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Algorithms, architectures, and applications

he design of conventional sensors is based primarily on the

Shannon-Nyquist sampling theorem, which states that a

signal of bandwidth W Hz is fully determined by its dis-

crete time samples provided the sampling rate exceeds 2 W
samples per second. For discrete time signals, the Shannon—
Nyquist theorem has a very simple interpretation: the number of
data samples must be at least as large as the dimensionality of
the signal being sampled and recovered. This important result
enables signal processing in the discrete time domain without
any loss of information. However, in an increasing number of
applications, the Shannon-Nyquist sampling theorem dictates
an unnecessary and often prohibitively high sampling rate (see
“What Is the Nyquist Rate of a Video Signal?”). As a motivating
example, the high resolution of the image sensor hardware in
modern cameras reflects the large amount of data sensed to cap-
ture an image. A 10-megapixel camera, in effect, takes
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10 million measurements of the scene. Yet, almost immediately
after acquisition, redundancies in the image are exploited to
compress the acquired data significantly, often at compression
ratios of 100:1 for visualization and even higher for detection
and classification tasks. This example suggests immense wast-
age in the overall design of conventional cameras.

Compressive sensing (CS) (see “CS 101" and [6], [14], [16],
and [24]) is a powerful sensing paradigm that seeks to allevi-
ate the daunting sampling rate requirements imposed by the
Shannon—Nyquist principle. CS exploits the inherent structure
(or redundancy) within the acquired signal to enable sampling
and reconstruction at sub-Nyquist rates. The signal structure
most commonly associated with CS is that of sparsity in a
transform basis. This is the same structure exploited by image
compression algorithms, which transform images into a basis
[e.g., using a wavelet or discrete cosine transform (DCT)]
where they are (approximately) sparse. In a typical scenario,
a CS still-image camera takes a small number of coded, linear
measurements of the scene—far fewer measurements than the
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number of pixels being reconstructed. Given these measure-
ments, an image is recovered by searching for the image that
is sparsest in some transform basis (wavelets, DCT, or other)
while being consistent with the measurements.

In essence, CS provides a framework to sense signals with
far fewer measurements than their ambient dimensionality (i.e.,
Nyquist rate), which translates to practical benefits including
decreased sensor cost, bandwidth, and time of acquisition. These
benefits are most compelling for imaging modalities where sens-
ing is expensive; examples include imaging in the nonvisible
spectrum (where sensors are costly), imaging at high spatial and
temporal resolutions (where the high bandwidth of sensed data
requires costly electronics), and medical imaging (where the time
of acquisition translates to costs or where existing equipment is
too slow to acquire certain dynamic events). In this context, archi-
tectures like the single-pixel camera (SPC) [27] provide a prom-
ising proof of concept that still images can be acquired using a
small number of coded measurements with inexpensive sensors.

There are numerous applications where it is desirable to
extend the CS imaging framework beyond still images to incor-
porate video. After all, motion is ubiquitous in the real world,
and capturing the dynamics of a scene requires us to go beyond
static images. A hidden benefit of video is that it offers tremen-
dous opportunities for more dramatic undersampling (the ratio
of signal dimensionality to measurement dimensionality). That

is, we can exploit the rich temporal redundancies in a video to
reconstruct frames from far fewer measurements than is pos-
sible with still images. Yet the demands of video CS in terms
of the complexity of imaging architectures, signal models, and
reconstruction algorithms are significantly greater than those of
compressive still-frame imaging.

There are three major reasons that the design and imple-
mentation of CS video systems are significantly more difficult
than those of CS still-imaging systems. The first challenge is
the gap between compression and CS. State-of-the-art video
models rely on two powerful ideas: first, motion fields enable
the accurate prediction of image frames by propagating inten-
sities across frames; second, motion fields are inherently more
compressible than the video itself. This observation has led
to today’s state-of-the-art video compression algorithms (not
to be confused with CS of videos) that exploit motion infor-
mation in one of many ways, including block-based motion
estimation (MPEG-1), per-pixel optical flow (H.265), and
wavelet lifting (LIMAT). Motion fields enable models that
can be tuned to the specific video that is being sensed/pro-
cessed. This is a powerful premise that typically provides an
order of magnitude improvement in video compression over
image compression.

The use of motion fields for video CS raises an important
challenge. Unlike the standard video compression problem,

What Is the Nyquist Rate of a Uideo Signal?

Conventional videos, sampled at 24-60 frames/second
(fps), may, in fact, be highly undersampled in time—
objects in the scene can move multiple pixels between
adjacent frames. Some compressive sensing (CS) architec-
tures, however, measure a video at a much higher tempo-
ral rate. For example, the single-pixel camera (SPC) may
take tens of thousands of serial measurements per second.
In such cases, the scene may change very litle between
adjacent measurements. This raises some interesting ques-
tions: what is the Nyquist rate of a video signal, and how
does it compare to CS measurement rates?

One can gain insight into these questions by considering
the three-dimensional analog video signal that arrives at a
camera lens; both conventional and CS imaging systems
can be viewed as blurring this signal spatially (due to the
optics and the pixelated sensors) and sampling or measuring
it digitally. If a video consists of moving objects with sharp
edges, then the analog video will actually have infinite band-
width in both the spatial and temporal dimensions. However,
it can be argued that the support of the video's spectrum will
tend to be localized info a certain bowtie shape, as shown
in blue in Figure S1. The salient feature of this shape is that
high temporal frequencies coincide only with high spatial
frequencies. Thus, because of the limited spatial resolution of
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FIGURE $1. The limited spatial resolution of an imaging system may
also limit its temporal bandwidth.

both the camera optics and the pixel sensors, when the spa-
tial bandwidth of the video is limited, so too is its temporal
bandwidth, as illustrated by the black rectangle in the figure.
This suggests that the video sensed by architectures such as
the SPC may in fact have a finite temporal bandwidth, and
this fact can be used to reduce the computational complexity
of sensing and reconstructing the video. In particular, it is not
necessary to reconstruct at a rate of thousands of fps.
Additional details are provided in [62].
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Compressive sensing (CS) exploits the fact that a small and
carefully selected set of nonadaptive linear measurements of a
compressible signal, image, or video carries enough informo-
tion for reconstruction and processing [16], [24]; for a tutorial
treatment see [6], [14].

