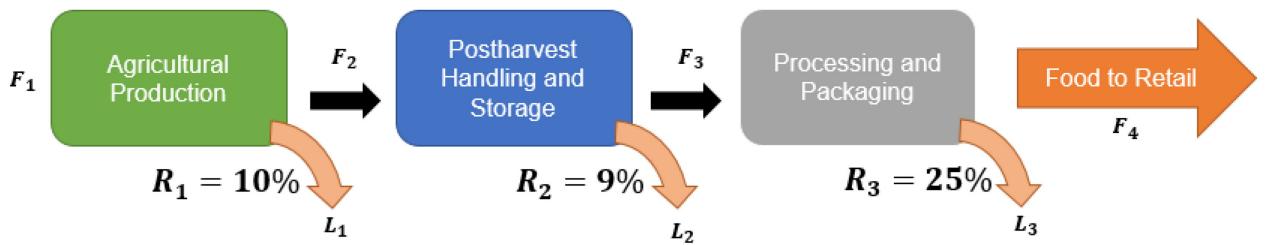
83 This study examines the extent to which the cold chain may increase or decrease net
84 GHG emissions when introduced into a developing food system.

85 Academic study of the cold chain has been limited and fragmented, with few
86 connections between the technical research on refrigeration technologies and the
87 broader food systems literature, presenting notable research gaps.⁷ James and James
88 present a valuable analysis of the cold chain's relationship to climate change, , detailing
89 mechanisms through which these emissions could be reduced, but warning of potential
90 emissions increases should a rise in ambient temperatures from climate change
91 occur.²⁶ Garnett discusses refrigeration from a food systems perspective in a
92 comprehensive working paper, summarizing the literature on the environmental impacts
93 of refrigeration systems, and also discussing how refrigeration may prompt dietary shifts
94 and consumer behavior changes.³

95 This study first examines a fundamental trade-off of refrigeration: the ability to reduce
96 food losses which carry embodied emissions, but adding emissions to do so. The study
97 assesses whether the cold chain adds more emissions per food type supplied to retail
98 than it saves through avoided losses with its introduction. Once the direct tradeoffs are
99 evaluated, a broader system view is taken, first estimating changes in emissions
100 required to supply each food type to retail due to improved efficiencies in agricultural
101 production, then estimating potential emissions changes from dietary shifts enabled by
102 refrigeration.

103 Greenhouse gas emissions (in CO₂e) are estimated for one kg of food supplied to retail
104 for seven food categories: cereals, roots and tubers, fruits, vegetables, meat, fish and
105 seafood, and milk. Additional important impacts associated with agriculture, including
106 blue water consumption, land use change, nutrient runoff, and biodiversity effects are
107 not included due to a lack of data.

108 The food supply chain (FSC) is defined as a linear model of mass flow with five stages
109 in accordance with Gustavsson et al.,¹⁵ three of which occur upstream (prior to retail).
110 This analysis defines food loss as edible food at one stage of the FSC that is not
111 supplied to the next stage of the FSC, corresponding with common use in the
112 literature.^{15,21} The boundary of this study is the upstream, or pre-consumer, portion of
113 the FSC. Therefore, total food loss reported throughout this analysis is edible food not
114 successfully supplied to retail. The functional unit considered is 1 kg of food reflecting a
115 representative diet comprised of the seven food types studied. A visual depiction of food
116 mass in the model FSC is displayed in Figure 1.


117 The Sub-Saharan African (SSA) food system is the baseline for this model. Sub-
118 Saharan Africa is an ideal case to examine potential cold chain deployment as it has
119 some of the highest upstream loss rates for food,¹⁵ and is characterized by a lack of
120 current cold chain infrastructure. The United States was estimated to have 0.37 cubic
121 meters of refrigerated storage per capita in 2014, which may be compared to estimates
122 of 0.015 cubic meters per capita in urban areas of South Africa in 2008, and estimates
123 of 0.002 cubic meters per capita in urban areas of Ethiopia and the United Republic of
124 Tanzania, and 0.0051 cubic meters per capita in urban areas of Namibia in 2012^{27,28}
125 (see Supporting Information 1).

126 Two scenarios of cold chain introduction and food system development are considered:
127 one that substitutes North American (NA) parameters into the model, and one that
128 substitutes European (Eur.) parameters. Modeling a transition from the Sub-Saharan
129 African food system to one with North American or European properties is the closest to
130 a total (“zero-to-one”) introduction of the cold chain as can be examined with available
131 data. The results of this modeling provide insights into the direct and indirect emissions
132 effects associated with the cold chain as have currently been realized in development.

133

134

Sub-Saharan Africa

North America & Oceania

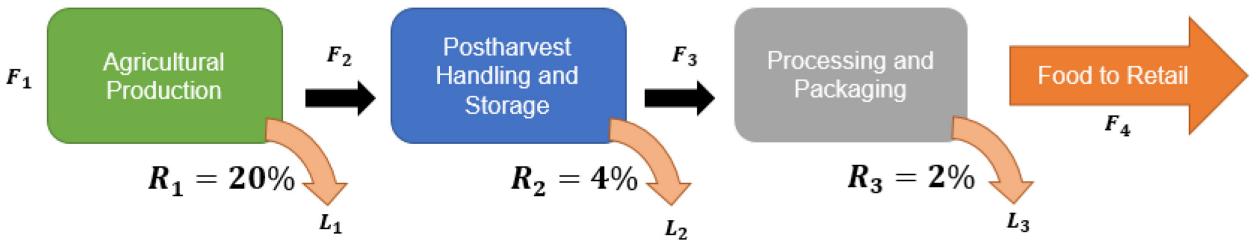


Figure 1: Visual representations of mass flows, loss rates, and losses in the upstream food supply chain.

R values are loss rates in each FSC stage for fruits and vegetables for Sub-Saharan Africa (top) and North America & Oceania (bottom) from Gustavsson et al.¹⁵ Each food type has unique food loss rates at each stage; the values for fruits and vegetables are shown here as an example. F and L values indicate food and loss flows at each FSC stage (numbered sequentially as subscripts), respectively. Further description of these terms is available in Methods.

131 As seen in the comparison of fruit and vegetable loss rates between Sub-Saharan
132 Africa and North America & Oceania in Figure 1, a greater quantity of food successfully
133 makes it to retail in the latter region, attributable to more-developed food supply chains.
134 Agricultural losses are higher in North America & Oceania due to increased grading
135 from higher quality standards set by retailers.¹⁵ These standards are an example of how
136 FSC development may influence consumer and retailer preferences, affecting the
137 efficiency and environmental impacts of food supply chains. In Sub-Saharan Africa, the
138 larger share of losses occurring after agricultural production are attributed to crop
139 deterioration from climate exposure as well as crop gluts from the seasonality of
140 production.¹⁵

141 Four parameters are integral to modeling the FSC for each system: loss rates (% of
142 food loss at FSC stages), demand (kg type consumed per capita), agricultural
143 emissions factors (kg CO₂e/kg food), and cold chain emissions factors (kg CO₂e/kg
144 food). The relationship between these parameters and specific calculations conducted
145 are detailed in the Methods section. Due to the fairly-sparse and non-standardized
146 nature of data on food and its environmental impacts, data sources were harmonized to
147 the extent possible. Harmonization choices are detailed in Supporting Information 2.
148 Monte Carlo Analysis (MCA) is conducted to create probability distributions for each
149 parameter for each of the seven food types for each region. MCA repeatedly and
150 randomly draws values from probability distributions to better-capture the variance and
151 uncertainty associated with data for each parameter within the model.²⁹ Distribution
152 choices and parameter values are detailed in Supporting Information 3, and sensitivity
153 analysis for these parameters is detailed in Supporting Information 4.

