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Abstract

Frequently used parallel iterative graph analytics algorithms
are computationally expensive. However, researchers have
observed that applications often require point-to-point ver-
sions of these analytics algorithms that are less demanding.
In this paper we introduce the PnP parallel framework for
iterative graph analytics that processes a stream of point-
to-point queries with each involving a single source and
destination vertex pair. The efficiency of our framework is
derived from the following two novel features: online Prun-
ing of graph exploration that eliminates propagation from
vertices that are determined to not contribute to a query’s
final solution; and dynamic direction Prediction for solv-
ing the query in either forward (from source) or backward
(from destination) direction as their costs can differ greatly.
PnP employs a two-phase algorithm where, Phase 1 briefly
traverses the graph in both directions to predict the faster
direction and enable pruning; then Phase 2 completes query
evaluation by running the algorithm for the chosen direction
till it converges. Our experiments show that PnP responds
to queries rapidly because of accurate direction selection and
effective pruning that often offsets the runtime overhead of
direction prediction. PnP substantially outperforms Quegel,
the only other point-to-point query evaluation framework.
Our experiments on multiple benchmarks and graphs show
that PnP on a single machine is 8.2× to 3116× faster than
Quegel on a cluster of four machines.
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1 Introduction

Parallel iterative frameworks are used to compute important
properties for large real-world graphs. Such frameworks
have been developed for both shared-memory platforms
(Ligra [31], Galois [26], GRACE [39], GridGraph [45], X-
Stream [30] etc.) and distributed clusters (PowerGraph [10],
KickStarter [36], CoRAL [35] etc.). Even though iterative
graph analytics algorithms are highly parallel, for large graphs
they are expensive due to their exhaustive nature (e.g., short-
est path algorithm starts from a single source and computes
shortest paths to all destination vertices).
Recently Yan et al. [41] observed that many applications

on large graphs simply require computing point-to-point

variants of heavyweight computations. As an example, when
analyzing a graph that represents online shopping history
of shoppers, a business may be interested in point-to-point
queries over pairs of certain important shoppers. Thus, given
a pair of distinct vertices (s,d) in a graph, we are interested in
computing point-to-point versions of standard computations
such as, shortest path from s to d , widest path from s to d
and number of paths from s to d . Yan et al. developed the
Quegel [41] framework to solve point-to-point queries.

Although Quegel presents a solution for evaluating point-
to-point queries, it is far from optimized. First, Quegel does
a significant level of wasteful work as it does not prune tra-
ditional one source to all destinations computation to achieve
point-to-point subcomputation. Second, it does not recog-
nize that evaluation times of point-to-point queries in back-
ward and forward directions can greatly differ. In contrast
we present PnP that addresses the above drawbacks and
delivers significant speedups over Quegel.
Quegel supports Hub2 [14] precomputation to speedup

evaluation of individual queries. However, this approach has
multiple drawbacks that limits its utility. The experimental
data reported in [41] shows that Hub2 precomputation is
expensive. Moreover, in the common scenario where graph
structure mutates, the Hub2 precomputation must be re-
peated making Quegel unsuitable for streaming (changing)
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graphs. While KickStarter’s value-dependence based trim-
ming strategies [36] can be used to accelerate Hub2 compu-
tation, the repetitive trimming of Hub2 information does not
justify separating it out as a preprocessing step for relatively-
inexpensive queries. Finally the Hub2 [14] precomputation
is specifically designed for accelerating shortest path queries
on graphs where all edge weights are the same. This limits its
use both in terms of types of queries and graphs.
In this paper we present PnP framework that avoids all

the limitations of Quegel and efficiently computes point-to-
point versions of wide range of queries on weighted and
unweighted graphs. PnP does not require any precompu-
tation thus allowing graph changes in between queries. To
quickly respond to queries PnP uses dynamic techniques for
optimizing query evaluation. In particular, it uses two general
dynamic techniques: online Pruning of graph exploration
that eliminates propagation from vertices determined to not
contribute to a query’s final solution; and dynamic direc-

tion Prediction method for choosing between solving the
query in forward (from source) or backward (from destina-
tion) direction as their costs can differ significantly based on
the graph structure and computation behavior.

We carry out an experimental study (ğ2) that shows how
query characteristics and the direction of evaluation impact
runtime. Guided by the observations, we propose PnP’s
two-phase algorithm (ğ3) that delivers fast evaluation times
across queries with differing characteristics. Phase 1 briefly
traverses the graph in both forward and backward directions
originating from source and destination vertices. By monitor-
ing progress in both directions during this phase we are able
to predict the faster direction highly accurately and compute
information that enables pruning. Phase 2 completes the
point-to-point computation by running the algorithm, with
pruning enabled, in the chosen direction to convergence.

There is prior work on graph based query languages (e.g.,
Gremlin [29]) and query support in graph databases (e.g.,
Neo4J and DEX [2, 9, 20]) that enable graph traversals and
joins via lower-level graph primitives (e.g., vertices, edges,
etc.). The strength of these systems is their versatility. They
are widely used for solving neighborhood queries and look-
ing for patterns in graphs [22, 27, 28, 38, 40, 42]. However, the
generality comes at a cost ś they are not optimized for per-
formance for iterative graph analytics whose scope extends
across the entire graph. For example, although Neo4J sup-
ports point-to-point shortest path queries, as shown in [41],
Neo4J runs out of memory for large graphs (e.g., Twitter-
TT [5] used in this paper) and although it can handle small
graphs (e.g., LiveJournal-LJ [3] used in this paper) it runs
extremely slowly taking tens of thousands of seconds in
comparison to just few seconds required by PnP.

