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Abstract

The goal of this paper is to develop energy-preserving variational integrators for time-
dependent mechanical systems with forcing. We first present the Lagrange-d’Alembert prin-
ciple in the extended Lagrangian mechanics framework and derive the extended forced Euler-
Lagrange equations in continuous-time. We then obtain the extended forced discrete Euler-
Lagrange equations using the extended discrete mechanics framework and derive adaptive
time step variational integrators for time-dependent Lagrangian systems with forcing. We
consider three numerical examples to study the numerical performance of energy-preserving
variational integrators. First, we consider the example of a nonlinear conservative system to
illustrate the advantages of using adaptive time-stepping in variational integrators. In addi-
tion, we demonstrate how the implicit equations become more ill-conditioned as the adaptive
time step decreases through a condition number analysis. As a second example, we numer-
ically simulate the time-dependent example of a forced harmonic oscillator to demonstrate
the superior energy performance of energy-preserving integrators for mechanical systems with
explicit time-dependent forcing. Finally, we consider a damped harmonic oscillator using the
adaptive time step variational integrator framework. The adaptive time step increases mono-
tonically for the dissipative system leading to unexpected energy behavior. Modified abstract.

Keywords: Energy-preserving integrators; Variational integrators; Adaptive time-step in-
tegrators; Discrete mechanics.

1 Introduction

In engineering applications, numerical integrators for equations of motion are usually derived by
discretizing differential equations. These traditional integrators do not account for the inherent
geometric structure of the governing continuous-time equations, which results in numerical meth-
ods that introduce numerical dissipation and do not preserve invariants of the system. The field
of geometric numerical integration is concerned with numerical methods that preserve the struc-
ture of the problem and the corresponding geometric properties of the differential equations. A
brief introduction to the field of geometric numerical integration can be found in [1] and various
techniques for constructing structure-preserving integrators for ordinary differential equations are
given in [2] .

Ge and Marsden [3] showed that a fixed time step numerical integrator cannot preserve the
symplectic form, momentum, and energy simultaneously for non-integrable systems. Based on
this result, structure-preserving fixed time step mechanical integrators can be divided into two
categories, symplectic-momentum, and energy-momentum integrators. Even though symplectic-
momentum integrators do not conserve energy exactly, they have been shown to exhibit good
long-time energy behavior. On the other hand, Simo and his collaborators [4, 5] have developed
mechanical integrators that conserve energy and momentum but do not preserve the symplectic
form.
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Variational integrators are a class of structure-preserving integrators, that are derived by dis-
cretizing the action principle rather than the governing differential equation. The basic idea behind
these methods is to obtain an approximation of the action integral called the discrete action. Sta-
tionary points of the discrete action give discrete time trajectories of the mechanical system. These
integrators have good long-time energy behavior and they conserve the invariants of the dynamics
in the presence of symmetries. The basics of variational integrators can be reviewed in [6] and
more detailed theory can be found in [7]. A more general framework encompassing variational
integrators, asynchronous variational integrators, and symplectic-energy-momentum integrators is
discussed in [8]. Due to their symplectic nature, variational integrators are ideal for long-time
simulation of conservative or weakly dissipative systems found in astrophysics and molecular dy-
namics. The discrete trajectories obtained using variational integrators display excellent energy
behavior for exponentially long times.

The fixed time step variational integrators derived from the discrete variational principle can-
not preserve the energy of the system exactly. To conserve the energy in addition to preserving
the symplectic structure and conserving the momentum, time adaptation needs to be used. These
symplectic-energy-momentum integrators were first developed for conservative systems in [9] by
imposing an additional energy preservation equation to compute the time step. The same inte-
grators were derived through a variational approach for a more general case of time-dependent
Lagrangian systems in [7] by preserving the discrete energy obtained from the discrete variational
principle in the extended phase space.

Numerically equivalent methods were derived independently through the Hamiltonian approach
by Shibberu in [10]. Shibberu has discussed the well-posedness of symplectic-energy-momentum
integrators in [11] and suggested ways to regularize the governing set of nonlinear discrete equations
in [12]. These symplectic-energy-momentum integrators require solving a coupled nonlinear implicit
system of equations at every time step to update the configuration variables and time variable. The
time-marching equations for these energy-preserving integrators are ill-conditioned for arbitrarily
small time steps and existence of solutions for these discrete trajectories is still an open problem.

The purpose of this paper is twofold. First, we develop variational integrators for time-
dependent Lagrangian systems with nonconservative forces based on the discretization of the
Lagrange-d’Alembert principle in extended phase space. We modify the Lagrange-d’Alembert
principle to include time variations in the extended phase space and derive the extended forced
Euler-Lagrange equations. We then present a discrete variational principle for time-dependent
Lagrangian systems with forcing and derive extended forced discrete Euler-Lagrange equations.
We use the extended discrete mechanics formulation to construct adaptive time step variational
integrators for nonautonomous Lagrangian systems with forcing that capture the rate of energy
evolution accurately. Second, we consider three numerical examples to understand the numerical
properties of the adaptive time step variational integrators and compare the results with fixed
time step variational integrators to illustrate the advantages of using adaptive time-stepping in
variational integrators. We also study the effect of initial time step and initial conditions on the
numerical performance of the adaptive time step variational integrators.

The remainder of the paper is organized as follows. In Section 2, we review the basics of
extended Lagrangian mechanics and discrete mechanics. We also discretize Hamilton’s principle to
derive adaptive time step variational integrators. In Section 3, we modify the Lagrange-d’Alembert
principle in the extended phase space and derive extended forced Euler-Lagrange equations. In
Section 4, we derive the extended forced discrete Euler-Lagrange equations and obtain adaptive
time step variational integrators for time-dependent Lagrangian systems with forcing. In Section
5, we give numerical examples to understand the numerical performance of the adaptive time step
variational integrators. Finally, in Section 6 we provide concluding remarks and suggest future
research directions.