154 **Methods**

155 The changes in food supplied and the emissions associated with cold chain introduction
156 are determined by adjusting four parameters: loss rates (R_n), demand (F_n), agricultural
157 emissions factors (E_A), and cold chain emissions factors (E_c). Emissions factors
158 characterize food (and food losses) which enter a stage and are subject to its
159 emissions-contributing processes. These parameters are drawn from the Monte Carlo
160 distribution types described, with specific parameters are values described in
161 Supporting Information 3. Parameter distributions are assumed to be independent and
162 10,000 Monte Carlo simulations are run to produce this study's results.

163 There are five stages of the food supply chain corresponding to Gustavsson et al.¹⁵: 1.
164 Agricultural Production, 2. Postharvest Handling and Storage, 3. Processing and
165 Packaging, 4. Distribution/Retail, and 5. Consumption, where stages 1-3 are considered
166 to be "upstream" and 4-5 are "downstream." Values of variables which correspond to
167 one of these stages are indicated with numerical subscripts (e.g. a subscript of "2" for a
168 Postharvest Handling and Storage value).

169 Every parameter is defined for each of the seven food types studied: 1. Cereals, 2.
170 Roots and Tubers, 3. Fruits, 4. Vegetables, 5. Meat, 6. Fish and Seafood, and 7. Milk.

171 The food types each parameter corresponds to are indicated for summations with index
172 T which ranges from 1-7, for each of the food types. Parameters are also defined for the
173 regions examined as superscripts, with Sub-Saharan African values indicated as B
174 (“Baseline”) and the North American or European values are denoted as D
175 (“Developed”).

176 Between each stage of the FSC is a loss rate:

177
$$R = \{R_1, R_2, R_3, R_4\}$$

178 Where R_n represents the percentage of food lost (% of kg) between FSC_n and FSC_{n+1}
179 for each of the seven food types in each region. Loss rates calculated by Gustavsson et
180 al.¹⁵ are used to define triangular Monte Carlo distributions for this parameter for each
181 food type and region.

182 The cold chain co-develops and is integrated with related post-harvest storage and
183 transportation infrastructure and spoilage-reducing supply chain properties.^{7,9,21,30} As
184 such, some changes in loss rates observed are not directly due to refrigeration, but
185 cannot be distinguished or separated from those which are in the data.

186 The food present at each section of the supply chain prior to losses can be represented
187 similarly:

188
$$F = \{F_1, F_2, F_3, F_4, F_5\}$$

189 Where F_n represents mass (kg) of each food type at each stage of the region’s FSC. F_5
190 is defined from a truncated normal distribution (lower bound of zero) defined with “food”
191 values for each region and type from the 2013 FAOSTAT Food Balance Sheets,³¹
192 capturing the food available for human consumption in each region within a given year.

193 The food loss for each type and region in each stage (L_n , in kg) is calculated as:

194 Eqn. 1

195
$$L_n = F_n * R_n$$

196 The food available at each upstream FSC stage can be computed by:

197 Eqn. 2

198
$$F_{n-1} = \frac{F_n}{(1 - R_{n-1})}$$

199 Such that

200

201 Eqn 3.

202
$$F_5 = \{[F_1 * (1 - R_1)] * (1 - R_2)\} * (1 - R_3) * (1 - R_4)$$

203 To model per-capita demand shifts occurring with development, per-demand is
204 calculated for each region as:

205 Eqn. 4

206
$$C^D = F_5^D / P^D$$

207

208 Where

209 C^D is the per-capita food consumption for the developed region (North America or
210 Europe)

211 F_5^D is the “food” from the 2013 FAOSTAT Food Balance Sheets for the developed
212 region (North America or Europe)

213 P^D is the population for the developed region (North America or Europe)

214

215 And

216 Eqn. 5

217
$$C^B = F_5^B / P^B$$

218 Where

219 C^B is the per-capita food consumption for the baseline region (Sub-Saharan Africa)

220 F_5^B is the “food” from the 2013 FAOSTAT Food Balance Sheets for Sub-Saharan Africa

221 P^B is the population for the Sub-Saharan Africa

222

223 The developed diet is then calculated as

224 Eqn. 6

225
$$F_5^D = F_5^B * \left(\frac{C^D}{C^B} \right)$$

226

227 An important trade-off analyzed through this research is the addition of direct cold chain
228 emissions to reduce emissions from food losses in the cold chain. Eqn. 7 computes
229 GHG emissions added through cold chain operation, Eqn. 8 calculates the difference in
230 food losses (characterized into their corresponding GHG emissions from production),
231 and Eqn. 9 takes the difference between these two values.

232

233 Eqn. 7

234

$$E_{\Delta C} = E_C \left(\frac{F_4^D + L_2^D + L_3^D}{F_4^D} \right)$$

235 Where $E_{\Delta C}$ is the change in GHG emissions (kg CO₂e/kg) added to the upstream FSC
236 from cold chain operation.

237 Since the baseline models a food system without robust cold chain infrastructure, cold
238 chain emissions are assumed to be zero for the Sub-Saharan African region.

239 E_C values encompass post-farm transportation, processing, storage at regional
240 distribution centers, and transportation to retail. These cold chain emissions (kg
241 CO₂e/kg food) by food type are drawn from lognormal distributions, with parameters
242 compiled from averages by food type using studies from Porter et al.'s meta-analysis¹⁶
243 which contained sufficient post-farm gate data on emissions from the cold chain.

244 Eqn. 8

245

$$E_{\Delta A} = E_A \left(\frac{F_4^B + L_2^B + L_3^B}{F_4^B} \right) - \left(\frac{F_4^D + L_2^D + L_3^D}{F_4^D} \right)$$

246 Where $E_{\Delta A}$ is the change in GHG emissions (kg CO₂e/kg) from changes in food loss
247 with cold chain introduction.

248 The E_A values are weighted averages of agricultural production emissions (kg CO₂e/kg
249 food) by food type with a cradle-to-farm gate boundary. Values are drawn from
250 lognormal distributions with parameters defined from a meta-analysis of life cycle
251 assessments by Porter et al.¹⁶ These values include any environmental burdens prior to
252 food leaving its place of agricultural production. The comparison calculated in Eqn. 8 is
253 bounded to examine losses and food in the postharvest FSC. As such, it excludes
254 agricultural losses L_1^B .

255 Eqn. 9

256

$$E_D = E_{\Delta C} - E_{\Delta A}$$

257 E_D is the per-unit difference between the cold chain emissions added in the developed
258 case and the difference in loss emissions avoided between these cases.

259 Whether the cold chain adds a greater total quantity of emissions than it saves through
260 loss rate changes is determined by multiplying E_D for each food type by the quantity of
261 food supplied in (F_4) and summing these emissions differences. The median differences
262 are reported as a percentage of the baseline emissions by dividing these medians by
263 the median baseline emissions (for SSA).

264 Changes in emissions are also examined when incorporating the indirect effects of the
265 cold chain. This is done changing by L_1 from its baseline values to median estimated
266 developed scenario values, changing E_A from its baseline values to median developed
267 values to model changes in agricultural emissions, and changing F_5 from its baseline to
268 median developed scenario values for demand shifts. Food supplied to retail is
269 normalized to one representative kilogram, where each fraction corresponds to the
270 fraction of each food type in the diet examined. Food supply emissions are calculated in
271 Equation 10:

272 Eqn. 10

$$273 E_P = E_A \left(\frac{F_2 + L_1}{\sum_{T=1}^7 F_{4_T}} \right) + E_C \left(\frac{F_4 + L_2 + L_3}{\sum_{T=1}^7 F_{4_T}} \right)$$

274 where E_P provides emissions normalized to a functional unit of 1 kg of representative
275 food delivered to retail (kg CO₂e/representative kg) for each food type T . Respective
276 differences between the developed scenarios and baseline are reported by taking the
277 percentage difference between the median E_P values for the developed scenarios and
278 the baseline (SSA).