The key contributions of this paper are as follows:

(sPr) We introduce simple Pruning based point-to-point
query evaluation in either direction. We study the impact of

query characteristics and evaluation direction on execution
time for multiple algorithms on graphs. (ğ2)
(2Ph) Guided by observations from the study of sPr al-

gorithm, we develop a two-phase algorithm that in Phase
1 quickly identifies preferable direction and basis for prun-
ing and then in Phase 2 evaluates the query in the predicted
direction with greatly enhanced pruning. (ğ3)
(PnP framework) that is easy to use. It requires user to

simply provide two functions for the computation and three
for pruning. It has been implemented as an extension of the
Ligra [31] framework. (ğ2 & ğ3)

(Evaluation) PnP responds to expensive queries rapidly
(few seconds) because direction selection is accurate and
pruning is effective. When direction is mispredicted, it is for
queries where direction has relatively small impact on per-
formance. Alsi pruning often offsets the overhead of Phase
1. Finally, PnP greatly outperforms Quegel. (ğ4)

2 Simple Pruning (sPr) Based Study of
Point-to-Point Query Characteristics

In this section we present an algorithm for computing point-
to-point queries with simple pruning (sPr) and then analyze
the runtime characteristics of the algorithm on 10,000 queries
each for four input graphs and multiple analytics problems.
This large scale study allows us to uncover runtime charac-
teristics that enable us to develop a new two-phase algorithm
that dynamically predicts and adapts execution to deliver
highly optimized performance across all types of queries.
Note that prior work has been limited in its scope ś Quegel
uses 1000 shortest path queries [41]; thus, the observations
exploited in this work eluded prior work on Quegel.
Each point-to-point query is of the form Q(s { d,G)

where G is a directed graph, s is the chosen source vertex,
and d is the chosen destination vertex. Thus, we compute the
desired propertyQ with respect to s { d (e.g., Shortest Path
from s to d , Widest Path from s to d etc.). To avoid negative-
weight cycles, edge weights are assumed to be positive. In
comparison to standard iterative algorithms, the iterative
algorithm for point-to-point query has two distinct features:
it employs pruning and it provides direction choice.
The online pruning of graph exploration is enabled by

the observation that point-to-point evaluation algorithm
only needs to achieve convergence for s { d as opposed
to all possible (destination) vertices. Pruning dynamically
eliminates wasteful computation and propagation that is
determined not to contribute to the final solution for the
query. Pruning leads to early termination relative to the
standard iterative algorithm. The pruning strategy is easily
identifiable for monotonic problems, i.e. the solution for the
property value being computed monotonically increases or
decreases through the iterations of the algorithm before
stabilizing to its final value.

In evaluating the query we have direction choice. That is,
we can either computeQ(s { d,G) in forward direction (i.e.,
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Graphs #Edges #Vertices #Queries

Twitter (TTW) [16] 1.5B 41.7M 10K

LiveJournal (LJ) [3] 69M 4.8M 10K

Twitter (TT) [5] 2.0B 52.6M 10K

PokeC (PK) [32] 31M 1.6M 10K

Table 3. Real world input graphs.

G Queries WP SP NP BFS

TTW FwdR 49.26% 44.55% 15.24% 31.07%

BwdR 13.30% 18.01% 47.32% 31.49%

FwdNR 20.41% 20.41% 20.41% 20.41%

BwdNR 17.03% 17.03% 17.03% 17.03%

LJ FwdR 10.81% 13.23% 12.84% 7.89%

BwdR 37.41% 34.99% 35.38% 40.33%

FwdNR 24.75% 24.75% 24.75% 24.75%

BwdNR 27.03% 27.03% 27.03% 27.03%

TT FwdR 41.86% 10.61% 28.86% 29.23%

BwdR 12.40% 43.65% 25.40% 25.03%

FwdNR 35.02% 35.02% 35.02% 35.02%

BwdNR 10.72% 10.72% 10.72% 10.72%

PK FwdR 3.60% 5.27% 1.65% 6.69%

BwdR 17.30% 15.63% 19.25% 14.21%

FwdNR 38.55% 38.55% 38.55% 38.55%

BwdNR 40.55% 40.55% 40.55% 40.55%

Table 4. Characteristics of 10,000 queries used in
experiments: Fwd ś Forward faster; Bwd ś Backward faster;

R ś Reachable; and NR ś Non-reachable.

not performed the algorithm takes two additional iterations
to terminate. Note that during these iterations the value for
vertex D does not change further confirming that the pro-
cessing of vertices that were pruned does not contribute to
the query solution. Table 2 illustrates backward evaluation of
the shortest path from S to D . When we compare the results
of Table 2 with that of Table 1 we observe that cost of the
two algorithms vary. In this case we find that the forward
algorithm processes fewer active vertices (and edges) and
takes fewer iterations.

Next we present results of our study. We first describe the
experimental setup below.

Experimental setup ś For this study we implemented our

framework using Ligra [31] which uses the Bulk Synchro-
nous Model [33] and provides a shared memory abstraction
for vertex algorithms which is particularly good for graph
traversal. The study is based upon four algorithms ś Short-
est Path (SP), Widest Path (WP), Number of Paths (NP), and
Breadth First Search (BFS). We use four input graphs listed
in Table 3 ś two are billion edge graphs (TTW, TT) and two
have tens of millions of edges (LJ, PK). For each input graph,
we generated 10,000 queries and used them to evaluate all
algorithms. No vertex appears more than once, either as a
source or destination, in these queries. Moreover, the vertices
chosen as sources and destinations are selected by sampling
all the vertices ordered by their degrees. All experiments

were performed on a 64 core (8 sockets, each with 8 cores)
machine with AMD Opteron 2.3 GHz processor 6376, 512
GB memory, and running CentOS Linux release 7.4.1708.
In this study, the 10,000 queries used are classified into

four distinct categories based upon combination of two prop-
erties: (Fwd vs. Bwd) queries for which forward evaluation
is faster belong to Fwd and those for which backward evalu-
ation is faster belong to Bwd; (NR vs. R) queries that reveal
that destination is non-reachable from the source belong to
NR and queries where destination is reachable from source
belong to R. Therefore, the queries on a given workload can
be divided into four categories: FwdNR, BwdNR, FwdR, and
BwdR. The distribution of the 10,000 queries based upon
faster/slower direction and reachability/non-reachability is
shown in Table 4. We observe there are a good number of
queries of all four types. Note that numbers for NR queries
are same for different benchmarks as they are mainly influ-
enced by graph structure.