2 Background: Adaptive Time Step Variational Integrators

Shortened this section to 2 pages after the comment by second reviewer In this section, we
review the basics of Lagrangian mechanics and derivation of adaptive time step variational inte-
grators. Drawing on the work of Marsden et al. |9, 13, 7|, we first derive equations of motion in
continuous-time from the variational principle and then derive variational integrators by consider-
ing the discretized variational principle in the discrete-time domain. To this end, we first derive
continuous-time Euler-Lagrange equations of motion from Hamilton’s principle. After deriving



equations of motion, we use concepts of discrete mechanics developed in [7] to derive discrete
Euler-Lagrange equations and then write them in the time-marching form to obtain adaptive time
step variational integrators for Lagrangian systems.

2.1 Extended Lagrangian Mechanics

Hamilton’s principle of stationary action is one of the most fundamental results of classical me-
chanics and is commonly used to derive equations of motion for a variety of systems. The forces
and interactions that govern the dynamical evolution of the system are easily determined through
Hamilton’s principle in a formulaic and elegant manner. Hamilton’s principle [14] states that:
The motion of the system between two fixed points from ¢; to ¢s is such that the action integral
has a stationary value for the actual path of the motion. In order to derive the Euler-Lagrange
equations via Hamilton’s principle, we start by defining the configuration space, tangent space and
path space.

Consider a time-dependent Lagrangian system with configuration manifold @) and time space
R. In the extended Lagrangian mechanics framework [7], we treat time as a dynamic variable
and define the extended configuration manifold Q = R x Q; the corresponding state space T'Q is
R x T'Q. The extended Lagrangian is L : R x TQ) — R.

In the extended Lagrangian mechanics framework, ¢t and q are both parametrized by an inde-
pendent variable a. The two components of a trajectory c are c(a) = (¢(a), cq(a)). The extended
path space is

C={c:[ag,as] = Q| cis a C* curve and cj(a) > 0} (1)

For a given path c(a), the initial time is £y = c;(ao) and the final time is t; = c¢(ay). The extended
action B :C — R is
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Since time is a dynamic variable in this framework, we substitute (¢, q(t), q(t))

in the above equation to get

We compute variations of the action

_ 2 9L oL OL (dcqla)  cydci(a) ) ar
0B = /ao {(%5@ + 7q bcq + 9 ( A )} ci(a)da + /ao Lic,(a) da  (4)

Using integration by parts and setting the variations at the end points to zero gives
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Using dt = c}(a)da in the above expression gives two equations of motion. The first is the Euler-
Lagrange equation of motion

oL d (0L
(5 ) =0 (6)
dq dt \ 0q
which is the same as the equation obtained using the classical Lagrangian mechanics framework.
The second equation is
oL d (0L
a2 Z.g=L)=0 7
ot T a (aq 4 > @

which describes how the energy of the system evolves with time.

2.2 Energy-preserving Variational Integrators

For the extended Lagrangian mechanics, we define the extended discrete state space Q x Q. The
extended discrete path space is

Ca={c:{0,.,N} = Q| c;(k+1)>ci(k) forall k} (8)



The extended discrete action map By : Cq — R is

N-1

By = Z La(tr; dgs trt1s dgs1) ©)
k=0

where Lg : Q x Q — R is the extended discrete Lagrangian function which approximates the action
integral between two successive configurations. Taking variations of the extended discrete action
map gives

2

0By = Z DaLa(ty—1, Qg_1,tk, dp,) + DaLa(te, dp, trr1, appr)] - 6y,
k=1

N—1
+ Z D3Lq(tg—1,95_1,tk, ax) + D1La(tk, Qg tht1, Qpy1)] 0te =0 (10)
k=1

where D; denotes differentiation with respect to the i*" argument of the discrete Lagrangian L.
Applying Hamilton’s principle of least action and setting variations at end points to zero gives the
extended discrete Euler-Lagrange equations

DyLa(te—1,d,_1,tk,qs) + DaLa(te, i, thy1, dgrg) =0 (11)

DsLg(tg—1,9,_1,tk, dg) + D1La(tr, dg, tht1,9pyq) =0 (12)

Given (tg—1,q)_1,tk, ), the extended discrete Euler-Lagrange equations can be solved to obtain
qiy1 and tg41. This extended discrete Lagrangian system can be seen as a numerical integrator
of the continuous-time nonautonomous Lagrangrian system with adaptive time steps.

In the extended discrete mechanics framework, we define the discrete momentum p;, by

Pr = DaLg(tp—1,dx_1,tk,qy) (13)

We also introduce the discrete energy

Er = D3Lg(tk—1,9_1,tk: dy) (14)

Using the discrete momentum and discrete energy definitions, we can re-write the extended discrete
Euler-Lagrange equations (11) and (12) in the following form

— Do Lg(tk, ag, ths1,9py1) = Pi

(
DlLd(tk)qk)tk+17qk+1) = Ek? (16
pk:-‘rl = D4Ld(tk7qk7tk+l7qk+1) (
Eyy1 = —D3La(tr, qp, te+1, dyy1) (18

Given (t,qy, P, Ex), the coupled nonlinear equations (15) and (16) are solved implicitly to obtain
dj41 and tgy1. The configuration qy,; and time ¢4, are then used in (17) and (18) to obtain
(Pry1> Ers1) explicitly. The extended discrete Euler-Lagrange equations were first written in the
time-marching form in [7] and are also known as symplectic-energy-momentum integrators.

3 Modified Lagrange-d’Alembert Principle

The extended discrete Euler-Lagrange equations derived in Section 2.2 can be used as energy-
preserving variational integrators for Lagrangian systems. In order to extend this energy-preserving
variational integrator framework to Lagrangian systems with external forcing, we need to dis-
cretize the Lagrange-d’Alembert principle in the extended Lagrangian mechanics framework. We
first present the Lagrange- d’Alembert principle in extended phase space for time-dependent La-
grangian systems with forcing by considering the variations with respect to time ¢. Using the
extended Lagrangian mechanics framework, we derive the extended Euler-Lagrange equations for
time-dependent Lagrangian systems with forcing.