279 Results

280 *Trade-off Between Added Emissions and Avoided Food Losses in the Cold Chain*

281 A fundamental question for refrigerated supply chain sustainability is whether the
282 increased emissions from cold chain operation will eclipse the avoided emissions from
283 reduced food spoilage. The SSA postharvest handling and storage (R_2 , see Methods),
284 processing and packaging (R_3), and cold chain emissions (E_C) parameters are changed
285 to their North American and European values, holding all other model parameters
286 constant. The loss rates for agricultural production (R_1) remains unchanged, as
287 agricultural losses are not directly influenced by the presence of the cold chain. This
288 calculation evaluates a scenario where refrigeration is introduced into the postharvest
289 FSC, creating emissions and reducing spoilage, but all other aspects of the system
290 including agricultural production and consumption patterns are unchanged. The
291 emissions trade-off can be calculated from the difference between added cold chain
292 emissions and avoided food loss emissions (Figures 2 and 3).

293 In total, the cold chain is found to add more emissions than it saves through avoided
294 food losses. Adding refrigeration to Sub-Saharan Africa would increase net food-related
295 GHG emissions by 10% from the baseline in the North American scenario and 2% in the
296 European scenario, despite reducing postharvest food losses by 23% in both scenarios.
297 The difference in these emissions increases is due to the recorded North American cold
298 chain emissions being larger than those for Europe for 5 out of 7 food types, while
299 avoided food loss emissions are similar for both scenarios.

300

Comparison of Added Cold Chain Emissions and Avoided Food Loss Emissions

Sub-Saharan Africa → North America

	Cereals	Roots and Tubers	Fruits	Vegetables	Meat	Fish and Seafood	Milk
Added Cold Chain Emissions	▲ 0.007	▲ 0.212	▲ 0.372	▲ 0.436	▲ 1.103	▲ 1.654	▲ 0.205
Avoided Food Loss Emissions	▲ 0.037	▼ 0.040	▼ 0.156	▼ 0.557	▲ 0.030	▼ 0.645	▼ 0.323
Difference	▲ 0.044	▲ 0.172	▲ 0.216	▼ 0.121	▲ 1.133	▲ 1.009	▼ 0.118

Sub-Saharan Africa → Europe

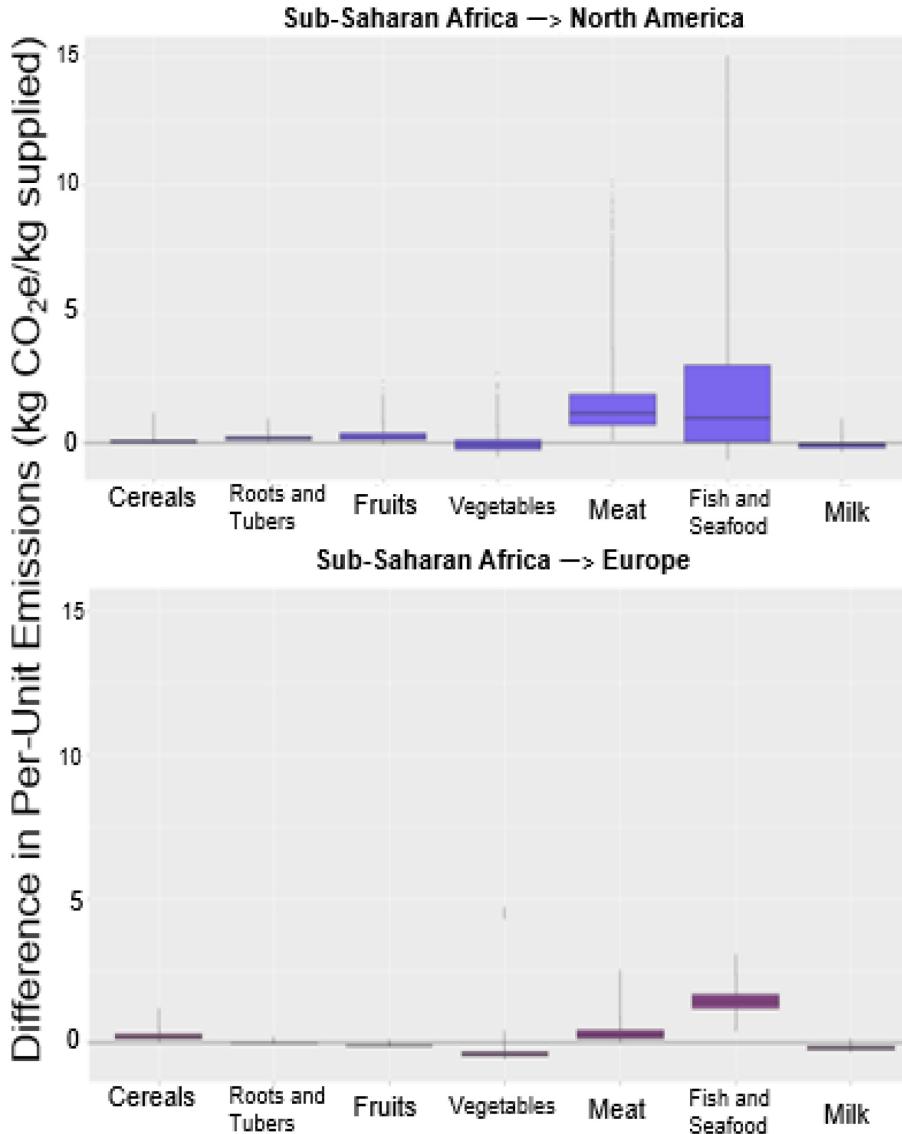
	Cereals	Roots and Tubers	Fruits	Vegetables	Meat	Fish and Seafood	Milk
Added Cold Chain Emissions	▲ 0.150	▲ 0.028	▲ 0.037	▲ 0.137	▲ 0.231	▲ 2.055	▲ 0.132
Avoided Food Loss Emissions	▲ 0.045	▼ 0.043	▼ 0.154	▼ 0.551	▲ 0.014	▼ 0.645	▼ 0.323
Difference	▲ 0.195	▼ 0.015	▼ 0.117	▼ 0.414	▲ 0.245	▲ 1.410	▼ 0.191

▲ Emissions Increase (kg CO₂e/kg)

▼ Emissions Decrease (kg CO₂e/kg)

Figure 2: Comparison of median emissions added from the cold chain introduction and emissions associated with avoided food loss. The calculated values pertain to emissions occurring during the post-harvest and pre-retail supply chain (i.e. L_1 , L_2 , and L_3 in Figure 1). The calculated difference indicates the direct tradeoff between introduced cold chain emissions and avoided food loss for each food type.

303 While total emissions added are larger than loss emissions avoided, the difference
304 between these vary by food type and scenario. Figure 2 shows the cold chain adding
305 more emissions than it avoids on a per kg basis for 5 of 7 food categories if North
306 American values are used, and for 3 of 7 food categories if European values are used.
307 The largest cold chain emissions are associated with fish and seafood, meat, and
308 vegetables in the North American scenario, and with fish and seafood, meat, and
309 cereals in the European scenario. The greatest loss emissions savings are for fish and
310 seafood, vegetables, and milk in both scenarios. This study finds mixed results for fruit
311 depending on development scenario, though an evaluation of kinnow spoilage in India
312 found GHG reductions of 16% from cold chain presence.³²


313 Emissions increases are observed from higher loss rates for cereals and meat in both
314 scenarios. For cereals, losses increase from the addition of a specific “packaging” loss
315 rate in the North American and European processing and packaging stage (R_3), which
316 is not present for Sub-Saharan Africa in Gustavsson et al.¹⁵ Meat losses increase by
317 0.3% in North American postharvest handling and storage (R_2), affecting the MCA
318 distributions for North America and Europe (see Supporting Information 3). The cause
319 for an increased postharvest meat loss rate in North America is not discussed by
320 Gustavsson et al.,¹⁵ but may be from meat supply practices present in North America
321 but not as common in Sub-Saharan Africa (such as the transportation, slaughter, and
322 portioning of meat prior to retail rather than slaughtering animals for meat at market³³ or
323 for immediate consumption). Both food loss-related emissions increases are modest in
324 size, but highlight the need to consider cold chain introduction as inseparable from
325 interconnected changes in the food supply chain.⁷

326 The distribution of differences between added cold chain emissions and avoided loss
327 emissions by food type and in total emissions from Monte Carlo model runs are
328 displayed in Figure 3. With the exceptions of meat and fish/seafood, the median
329 difference between these values is close to zero with small interquartile ranges. Meat
330 and fish/seafood both show larger emissions increases, and also possess larger
331 variances. The histograms in Figure 3c and 3d show the expected change in GHG
332 emissions due to cold chain introduction, using the weighted averages of each food type
333 in the average Sub-Saharan diet. A larger share of total emissions differences are
334 greater than zero for the North American scenario than for the European scenario. The
335 North American scenario added more cold chain emissions than loss emissions avoided
336 in 99.9% of runs, and the European scenario resulted in more emissions added than
337 were saved in 89% of runs.