Analysis of execution times ś We ran all 10,000 queries for

each input on sPr versions of all four graph algorithms
and collected their forward and backward evaluation times.
For reachable queries sPr carries out pruning once it finds
the first approximation of query solution while for non-
reachable queries pruning never takes place as query has no
result. Average execution times of all queries by category
are given in Tables 5 (Non-Reachable) and 6 (Reachable).
Figure 2 shows a representative scatter plot of the execution
times (all plots are shown in later section) ś the times of
queries in order of FwdNR FwdR, BwdR, and BwdNR from
left to write are plotted. Based upon the data we make two
key observations.

Figure 2. Forward and Backward Evaluation Times.

Observation 1 – Fwd vs. Bwd: direction is important. Pick-
ing the right direction for solving a query is important. From
Figure 2 we can easily see that for non-reachable queries
the difference in forward and backward execution times is
consistently high and the time in the faster direction is very
small; and for reachable queries the difference between for-
ward and backward evaluation times varies from very large
to very small. This observation holds across all algorithms
and all input graphs as shown by the average times in the
faster direction in Tables 5 and 6. Each table also presents
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Graph Queries WP SP NP BFS

TTW FwdNR 0.0130s 1096.52 × 0.0129s 1137.57 × 0.0268s 128.17 × 0.0058s 3.42 ×

BwdNR 0.0365s 318.25 × 0.0258s 562.79 × 0.0303s 145.08 × 0.0089s 105.18 ×

LJ FwdNR 0.0009s 484.40 × 0.0010s 875.85 × 0.0055s 40.90 × 0.00096s 79.90 ×

BwdNR 0.0009s 666.86 × 0.0013s 620.39 × 0.0071s 34.58 × 0.00123s 67.12 ×

TT FwdNR 0.0191s 772.85 × 0.1771s 88.69 × 0.0551s 124.26 × 0.0170s 65.68 ×

BwdNR 0.0282s 620.53 × 0.0154s 1560.24 × 0.0595s 117.32 × 0.0299s 44.69 ×

PK FwdNR 0.0005s 250.34 × 0.0004s 458.73 × 0.0024s 72.98 × 0.0004s 76.02 ×

BwdNR 0.0004s 478.72 × 0.0006s 263.00 × 0.0023s 73.24 × 0.0004s 75.67 ×

Table 5. (sPr on NR queries) Avg. Execution Times in Faster Direction (seconds); and Avg. Slowdown Factor in Slower Direction.

Graph Queries WP SP NP BFS

TTW FwdR 5.5598s 2.21 × 9.5778s 1.33 × 2.2778s 1.21 × 0.2546s 2.12 ×

BwdR 7.5349s 1.51 × 11.177s 1.16 × 2.4258s 1.37 × 0.4611s 1.43 ×

LJ FwdR 0.2480s 2.36 × 0.7036s 1.18 × 0.1316s 1.16 × 0.0437s 1.20 ×

BwdR 0.1645s 4.90 × 0.5869s 1.38 × 0.1205s 1.32 × 0.0355s 1.60 ×

TT FwdR 7.2006s 1.94 × 11.8350s 1.27 × 3.8697s 1.30 × 0.4501s 1.46 ×

BwdR 9.5975s 1.74 × 14.7070s 1.36 × 4.2492s 1.27 × 0.6047s 1.29 ×

PK FwdR 0.0742s 1.87 × 0.1319s 1.16 × 0.0683s 1.10 × 0.0175s 1.26 ×

BwdR 0.0481s 3.68 × 0.1125s 1.31 × 0.0607s 1.31 × 0.0125s 1.47 ×

Table 6. (sPr on R queries) Avg. Execution Times in Faster Direction (seconds); and Avg. Slowdown Factor in Slower Direction.

the factor by which the average execution time increases if
a query is solved in the slower direction as opposed to faster
direction. From Table 6 for NR queries not only is the execu-
tion in faster direction very small (tens of milliseconds), in
the slower direction it is orders of magnitude slower (around
a second). From Table 6 for reachable queries the average
execution time in faster direction is higher (several seconds
for large graphs) and the slowdown factor is lower.

Observation 2 – NR vs. R: reachability is important. Pick-
ing the right direction alone is not enough to achieve the
best performance. We need a strategy for handling both
non-reachable and reachable queries effectively. In partic-
ular, we note that FwdNR/BwdNR queries can be evalu-
ated significantly faster than FwdR/BwdR queries ś well
over two and often over three orders of magnitude faster.
For example, for SP on TTW, average times for FwdNR/B-
wdNR are 0.0129s/0.0258s while for FwdR/BwdR they are
9.5778s/11.177s. In other words, since at the start of a query
evaluation we do not know whether it is NR or R, we need
to design a strategy that quickly classifies it as NR or R and
then appropriately handles them to get fast execution times.

Next we develop a two-phase algorithm that exploits the
above observations in delivering fast evaluation of all four
types of queries.

3 PnP Two-Phase Framework
The goal of this section is to develop a general algorithm that
delivers execution times that are close to the execution times
in the faster direction for all types of queries. Based upon
the observations in the preceding section, we can set the
requirements that must be met by the point-to-point query
evaluation algorithm as follows:

• RQ1: effectively handle both non-reachable and reach-

able queries (follows from first observation);

• RQ2: identify the faster direction and use it for query

evaluation (follows from second observation); and

• RQ3: maximize the use of pruning for reachable queries

for quickly responding to each query.