The Lagrange- d’Alembert principle modifies Hamilton’s principle of stationary action by con-
sidering the virtual work done by the forces for a variation dq in the configuration variable q. Since
the standard Lagrangian mechanics framework treats time only as an independent continuous pa-
rameter, it does not account for time variations in the Lagrange-d’Alembert principle. Thus, we
need to modify the Lagrange-d’Alembert principle in the extended Lagrangian mechanics frame-
work to account for time variations.

We modify the Lagrange-d’Alembert principle by adding an additional term in the variational
principle that accounts for virtual work done by the external force f;, due to variations in the time
variable

ty

6/fL<t alt). a(t)) dt+/ffL<t a(t). a(t)) - 6th*/ £1(t.q(t),d(t) - (@6t) dt=0 (19)

to to to

Using the extended Lagrangian mechanics framework discussed in Section 2.1 to derive the equa-
tions of motion, we first re-write the modified Lagrange-d’Alembert principle
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Taking variations of the discrete action with respect to both configuration q and time ¢ gives
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Using integration by parts and setting variations at the end points to zero gives
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(22)
Using dt = c¢j(a)da in the above expression gives two equations of motion for the forced time-
dependent Lagrangian system. The first equation is the well-known forced Euler-Lagrange equation
for a time-dependent system

oL d (0L
fr=0 23
dq dt (5‘ ) th (23)
whereas the second equation is the energy evolution equation
oL d (0L
4 [ Z=g-L)—-f-g=0 24
ot ( 8qq ) L9 (24)

Thus, for the forced case, the energy evolution equation describes how the energy of the Lagrangian
system depends on the input power by the external force fr,. If we consider an associated curve
q(t) satisfying the forced Euler-Lagrange equations and compute the energy evolution equation we
get

oL oL . 0L oL\ . OL . dL .
wn (8 qL) —fr.q= §+ <8q> +8—q.q7E7fL.q (25)
which after substituting % (g—é) = % + f1, simplifies to
oL oL oL oL oL dL
— L | —fp.¢ — +f — —f 2
VTR (8 q ) L-q= <6t+(q+L>q+8q ) T L-q=0 (26)

which shows that (23) implies (24). Thus, for continuous-time forced Lagrangian systems, the
additional energy evolution equation obtained by taking the variation with respect to time does
not provide any new information concerning the forced Euler-Lagrange equations.

Remark 1. It should be noted that both (23) and (24) depend only on the associated curve
q(t) and the time component c;(a) of the extended path cannot be determined from the govern-
ing equations. Thus, the "velocity" of time, i.e. c¢;(a), is indeterminate in the continuous-time
formulation of time-dependent Lagrangian systems with forcing.



4 Energy-preserving Variational Integrators

In this section, we derive the extended discrete Euler-Lagrange equations for time-dependent La-
grangian systems with forcing by discretizing the modified Lagrange-d’Alembert principle given
in Section 3. The key difference from the extended discrete Euler-Lagrange equations derived in
Section 2.2 is that we will have additional discrete terms accounting for the virtual work done by
the external forcing.

The modified Lagrange-d’Alembert principle presented in Section 3 has two continuous-time
force integrals in the variational principle. In order to derive the extended forced discrete Euler-
Lagrange equations, we define two discrete force terms fdi 1 Q x Q — T*Q which approximate the
virtual work done due to variations in q in the following sense

trt1
JF s Qs 15 Qg 1) - 0y + fo by Qs trog1, Q1) - 0y, & / fr(t,q(t),q(t)) - oq dt (27)
ty

We also define two discrete power terms gdjE : Q x Q — R which approximate the virtual work done
due to time variations in the following sense

tht1
gd+ (tkv Ak tk+17 qk+1)5tk+l + g[; (tka Ak tk+1a qk+1)6tk ~ / _fL (tv q(t)v q(t)) : (q(st) dt (28)
tr

For the time-dependent Lagrangian system with forcing, we seek discrete-time paths which satisfy

N-1 N-1
0> La(th, Qg trst, Qsr) + D 168 (ks Qi bt 1, Q1) - 0lpr + £ (B Qi a1, Q) - Oty
k=0 k=0
N-1
+ Z [g(—ji_ (tk7 Ak, tk-‘rh qk+1)5tk+1 =+ g; (tk7 g tk+17 qk-‘,—l)atk] =0 (29)
k=0

Setting all the variations at the endpoints equal to zero in (29) gives the extended forced discrete
Euler-Lagrange equations

D4Ld(tk—1; qr_1 tk7 qk)+ DQLd(tkv gy tk+17 qk+1)+ f:;(tk:—h qr_1, tkv qk;)+ f;(tk7 qy tk+17 qk;-l,-l) =0

30
D3La(tr—1,9_1,tk, dx)+ D1La(tr, dg, tret, Qig1)+ 90 (Be—1s Q1 tes Qi)+ 9y (s Qs tiot1s Qk(+311)) 0
We modify the definitions of the discrete momentum and energy to account for the effect of forging)
Pr = DaLa(tk—1,dp_1,tk, qx) + f:i'_(tk—hqkflvtkvqk) (32)
Ey = —D3Lg(tg—1, 91, thy Qi) — 95 (bk—1, A1, bk, Q) (33)

Using the modified discrete momentum and energy definitions (32) and (33), the extended forced
discrete Euler-Lagrange equations can be re-written in the following form

— Do Lg(tr, dgy tha1, A1) — £ (B, Qs tet 1, Ay 1) = Pr (34)
D1 La(tk, Qgs tht1, Q1) + 9o (B Qs tet 1, Qiyr) = i (35)
Prr1 = DaLa(te, dps tirrs Qppr) + £ (b @i trrns Gros) (36)
Ei1 = —DaLa(tr, dp, trer1, A1) — 9g (b, Qg a1, Aoy 1) (37)

Given a time-dependent Lagrangian system with external forcing, the extended discrete Lagrangian
system obtained by solving (34)-(37) can be used as an adaptive time step variational integrator
for the continuous-time system.