The traditional digital data acquisition approach uniformly
samples the three-dimensional analog signal corresponding
to the time variations of a scene; the resulting samples
V[x,y,t] in space (x, y) and time (f) are sufficient to perfectly
recover a bandlimited approximation to the scene at the
Nyquist rate. Let the abstract vector s represent the Nyquist-
rate samples of the scene V([x, y, t]; see “What Is the Nyquist
Rate of a Video Signal2” for a discussion of the Nyquist rate
of a time-varying scene. Because the number of samples
required for realworld scenes, N, is often very large, for
example, in the billions for today’s consumer digital video
cameras, the raw image data is typically reduced via data
compression methods that typically rely on fransform coding.

As an alternative, CS bypasses the Nyquist sampling
process and directly acquires a compressed signal
representation using M < N linear measurements
between s and a collection of linear codes {¢[m]}m-, as
in y[m] =(s,¢[m] ). Stacking the measurements y[m] into
the M-dimensional vector y and the transpose of the
codes ¢[m]" as rows info an Mx N sensing matrix ®,
we can write y = @s.

The transformation from s to y is a dimensionality reduction
and does not, in general, preserve information. In particular,
because M < N, there are infinitely many vecfors s’ that sat-
isfy y=®s. The magic of CS is that ® can be designed
such that sparse or compressible signals s can be recovered
exactly or approximately from the measurements y.

where the frames of the video are explicitly available to per-
form motion estimation, in CS, we have access only to coded
and undersampled measurements of the video. We are thus
faced with a chicken-or-egg problem. Given high-quality video
frames, we could precisely estimate the motion fields; but
we need precise motion estimates in the first place to obtain
high-quality video frames. The second challenge is the laws of
causality and imaging architectures. Time waits for no one. A
distinguishing property of the video sensing problem over still
imaging is the fundamental difference between space and time.
The ephemeral nature of time poses significant limitations on
the measurement process—clearly, we cannot obtain additional
measurements of an event after it has occurred. As a conse-
quence, it is entirely possible that a compressive camera does
not capture a sufficient number of measurements to recover the
frames of the video. Overcoming this challenge requires both
an understanding of the spatial-temporal resolution tradeoffs
associated with video CS and development of novel compressive

By sparse, we mean that only K< N of the entries in s are
nonzero, or that there exists a sparsifying transform ¥ such
that most of the coefficients of a:= ¥'s are zero. By compress-
ible, we mean that s or o is approximately sparse. Let
Y= [y1,y2,...,wn| represent the inverse of the N x N
basis mafrix; then, s= ¥ 'a and y = ®s = d¥ .

Typically in CS, the sparse signal s or its sparse coeffi-
cients o is recovered by solving an optimization problem
of the form (1), where f measures the fidelity of the recov-
ery (e.g., using the squared error [y — ®¥'a[2) and g is
a regularization penalty (e.g., the ¢i-norm [all;, which
promotes sparsity of a). In these cases, the resulting prob-
lem is convex, which guarantees a single global minimizer
that can be found using a range of algorithms.

While the design of the sensing matrix @ is beyond the
scope of this review, typical CS approaches employ a ran-
dom matrix. For example, we can draw the entries of @ as
independent and identically distributed &= 1 random vari-
ables from a uniform Bernoulli distribution [8]. Then, the
measurements y are merely M different sign-permuted linear
combinations of the elements of s. Other choices for ®
exist in the literature, such as randomly subsampled Fourier
or Hadamard bases. In this case, multiplication by ® can be
accomplished using fast transform algorithms, which enables
faster reconstruction than is possible with random matrices.

It is important to emphasize that CS is not a panacea for
all the world’s sampling problems [7]. In particular, to
apply the concept profitably, it is critical that the signal s
possess a lower inherent dimensionality than its ambient
dimensionality (e.g., sparse structure) and that the degree
of undersampling N/M be balanced with respect to the
signal’s signalto-noise ratio [22].

imaging architectures that can deliver very high measurement
rates or reconstruct at different resolutions depending on the
available data. The third challenge is computational complex-
ity. Even moderate resolution videos result in high bandwidth
streaming measurements. Typical CS video recovery algorithms
are highly nonlinear and often involve expensive iterative opti-
mization routines. Fast (or even real-time) reconstruction of CS
video is challenging because it requires a data measurement sys-
tem, fast iterative algorithms, and high-performance hardware
jointly designed to enable sufficiently high throughout.

The goal of this article is to overview the current approach-
es to video CS and demonstrate that significant gains can be
obtained using carefully designed CS video architectures and
algorithms. However, these gains can only be realized when
there is cohesive progress across three distinct fields: video
models, compressive video sensing architectures, and video
reconstruction algorithms. This article reviews progress that
has been made in advancing and bringing these fields together.
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We discuss some of the landmark results in video CS and high-
light their key properties and the rich interplay among models,
architectures, and algorithms that enable them. We also lay out
aresearch agenda to attack the key open research problems and
practical challenges to be resolved in video CS.

Video sensing systems

In this section, we discuss the current compressive imaging

architectures that have been proposed for CS video. The archi-

tectures can be broken down into three categories (see Table 1).

m Spatial multiplexing cameras (SMCs): SMCs optically
superresolve a low-resolution sensor to boost spatial resolu-
tion. SMCs are invaluable in regimes where high-resolution
sensors are unavailable, as in terahertz/millimeter-wave and
magnetic resonance imaging (MRI), or extremely costly,
as in short or medium wavelength infrared (SWIR and
MWIR) sensing.

m Temporal multiplexing cameras (TMCs): TMCs optically
superresolve a low-frame-rate camera to boost temporal
resolution. TMCs are mainly used to overcome the limita-
tions imposed on the measurement rate by the analog-to-
digital converter (ADC) and are optimized to produce a
high-frame-rate video at high spatial resolution with low-
frame-rate sensors.

m Spectral and angular multiplexing cameras (SAMCs):
SAMCs boost resolution in the spectral domain, which
can be useful for hyperspectral and light-field video sens-
ing. As with TMCs, the bottleneck of these architectures is
also the measurement rate constraint imposed by the ADC.
Each of these flavors of a CS system aims to break the

Nyquist barrier to obtain either higher spatial, temporal, or

spectral resolution. In the following sections we discuss the

key design considerations and existing implementations of
these three camera types.