In this work we develop an algorithm that by design meets
RQ1, predicts direction to meet RQ2, and embodies a signifi-
cantly enhanced pruning strategy to meet RQ3.
In general, both reachability (RQ1) and direction (RQ2)

requirements must be handled dynamically as queries con-
structed from sampling of vertices were found to fall in all
four categories (see Table 4). Clearly reachability is function
of the graph structure and thus without exploring the graph
at runtime we cannot determine whether a query is a NR
query or R query. The choice of direction matters because
the cost of forward evaluation is high if forward propagation
encounters many high outdegree vertices while backward
evaluation is high if backward propagation encounters many
high indegree vertices. We cannot simply statically look at
the graph and select the same preferred direction for all

queries as the overall characteristics of G and Ĝ are similar.
In Figure 3 we plot the in-degree and out-degree distributions
for the LiveJournal graph. As we can see, both in-degrees
and out-degrees have similar power-law distributions. Thus,
for a given query, without dynamically exploring the graph
in both directions we cannot establish a basis for selecting
the preferred direction. Finally for meeting requirement RQ3
we need to quickly find the first approximation of the query
result as soon as possible so that pruning is enabled early
and greater fraction of execution is optimized via pruning.
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Algorithm 2 Two-Phase PnP Evaluation (2Phase).

1: function 2Phase( Query ( s { d,G ) )

2: ▷ Initialization

3: VisitF (*)← VisitB (*)← False

4: FActive← Initialize ( Query ( s { d,G ) )

5: BActive← Initialize ( Query ( d { s, Ĝ ) )

6: safeApprox← Query.Initialize

7: ▷ Phase 1

8: while true do

9: ▷ Process active vertices

10: Processed← FActive ∪ BActive

11: FActive← Process ( FActive, d , G )

12: BActive← Process ( BActive, s , Ĝ )

13: ▷ Update Visit Flags of processed vertices

14: VisitF (v)← True, ∀ v ∈ FActive

15: VisitB (v)← True, ∀ v ∈ BActive

16: ▷ Case I: Non-Reachable Query

17: if FActive = ϕ ∨ BActive = ϕ then

18: return ( Not-Reachable )

19: end if

20: ▷ Case II: Reachable Query

21: for all v ∈ Processed do

22: if VisitF (v) ∧ VisitB (v) then

23: Reachable← true

24: newValue← estimateApprox(v)

25: safeApprox←

26: fapprox ( newValue, safeApprox )

27: end if

28: end for all

29: if Reachable then

30: Prediction←

31: |FActive| > |BActive|

32: ? Backward : Forward

33: break

34: end if

35: end while

36: ▷ Phase 2

37: if Prediction = Forward then

38: ▷ Initialize destination d vertex value

39: d.value = safeApprox

40: ▷ Continue iterating: forward direction only

41: while FActive , ϕ do

42: FActive← Process ( FActive, d , G )

43: end while

44: return ( Reachable, d.value )

45: else ▷ Prediction is Backward

46: ▷ Initialize source s vertex value

47: s.value = safeApprox

48: ▷ Continue iterating: backward direction only

49: while BActive , ϕ do

50: BActive← Process ( BActive, s , Ĝ )

51: end while

52: return ( Reachable, s.value )

53: end if

54: end function

execution in the non-predicted direction is discontinued.
Note that all the processing performed in Phase 1 for the
predicted direction is not wasted as computation continues
from where it was for the predicted direction. At the start of
Phase 2, if the predicted direction is forward the initial value
for destination vertex d is set to safeApprox produced by
Phase 1 and if the predicted direction is backward the initial
value for the source vertex s is set to safeApprox.

Algorithm 2 summarizes the two-phase algorithm. The
iterative loop (lines 7ś35) representing Phase 1 processes
active vertices and identifies active vertices for the next itera-
tion. Phase 1 terminates under two conditions. First is when
the query is found to be non-reachable because the active set
in one of the directions becomes empty and thus the algo-
rithm terminates (see lines 16ś19). Second is when the query
is found to be reachable in which case safe approximation
is computed and direction for Phase 2 is predicted (see lines
20ś34). The Phase 2 (lines 36ś53) simply continues process-
ing in the predicted direction, using the safe approximation,
and terminates when the algorithm converges. During pro-
cessing of active vertices in Phase 1 pruning is always off
while in Phase 2 pruning is always on.

Note that the proposed algorithm satisfied all three re-
quirements. Our approach handles both non-reachable and
reachable queries (RQ1). For non-reachable queries our ex-
ecution time is expected to be close to the faster direction

time which is much smaller than the slower direction time.
For reachable queries since Phase 1 is fast, Phase 2 is highly
optimized as our algorithm accurately predicts the faster di-
rection (RQ2) and maximizes the use of pruning by ensuring
that it is enabled right from the start of Phase 2 (RQ3).