Remark 2. The modified discrete energy (33) has a contribution from the external forcing which
accounts for the virtual work done during the adaptive time step. Thus, the discrete trajectory
obtained by solving the extended discrete Euler-Lagrange equations preserves a discrete quantity
which is not the discrete analogue of the total energy of the Lagrangian system. This detail be-
comes important when we simulate a dissipative Lagrangian system with an adaptive time step
variational integrator in Section 5.3



5 Numerical Examples

In this section, we implement the extended forced discrete Euler-Lagrange equations as numerical
integrators of continuous dynamical systems. We first consider a nonlinear conservative dynamical
system studied in [9] and compare the fixed time step variational integrator results with the corre-
sponding results for the adaptive time step variational integrator. We then study a forced harmonic
oscillator, a time-dependent dynamical system, in order to investigate the numerical properties of
the adaptive time step variational integrators for forced systems. Finally, we simulate a damped
harmonic oscillator to understand the numerical performance of adaptive time step variational
integrators for dissipative systems.

5.1 Conservative Example

We consider a particle in a double-well potential. The Lagrangian for this conservative one degree
of freedom dynamical system is

L(g,d) = ymd® ~ V(a) (38)
where )
Vig) =5 (¢* — %) (39)

5.1.1 Fixed time step algorithm

For the fixed time step case, we choose a constant time step h. The discrete Lagrangian is obtained
using the midpoint rule

+ —
Ld(Qk,Qk+1) —hL <Qk 2Qk+l7 Qk+1h Qk> (40)

The discrete momentum py; is given by

Qk+1 — Gk qk+1 + Gk Qr+1 t+ qr s
pm:m(*h >+h<< +4 )—( *2 )) (41)

For given (g, px) at the kth time step, the implicit time-marching equation for the fixed time step

method is
qr+1 — qk Qr+1 + gk Qk+1 + K °
PO = . [ O Y (i L A Y (i RS 0,2 = i (42)
h 4 2
0.05 0.5
---Adaptive time step ~*~Adaptive time step
. . - Fixed time step
> 0 Fixed time step =0
—Benchmark
—Benchmark
-0.05 -0.5
0.68 0.7 0.72 0.74 0 0.2 0.4 0.6 0.8 1
q q
(a) q(0) =0.74, 4(0) =0 (b) q(0) =0.995, 4(0) =0

Figure 1: Two initial conditions are studied for the particle in double-well potential. An initial
time step of hg = 0.01 is used for the adaptive time step algorithm in both cases. The fixed time
step size is chosen such that number of total time steps is same as the adaptive algorithm. Phase
space trajectories for both fixed time step and adaptive time step algorithms are compared to the
benchmark trajectory. The trajectories in each figure are indistinguishable verifying the equations.



5.1.2 Adaptive time step algorithm

For the adaptive time step case, we have discrete time ¢; as an additional discrete variable. We
use the midpoint rule to obtain the discrete Lagrangian Ly

1 G —ar )’ 1 Qe +ar ) G+ ar\’
- 1
La(te: grs tietrs Gre1) = (brsr = 1) lzm (t;;—tz) 2 <(+2> - (+2> )]

(43)
The discrete momentum p; and discrete energy E}, are obtained by substituting the L, expression
in (17) and (18)

3
Prrl =m Qe+t — Ak ) (ths1 — 1) Qe+1 TGk [ 9e+1 1 Gk (44)
the1 — tk 4 2

1 Qe —ar )1 Gri1+ar\’ A
Bl 1 - 15
SRR (t,m R 2 2 (45)

The implicit time-marching equations for the adaptive time step algorithm are

— + LAY
m((ikJrl q;g) (teer — ) ((QkJrl Qk> 3 <Qk+1 Qk> >=pk (46)
k+1 — Tk 4 2
1 Qo1 — @\ L[ (G + @\’ Qe +an\’
+1 + +
- Z — =F 47
2m<tk+1—tk> " 2(( 2 ) ( 2 )) * )

Since the dynamical system being considered here is time-independent, we rewrite the time-

marching equations in terms of hy = (tj11 — tx) and vy = (M)

41—k
vphe + 2 vrhe \ >
F(qw, pr, i, v) = mug — hy, <<kk4qk> — <Qk+ k2 k) ) —pe=0 (48)
1 1 ophe \ vhe \ 2
G(qk, By, by, vx) = imvﬁJr 3 ((Qk + k2 k> - (qk + k2 k> ) —E,=0 (49)

These time-marching equations are solved using Newton’s iterative method with the restriction
hi > 0 to obtain discrete trajectories in the extended space. This extended discrete system can be
used as a variational integrator for the continuous-time dynamical system.
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Figure 2: Energy error plots for both fixed time step and adaptive time step algorithms are
compared for two different initial conditions. Each figure shows the superior energy performance
of the adaptive time step algorithm.

Remark 3. In [9], an alternative optimization method has been implemented where instead
of solving the nonlinear coupled equations (48) and (49), the following quantity is minimized

[F (g Prs hes 08))% + [G iy By by v1)]? (50)
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Figure 3: Trajectory error plots for both fixed time step and adaptive time step algorithms are
compared for two different initial conditions. Each figure, especially the highly nonlinear case (b),
clearly shows the superior trajectory performance of the adaptive time step algorithm.

over the variables vy and hy with the restriction hy > 0. The drawback of using this approach
is that numerically it violates the energy evolution equation and the underlying structure is no
longer preserved. In fact, due to this optimization approach, the energy plots given in [9] do not
clearly convey the advantage of energy-preserving variational integrators.
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Figure 4: Adaptive time step versus iteration number for both initial conditions.

5.1.3 Initial condition

We have considered two regions of phase space, similar to the numerical example in [9], to un-
derstand numerical properties of the adaptive time step variational integrator for conservative
systems. Since our aim is to use these discrete trajectories as numerical integrators for continu-
ous dynamical systems, instead of starting with two discrete points we consider a continuous-time
dynamical system with given initial position ¢(0) and initial velocity ¢(0) and use the benchmark
solution to obtain initial conditions for the adaptive time step variational integrator. Fixed time
step determination Since the adaptive time step changes substantially from the initial time step
ho, for a fair comparison of trajectory accuracy and energy error, we have chosen the fixed time
step algorithm in such a way that both fixed and adaptive algorithms take same number total time
steps over the numerical simulation.