SMCs

SMCs apply CS multiplexing in space to boost the spatial
resolution of images and videos obtained from sensor arrays
with low spatial resolution. The use of a low-resolution sen-
sor enables SMCs to operate at wavelengths where corre-
sponding full-frame sensors are too expensive, such as at
SWIR, MWIR, terahertz, and millimeter wavelengths. SMCs
employ a spatial light modulator, such as a digital micro-
mirror device (DMD) or liquid crystal on silicon (LCoS), to
optically compute a series of coded inner products with the
rasterized scene s; these linear inner products determine
the rows of the sensing matrix @ (recall the notation from
“CS 1017). It is worth mentioning that the SMC approach

Table 1. The key architectures for CS video and their properties.

Type Name Application Modulator
SMC SPC Infrared DMD
imaging
LiSens/FPA-CS Infrared DMD
imaging
TMCs Coded strobing High-speed Mechanical/
imaging ferroelectric shutter
Flutter shutter High-speed Mechanical/
imaging ferroelectric shutter
P2C2 High-speed LCoS
imaging
Per-pixel shutter High-speed LCoS/electronic
imaging shutter
CACTI High-speed Translating mask
imaging
Lightfield video Dynamic LCoS, used as
refocusing programmable
coded aperfure
Hyperspectral CASSI Spectroscopy  Static mask
video

Best-known capabilities Limitations

Spatial resolution 128 x 128
Time resolution 64 fps
Result [27]

Spatial resolution 1,024 x 768
Time resolution 10 fps
Result [19], [78]

Spatial resolution (sensor)
Time resolution 2,000 fps
Result [75]

Operational speed of DMD

Need for precise optical
alignment/calibration

Periodic scenes

Spatial resolution (sensor)
Time resolution 4 X sensor fps

Result [64]

Locally linear motion

Spatial resolution (sensor)
Time resolution 16 X sensor fps
Result [65]

Dynamic range of sensor

Spatial resolution (sensor) Light loss
Time resolution 16 X sensor fps
Result [39]

Spatial resolution (sensor) Mechanical motion
Time resolution 100 X sensor fps

Result [51]

Time resolution sensor fps

Result [71]

Loss of spatial resolution can
be severe for high spectral/
angular resolutions

Time resolution sensor fps
Result [76]

fps: frames/second; FPA: focal plane array; P2C2: programmable pixel compressive camera; CACTI: coded aperture compressive temporal imaging; CASSI: coded aperfure

snapshot spectral imaging.
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is equally applicable to modalities outside

Fast (or even real-time)

images onto a single sensor, the spatial res-

the scope of this article, such as MRI [52], reconstruction of CS olution is limited by the density of mirrors
where the physics of image formation pro- = : = on the DMD.
u is challengin
duces a measurement system that can be b oo Is (El alle g 9 dat Since the proposal of the original SPC in
interpreted as subsampling the Fourier ecause It requires a tata [27], numerous authors have developed alter-
transform of the sensed image. measurement system, native SPC architectures that do not require a
fast iterative algorithms, DMD for spatial light modulation. In [41], a
SPC and high-performance liquid-crystal display panel is used for spatial
The SPC [27] acquires images using only a hardware jointly designed light modulation; the use of a transmissive
single sensor element (i.e., a single pixel) to enable sufficiently light modulator enables a lensless architec-
and taking significantly fewer multiplexed high throughout ture. Sen and Darabi [70] use a camera-pro-

measurements than the number of scene
pixels. In the SPC, light from the scene is
focused onto a programmable DMD, which directs light from
a subset of activated micromirrors onto the single photodetec-
tor. The programmable nature of the DMD’s micromirror ori-
entation enables one to direct light either toward or away from
the photodetector. As a consequence, the voltage measured at
the photodetector corresponds to an inner product of the
image focused on the DMD and the micromirrors directed
toward the sensor (see Figure 1). Specifically, at time ¢, if the
DMD pattern is represented by ¢[f] and the time-varying
scene by V[x,y,?] (where x and y are the two spatial dimen-
sions and ¢ is the temporal dimension), then the photodetector
measures a scalar value y[f] =(¢[f],V[-,-,f] )+e[t], where
(-, denotes the inner product between the vectors and e[f]
accounts for the measurement noise. If the scene is static, that
is, V[x,y,f] = Vo[x,y], then the measurement vectors can be
stacked as columns into a measurement matrix, with
D =[p1,902,...,0m] T The SPC leverages the relatively high
pattern rate of the DMD, which is defined as the number of
unique micromirror configurations that can be obtained in
unit time. This pattern rate, typically 10-20 kHz for commer-
cially available devices, defines the measurement bandwidth
(i.e., the number of measurements per second) and is one of
the key factors that defines the achievable spatial and tempo-
ral resolutions. Because SPCs rely on the DMD to modulate

Photodetector

jector system to construct an SPC exploiting
a concept referred to as dual photography
[69]; the hallmark of this system is its use of active and coded
illumination that can be beneficial in certain applications, par-
ticularly microscopy.

Beyond SPCs—Multipixel detectors

As mentioned previously, the measurement rate of an SPC
is limited by the pattern rate of its DMD, which is typically
in the tens of kilohertz. This measurement rate can be insuf-
ficient for scenes with very high spatial and temporal reso-
lutions. This issue can be combatted using an SMC with
F sensor pixels (photodetectors), each capturing light from
a nonoverlapping region of the DMD. The measurement
rate of the SMC increases linearly with the number of pho-
todetectors. Taking into account that the maximum mea-
surement rate is capped by the sampling rate of the ADC,
we can write the measurement rate for an SMC with F
photodetectors as

min{F X Rpmp, Rapc},

where Rpwmp is the pattern rate of the DMD and Rapc is the
sampling rate of the ADC. Hence, the smallest number of pho-
todetectors for which the measurement rate is maximized is

(minimum number of sensor pixels) Fmin = Rapc/Rpmp.

Image Binary
Focused on Pattern on
the DMD the DMD

FIGURE 1. The operation principle of the SPC. Each measurement corresponds to an inner product between the binary mirror—-mirror orientation pattern on

the DMD and the scene to be acquired. (Figure courtesy of [67].)
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In essence, at F' = Fuin We can obtain the measurement rate of
a full-frame sensor but using a device with potentially a frac-
tion of the number of photodetectors. This can be invaluable
for sensing in many wavebands, for example, SWIR.

As a case study, consider an SMC with a DMD pat-
tern rate Rpmp = 10 kHz and an ADC with a sampling rate
Rapc = 10 MHz. Then, for a sensor with Fumin = 1,000 pixels,
we can acquire 10 million measurements per second. An SPC, in
comparison, would acquire only 10,000 measurements per sec-
ond. Consequently, multipixel SMCs can acquire videos at sig-
nificantly higher spatial and temporal resolutions than an SPC.