Applicability of PnP. The PnP two phase algorithm min-
imizes computations by limiting propagation of values via
direction selection and safe pruning. We further understand
how direction selection and pruning can be applied to a
wide variety of graph algorithms. Graph algorithms are typi-
cally convergence based iterative algorithms wherein vertex
values propagate as they change across iterations. These
propagations happen across the structure of the input graph,
and hence, they can be viewed as occurring in certain pat-
tern or direction. At an elementary level, propagation of a
vertex value occurs in the łoutwardž direction through out-
neighbors of the vertex; for example, in Algorithm 1, the
out-neighbors of vertices get processed (line 14) as values
propagate across the graph. However, an important charac-
teristic of point-to-point queries is the two special vertices
(a source and a destination) that concretely define an ex-
pected direction for propagation: forward direction from
source to destination. PnP further extracts the hidden re-
verse direction to leverage the disparity in propagation and
limits overall computations via pruning. Path based algo-
rithms naturally fit this class of point queries where values
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G Algorithm WP SP NP BFS

TTW 2Phase 0.1438s (99.1%) 0.1447s (99.1%) 0.1397s (97.1%) 0.1007s (89.2%)

sPr:FastNR 0.0237s 0.0188s 0.0283s 0.0072s

sPr:SlowNR 13.0250s 14.6090s 3.8500s 0.8727s

LJ 2Phase 0.0191s (96.6%) 0.0188s (77.8%) 0.0271s (91.0%) 0.0188s (77.5%)

sPr:FastNR 0.0009s 0.0011s 0.0064s 0.0011s

sPr:SlowNR 0.5337s 0.8200s 0.2365s 0.0796s

TT 2Phase 0.1744s (99.0%) 0.1991s (99.7%) 0.2672s (96.9%) 0.1486s (88.8%)

sPr:FastNR 0.0212s 0.1392s 0.0562s 0.0200s

sPr:SlowNR 15.3860s 17.6580s 6.8800s 1.1686s

PK 2Phase 0.0084s (94.3%) 0.0085s (94.8%) 0.0122s (94.1%) 0.0085s (71.6%)

sPr:FastNR 0.0004s 0.0005s 0.0023s 0.0004s

sPr:SlowNR 0.1410s 0.1553s 0.1708s 0.0289s

Vertices Visited

0.1767%

0.0000029%

90.62%

0.38 %

0.0299 %

88.95 %

0.47%

0.0000024%

84.60%

0.0688%

0.000066%

80.77%

Table 7. NR Queries 2Ph vs. sPr: Average Execution Times (seconds); and % of Vertices Visited.

are expected to be propagated from source to destination.
For general algorithms like PageRank, every vertex acts like
a source; thus, it is difficult to deduce a single direction of
flow of values that can be leveraged by PnP.
On the other hand, pruning of value propagation occurs

when we know (a) what to prune; and, (b) how to prune it.

Ð What to prune? While PnP prunes value propagations
(or edge computations) in a broader sense, the semantics
of each graph algorithm needs to be carefully analyzed to
identify the exact propagation paths across which values
will never be transferred. These semantics can be captured
by characterizing the aggregation function used to compute
vertex values. The most common aggregation functions used
across graph algorithms are shown in Table 8. Since selec-
tion based aggregation functions (min, max, or) effectively
select values coming from a single incoming path to a given
vertex, PnP can safely prune values coming from other in-
coming paths to a vertex, hence supporting several graph
algorithms, some of which are listed in Table 8. Complete ag-
gregations (sum, product) on the other hand combine values
coming from multiple incoming edges into a single value.
This means the value contributions from individual incoming
paths cannot be discarded throughout the computation, and
hence, PnP does not prune value propagations but instead
only performs direction selection. In our experiments (ğ4),
we use NumPaths as an example for complete aggregation
to show that PnP is very useful even without pruning.

Aggregation Type Graph Algorithms

min, max, or Selection

Shortest Paths, Widest Paths,

Connected Components, Reachability

Minimum Spanning Tree

Betweenness Centrality

sum, product Complete
NumPaths, PageRank, SpMV,

Belief Propagation

Table 8. Applicability of PnP.

Ð How to prune? Once we have identified the propaga-
tion paths to prune, we rely on the algorithmic semantics to
perform pruning. Vertex values for path based algorithms
that rely on selection functions often progress in a mono-
tonic fashion, i.e., subsequent values of vertices are either

non-increasing (e.g., shortest paths) or non-decreasing (e.g.,
widest paths). For such algorithms, PnP monitors the desti-
nation vertex’s values and performs numerical comparison
(≥, ≤) to safely prune out propagations that can never con-
tribute to final result. For algorithms beyond monotonic con-
vergence (e.g., PageRank), other algorithm-specific pruning
conditions can be formulated by the user.

4 Evaluation of PnP Two-Phase
We evaluate the two-phase algorithm with four input graphs
and four graph analytics benchmarks. We use four input
graphs from Table 3. Four types of queries are considered
ś Widest Path (WP), Shortest Path (SP), Number of Paths
(NP), and Breadth First Search (BFS). We first evaluate the
two-phase algorithm for non-reachable queries and then for
reachable queries. The algorithms compared are as follows:

• 2Phase (2Ph) ś our two-phase algorithm (from ğ3); &
• sPr ś simple Pruning algorithm that can be run in
forward or backward direction (from ğ2).

4.1 Evaluation for Non-Reachable (NR) Queries
The execution times for 2Phase as well as sPr in forward
and backward directions for all non-reachable queries are
shown in the scatter plots of Figure 4. As we can see, for vast
majority of queries the execution time of 2Phase algorithm
is very close to the time for the faster direction which is
significantly smaller that the time in the slower direction.
The average times across all queries for sPr in the faster

direction (sPr:FastNR) and slower direction (sPr:SlowNR)
as well as 2Phase algorithm can be found in Table 7. The
effectiveness of 2Phase algorithm is computed as

sPr : SlowNR − 2Phase

sPr : SlowNR − sPr : FastNR
× 100

which computes actual benefit of two-phase as a percentage
of available benefit ś this number is shown in parenthesis in
Table 7. This number is often over 90%. The last column in
the table (Vertices Visited) indicates the fraction of vertices
in the entire graph that are visited by each algorithm. The
numbers for sPr:FastNR and sPr:SlowNR confirm that a tiny
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G Algorithm WP SP NP BFS