For a given set of initial conditions, i.e. (¢(0),¢(0)), we first decide the initial time step ho and
then use the benchmark solution to compute discrete configuration ¢; at time t; = hg, configuration
at first time step. Thus, we have obtained two discrete points in the extended state space (to, qo)
and (t1,¢1) and using these two discrete points we can find discrete momentum p; and discrete
energy E;. After obtaining (¢1,q1,p1, E1), we can solve the time-marching equations (34)-(37) to
numerically simulate the dynamical system.



5.1.4 Results

The discrete trajectories for both fixed and adaptive time step algorithms are compared with the
benchmark solution in Figure 1. The position ¢ = m# and velocity ¢ = %= are computed
from the discrete trajectories for both fixed and adaptive time step algorithms and compared with
continuous time ¢ and ¢. For both initial conditions, discrete trajectories from the adaptive time
step and fixed time step match the benchmark trajectory.

The energy error plots for both cases in Figure 2 show the superior energy behavior of adaptive
time step variational integrators for conservative dynamical systems. Instead of using the opti-
mization approach discussed in Remark 3, we have obtained the discrete trajectories by solving
the nonlinear coupled equations exactly to preserve the underlying structure. The energy error
plots quantify the difference in energy accuracy for fixed time step and adaptive time step method
clearly. The energy-preserving performance was not evident in similar results given in [9] because
of the optimization approach used to obtain discrete trajectories instead of solving the implicit
equations directly. The energy error comparison in Figure 2a shows that the adaptive time step
method has energy error magnitude around 10~!* whereas the fixed time step method has energy
error around 1078, In Figure 2b the energy error for fixed time step increases to 10~® while the
adaptive time step method shows nearly exact energy preservation(of the order of computer pre-
cision minus the condition number of the equations). Although the magnitude of energy error for
fixed time step method is bounded, the magnitude of energy error oscillations depends on where
the trajectory lies in the phase space. Thus, for areas in phase space where the magnitude of
energy error oscillations is substantial for fixed time step method, the adaptive time step method
can be used to preserve the energy of the system more accurately.

Paragraph added for trajectory error plots Trajectory error plots shown in Figure 3 demon-
strate the improved accuracy achieved by adaptive time step variational integrators for both cases.
In Figure 3a both methods exhibit nearly same accuracy with adaptive time step performing
marginally better. The trajectory error comparison in Figure 3b shows the superior performance
of adaptive time step variational integrators for long time simulation. Based on the accuracy
results, we believe adaptive time step variational integrators can provide benefits for numerical
simulation of regions of phase space which show significant changes in the underlying physics.

Figure 4 shows how the adaptive time step oscillates for both cases. The adaptive time step
doesn’t increase substantially compared to the initial time step of hy = 0.01 for the first case in
Figure 4a, while Figure 4b indicates the adaptive time step increases by 4 times the initial time
step for the second case. The amplitude of adaptive time step oscillations depends on the region of
phase space in which the discrete trajectory lies. The adaptive time step algorithm computes the
adaptive time step such that the discrete energy is conserved exactly. There is no upper bound on
the size of the adaptive time step, but very large adaptive time step values make the discretization
assumption made in (43) erroneous leading to inaccurate discrete trajectories.

Remark 4. It is important to understand that adaptive time step variational integrators are
fundamentally different from traditional adaptive time-stepping numerical methods which com-
pute the adaptive time step size based on some error criteria. Adaptive time step variational
integrators treat time as a discrete dynamic variable and the adaptive time step is computed by
solving the extended discrete Euler-Lagrange equations. Thus, the adaptive time step is coupled
with the dynamics of the system whereas, for most of the the adaptive time-stepping numerical
methods, the step size computation and dynamics of the system are independent of each other.

5.1.5 Effect of initial time step

From the discrete energy definition it is clear that the initial time step value plays an important
role in the adaptive time step algorithm. We study the effect of initial time step on the phase space
and energy error plots by simulating the two cases considered in the previous subsection but with
a larger initial time step hg = 0.1 for the adaptive time step. The fixed time step size is chosen
such that number of total time steps is same for both fixed and adaptive time step algorithm.
The phase space trajectories shown in Figure 5 show that even with an initial time step of
ho = 0.1 discrete trajectories from both fixed and adaptive time step show good agreement with
the benchmark solution. In Figure 5a, the discrete trajectories lie on top of the benchmark solution
for the first set of initial conditions. In Figure 5b, the fixed and adaptive time step discrete
trajectories give slightly inaccurate results near the turning point. The discrete energy error
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Figure 5: In these plots, an initial time step of hg = 0.1 is used for the adaptive time step algorithm
to study the effect of initial time step on the accuracy of discrete trajectories.

plots in Figure 6 show that for fixed time step variational integrators, the discrete energy errors
increase with increase in the time step size but for the adaptive time step variational integrators,
increasing the time step size leads to accurate discrete energy behavior. In fact, the accuracy
of energy preservation is slightly better for this case. This unexpected behavior is due to the ill-
conditioned nature of the implicit extended discrete Euler-Lagrange equations, which become more
ill-conditioned for smaller time steps. The plots of condition number in Figure 7 show that the
implicit equations become more ill-conditioned as the initial time step value is decreased. Thus,
numerical computations with finite precision will lead to higher errors in the solution.

It is important to note that for a conservative system, the continuous-time trajectory preserves
the continuous energy which is different from the discrete energy that adaptive time step variational
integrators are constructed to preserve. This explains why, despite the superior energy behavior
in Figure 6b compared to Figure 2b, the discrete trajectory in Figure 5b is less accurate than the
discrete trajectory in Figure 1b. We know that as the time step value tends to zero the discrete
energy and continuous energy become equal but the condition number analysis and the energy
error plots reveal that smaller initial time steps for adaptive time variational integrators lead to
ill-conditioning and finite precision errors in energy. Thus, there is a trade-off between preserving
discrete energy and ensuring overall trajectory accuracy when choosing an initial time step for the
adaptive time step variational integrators.
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Figure 6: The energy error plots with an initial time step of hg = 0.1 for the adaptive time step
algorithm.