There have been many multipixel extensions to the SPC
concept. The simplest approach [46] maps the DMD to a
low-resolution sensor array, as opposed to a single photodetec-
tor, such that each pixel on the sensor observes a nonoverlapping
patch or a block of micromirrors on the DMD. SMCs based on
this design have been proposed for sensing in the visible [78],
SWIR [19], and MWIR [54]. Figure 2 shows an example of
the increased measurement rates offered by the LiSens camera
[78], which uses a linear array of 1,024 photodetectors. More
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recently, there have also emerged multipixel multiplexing-based
cameras that completely get rid of the lens and replace the lens
with a mask and computational reconstruction algorithms [2].

TMCs

TMCs apply CS multiplexing in time to boost the temporal res-
olution of videos obtained from sensor arrays with low tempo-
ral resolution. Again, let V[x,y,?] be a three-dimensional (3-D)
signal representing a time-varying scene. Due to the assumed
low frame rate of the sensor, we obtain a scene measurement
once every T seconds, where T is too large. If the SLM has an
operational speed of one pattern every 7sLm seconds, then each
measurement of a TMC takes the form of a coded image:

Cc—1

yley,tol = X ¢1x,y,j1VIx,y,t0+ jTsLul,
j=0

where ¢[x,y,j] is the attenuation pattern on the SLM at spatial
location (x, y) and time j7sim. Here, each coded image mea-
sured by the TMC multiplexes C frames of the high-speed

Objective
Lens

LiSens
768 x 1,024

Capture Duration
0.88 s

0.11s

|

SPC
128 x 128

FIGURE 2. The multipixel SMCs support significantly higher sensing rates than an SPC. (a) The measurement rate as a function of the number of sensor
pixels. An optimized SMC with Frin pixels delivers the highest possible measurement rate. (b) Lab prototypes of the SPC and LiSens cameras, each placed
on the one arm of a single DMD. The measurement rate of the LiSens camera is nearly 1 MHz, while that of the SPC is 20 kHz. (c) Comparisons between
LiSens, which uses 1,024 sensor pixels, and an SPC for a static scene. Each row corresponds to a different capture duration, defined as the total amount
of time that the cameras have for acquiring compressive measurements. The larger measurement rate of the LiSens camera enables it to sense scenes
with very high spatial resolution even for small capture durations. (Photos courtesy of [78].)
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video, and hence, we obtain one coded SMCs apply CS examples include hyperspectral CS video
image every CTsLm seconds. Our goal is to multiplexing in space cameras that sense spatial, spectral, and
recover the frames of the high-speed video - temporal variations of light in a scene and
. to hoost the spatial . . .

VIx,y,kTsLm] from a single or a sequence ; i light-field video cameras that sense spatial,
of coded images/measurements. I'esml_lllﬂn of Im_ages angular, and temporal variations. In both

and videos obtained from cases, imaging at high resolution across all
Global shutters sensor arrays with modalities simultaneously requires that we

The simplest instance of a TMC uses a glob-
al shutter together with a conventional cam-
era. In a global shutter, the SLM code
D[x,y,j1 = @[] is spatially invariant, which can be imple-
mented by using a programmable shutter or by using the image
sensor’s built-in electronic shutter. Veeraraghavan et al. [75]
showed that periodic scenes can be imaged at very high tempo-
ral resolutions using a global shutter [64]. This idea has been
extended to nonperiodic scenes in [40], where a union-of-sub-
space model was used to temporally superresolve the captured
scene. However, global shutters are fundamentally limited to
providing only spatially invariant coding of the video; this can
be insufficient to provide a rich-enough encoding of a high-
speed video. Hence, in spite of their simplicity, global shutters
fail for scenes with complex motion patterns.

Perpixel shutters

Reddy et al. [65] proposed the programmable pixel compressive
camera (P2C2), which extends the global shutter idea with per-
pixel shuttering. Here, each pixel has its own unique code that is
typically binary valued and pseudorandom. The P2C2 architec-
ture uses an LCoS SLM placed optically at the sensor plane and
carefully aligned to a high-resolution two-dimensional (2-D)
sensor. The P2C2 prototype achieves 16 X temporal superreso-
lution, even for complex motion patterns. Hitomi et al. [39]
extended the P2C2 camera using a per-pixel coding that is more
amenable to implementation in modern image sensors with per-
pixel electronic shutters. Here, @ [x,y,j] = 8[j —jo(x,y)]; that
is, each pixel observes the intensity at one of the subframes of
the high-speed video, and the selection of this subframe varies
spatially. Llull et al. [51] and Koller et al. [47] proposed a TMC
that achieves temporal multiplexing via a translating mask in
the sensor plane. This approach avoids the hardware complexity
involved with DMD and LCoS SLMs and enjoys other benefits,
including low operational power consumption at the cost of
having a mechanical component (the translating mask).

Additional TMC designs

Gu et al. [36] used the rolling shutter of a complementary metal—
oxide—semiconductor (CMOS) sensor to enable higher temporal
resolution. The key idea is to stagger the exposures of each row
randomly and use image/video models to recover a high-frame-
rate video. Harmany et al. [37] extended coded aperture systems
by incorporating a global shutter; the resulting TMC provides
immense flexibility in the choice of the measurement matrix .

SAMCs

SAMC s apply CS multiplexing to sense variations of light in a
scene beyond the spatial and temporal dimensions. Two specific

handle both high measurement rates (this is
typically limited by the ADC sampling rate)
and low light levels (due to scene light
being resolved into various modalities). CS techniques, more
specifically, signal models, can address both bottlenecks.
Examples of compressive cameras include the coded aperture
snapshot spectral imaging architecture [76] and compressive
hyperspectral imaging using spectrometers [50] for spectral
multiplexing and the work of Marwah et al. [58] and Tambe
et al. [71] for angular multiplexing.

Models for video structure

Recovering a video from compressive linear measurements
requires one to extract the video signal s from the measure-
ments y = ®s (recall “CS 1017”). Here, s might represent a
certain block of pixels, an entire video frame, or an ensemble
of frames, depending on the sensing architecture and the spe-
cific recovery algorithm employed. All of these are functions
of the underlying time-varying scene V[x,y,t]. Because the
number of measurements M is less than the video signal’s
ambient dimensionality N, infinitely many vectors s" may sat-
isfy y = ®@s". Hence, to recover s from y, a model that cap-
tures the scene structure (or a priori information) of s with a
small number of degrees of freedom is required; the model can
then be included in the recovery algorithm. This section sur-
veys several popular models for characterizing low-dimension-
al structure in videos.