TTW 2Ph 3.5116s 10.827s 2.9134s 0.5396s

2Ph100% 3.2826s 10.466s 2.6813s ś

sPr:FastR 5.9797s 10.038s 2.3898s 0.3585s

sPr:SlowR 12.0750s 12.793s 3.1887s 0.6007s

LJ 2Ph 0.1998s 0.6928s 0.1179s 0.0781s

2Ph100% 0.1572s 0.6543s 0.1169s ś

sPr:FastR 0.1832s 0.6190s 0.1234s 0.0369s

sPr:SlowR 0.7569s 0.8168s 0.1575s 0.0560s

TT 2Ph 4.3782s 16.727s 4.7800s 0.8338s

2Ph100% 3.8370s 15.049s 4.5825s ś

sPr:FastR 7.7483s 14.145s 4.0473s 0.5214s

sPr:SlowR 14.6030s 19.041s 5.2159s 0.7136s

PK 2Ph 0.0705s 0.1392s 0.0980s 0.0342s

2Ph100% 0.0631s 0.1361s 0.0968s ś

sPr:FastR 0.0526s 0.1174s 0.0613s 0.0141s

sPr:SlowR 0.1705s 0.1492s 0.0789s 0.0195s

Table 9. R Queries: Avg. Execution Time Per Query (secs).

fraction of the vertices are visited (< 0.03%) in the fast direc-
tion while vast majority of vertices are visited (80-90%) in
the slower direction. Finally, two-phase algorithm visits less
than 0.5% percent of the vertices explaining its effectiveness
for non-reachable queries.

4.2 Evaluation for Reachable Queries
Let us analyze the performance of the two-phase algorithm
for reachable queries. We again compare its performance
with that of the limits of performance of the sPr algorithm
(i.e., in faster and slower directions for all queries). The scat-
ter plots for reachable queries are shown in Figure 5.

Average execution times across all reachable queries for al-

gorithms sPr and 2Phase are given in Table 9. As we see
in most cases execution times of algorithms are related as
follows: sPr:FastR < 2Phase < sPr:SlowR. This is to be ex-
pected as sPr:FastR is in a sense ideal time where overhead
of prediction is nil and prediction rate is 100%. In comparison
2Phase algorithm involves overhead of direction prediction
and has less than perfect prediction rate. However, as we
can see 2Phase is frequently far closer to sPr:FastR than
sPr:SlowR. This indicates that 2Phase is highly effective. To
further demonstrate its effectiveness, we also present the
average execution time 2Phase100% which is computed as-
suming perfect 100% prediction rate. We can see that 2Phase
is only slightly greater than 2Phase100%. Finally, it should be
noted that in some cases 2Phase < sPr:FastR (WP on TTW,
NP on LJ) or at least 2Phase100% < sPr:FastR (WP on LJ).
This is because the 2Phase pruning strategy significantly
outperforms the pruning carried out by sPr and thus more
than offsets the cost of prediction. Note that for BFS no times
for 2Phase100% are provided as BFS terminates at the end
of Phase 1. Next we further analyze prediction and pruning.

Prediction effectiveness of 2Phase algorithm is analyzed in

Table 10. The prediction rates (PR) of the 2Phase algorithm
are presented ś on an average the prediction rates exceed

G Pred WP SP NP

TTW PR 92.74% 87.69% 56.51%

∆P 11.64s 5.67s 0.90s

∆MP 3.16s 2.93s 0.53s

LJ PR 86.35% 71.67% 90.17%

∆P 0.61s 0.22s 0.04s

∆MP 0.31s 0.14s 0.01s

TT PR 88.32% 57.24% 58.39%

∆P 12.75s 4.84s 0.45s

∆MP 4.63s 3.92s 0.48s

PK PR 87.99% 87.80% 81.67%

∆P 0.13s 0.06s 0.015s

∆MP 0.06s 0.026s 0.003s

Table 10. 2Ph Prediction Effectiveness: (PR) Prediction Rate
of 2Phase Algorithm; and Difference Between Average

Execution Times (seconds) in Faster and Slower Directions
for Predicted Queries (∆P); and Mispredicted Queries
(∆MP). BFS is omitted as it does not require Phase 2.

G Algorithm WP SP NP

TTW 2Ph 28% 1.6% 6.1%

2Ph100% 30% 1.7% 6.1%

sPr:FastR 54% 31% 64%

sPr:SlowR 45% 36% 74%

LJ 2Ph 21% 3.7% 22%

2Ph100% 22% 3.1% 22%

sPr:FastR 32% 8.3% 45%

sPr:SlowR 42% 18% 86%

TT 2Ph 16% 1.2% 3.3%

2Ph100% 14% 1.0% 2.6%

sPr:FastR 29% 17% 28%

sPr:SlowR 41% 27% 49%

PK 2Ph 2.6% 1.1% 2.9%

2Ph100% ≈ 0% ≈ 0% ≈ 0%

sPr:FastR ≈ 0% ≈ 0% ≈ 0%

sPr:SlowR 41% 25% 49%

Table 11. R Queries: % of Execution Time for which
Pruning is Inactive. BFS is omitted because it does not
require Phase 2 as it terminates at the end of Phase 2.

80%. For the two cases where 2Phase < sPr:FastR we can see
that the prediction rates exceed 90% (92.74% forWP on TTW;
90.17% for NP on LJ). Additional data in Table 10 shows that
for queries where predictions are correct, on average, the
difference in execution times in two directions (∆P) is typi-
cally greater than for queries where missprediction occurs
(∆MP). That is, benefit of correct predictions is higher than
the loss due to incorrect predictions.