338

339

Difference Between Emissions Added and Loss Emissions Avoided in the Cold Chain

Monte Carlo Results of Cold Chain Emissions Added in Excess of Loss Emissions Avoided

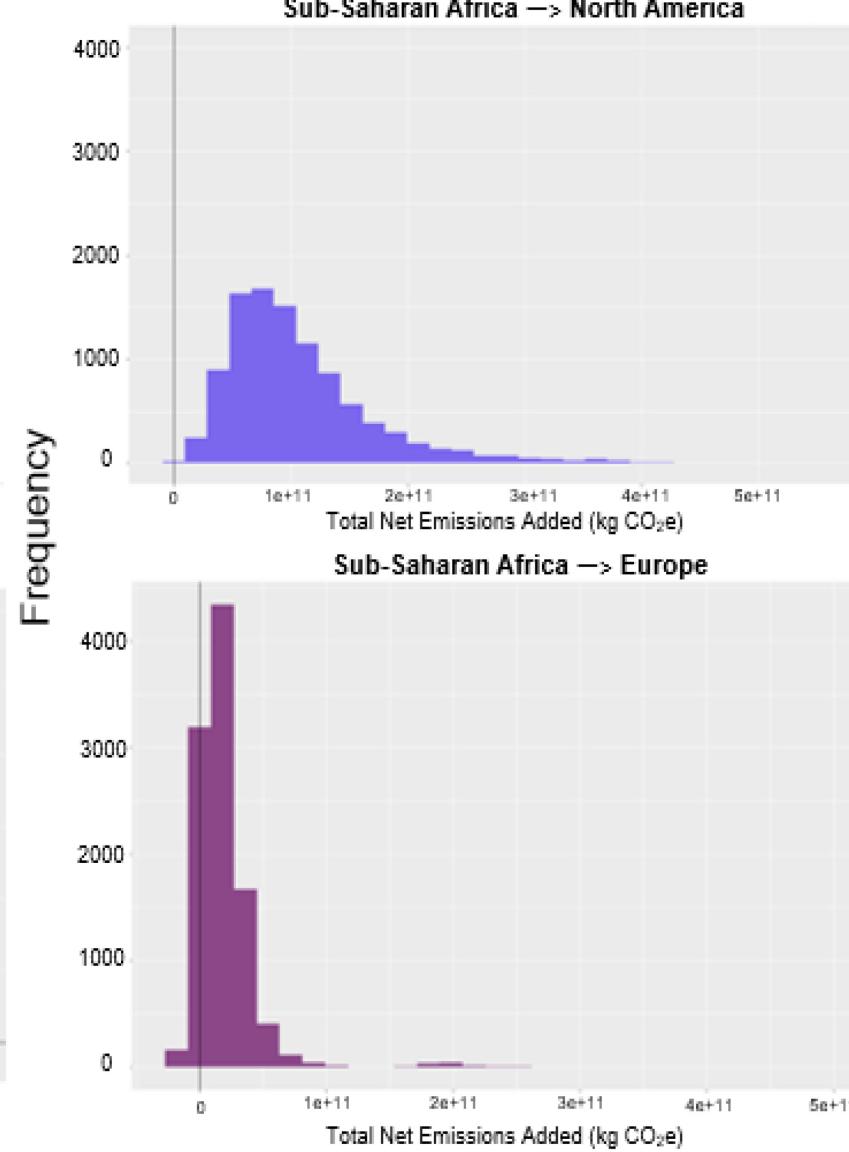
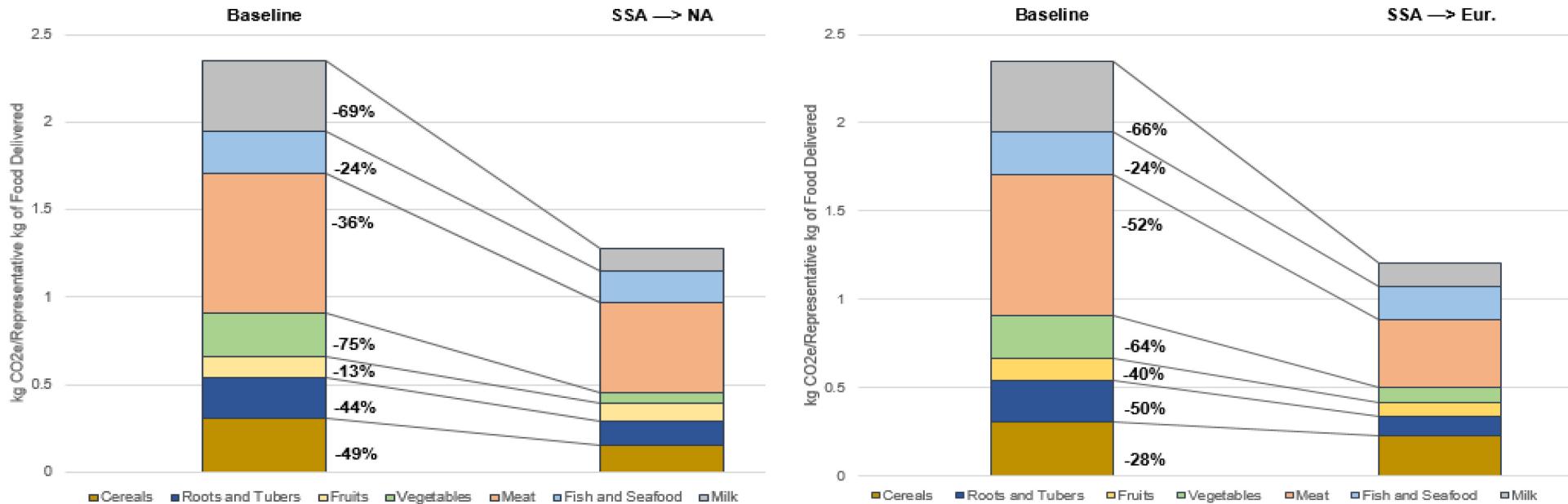


Figure 3: Boxplots and histograms of the difference between added cold chain emissions and avoided loss emissions in the postharvest cold chain for both introduction scenarios. Boxplot results are shown by kg of food delivered to retail, with boxes showing the range of values between the 25th and 75th percentiles generated from Monte Carlo Analysis, with the box's line indicating the median. The grey tails are data points generated

which fall outside of this interquartile range. Histograms show the distributions of total net emissions calculated with each model run, based on a weighted average of food types.

337 *Indirect Effects of Cold Chain Introduction on Upstream Food Supply Emissions*


338 The influence of cold chain introduction on upstream FSC emissions is now examined
339 from an expanded scope, incorporating changes to agricultural production and demand.