Single-frame structure

The structure of a single video frame can be characterized
using standard models for conventional 2-D images. Natural
images have been shown to exhibit sparse representations in
the 2-D DCT, 2-D wavelet, and curvelet domains [15], [56].
Images have also been shown to have sparse gradients. The
total variation (TV) seminorm promotes such gradient spar-
sity simply by minimizing the ¢; norm of an image’s 2-D
gradient [52]. To fully exploit the structure in a 3-D video,
one needs to characterize the spatial and temporal dimen-
sions simultaneously, rather than reconstructing each frame
independently and only accounting for spatial structure.
Hence, the spatial 2-D regularizers described previously
often appear as building blocks of more sophisticated 3-D
video models.

Sparse innovation models

One of the simplest possible models accounting for multi-
frame structure assumes that a video can be reduced into a
static and a dynamic component. This model—while restric-
tive—is applicable, for example, in surveillance applications,
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where a scene is observed from a distant

successfully employed for CS video recon-

static camera. We can decompose each possible models struction in [39].

frame of such a video into a static back- = =

ground frame and a number of small accolmting for multiframe Linear dynamical systems

(sparse) foreground objects that may Slrl_lﬂlllre assumes that Linear dynamical systems (LDSs) model
change location from frame to frame. A a video can be reduced the dynamics in a video using linear sub-
natural way of modeling such structure is into a static and a space models. Such models have been
to assume that the differences between dynamic component. used extensively in the context of activity

consecutive frames have a sparse represen-

tation in some transform basis. That is, for

two consecutive video frames V[x,y,f1] and V[x,y,t2], one
may assume that the difference frame V[x,y,t2] — V[x,y,11]
has a sparse representation in a basis such as a 2-D wavelet
basis. Such models have been explored in detail in the con-
text of CS [17], [57], [74] and can be viewed as special cases
of the more advanced motion-compensation techniques
described below.

Low-rank matrix models

An alternative approach to scene modeling involves reorganiz-
ing a 3-D video signal into a 2-D matrix, where each column
of the matrix contains a rasterized ordering of the pixels of one
video frame. A variety of popular concise models for matrix
structure can then be interpreted as models for video structure.
One of the most prominent models asserts that the matrix is
low rank; this is equivalent to assuming that the columns of the
data matrix live in a common, low-dimensional subspace. In
the context of video modeling, a seminal result by Basri and
Jacobs [9] showed that collections of images of a Lambertian
object under varying lighting often cluster close to a nine-
dimensional subspace. This property can be useful for model-
ing videos of stationary scenes where the illumination
conditions change over time.

To account for both variations in background illumination
and for sparse foreground objects that move with time, one can
extend the low-rank matrix model to a low-rank-plus-sparse
model [79], [80]. A sparse matrix, added to the original low-
rank matrix, accounts for sparse foreground innovations, such
as small moving objects. Again, such models are particularly
suitable for surveillance applications.

TV minimization and sparse dictionaries

Sparsifying transforms such as wavelets, curvelets, and the
DCT have natural extensions to 3-D [56], [77], [82] and can be
employed for jointly reconstructing an ensemble of video
frames. TV minimization can also be extended to 3-D [35], [49];
minimizing the 3-D TV seminorm of a video promotes frames
with sparse gradients across spatial and temporal dimensions.

It is also possible to learn specialized (possibly overcom-
plete) bases that enable sparse representations of patches,
frames, and videos from training data. A variety of so-called
dictionary learning algorithms have been proposed that learn
sparsifying frames ¥ (see, e.g., [1] and “CS 101”). Dictionary
learning algorithms can be used not only to generate diction-
aries that sparsify images but also to sparsify videos in both
the spatial and temporal dimensions. This approach has been

analysis and dynamic textures. Video CS

using LDS reduces to the estimation of the
LDS parameters, including the observation matrix and the
state transition matrix, from compressive measurements.
Approaches for parameter estimation have included recur-
sive [73] as well as batch methods [66]. Furthermore, [66]
demonstrates the use of the recovered LDS parameters for
activity classification.

Motion compensation

While regularizers such as 3-D wavelets and 3-D TV minimi-
zation can be used for CS video reconstruction, it is worth not-
ing that conventional video compression algorithms (such as
H.264) do not employ such simple techniques. Rather,
because objects in a video may move (or translate) several
pixels between adjacent frames, it is typical to employ block-
based motion compensation and prediction, where each video
frame is partitioned into blocks, the location of each block is
predicted in the next frame, and only the residual of this pre-
diction is encoded.

Some CS video architectures may require reconstructions
of video sequences with high temporal frame rates. In these
cases, there may be relatively little object motion between
consecutive frames. Consequently, motion compensation may
not be required, and techniques such as 3-D TV may result in
high-quality scene recovery.

In other cases, however, it may be necessary to predict and
compensate for the motion of objects between consecutive
frames. This presents an interesting chicken-or-egg problem:
motion compensation can help in reconstructing a video, but
the motion predictions themselves cannot be made until (at
least part of) the video is reconstructed. One iterative, multi-
scale technique has been proposed [62] that alternates between
motion estimation and video reconstruction: the recovered
video at coarse scales (low spatial resolution) is used to esti-
mate motion, which is then used to boost the recovery at finer
scales (high spatial resolution). Given the estimated motion
vectors, a motion-compensated 3-D wavelet transform can be
defined using the LIMAT technique [68]. Another approach
initially reconstructs frames individually, estimates the motion
between the frames, and then attempts to reconstruct any resid-
ual not accounted for by the motion prediction [30]; see also
[45] for a related technique. The logistics of block-based video
sensing and reconstruction are discussed in detail in [30].

Optical flow
A more general approach to motion compensation involves the
optical flow field. Given two frames of a video, V[x,y,#1] and
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Vlx,y,t2], optical flow refers to the flow field {u(x,y),v(x,y)}
such that V[x + u(x,y),y + v(x,y),t1] =V[x,y,t2]. Optical flow
enables one to represent the frames of a video using a small
collection of key frames plus optical flow fields that synthesize
(extrapolate) the video from the key frames. Optical flow fields
are often significantly more compressible than images. Such an
approach is closely related to the block-based motion compen-
sation models described earlier but is distinguished by its
explicit attempt to model motion on a per-pixel basis.