Pruning effectiveness of 2Phase algorithm is analyzed in

Table 11. We present the percentage of execution time over
which pruning is not enabled ś lower numbers are better. For
2Phase algorithm this time is the percentage of execution
time spent in Phase 1. For sPr algorithm we found this time
by noting the point at which the first approximation of query

Session: Graph Processing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

596



G Algorithm WP SP NP BFS

TTW 2Ph 5.82m 22.17m 27.86m 6.93m

2Ph100% 5.17m 21.80m 15.27m ś

sPr:FastR 14.65m 32.46m 54.13m 11.54m

sPr:SlowR 51.16m 55.34m 48.06m 13.46m

LJ 2Ph 1.58m 6.12m 0.32m 0.80m

2Ph100% 1.24m 6.31m 0.29m ś

sPr:FastR 1.98m 6.85m 3.50m 0.85m

sPr:SlowR 8.47m 12.15m 5.72m 2.13m

TT 2Ph 7.56m 30.56m 42.13m 7.51m

2Ph100% 6.27m 39.07m 42.13m ś

sPr:FastR 16.74m 59.87m 54.10m 12.04m

sPr:SlowR 60.03m 50.34m 63.87m 17.77m

PK 2Ph 0.61m 1.38m 0.39m 0.28m

2Ph100% 0.56m 1.37m 0.77m ś

sPr:FastR 0.81m 1.70m 2.57m 0.37m

sPr:SlowR 2.70m 2.99m 3.46m 0.67m

Table 12. R Queries: Average Active Vertex Count Per
Query (in millions).

result is generated for use in pruning during remainder of the
execution. From the results we can see that for the 2Phase
algorithm this time is often significantly smaller than for
sPr:FastR algorithm. That is, 2Phase pruning is substantially
better than simple pruning performed by sPr.

Tables 12 and 13 present the work performed in terms of
total number of active vertices encountered and number of
iterations for convergence. As we can see, the number of
active vertices is significantly smaller for 2Phase in compari-
son to sPr:FastR. This reduction is the highest for NP because
the SafeApprox is computed by multiplying the NP values
in forward and backward direction causing pruning to be
highly effective. This is another indicator of the enhanced
pruning strategy of 2Phase algorithm being significantly
superior than that of sPr. On the other hand, the average
number of iterations for 2Phase and sPr:FastR are fairly close.
Note that even though the 2Phase algorithm for BFS termi-
nates at end of Phase 1, its vertex computations count is
consistently lower than that for sPr:FastR indicating that the
bidirectional traversal is more effective that unidirectional
traversal. Finally, occasionally 2Phase performs fewer active
vertices than 2Phase100% (e.g., SP on LJ). This is because the
runtime cost depends upon additional factors (e.g., number
of edges associated with active vertices, cache misses etc.),
i.e. the direction in which fewer active vertices are processed
can have higher execution time.

Beamer’s Bidirectional BFS [4] vs. Two-Phase PnP.Recently

bidirectional BFS was proposed by Beamer that switches
directions at iteration boundaries to minimize the work per-
formed ś the frontier sizes in two directions are compared to
select the cheaper direction for the next iteration. Although
this is an effective algorithm, PnP relies upon direction se-
lection over bidirectional search. First, PnP is general which
solves problems besides BFS while Beamer’s algorithm only

G Algorithm WP SP NP BFS

TTW 2Ph 5 9 5 4

2Ph100% 4 9 4 ś

sPr:FastR 5 9 5 4

sPr:SlowR 16 12 5 4

LJ 2Ph 10 28 4 6

2Ph100% 6 27 4 ś

sPr:FastR 7 27 7 6

sPr:SlowR 47 29 7 6

TT 2Ph 5 9 5 4

2Ph100% 4 10 5 ś

sPr:FastR 5 11 5 4

sPr:SlowR 17 10 5 4

PK 2Ph 8 14 4 5

2Ph100% 6 14 4 ś

sPr:FastR 6 14 7 5

sPr:SlowR 20 16 7 5

Table 13. R Queries: Average Number of Iterations Per
Query (rounded).

G Algorithm
WP SP NP BFS

#Iter. #Iter. #Iter. #Iter.

TTW 2Ph 5 9 5 4

noPr:FastR 20 21 23 19

noPr:SlowR 21 21 27 20

LJ 2Ph 10 28 4 6

noPr:FastR 20 30 15 14

noPr:SlowR 46 32 16 15

Table 14. No-pruning (nPr) vs. Pruning in Two-Phase.

applies to BFS. Second, due to PnP’s aggressive pruning, the
number of iterations in the two-phase algorithm are greatly
reduced and this limits the potential benefits of bidirectional
approach. Table 14 shows that the number of iterations of
two-phase are much smaller than for no-pruning (noPr) sce-
nario considered in bidirectional BFS. Thus, bidirectional
approach is not expected to yield significant additional ben-
efit in the presence of pruning.

4.3 Quegel vs. PnP

Finally we compare the performance of PnP with Quegel,
that is aimed at point-to-point iterative graph analytics. Ta-
ble 15 shows the average execution times of PnP for 50
queries of each of four kinds on a single 8-core machine, and
the average relative speedups achieved by PnP over Quegel
on 1 and 4 machines (8-cores per machine). Quegel’s opti-
mization that combines messages with the same destination
vertex is turned on, and results are shown for Quegel’s bidi-
rectional BFS (BiBFS) as well as unidirectional BFS. On an
average across all types of queries, PnP on a single machine
outperforms Quegel on four (one) machines by 8.2× to 3116×
(7× to 1517×). Furthermore, it was interesting to observe that
Quegel’s BFS performed better than it’s BiBFS in few cases;
nevertheless our prediction and pruning strategies allowed
PnP to greatly outperform both Quegel’s BiBFS and BFS.