Remark 5. The discrete energy error plotted in Figure 2 and Figure 6 is different from our
traditional idea of energy error. We usually define energy error as the difference between the
energy of the continuous-time system and the energy obtained from the discrete trajectories. This
traditional energy error can be broken down into discrete energy error and discretization error.
The discrete energy error is the error in preserving the discrete energy of the extended discrete
Lagrangian system. The discretization error is the error incurred by discretizing a continuous-time
system. Thus, the discretization error is the difference between the continuous energy and the
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Figure 7: The increase in condition number with decrease in initial time step for the adaptive time
step algorithm.

discrete energy that our integrators aim to preserve, whereas the discrete energy error is the error
between the true and computed discrete energy.

Remark 6. For a conservative system, we expect discrete energy to be constant and thus the
discretization error is also constant. Since this constant discretization error is orders of magnitude
larger than the discrete energy error, traditional energy error plots do not show the advantages of
using adaptive time-stepping. We evaluate the performance of variational integrators by comparing
how well these integrators preserve the discrete energy.

5.2 Time-dependent Example

This is a new subsection We consider a forced harmonic oscillator to study the numerical perfor-
mance of the adaptive time step variational integrator for forced Lagrangian systems with explicit
time-dependence. The (continuous) Lagrangian for the single degree of freedom system is

) 1 . 1
L(g,q) = 5md®* — Sk¢? (51)
2 2
and the external forcing is
f = Focos(wpt) (52)

where m is the mass, k is the stiffness, Fy is the magnitude of the force and wpg is the forcing
frequency. For discretization, we use the midpoint rule to obtain the discrete Lagrangian L,

Gk + Gr+1 Qk+1 — Gk
La(tes qr, tet1, qr1) = (Eep1 — ) L ( 2, 2t ) (53)
2 try1 — Uk
Similarly, we can write the discrete force fj[ as
1 wr(t + 1
fi= §Fo(tk+1 — ty;)cos <F(k+21k)> (54)

and the corresponding power term g;t as

- 1 wp(lg+1 +1 -
gfit _ _fdi <3k+1 Qk> — S Fy(trsr — te)cos ( F(trtt k)) <(1k+1 Qk> (55)
k41— tk 2 2 the1 — tk

The discrete momentum py1 and discrete energy Ej 1 expressions are

Pit1 = DaLa(tr, Qs tirrs qosr) + [

- Fo(t —1 t t 56
L A . ki otrsr —tn) o (@r(ters + 1) (56)
thtr1 — tk 4 2 2

Ery1 = —D3La(tk, qrs tit1, Gos1) — 9

1 dk+1 — 4k S| qQk + Qk+1 2 Fy wr(tprr + tr) (57)
=35 P k| — -9 WE\lk41 T Uk) B
2" (tk+1 — * 2 2 + g €08 2 (qk+1 — k)
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For given (tx,qx, Ex,pk), the time-marching implicit equations for the forced harmonic oscillator
are obtained by substituting the discrete Lagrangian (53) and discrete force expressions (54)-(55)
into (34) and (35)

+ + Fo(t -1 t +1
m <Qk+1 Qk) k(e — ) <Qk+1 Qk) n oth+r —th) (WF( k1 k)) e (58)

thtr1 — ke 4 2 2
2 2
1 qr+1 — Gk 1 (k1 +ar Iy wWr(te+1 + tr)
Sy (TR TR 2 (Dt TGRSO (WP TR T PR ) =E 59
5™ (tk+1 —. ) T3 5 5 €08 5 (qk+1 — ar) = Ex (59)

We re-write the above two coupled nonlinear equations in terms of the k** adaptive time step

Tet1 =k
h h
¥ cos <wF <tk + ;)) —pr=0 (60)

tey1—tk
1 1 ho N2 Foh h
G(qr,tg, Eg, hi,vp) = imv,% + ik (qk + kzvk> _ 20 ;vk cos (wF <tk + ;)) —Ex =0 (61)

hi = tk41 — tx and v, = (

kh F
F(qx, tk, pr, hie, ) = mug + T’“(qu + hyog) + —
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Figure 8: Three forcing frequency ratio values are studied for the forced harmonic oscillator system.
Discrete trajectories for both fixed time step and adaptive time step variational integrators are
plotted and compared with the analytical solution for an initial time step hy = 0.01 for the
adaptive time step algorithm and natural frequency w,, = 2 rad/s.

5.2.1 Results

We have studied the forced harmonic oscillator for three values of the forcing frequency ratio

o = ZE for w, =,/ % = 2 rad/s to understand the numerical performance of adaptive time

step variational integrators for systems with explicit time-dependence. The discrete trajectories
from both fixed and adaptive time step variational integrators are compared in Figure 8 and both
discrete trajectories agree favorably with the analytical solution for all three cases.
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Energy error plots for all three cases in Figure 9 show the superior energy behavior of adaptive
time step variational integrators for systems with explicit time-dependence. The energy error
comparison in Figure 9a shows that the adaptive time step method has energy error magnitude
around 10~* whereas the fixed time step method has energy error around 10~2. In Figure 9b and
Figure 9c the energy error for fixed time step increases to 107! with increase in forcing frequency
while the adaptive time step method still shows an energy error around 10~%4. Thus, adaptive time
step method predict change in energy more accurately than fixed time step methods for systems
with explicit time-dependence and can be used to numerically simulate nonautonomous oscillatory
systems with external forcing.

The trajectory error plots in Figure 10 show how both adaptive and fixed time step integrators
have similar accuracy for low forcing frequencies but, as the forcing frequency increases, the fixed
time step variational integrators show better trajectory accuracy. These trajectory error results in
Figure 10 are contrary to the trend of superior trajectory performance observed for conservative
example in Figure 3. In Figure 10a both fixed and adaptive time step variational integrators show
same trajectory error. The comparison in Figure 10b and Figure 10c show how adaptive time step
variational integrators start with more accurate trajectory but, as we march forward in time, the
fixed time step variational integrator exhibits lower trajectory error, especially in the case of 0 = 5.
This can be understood if we look at the time step adaptation.