A key challenge in the use of optical flow models for video
CS is—once again—that, in the context of sensing, we do
not have access to the flow fields nor do we have access to
high-quality images from which to estimate the flow fields.
Reddy et al. [65] resolve this chicken-or-egg problem by first
recovering a video with simple image-based priors, estimat-
ing the optical flow field on the initial reconstruction, and
subsequently recovering the video again while simultaneously
enforcing the brightness constancy constraints derived using
optical flow. They show that a 30-frames/second (fps) sensor
can be superresolved to a 240-480-fps sensor by temporal
modulation using an LCoS device. In the context of SMCs,
Sankaranarayanan et al. [67] use a specialized dual-scale sens-
ing (DSS) matrix that provides robust and computationally
inexpensive initial scene estimates at a lower spatial resolution.
This enables this approach to robustly estimate optical flow
fields on a low-resolution video. Optical flow-based video CS
has also been applied for the dynamic MRI problem, where
carefully selected Fourier measurements provide robust initial
scene estimates [3]. The concept of DSS sensing matrices has
been improved recently by the sum-to-one (STOne) transform
[35], which enables the fast recovery of low-resolution scene
estimates at multiple resolutions.

Video recovery techniques

While the mathematical formulations of video CS recovery
problems resemble other canonical sparse recovery problems,
three important factors set video recovery apart from other
types of sparse coding. First, video recovery problems are
extremely large and have high memory requirements.
Methods for high-resolution video recovery must scale to hun-
dreds of millions of unknowns. Second, sparse representations
of videos with complex structures may contain tens of thou-
sands (or more) of nonzero entries. Consequently, algorithm
implementations that require large dense matrix systems are
intractable, and methods must exploit fast transforms. Third,
high-quality video recovery often involves noninvertible spar-
sity transforms, and so reconstruction methods that handle
cosparsity models are desirable. Some recovery problems
require more sophisticated (or unstructured) models, such as
optical flow constraints, that cannot be handled efficiently by
simple algorithms. All of these factors impact algorithm per-
formance on different reconstruction applications.

This section overviews the range of existing recovery tech-
niques and investigates the tradeoffs between reconstruction
quality and computational complexity. For simplicity, we focus
on two categories of reconstruction methods, variational and

greedy. Note that there are algorithms that do not fit well into
these categories (such as iterative hard thresholding [12], which
has features of both); a discussion of such methods is beyond
the scope of this article.

Variational methods

Variational methods for CS video recovery perform scene
reconstruction by solving optimization problems using itera-
tive algorithms. Most variational methods suitable for high-
dimensional problems can be classified into two categories,
constrained and unconstrained, as detailed next.

Consfrained problems
The first category solves constrained problems of the form
5= ar%gninf(dkv ly)+g(z) subjecttoz=W¥s. (1)
Here, the function f models the video acquisition process
(optics, modulation, and sampling), and g is a regularizer that
promotes sparsity under the transformation defined by V.
For example, basic frame-by-frame recovery with 2-D wavelet
sparsity can be formulated as an unconstrained problem with
f(@s|y)=|y—®s|} and g(z) =v| z|,, where s contains a
vectorized image frame, @ is the sensing matrix, ¥ is a 2-D
wavelet transform, and y > 0O is a regularization parameter.
Under a TV scene model, the matrix ¥ is a discrete gradient
operator that computes differences between adjacent pixels.
3-D TV video recovery can be achieved by stacking multiple
vectorized video frames into s and defining ¥ to be the 3-D
discrete gradient across both spatial dimensions and time.
Optical flow constraints can be included by forming a sparse
matrix ¥ that differences pixels in one frame with pixels that
lie along its flow trajectory in other frames.
It can be shown that the solution to (1) corresponds to a
saddle point of the so-called augmented Lagrangian function
Lo =f@s|n+g@+B-¥s-aB @
where A is a vector of Lagrange multipliers. Constrained
problems of the form (1) for CS video can be solved efficient-
ly using the alternating direction method of multipliers
(ADMM) [13], [28], [31] or the primal-dual hybrid gradient
(PDHG) method [18], [29]. The ADMM and PDHG methods
alternate between minimization steps for s and z and maxi-
mization steps for A until convergence is reached. Such meth-
ods have the key advantage that they enable the inclusion of
powerful, noninvertible video models such as 3-D TV or opti-
cal flow. This advantage, however, comes at the cost of higher
memory requirements and somewhat more complicated itera-
tions. To improve the convergence rates of solvers for con-

strained problems, accelerated algorithm variants have been
developed [18], [32], [33].

Unconsfrained problems
If the sparsity transform ¥ is invertible, then the constraint in
(1) can be removed by replacing the vector s with ¥~'z. This
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leads to the second category of recovery methods that solve
unconstrained problems of the following simpler form:

z= argzmin f(fi)z\ V) +g(). 3)

Here, the matrix ® = ®¥! and 7 contains the representation of
a single frame or the entire video in the sparsity transform domain.
For example, in the case of wavelet sparsity, solving (3) recovers
the video’s wavelet coefficients; the final video is obtained by
applying the inverse wavelet transform to the solution.

Unconstrained problems of the form (3) can be solved
efficiently using forward—backward splitting (FBS) [20],
fast iterative shrinkage/thresholding (FISTA) [10], fast adap-
tive shrinkage/thresholding algorithm (FASTA) [34], sparse
reconstruction by separable approximation (SpaRSA) [81], or
approximate message passing (AMP) [25], [55]. FBS is the
most basic variant for solving unconstrained problems and
performs the following two steps for the iterations k = 1,2,...
until reaching convergence:

= g TF O VF(DZF | y) and )

1 = argming () + 4l 2= ' [h, )

where {7¥} is some step size sequence. FBS finds a global
minimum of the objective function (3) by alternating between
the explicit gradient-descent step (4) in the function f and the
proximal (or implicit gradient) step (5) in the function g.
The key operations of the gradient step (4) are matrix—vector
multiplications with ® and ®". These multiplications can be
carried out efficiently when disa composition of fast trans-
forms, such as subsampled Hadamard/Fourier matrices and
wavelet or DCT operators. When g is a simple sparsity-pro-
moting regularizer, such as the {; norm, the proximal step (5)
is easy to compute in closed form using wavelet shrinkage.
The computational complexity of FBS can be reduced signifi-
cantly using adaptive step-size rules for selecting {7*}, accel-
eration schemes, restart rules, momentum (or memory) terms,
and so forth, as is the case for FISTA, FASTA, SpaRSA, and
AMP. See the review article [34] for more details.