340 Refrigeration enables structural changes in food production systems. For example, cold
341 storage allows agriculture system industrialization, since farms can supply a greater
342 quantity of perishable crops due to lower spoilage rates.³⁴ The indirect effect of cold
343 chain introduction on agricultural emissions is modeled by changing the parameters for
344 agricultural emissions (E_A) and agricultural production loss rates (R_1) from their SSA
345 values to the North American and European values. These changes are made in
346 addition to the post-agriculture loss rates and cold chain emission changes reflected in
347 Figures 2 and 3.

348 Access to refrigeration changes food demand. The cold chain allows for the supply and
349 consumption of perishable food products in a way not possible without robust
350 refrigerated supply chains,⁷ and has been linked with shifts in diet as nations
351 develop.^{3,35} The effects of demand changes reflecting a North American or European
352 diet facilitated by the cold chain are examined. The food demand parameter (F_5) is
353 adjusted from its baseline value in addition to the values for agricultural production
354 emissions, loss rates, and cold chain emissions.

355 Figure 4 shows changes in the emissions required to supply a representative kilogram
356 of food to retail, based on a weighted average of each food type using median MCA
357 values for each parameter. Changes are displayed first with cold chain introduction and
358 changes in agricultural production emissions but with the baseline diet, then with
359 demand changes from dietary shifts.

Pre-Retail Food Supply Emissions *Without* Demand Shifts

Pre-Retail Food Supply Emissions *With* Demand Shifts

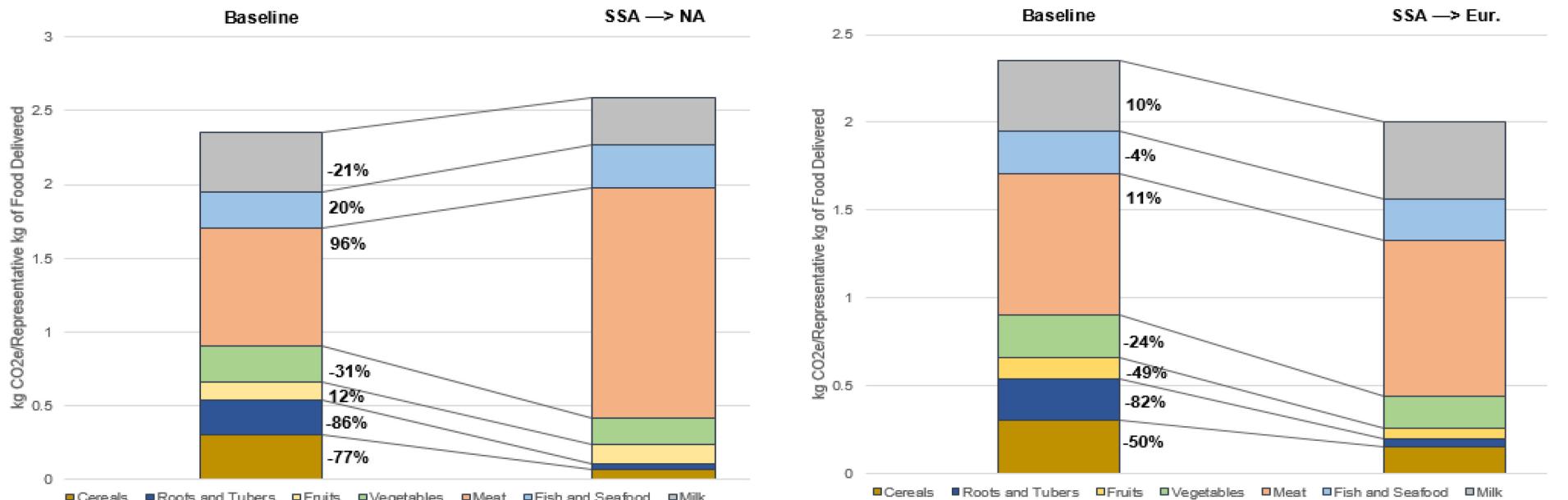


Figure 4: Changes in upstream food supply emissions (kg CO₂e) required to deliver one kg of food, based on a weighted average of each food type within a typical diet (so the composition of the kilogram corresponds to the relative amount of each food type in the diet). Percentage differences in emissions (kg CO₂e/Representative kg of food) are displayed by corresponding food type in the graph.

360 When examining the indirect effects of the cold chain on agricultural production in
361 addition to its direct effects, emissions decrease in both development scenarios: by 46%
362 for the North American scenario and 49% in the European scenario. Emissions
363 decreases are largest for vegetables, milk, and cereals in the North American scenario,
364 and for milk, vegetables, and meat in the European scenario. These results align with a
365 prior study indicating a decrease in food loss GHGs of 38% is possible from supply
366 chain improvements including cold chain introduction.¹⁴

367 Changes in agricultural production emission factors, which decrease with development,
368 put a downward pressure on emissions. It must be noted that there are trade-offs
369 associated with industrialized agricultural systems which may decrease the emissions
370 per kg of food produced, but may increase other environmental consequences including
371 water pollution, soil depletion, biodiversity loss, and also geographically concentrate
372 these effects.³⁶

373 The agricultural production loss rate for roots and tubers increases in both development
374 scenarios due to increased grading standards for produced food (see Supporting
375 Information 3).¹⁵ Fruits and vegetables see similar increases in their agricultural
376 production loss rate due to grading, but experience decreases in loss rates in the later
377 upstream stages which result in a net decrease in overall upstream loss rates.

378 Increased grading standards may be considered as a way in which consumer demand
379 influences FSC parameters, with the visual appearance of food being a key determinant
380 of food acceptance and perceived quality by consumers.^{37,38} However, since fruit and
381 vegetable exposure to refrigeration is typical in their developed supply chains,³⁹ these
382 losses are recouped through decreased postharvest spoilage with supply chain
383 development. Roots and tubers, on the other hand, experience losses due to grading
384 and are not always subject to refrigeration in developed supply chains, and in some
385 large storehouses may be cooled with ventilation from outdoor air.⁴⁰ Reductions in
386 agricultural loss rates put a downward pressure on emissions for all other food types.

387 Upstream emissions do not uniformly change when incorporating demand changes.
388 Food supply emissions increase by 10% for the North American scenario but decrease
389 by 15% for the European scenario. The difference between these outcomes is primarily
390 due to the level of meat consumption in the North American diet, where the per-capita
391 meat consumption is 37% greater than in the European scenario, corresponding to a
392 meat emissions increase of 96% over the baseline. The North American scenario also
393 sees emissions increases from fruits and fish and seafood when incorporating demand
394 shifts. The European scenario sees increases in meat and milk emissions with dietary
395 change, but still experiences a total decrease in upstream emissions.

396 The demand shifts modeled capture both substitutions between food types within a diet,
397 but also increases in total quantities consumed. In this context of Sub-Saharan Africa,
398 increases in calorie consumption would improve health outcomes for many individuals,⁴¹
399 an effect not measured in this model. Pradhan et al. characterize diet types by calorie
400 composition, and find low-calorie diets to be decreasing worldwide, with general shifts

401 towards higher-calorie observed with development.⁴² Increased availability of
402 refrigeration has been connected to increased consumption of perishable food items,³
403 which may also improve nutritional outcomes.⁴³ Pradhan et al. find low calorie diets
404 observed in the developing world to have similar GHG emissions as higher-calorie diets
405 in the developed world, attributable to differences in food production efficiency.⁴² The
406 connection between the cold chain and economic development related to shifts in food
407 demand, supply, and trade should be examined as the subject of future research.

408 The demand shifts modeled illustrate scenarios of dietary convergence. In an analysis
409 of the GHG implications of dietary convergence, Ritchie et al. find modeled diets for the
410 U.S., Australia, Canada, and Germany exceeding average per capita emissions
411 budgets for 1.5°C of global warming by 2050.⁴⁴ That being said, the dietary shifts
412 examined in this study are not pre-ordained, merely reflecting two plausible diets in a
413 developed food system.