Figure 11 shows the change in adaptive time step over the simulation time for different forcing
frequencies. For all three cases, the adaptive time step starts from hg = 0.01 but oscillates sig-
nificantly for higher 0. o = 0.1 leads to a time step range of 0.0095 — 0.0105 which increases to
0.007 — 0.022 for 0 = 5. Figure 11c shows the adaptive time step for ¢ = 5 quickly rise to double
its initial time step hg = 0.01 and the trajectory error (see Figure 10c)also rises sharply during
the increase in adaptive time step. Since the adaptive time step algorithm captures the flux of
energy over an oscillation accurately , the error comes back to zero in every oscillation and hence
the trajectory does deviate from the analytical trajectories in Figure 10c.

= : =
o ; o
@404t - @
1077 >
= [ =
g 2
6!
Wy 6f ! w
1
- -Adaptive time step
sl Fixed time step
10°
0 2

- -Adaptive time step
Fixed time step

Figure 9: Energy error for fixed time step and adaptive time step variational integrators are
compared for three forcing frequencies. Analytical solution at the discrete time instant is used to
compute the continuous energy.
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Figure 10: Trajectory error for fixed and adaptive time step variational integrators for the forced
harmonic oscillator are compared for three forcing frequency values.

5.3 Dissipative Example
We consider a damped harmonic oscillator in order to better understand the numerical behavior

of the adaptive time step variational integrator for forced Lagrangian systems. Similar to the
time-dependent example, the Lagrangian is given by (51) and the dissipative force is

f=—cq (62)

where c¢ is the damping parameter of the single degree of freedom system. For the discrete La-
grangian Ly, we use the midpoint rule which gives

Gk + Qk+1 Qk+1 — Gk
La(te, qrths1s Gor1) = (b1 — ) L ( o ) (63)
2 tryr1 — Uk
Similarly, we can write the discrete force ff as
1 Qk+1 — Gk
fif == et — 1) (222 (64)
2 lpt1 — ti
and the corresponding power term gdjE is
2
Jk+1 — Gk 1 Jk+1 — Gk
95 =—I7 (> = Sc(tes1 — ti) () (65)
tet1 — T 2 thr1 — T

The discrete momentum py1 and discrete energy Ej1 expressions are

Ph1 = DaLa(te, Gy thrr, Grer) + fif

— - 66
—m (Qk+1 Qk> — K(trgr — ti) (qk +4Qk+1> e <Qk+12 Qk> (66)

tet1 — Tk

Epy1 = —D3La(tk, qrs ths1, Gos1) — 9
B S ’ Ll (Tt g * o gk — @)’
2 teyr1 — Lk 2 2 2\ tgpt1 —tk
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Figure 11: Adaptive time step versus the time for the time-dependent example.

For given (tg,qx, Fx,pr), the time-marching implicit equations are obtained by substituting the
discrete Lagrangian and discrete force expressions into (34) and (35)

+ + -
- (M) k(e — ) (W) — oltisr —t) (q’”lzq’“) =p. (68)

ter1 — Tk
1 Qo1 —ar )" | 1 G — a1 (G Fan\’
+1 — +1 — +
S . L2 Ze(tpar — tg) [ 22 SE(EE ) —F 69
Qm(thrl—tk) +elten k)<tk+1—tk) T3 ( 2 ) ¥ (69)

The above two coupled nonlinear equations in g1 and t;y1 are solved with the restriction
tg+1 > tr and substituted in (66) and (67) to obtain the discrete momentum pyiq and dis-
crete energy FEjyq for the next step. We re-write the above time-marching equations in terms

of hy, = tp+1 — ti and vy, = (7%“_%)

th+1—tk
Iy 1
F(qrs prs by vi) = mug + Z(qu + hyor) + §Chkvk —pr=0 (70)
1 1 1 hpvg \ 2
Glaw, B by o) = mef + gehio + ok (q’“ 7 k) B =0 (71)

Remark 7. Since the Lagrangian and the forcing for this example are both time-independent,
we can simplify the implicit equations by replacing ty,1 — tx by the k** adaptive time step hy
as shown above. For time-dependent mechanical systems with either time-dependent Lagrangian
or time-dependent forcing, this simplification cannot be made and discrete time terms can not be
eliminated from the implicit equations, as shown in forced harmonic oscillator numerical example
in Section 5.2. Modified this comment

5.3.1 Results

We have studied the damped simple harmonic oscillator for three small damping values of the

C

damping ratio ¢ = Wi for a single natural frequency w, = \/% = 2 rad/s to understand the
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Figure 12: Three damping ratio values are studied for the spring mass damper system. Discrete
trajectories for both fixed time step and adaptive time step variational integrators are plotted
and compared with the analytical solution. The analytical solution is used to prescribe initial
conditions for an initial time step hg = 0.01 for the adaptive time step and natural frequency
wp, =2 rad/s.

numerical properties of adaptive time step variational integrators derived for forced systems in
Section 4. Just like the conservative case, our aim is to simulate the continuous-time dynamical
system using discrete trajectories obtained from the adaptive time step variational integrator. The
discrete trajectories from both fixed and adaptive time step algorithms are compared in Figure 12.
Both are nearly indistinguishable from the analytical solution for all three cases.

The energy error plots in Figure 13 show how both adaptive and fixed time step variational
integrators start with same energy accuracy for all three cases with adaptive time step performing
better initially. As we march forward in time, the fixed time step variational integrator outperforms
the adaptive time step variational integrator. The amplitude of the energy error oscillations for
the fixed time step algorithm decreases faster than it does for the adaptive time step algorithm
which suggests that for long-time simulations the energy behavior of fized time step variational
integrator is better than the adaptive time step variational integrator. This is contrary to what
we expected because the adaptive step variational integrator solves an additional discrete energy
evolution equation to capture the change in energy of the forced system accurately.