Greedy pursuit algorithms

Greedy pursuit algorithms are generally used for uncon-
strained problems and iteratively construct a sparse set of
nonzero transform coefficients. Each iteration begins by
identifying a candidate sparsity pattern for the unknown vec-
tor z. Then, a least-squares problem is solved to minimize
| qsz—y i, where z is constrained to have the prescribed
sparsity pattern.

Existing greedy pursuit algorithms can be classified into
sequential greedy pursuit algorithms and parallel greedy pur-
suit algorithms. Sequential methods include orthogonal match-
ing pursuit (OMP), regularized OMP (ROMP), and stagewise
OMP (StOMP) [26], [61], [72]. These methods successively
add more and more indices to the support set until a maximum
sparsity K is reached. Parallel methods, such as compressive

sampling matching pursuit (CoSaMP) and subspace pursuit
[21], [60], constantly maintain a full support set of K nonzero
entries but add strong and replace weak entries in an iterative
fashion. Parallel greedy pursuit algorithms have the advantage
that they can enforce structured models on the support set,
such as a wavelet tree structure [5].

The main drawbacks of greedy algorithms, however, are
that 1) they are typically unable to handle noninvertible spar-
sity transforms used for video reconstruction such as TV, opti-
cal flow, or overcomplete wavelet frames; 2) accurate solutions
are guaranteed only when the measurement operator satisfies
stringent conditions (such as the restricted isometry property or
similar incoherence conditions [60], [72]); and 3) they require
solving large linear systems on every iteration. For small num-
bers of unknowns (<10,000), the factorization of these systems
can be explicitly represented and updated cheaply using rank-
one updates. For the large video CS problems considered here,
iterative (conjugate gradient) methods are recommended. These
methods require only matrix multiplications (which can exploit
fast transforms) and have lower memory requirements because
they do not require the storage of large and dense matrices.

Reconstruction quality versus computational complexity
There are many choices to make when building a compressive
video pipeline, including measurement operators, video mod-
els, and reconstruction algorithms. Most reconstruction algo-
rithms are restricted as to what measurement operators and
sparsity models they can support. To achieve the best perfor-
mance, the reconstruction algorithms, video models, and data
acquisition pipelines must be designed jointly; this implies
that there are tradeoffs to be made among reconstruction
speed, algorithm simplicity, and video quality.

The classical approach to CS video recovery is to search for
the video that is compatible with the observed measurements
while being as sparse as possible in the wavelet domain. When
an invertible wavelet transform is used, the reconstruction
problem can be transformed into an unconstrained problem of
the form (3), which can be solved efficiently using variational
methods such as FBS. If we further assume that the wavelet
transform is orthogonal, then we can use off-the-shelf greedy
pursuit algorithms, such as CoSaMP. Unfortunately, while
unconstrained optimization is simple to implement and highly
efficient, wavelet-based scene priors generally result in lower
reconstruction quality than noninvertible/redundant sparsity
models like TV. For this reason, we are often interested in con-
strained solvers that interface with TV-based video models and
optical flow constraints.

To examine the associated performance/complexity trad-
eoffs, we compare a variety of reconstruction methods using
the same measurement operator. A stream of 65,536 STOne
measurements [35] was acquired from a 256 x 256 pixel
video having 16 frames. Videos were reconstructed separately
using various models and solvers that were implemented in
MATLAB. We consider unconstrained recovery using CoS-
aMP and FBS, which are restricted to using invertible regular-
izers. In the wavelet case, we consider 1) 2-D frame-by-frame
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2-D Wavelet (CoSaMP)
752 Seconds

Original Video

Adjoint
0.001 Second

3-D Wavelet (FBS)
134 Seconds

2-D Wavelet (FBS)
45 Seconds

3-D DCT (FBS)
332 Seconds

Optical Flow (SPGL1)
415 Seconds

3-D TV (PDHG)
29 Seconds

FIGURE 3. A CS video recovery comparison with different video models. For each model, we recover a 16-frame video with 256 X 256 pixel resolution
from 2'® STOne transform measurements, corresponding to a 16:1 compression ratio. Sparsity models include 2-D (across space) and 3-D (across
space and time) wavelet sparsity using the Haar wavelet, the 3-D DCT, optical flow constraints, and 3-D TV. For each experiment, we also provide the

total runtime for recovering 16 frames.

recovery that does not exploit correlations across time, and
2) 3-D wavelet recovery that performs a 3-D wavelet transform
across space and time. We also consider sparsity under the
3-D DCT, which is invertible and enjoys extensive use in
image and video compression. We furthermore consider solv-
ers for constrained problems that handle more sophisticated
sparsity models. In particular, we compare 3-D TV models
with PDHG and optical flow constraints with ADMM (as in
CS-MUVI [67]). As a baseline, we perform CS video recovery
without scene priors by simply computing ®”y, the product
of the adjoint of the measurement operator with the vector
of measurements. Because the measurement operator is a
subsampled orthogonal matrix, this corresponds to a least-
squares recovery using the pseudoinverse. All experiments
are carried out on an off-the-shelf laptop with 16 GB memory
and a 2.6 GHz i5 central processing unit (CPU) with two
physical cores (no parallelism was used for reconstruction).
Sample frames from our experiments together with the
required runtime are shown in Figure 3. We observe that TV
regularization and optical flow models dramatically outperform
wavelet-based recovery in terms of video quality. Furthermore,
3-D models lead to significantly improved image quality with
fewer artifacts than 2-D models, despite the fact that both recon-
structions see the same amount of data. This demonstrates the

efficacy of exploiting correlations across time. The key advantage
of 2-D models is that they enable parallel frame-by-frame recon-
struction, for example, by dispatching different recovery prob-
lems on separate CPU cores. Finally, we see that for these types of
large-scale reconstruction problems, variational methods require
substantially lower runtimes than greedy pursuit algorithms. The
CoSaMP result in Figure 3 is for frame-by-frame reconstructions
with a sparsity level of K =256 nonzero wavelet coefficients
per image. CoSaMP’s runtime increases dramatically for larger
K or when 3-D regularizers are used. This is because each itera-
tion requires the solution to a large least-squares problem using
multiple iterative (conjugate gradient) steps. Hence, such greedy
pursuit algorithms turn out to be efficient only for highly sparse
signals and not for general CS video problems.