414 Culture and development individual to any given area will be a critical determinant of
415 diet. If diets develop to correspond with South Africa's nationally recommended diet as
416 modeled by Behrens et al.,⁴⁵ emissions increase 7% or decrease 4% from the baseline,
417 depending on whether North American or European values are used for the other model
418 parameters. This finding illustrates how emissions decreases (or more-modest
419 increases) could accompany health improvements if diets develop in line with a regional
420 nationally recommended diet. Additional details regarding this diet are in Supporting
421 Information 5.

422 These results indicate the importance of incorporating a technology's influence on
423 consumer preferences into an assessment of its environmental outcomes. Despite
424 decreased agriculture emissions associated with the cold chain, refrigeration may
425 prompt shifts towards more emissions-intense foods, creating a scenario of increased
426 environmental impacts.

427 **Discussion**

428 In contextualizing the results of this analysis, it should be noted that this study focuses
429 only on GHG emissions, and does not take into account societal benefits of the cold
430 chain, which include food security, health outcomes, nutrition, and economic
431 development. The purpose of the study is to highlight the GHG tradeoffs of the
432 technology in order to identify potential areas for improvement as the cold chain
433 continues to expand globally.

434

435 As shown in Figure 3, we find that the emissions from additional energy consumption
436 and refrigerant emissions of cold chain operations will likely exceed the emissions
437 saved from reductions in food losses, if the cold chain is implemented in a way which
438 resembles its presence in North America or Europe. While the results for individual food
439 types vary, These net emissions increases are larger and more statistically certain to

440 occur in the North American development scenario than the European scenario. This
441 difference is due to the magnitude of cold chain emissions recorded for each region.

442 This study presents findings relevant to a number of stakeholders. Manufacturers of
443 refrigeration equipment can mitigate emissions increases by employing efficiency
444 improvements, the substitution of refrigerants with low Global Warming Potentials,
445 and/or working with firms along the FSC to increase efficiency. The Postharvest
446 Education Foundation has produced a valuable white paper on considerations for the
447 use of the cold chain in developing areas.⁴ Potential emissions increases from shifts to
448 high-GHG diets could be mitigated through reducing food losses and the consumption
449 of particularly emissions-intensive foods such as beef.⁴⁶ Shifting diets is a complex
450 topic, which intersects with elements of culture, equity, and nutrition. Garnett provides a
451 discussion of the best opportunities for mitigating food system GHGs, highlighting key
452 opportunities and challenges.⁴⁷

453 The Kigali Amendment to the Montreal Protocol will have African nations freeze the use
454 of hydrofluorocarbon (HFC) refrigerants in 2024.⁴⁸ These refrigerants carry high global
455 warming potential values,⁴⁹ with HFC leakage from stationary refrigeration estimated to
456 release 1740,000 tonnes of CO₂e in 2005,⁵⁰ and use in the mobile portion of the cold
457 chain comprising 7% of global HFC consumption.¹⁹ This amendment presents the
458 opportunity to reduce direct environmental impacts from refrigeration. The Montreal
459 Protocol has been a remarkably successful example of international environmental
460 governance,⁵¹ with past adherence by signatories and industry cooperation indicating
461 future successes for the Kigali Amendment. Refrigerators and cold chain technology will
462 also likely experience increases in efficiency over time, which could decrease direct
463 emissions. Dahmus notes that energy efficiency improvements in U.S. residential
464 refrigerators since the 1960s has been enough to mitigate resource consumption
465 increases driven by increased refrigerator ownership and size.⁵² These improvements
466 are attributed to efficiency mandates, further highlighting the role of governance and
467 regulation in mitigating potential emissions increases from technology.

468 As noted by Porter et al.,¹⁶ multiple entries in the literature find that production/pre-farm
469 gate emissions comprise the majority (ranging from 50%-90%) of emissions associated
470 with a food product. However, post-farm processes including refrigeration make both
471 direct and indirect emissions contributions. When incorporating indirect emissions
472 impacts (such as dietary shifts), the total emissions from post-farm processes are larger
473 than just their direct emissions. The cold chain is an integral element of an industrialized
474 food system, with introduction enabling highly integrated systems connecting
475 agricultural producers and the postharvest food supply chain.²¹ These feedbacks
476 necessitate a systems view of the FSC in order to capture the full influence and
477 environmental impacts associated with the cold chain.

478 When incorporating the cold chain's indirect effects, decreases in agricultural production
479 emissions and upstream food losses decrease total upstream emissions in supplying
480 food to retail. However, incorporating shifts in diet leads to an increase in total

481 emissions in the North American scenario and a decrease in the European scenario.
482 This difference is attributable to higher meat consumption in the North American diet.
483 The outsized role of meat-intense diets in comprising food system emissions has been
484 quantified for the United States' diet.⁵³ Increased emissions from dietary shifts are not a
485 pre-ordained conclusion. It is possible that dietary shifts enabled by increased access to
486 perishable foods could eclipse GHG additions from the cold chain, but this depends
487 largely on consumer choices. Promoting reduced-meat diets requires engaging with
488 sociocultural norms as well as psychological perceptions, and may require different
489 strategies to be effective for different groups of people.⁵⁴

490 The influence of behavioral choices and diet on food system emissions has been noted
491 in the literature.^{46,47} While anticipated shifts in diets are modeled and addressed in the
492 sustainability literature, they are infrequently integrated with more-technically oriented
493 models of the FSC. Similarly, differences in food production systems are often not
494 accounted for in studies of sustainable diets.³⁵ Without including behavioral and
495 production system differences in modeling the FSC, important influences on
496 environmental outcomes may not be captured.

497 Data on food losses and waste are highly limited and uncertain,^{21,55,56} presenting
498 distinct challenges in creating informed models. There is similarly-limited data on the
499 cold chain, particularly in the developing world.³⁰ These data quality issues affect this
500 study, which draws on limited and uncertain data for all major model parameters. While
501 there have been means proposed to better-optimize data collection from food life cycle
502 assessments (studying the environmental impacts of a product throughout its
503 lifespan),⁵⁷ different reporting formats, functional units, and system boundaries pose
504 challenges in data collection and standardization. Improving the quantity and quality of
505 estimates for food loss and waste rates, and the environmental impacts from food
506 production and supply are critical research needs.

507 Sub-Saharan Africa is not a uniform region, and contains notable heterogeneity and
508 differences within it. The aggregation of this region as a baseline case is a limitation of
509 this study which can be improved upon by future work. In addition to differences in cold
510 chain penetration, diet, and agricultural production, Sub-Saharan Africa differs from
511 North America and Europe in local ambient temperature. This will affect elements of the
512 food system ranging from agricultural production⁵⁸ to the efficiency and emissions of
513 cold chain operation.²⁶

514 Development does not occur smoothly, and is often asymmetric in ways which are
515 difficult to capture in a model. Assumptions including the matching of food demand with
516 supply and reliable provision of energy from the electricity grid may differ from an
517 observed development process. This analysis assumes no improvements in cold chain
518 technology upon introduction: however, James and James suggest that the cold chain
519 can be extended without an increase in global CO₂, or possibly even with a decrease, if
520 the most energy efficient refrigeration technologies are used.⁵⁹ The deployment of
521 renewable and alternative energy technologies such de-centralized solar power in areas

522 of Africa^{60,61} could also provide important emissions reductions within the food system
523 studied, and have been identified as a key means of reducing post-farm food system
524 emissions.⁴⁷

525 Refrigerated supply chains transform food systems. Examining the introduction of the
526 cold chain requires modeling more than the technology itself: incorporating the
527 behavioral and broader systemic changes which accompany it. This systems view
528 allows for greater insights into environmental trade-offs and changes in food system
529 sustainability.

530

531 **Acknowledgements**

532 The authors would like to thank Martin C. Heller for his advice and suggestions on data
533 harmonization for the cold chain emissions factors.