These unexpected results can be understood by looking at the two components of the energy
error discussed in the Remark 5. Due to exact preservation of discrete energy, the discrete energy
error for adaptive time step variational integrators is orders of magnitude lower than it is for
the fixed time step variational integrator. Unlike the conservative system example considered
in Section 5.1, the continuous energy and the corresponding discrete energy, for this dissipative
system, are not constant. Thus, the energy errors are computed by comparing the continuous
energy with the discrete counterpart. The discrete energy for forced Lagrangian systems has terms
accounting for virtual work done by the external force during the adaptive time step and hence the
adaptive time step variational integrators are preserving a discrete quantity which is not analogous
to the continuous time energy. Since the difference between continuous and discrete energy is orders
of magnitude larger than the discrete energy error of the variational integrator, the resulting energy
error plots do not reflect the advantage of using adaptive variational integrators over fixed time
step variational integrators.

Another reason behind the higher energy error for adaptive time step variational integrators is
the monotonically increasing adaptive time step shown in Figure 15. The velocity approximation
g~ q’“%k_q’" used in computing the discrete energy becomes more inaccurate as the adaptive time
step increases. As we go forward in time, the adaptive time step hx keeps on increasing leading to
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Figure 13: Energy error for fixed time step and adaptive time step variational integrators are
compared for three cases. Analytical solution at the discrete time instant is used to compute the
continuous energy.

higher energy error for adaptive time step variational integrators. Thus, the magnitude of energy
error for adaptive time does not decrease as quickly as it does for fixed time step variational
integrators.

Additional paragraph to explain why adaptive time step is increasing We believe the lower order
midpoint approximation used for the discrete power term in (65) is the reason behind monotonically
increasing adaptive time step which leads to inaccurate energy behavior in Figure 13. The discrete
power terms gff approximate the total work done due to time variations over an adaptive time
step. Since the external forcing (62) is linearly proportional to the velocity ¢, the integrand in
(28) will be second order in ¢. The discrete power terms gdjE in (65) approximate the integral by
assuming the integrand value is constant over the adaptive time step and is equal to the value of
the integrand at the midpoint % For cases where the integrand is linear in ¢, like in (55),
the midpoint approximation works quite well yielding bounded time adaptive time steps. For the
dissipative case the midpoint approximation does not capture the work done accurately resulting
in increasing adaptive time step. In future, we plan to employ a higher order approximation for
discrete power terms and study its effect on the adaptive time step and energy performance.

Added paragraph about trajectory accuracy plotsThe trajectory error plots for three cases
in Figure 14 show the superior trajectory accuracy of adaptive time step variational integrators
for dissipative systems. Due to the discretization error and changing discrete error, the increase
in accuracy is not as significant as in Figure 3. The comparison in Figure 14a shows that both
fixed and adaptive algorithms have almost same accuracy with adaptive method being marginally
better. With increase in damping ratio, Figure 14b and Figure 14c exhibit the improved accuracy
achieved by adaptive time step variational integrators. But again by the end, the accuracy of fixed
time algorithm becomes similar as the adaptive time step increases.

In Figure 15 the adaptive time step evolution over time for all three damping parameter values
is plotted. For all three cases, the adaptive time step was found to be monotonically increasing.
This is not good for a numerical algorithm as eventually it would lead to numerical instability. We
have also studied the damped harmonic oscillator system for negative damping parameter values
and the results for those systems showed a uniformly decreasing adaptive time step. Thus, there

18



x10° ‘ x107°

8 " 8
= —_
o6 . ] 56 T —
= ---Adaptive time step A H e .A‘daph\‘/e time step
) —Fixed ti t 7 { ) Fixed time step
> ixed time step N / / >
g4 Y AR Y g4
3 SNV 3
2 U B B v Q@
g ~ vV @
=2 R N 2
[ VA Y A
0 e ! \',' A \‘,' 'v: 0 L
0 2 4 6 8 10 0
Time Time
(a) ¢ =0.001 (b) ¢ = 0.005
-5
1
g X 0
= ---Adaptive time step
o6 - Fixed time step 1
@ /
fa
o4
o
R
T
=2
0 _‘_.a";
0
Time
(c) ¢=0.01

Figure 14: Trajectory error for fixed and adaptive time step variational integrators for the damped
harmonic oscillator are compared for three damping ratio values.

seems to be some inverse relation between the rate of change of energy and the rate of change of
the adaptive time step. Again, a higher oder approximation of discrete power terms should be
investigated to alleviate this adaptation.

6 Conclusions and Future work

Modified conclusions and future work In this work we have presented adaptive time step vari-
ational integrators for time-dependent mechanical systems with forcing. We have incorporated
forcing into the extended discrete mechanics framework so that the resulting discrete trajectories
can be used as numerical integrators for Lagrangian systems with forcing. The paper first pre-
sented the Lagrange-d’Alembert principle in the extended Lagrangian mechanics framework and
then derived the extended forced discrete Euler-Lagrange equations from the discrete Lagrange-
d’Alembert principle. We demonstrated a general method to construct adaptive time step vari-
ational integrators for systems with time-dependent forcing through a forced harmonic oscillator
example. The results from the numerical example showed that the adaptive time step algorithm
predicts the change in the energy of the nonautonomus system more accurately than the fixed time
step method.

We have also presented results for a nonlinear conservative system by solving the discrete
equations exactly, as opposed to the optimization approach suggested in [9]. The energy error
results show the advantage of solving discrete equations exactly for adaptive time step variational
integrators. We have studied the effect of initial time step on energy error and phase space
trajectories and also shown how the discrete equations become more ill-conditioned as the initial
time step becomes smaller.

For the damped harmonic oscillator example, contrary to expectation, the fixed time step vari-
ational integrator outperforms the adaptive time step variational integrator in energy performance.
The adaptive time step for the dissipative system was found to be monotonically increasing which
makes the algorithm unsuitable for long-time simulation. We believe the lower order approximation
used in discrete power term is the reason behind this unexpected behavior.

In future work, we would like to study the connection between order of approximation used
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Figure 15: Adaptive time step versus the time for the dissipative example.

for discretization and the adaptive time step for the example of the damped harmonic oscillator.
It would also be desirable to investigate the numerical performance of variational integrators for
mechanical systems with explicitly time-dependent Lagrangian.
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