Perspectives und open research questions

The video CS problem has spawned a growing body of
research that spans signal representations and models, com-
putational sensing architectures, and efficient optimization
techniques. This has led to a vibrant ecosystem of methodol-
ogies that have transitioned the theoretical ideas of CS into
concrete application-specific concepts. We conclude by
highlighting some of the important open questions and
future research directions.
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Real-time CS video recovery with today’s hardware
High-quality CS video recovery requires complex algorithms
that include powerful video models. While offline video
recovery is always feasible, reconstruction using more sophis-
ticated scene models (e.g., using optical flow) can easily take
several seconds to minutes even for only a few low-resolution
frames. As a consequence, applications that necessitate real-
time video recovery face extreme implementation challenges.
From our experiments in Figure 3, we see that even the fastest
algorithms with basic video models are more than 20 X to
200 X below real time when executed in MATLAB on
off-the-shelf CPUs.

Quite surprisingly, when counting the number of floating-
point operations (FLOPs) required for the main transforms of
these methods, we observe that real-time CS video recovery
with variational methods is within reach of existing hardware.
In fact, variational-based scene recovery of a 256 x 256 pixel
scene at 12 fps requires only about 20 GFLOPs, which is well
below that of programmable processing hardware, such as
CPUs, graphics-processing units (GPUs), and field-program-
mable gate arrays (FPGAs) that achieve peak throughputs
of a few TFLOPs. Similarly, existing application specific
integrated circuit (ASIC) designs that target CS recovery
problems [11], [53] are able to solve variational problems
with more than 200 GOPS (the computations are typically
carried out with fixed-point arithmetic instead of floating
point) using low silicon area and low power when imple-
mented in modern CMOS technology nodes. In Figure 4,
we compare the complexity versus the resolution of vari-
ous CS video recovery methods. One can observe that even
higher resolutions like 1080p HD are feasible in real time
with computationally efficient algorithms. Nevertheless, no
real-time CS video recovery implementation has been pro-
posed in the open literature, which can mainly be attributed
to the lack of highly optimized and massively parallel CS
video recovery pipelines for programmable hardware (CPUs,
GPUs, or FPGAs) as well as dedicated integrated circuits
(ASICs). This is definitely a fruitful area for future work.

Compressive inference rather than recovery

The main results of CS are directed toward providing novel
sampling theorems that determine the feasibility of signal
reconstruction from an underdetermined set of linear measure-
ments. However, reconstruction is often not the eventual goal
in most applications, which range from detection and classifi-
cation to tracking and parameter estimation. While these tasks
can all be performed postreconstruction (on the output of a
reconstruction procedure), there are important benefits to be
gained by performing them directly on the compressive mea-
surements. First, tasks like detection, classification, and track-
ing are inherently simpler than reconstruction—hence, there is
hope that we can perform them with fewer measurements.
Second, CS reconstruction is intrinsically tied to the signal
models used for the unknown signal, and these signal models
prioritize features that deal with visual perception, which often
is not the most relevant for the subsequent processing tasks.

A Toward More Complex
Algorithms and Video Models
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FIGURE 4. The complexity (in FLOPs per pixel) versus resolution (in pixels
per second) for greedy algorithms, variational methods, and optical-flow
models for the video scene in Figure 3. Variational methods (including
3-D TV and 3-D/2-D wavelets) require the lowest complexity and enable
real-time CS video recovery with existing hardware (the diagonal dotted
line shows the FLOPs limit of current reprogrammable hardware). Optical
flow models exceed the capabilities of current hardware and require the
development of more efficient computational methods and faster process-
ing architectures.

Third, as previously discussed at length, CS reconstruction
algorithms have high computational complexity, and hence
avoiding a reconstruction step in the overall processing pipe-
line can be beneficial.

There has been some limited work on inference from
linear compressive measurements. Davenport et al. [23]
perform compressive classification and detection by using a
matched filter in the compressive domain. Their key obser-
vation is that random projections preserve distances as well
as inner products between sparse vectors; thus, inference
tasks like hypothesis testing and certain filtering opera-
tions can be performed directly in the compressive domain.
Hegde et al. [38] show that manifold learning (or nonlinear
dimensionality reduction) can be performed just as well on
the compressive measurements as on the original data, pro-
vided the data arises from a manifold with certain smooth-
ness properties. Sankaranarayanan et al. [66] demonstrate
that for time-varying systems well approximated as linear
dynamical systems, the parameters of the dynamical sys-
tem can be directly estimated given compressive measure-
ments. Recently, Kulkarni and Turaga [44] proposed a novel
method based on recurrence textures for action recognition
from compressive cameras especially for self-similar fea-
ture sequences [43]. Apart from these early attempts, there
is very little in the literature exploring high-level inference
from compressive imagers.
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A major hurdle to successful compressive inference in the
video context is the mismatch between part-based models, used
in computer vision, and global random embeddings, the corner-
stone of the CS theory. Part-based models have had remarkable
success over the past decade in object detection and classifica-
tion problems. The key enabler of part-based inference is a local
feature description that helps isolate objects from background
clutter and provides robustness against object variations. How-
ever, the conventional CS measurements are dense random
projections that are not conducive to local feature extraction
without reconstructing the signal first. Hence, there is an urgent
need for CS measurement operator designs that enable local
feature extraction.

From measurements to bits—Toward nonlinear

sensing architectures

One of the important distinctions between video CS and video
compression is the nature of representing the compressed data.
Compression aims to reduce the number of bits used to repre-
sent the video. In contrast, CS measurements are typically rep-
resented in terms of real values with infinite (or arbitrarily
large) precision; here, the number of actual measurements is
the criterion to reduce/optimize. The focus on reducing the
number of measurements is often misplaced in many sensing
scenarios; for example, in high-speed video CS, the bottleneck
is solely due to the operating speed of the ADC, whose perfor-
mance is measured in the number of bits acquired per second.
Hence, compressively sensing while respecting the bottlenecks
imposed by the ADC sampling frequency requires us to con-
sider measurements in terms of bits. While there has been
some effort in the area of 1-bit CS [4], [42], [63] and the trad-
eoff between measurement bits and measurement rate [48],
this aspect is still largely unexplored in literature. In particular,
there is a need for new kinds of nonlinear sensing architectures
that optimize system performance in the context of the practi-
cal realities of sensing (quantization, saturation, etc.). Some
initial progress in this direction for CS has been made in [59],
but the area remains wide open for research.
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