534 **Supporting Information**

535 Five further-detailed descriptions of methods, nine tables of model parameters, one
536 figure displaying results of sensitivity analysis, and one figure displaying detailed results
537 from modeling the nationally recommended diet scenario.

538 **The authors declare no competing financial interests**

539

540 **References**

- 541 (1) Aung, M. M.; Chang, Y. S. Temperature Management for the Quality Assurance
542 of a Perishable Food Supply Chain. *Food Control* **2014**, *40*, 198–207.
- 543 (2) Sahin, E.; Zied Babaï, M.; Dallery, Y.; Vaillant, R. Ensuring Supply Chain Safety
544 through Time Temperature Integrators. *Int. J. Logist. Manag.* **2007**, *18* (1), 102–
545 124.
- 546 (3) Garnett, T. *Food Refrigeration: What Is the Contribution to Greenhouse Gas*
547 *Emissions and How Might Emissions Be Reduced?*; FCRN Working Paper; April
548 2007; 2007.
- 549 (4) Kitinoja, L. Use of Cold Chains for Reducing Food Losses in Developing
550 Countries. *PEF White Pap.* **2013**, *6* (13), 1–16.
- 551 (5) Zhang, J.; Pritchard, E.; Hu, X.; Valentin, T.; Panilaitis, B.; Omenetto, F. G.;
552 Kaplan, D. L. Stabilization of Vaccines and Antibiotics in Silk and Eliminating the
553 Cold Chain. *Proc. Natl. Acad. Sci.* **2012**, *109* (30), 11981–11986.
554 <https://doi.org/10.1073/pnas.1206210109>
- 555 (6) Markets and Markets. Cold Chain Market worth 234.49 Billion USD by 2020
556 <http://www.marketsandmarkets.com/PressReleases/cold-chain.asp>.
- 557 (7) Heard, B. R.; Miller, S. A. Critical Research Needed to Examine the

Environmental Impacts of Expanded Refrigeration on the Food System. *Environ. Sci. Technol.* **2016**, *50* (22), 12050–12071.
<https://doi.org/10.1021/acs.est.6b02740>

(8) James, S. J.; James, C. The Food Cold-Chain and Climate Change. *Food Res. Int.* **2010**, *43*, 1944–1956. <https://doi.org/10.1016/j.foodres.2010.02.001>

(9) Garnett, T. *Food Refrigeration: What Is the Contribution to Greenhouse Gas Emissions and How Might Emissions Be Reduced?*; 2007.

(10) Food and Agriculture Organization of the United Nations. *Food Wastage Footprint: Impacts on Natural Resources*; 2013. <https://doi.org/ISBN 978-92-5-107752-8>

(11) Papargyropoulou, E.; Lozano, R.; K. Steinberger, J.; Wright, N.; Ujang, Z. Bin. The Food Waste Hierarchy as a Framework for the Management of Food Surplus and Food Waste. *J. Clean. Prod.* **2014**, *76*, 106–115.
<https://doi.org/10.1016/j.jclepro.2014.04.020>

(12) World Resources Institute. *Food Loss and Waste Accounting and Reporting Standard*; 2016.

(13) Food and Agriculture Organization of the United Nations. *Save Food for a Better Climate: Converting the Food Loss and Waste Challenge into Climate Action*; Rome, 2017.

(14) Food and Agriculture Organization of the United Nations. *Food Wastage Footprint & Climate Change*; 2011.

(15) Gustavsson, J.; Cederberg, C.; Sonesson, U. *Global Food Losses and Food Waste: Extent, Causes, and Prevention*; 2011.

(16) Porter, S. D.; Reay, D. S.; Higgins, P.; Bomberg, E. A Half-Century of Production-Phase Greenhouse Gas Emissions from Food Loss & Waste in the Global Food Supply Chain. *Sci. Total Environ.* **2016**, *571*, 721–729.
<https://doi.org/10.1016/j.scitotenv.2016.07.041>

(17) Hiç, C.; Pradhan, P.; Rybski, D.; Kropp, J. P. Food Surplus and Its Climate Burdens. *Environ. Sci. Technol.* **2016**, *50*, 4269–4277.
<https://doi.org/10.1021/acs.est.5b05088>

(18) United States Agency for International Development. *U.S. Government Global Food Security Strategy*; 2016.

(19) Global Food Cold Chain Council. *Assessing the Potential of the Cold Chain Sector to Reduce GHG Emissions through Food Loss and Waste Reduction*; 2015.

(20) Carrier Transicold. India Pilot Study Shows How the Cold Chain Can Help Reduce Food Loss and Carbon Emissions
<https://www.carrier.com/carrier/en/us/news/news-article/india-pilot-study-shows-how-the-cold-chain-can-help-reduce-food-loss-and-carbon-emissions>

597 s_and_carbon_emissions.aspx.

598 (21) Parfitt, J.; Barthel, M.; Macnaughton, S. Food Waste within Food Supply Chains:
599 Quantification and Potential for Change to 2050. *Philos. Trans. R. Soc. Lond. B.
600 Biol. Sci.* **2010**, 365 (1554), 3065–3081. <https://doi.org/10.1098/rstb.2010.0126>

601 (22) Food and Agriculture Organization of the United Nations. *SDG Target 12.3 on
602 Food Loss and Waste: 2016 Progress Report*; 2016.

603 (23) United Nations. UN Resolution 2020 Agenda for Sustainable Development. In
604 *Seventieth Session Agenda Items 15 and 116*; 2015.
605 <https://doi.org/10.1007/s13398-014-0173-7.2>

606 (24) Miller, S. A.; Keoleian, G. A. Framework for Analyzing Transformative
607 Technologies in Life Cycle Assessment. *Environ. Sci. Technol.* **2015**, 49, 3067–
608 3075. <https://doi.org/10.1021/es505217a>

609 (25) Zanoni, S.; Zavanella, L. Chilled or Frozen? Decision Strategies for Sustainable
610 Food Supply Chains. *Int. J. Prod. Econ.* **2012**, 140, 731–736.
611 <https://doi.org/10.1016/j.ijpe.2011.04.028>

612 (26) James, S. J.; James, C. The Food Cold-Chain and Climate Change. *Food Res.
613 Int.* **2010**, 43 (7), 1944–1956. <https://doi.org/10.1016/j.foodres.2010.02.001>

614 (27) AGRO Merchants Group. *Worldwide Cold Storage Capacity Estimated at 552 Mi
615 Cubic Meters*; 2018.

616 (28) Food and Agriculture Organization of the United Nations; International Institute of
617 Refrigeration. *Developing the Cold Chain in the Agrifood Sector in Sub-Saharan
618 Africa*; 2016.

619 (29) US EPA Technical Panel. *Guiding Principles for Monte Carlo Analysis*;
620 EPA/630/R-97/001; 1997. <https://doi.org/EPA/630/R-97/001>

621 (30) Yahia, E. M. Cold Chain Development and Challenges in the Developing World.
622 In *6th International Postharvest Symposium*; Erkan, M., Aksoy, U., Eds.; 2010; pp
623 127–132.

624 (31) Food and Agriculture Organization of the United Nations. FAOSTAT.

625 (32) Carrier & United Technologies. *Cold Chain Development for Fruits & Vegetables
626 in India: Know Cold Chain Study*; 2016.

627 (33) Grace, D.; Roesel, K. What's Eating Sub-Saharan Africa? *Al Jazeera*. January 27,
628 2015, pp 1–5.

629 (34) Reddy, G. P.; Murthy, M. R. K.; Meena, P. C. Value Chains and Retailing of Fresh
630 Vegetables and Fruits, Andhra Pradesh. *Agric. Econ. Res. Rev.* **2010**, 23 (July),
631 455–460.

632 (35) Garnett, T. Plating up Solutions. *Science (80-.)* **2016**, 353 (6305), 1202–1204.