Session: Graph Processing ASPLOS’19, April 13–17, 2019, Providence, RI, USA

597



Q G
PnP :: 1 machine

WP SP NP BFS

F
w
d
N
R LJ 0.020s 0.020s 0.037s 0.030s

PK 0.007s 0.009s 0.011s 0.013s

B
w
d
N
R LJ 0.027s 0.028s 0.045s 0.034s

PK 0.007s 0.007s 0.012s 0.013s

F
w
d
R LJ 0.035s 0.198s 0.200s 0.136s

PK 0.013s 0.081s 0.151s 0.054s

B
w
d
R LJ 0.042s 0.169s 0.214s 0.152s

PK 0.012s 0.071s 0.148s 0.055s

Quegel :: 1 machine

WP SP NP BiBFS BFS

12.9× 13.1× 7.02× 11.0× 8.63×

62.5× 45.2× 23.0× 22.9× 31.0×

679.4× 644.5× 877.3× 24.5× 521.1×

1082.9× 1050.9× 1516.8× 22.8× 611.0×

557.9× 97.7× 192.0× 17.5× 115.6×

630.3× 99.5× 114.7× 22.3× 129.6×

438.0× 110.6× 169.7× 19.3× 101.5×

629.6× 113.2× 112.3× 23.8× 122.2×

Quegel :: 4 machines

WP SP NP BiBFS BFS

14.9× 15.1× 8.20× 12.0× 10.2×

58.2× 41.9× 97.1× 24.7× 28.0×

364.8× 344.2× 427.5× 19.2× 290.8×

618.7× 596.1× 3116.1× 23.4× 297.4×

320.8× 56.5× 98.4× 12.0× 67.5×

353.9× 55.2× 229.0× 14.5× 64.4×

262.8× 58.3× 83.0× 13.5× 61.2×

356.6× 63.1× 233.9× 15.5× 61.3×

Table 15. PnP average execution times in seconds for 50 queries of each kind on one 8-core 32 GB machine; and
PnP average speedups over Quegel for the same queries on one and four machines.

5 Related Work
Graph Databases and Query Systems. The work closely re-
lated to ours is Quegel [41]. However, as discussed earlier,
it relies upon offline Hub2 computation that is limited to
shortest path queries on unweighted graphs and does not
allow graphs to change between queries. All these problems
are addressed by PnP using dynamic pruning and dynamic
direction prediction. Quegel also supports another scenario
where on a distributed system a batch of queries are simulta-
neously solved by efficiently sharingmemory and computing
resources among the queries. This is different from the sce-
nario we consider ś solving a stream of queries on a single
machine, and answering each query as quickly as possible.
In contrast while batching improves throughput, it does not
improve latency of query responses. Moreover, the batch-
ing algorithm also relies on Hub2 pre-computation. Note
that our technique can benefit from connected components
precomputation but we prefer dynamic techniques to avoid
disadvantages of precomputation. There are works that im-
prove performance of specific algorithms (e.g., delta stepping
for SSSP [23]); however, our goal is to develop optimizations
that apply to multiple iterative graph algorithms.

There has been a great deal of work on graph based query
languages (e.g., Gremlin [29]) and query support in graph
databases (e.g., Neo4J and DEX [2, 9, 20]) that enable graph
traversals and joins via lower-level graph primitives (e.g.,
vertices, edges, etc.). However, they are not efficient for iter-
ative graph algorithms over large graphs. Their strength lies
in their ability to program wide range of queries. They are
more suitable neighborhood queries [22, 27, 28, 38] including
query decomposition and incremental processing devoted to
pattern matching [40, 42]. In [27] authors develop algorithms
for efficiently answering k-nearest neighbor queries (k-NN)
that prunes the search to limit the graph that is explored.
In [38] authors develop a fast neighborhood graph search
algorithm using a new data structure called the bridge graph
constructed from a large number of bridge vectors. In [22] a
compressed representation of social networks is proposed
to facilitate computation of neighbor queries. NScale [28] is
another system for neighborhood-centric analytics on large
graphs including analysis tasks such as ego network analysis,

social circles, personalized recommendations, link predic-
tion, influence cascades, and motif [24] counting. Although
GraphX [11] supports both kinds of graph operators (i.e.,
neighborhood aggregation as well as join and structural op-
erators) and can be used for iterative algorithms, it does not
support iterative point-to-point queries.

Graph Processing Frameworks. There are a number of single
machine shared-memory frameworks [1, 15, 26, 31]. Ligra [31]
provides a shared memory abstraction for vertex algorithms
which is particularly good for graph traversal and we build
PnP using Ligra. [26] presents a shared-memory based im-
plementations of these DSLs on a generalized Galois system
and compares its performance with the original implementa-
tions. These frameworks are based on the Bulk Synchronous
Parallel (BSP) [33] model. GRACE [39], a shared memory
graph processing system, uses message passing and provides
asynchronous execution. To efficiently process large graphs
our prior work has employed Graph Reduction [15] and
built a system on top of Galois. On a single machine large
graphs may not fit in memory. Therefore other methods have
been proposed for processing extremely large graphs. For a
single multicore machine a number of out-of-core process-
ing systems have been recently proposed (GraphChi [17],
X-Stream [30], GridGraph [45], DynamicShards [37], Tur-
bograph [12], Flashgraph [44], Bishard [25]). Alternately
distributed systems that combine memories of multiple ma-
chines to handle large graphs can be used (Pregel [21], Pow-
erLyra [7], PowerGraph [10], GraphLab [19], ASPIRE [34],
CoRAL [35]). Asynchronous algorithms are more capable
of tolerating communication latencies of distributed sys-
tems [13, 34, 37, 43].

6 Conclusions
We have developed PnP that incorporates a two-phase algo-
rithm for evaluating iterative point-to-point queries involv-
ing a single source and destination vertex pair. The algorithm
derives its efficiency from selecting the faster direction for
evaluating the query and pruning the computation to achieve
early termination. Our solution is applicable to streaming
graphs. Finally, PnP substantially outperforms Quegel, the
only framework prior for computing point-to-point queries.
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