633 (36) Horrigan, L.; Lawrence, R. S.; Walker, P. How Sustainable Agriculture Can

634 Address the Environmental and Human Health Harms of Industrial Agriculture.
635 *Environ. Health Perspect.* **2002**, 110 (5), 445–456.
636 <https://doi.org/10.1289/ehp.02110445>

637 (37) Wadhera, D.; Capaldi-Phillips, E. D. A Review of Visual Cues Associated with
638 Food on Food Acceptance and Consumption. *Eat. Behav.* **2014**, 15 (1), 132–143.
639 <https://doi.org/10.1016/j.eatbeh.2013.11.003>

640 (38) Aschemann-Witzel, J.; de Hooge, I.; Amani, P.; Bech-Larsen, T.; Oostindjer, M.
641 Consumer-Related Food Waste: Causes and Potential for Action. *Sustainability*
642 **2015**, 7 (6), 6457–6477. <https://doi.org/10.3390/su7066457>

643 (39) Paull, R. E. Effect of Temperature and Relative Humidity on Fresh Commodity
644 Quality. *Postharvest Biol. Technol.* **1999**, 15, 263–277.

645 (40) Gottschalk, K. Mathematical Modelling Of The Thermal Behaviour Of Stored
646 Potatoes & Developing Of Fuzzy Control Algorithms To Optimise The Climate In
647 Storehouses. *Acta Hortic.* **1996**, 406, 331–340.
648 <https://doi.org/10.17660/ActaHortic.1996.406.34>

649 (41) Abrahams, Z.; McHiza, Z.; Steyn, N. P. Diet and Mortality Rates in Sub-Saharan
650 Africa: Stages in the Nutrition Transition. *BMC Public Health* **2011**, 11, 801.
651 <https://doi.org/10.1186/1471-2458-11-801>

652 (42) Pradhan, P.; Reusser, D. E.; Kropp, J. P. Embodied Greenhouse Gas Emissions
653 in Diets. *PLoS One* **2013**, 8 (5), 1–8. <https://doi.org/10.1371/journal.pone.0062228>

654 (43) International Organization for the Development of Refrigeration. *5th Informatory
655 Note on Refrigeration and Food: The Role of Refrigeration in Worldwide Nutrition*;
656 Paris, 2009.

657 (44) Ritchie, H.; Reay, D. S.; Higgins, P. The Impact of Global Dietary Guidelines on
658 Climate Change. *Glob. Environ. Chang.* **2018**, 49 (February), 46–55.
659 <https://doi.org/10.1016/j.gloenvcha.2018.02.005>

660 (45) Behrens, P.; Kieft-de Jong, J. C.; Bosker, T.; Rodrigues, J. F. D.; de Koning, A.;
661 Tukker, A. Evaluating the Environmental Impacts of Dietary Recommendations.
662 *Proc. Natl. Acad. Sci.* **2017**, 114 (51), 13412–13417.
663 <https://doi.org/10.1073/pnas.1711889114>

664 (46) Heller, M. C.; Keoleian, G. A. Greenhouse Gas Emission Estimates of U.S.
665 Dietary Choices and Food Loss. *J. Ind. Ecol.* **2014**, 19 (3), 391–401.
666 <https://doi.org/10.1111/jiec.12174>

667 (47) Garnett, T. Where Are the Best Opportunities for Reducing Greenhouse Gas
668 Emissions in the Food System (Including the Food Chain)? *Food Policy* **2011**, 36,
669 S23–S32. <https://doi.org/10.1016/j.foodpol.2010.10.010>

670 (48) United Nations Environment Programme. The Kigali Amendment to the Montreal
671 protocol: another global commitment to stop climate change
672 <https://www.unenvironment.org/news-and-stories/news/kigali-amendment-montreal-protocol-another-global-commitment-stop-climate>.

674 (49) United Nations Environment Programme. *The Kigali Amendment to the Montreal*
675 *Protocol: HFC Phase-down, OzonAction Fact Sheet*; 2016.

676 (50) AEA Technology Environment. *Emissions and Projections of HFCs, PFCs and*
677 *SF6 for the UK and Constituent Countries*; 2004.

678 (51) DeSombre, E. R. The Experience of the Montreal Protocol: Particularly
679 Remarkable and Remarkably Particular. *UCLA J. Environ. Law Policy* **2000**, *19*
680 (1), 49–81.

681 (52) Dahmus, J. B. Can Efficiency Improvements Reduce Resource Consumption? *J.*
682 *Ind. Ecol.* **2014**, *18* (6), 883–897. <https://doi.org/10.1111/jiec.12110>

683 (53) Heller, M. C.; Willits-Smith, A.; Meyer, R.; Keoleian, G. A.; Rose, D. Greenhouse
684 Gas Emissions and Energy Use Associated with Production of Individual Self-
685 Selected US Diets. *Environ. Res. Lett.* **2018**, *13* (044004).
686 <https://doi.org/10.1088/1748-9326/aab0ac>

687 (54) Uta, S. S.; Schmidt, J. Reducing Meat Consumption in Developed and Transition
688 Countries to Counter Climate Change and Biodiversity Loss : A Review of
689 Influence Factors. *Reg. Environ. Chang.* **2016**. <https://doi.org/10.1007/s10113-016-1057-5>

691 (55) Reutter, B.; Lant, P. A.; Lane, J. L. The Challenge of Characterising Food Waste
692 at a National Level—An Australian Example. *Environ. Sci. Policy* **2017**, *78*
693 (September), 157–166. <https://doi.org/10.1016/j.envsci.2017.09.014>

694 (56) Xue, L.; Liu, G.; Parfitt, J.; Liu, X.; Van Herpen, E.; Stenmarck, A.; O'Connor, C.;
695 Östergren, K.; Cheng, S. Missing Food, Missing Data? A Critical Review of Global
696 Food Losses and Food Waste Data. *Environ. Sci. Technol.* **2017**, *51* (12), 6618–
697 6633. <https://doi.org/10.1021/acs.est.7b00401>

698 (57) Pernollet, F.; Coelho, C. R. V; van der Werf, H. M. G. Methods to Simplify Diet
699 and Food Life Cycle Inventories: Accuracy versus Data-Collection Resources. *J.*
700 *Clean. Prod.* **2017**, *140*, 410–420. <https://doi.org/10.1016/j.jclepro.2016.06.111>

701 (58) Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A. C.; Müller, C.; Arneth, A.; Boote,
702 K. J.; Folberth, C.; Glotter, M.; Khabarov, N.; et al. Assessing Agricultural Risks of
703 Climate Change in the 21st Century in a Global Gridded Crop Model
704 Intercomparison. *Proc. Natl. Acad. Sci.* **2014**, *111* (9), 3268–3273.
705 <https://doi.org/10.1073/pnas.1222463110>

706 (59) James, S. J.; James, C. Sustainable Cold Chain. In *Sustainable Food Processing*;
707 Tiwari Brijesh K., Norton, T., Holden, N. M., Eds.; John Wiley & Sons, Ltd, 2013;
708 pp 463–496. <https://doi.org/10.1002/9781118634301.ch19>

709 (60) Ulsrud, K.; Winther, T.; Palit, D.; Rohracher, H. Village-Level Solar Power in
710 Africa: Accelerating Access to Electricity Services through a Socio-Technical
711 Design in Kenya. *Energy Res. Soc. Sci.* **2015**, *5*, 34–44.

712 (61) Szabó, S.; Bódis, K.; Huld, T.; Moner-Girona, M. Energy Solutions in Rural Africa:
713 Mapping Electrification Costs of Distributed Solar and Diesel Generation versus

714 Grid Extension. *Environ. Res. Lett.* **2011**, *6*, 1–9. <https://doi.org/10.1088/1748-9326/6/3/034002>

716

717

718 **Acknowledgements**

719 The authors would like to thank Martin C. Heller for his advice and suggestions on data
720 harmonization for the cold chain emissions factors.

721

722 **The authors declare no competing financial interests**