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T
he design of conventional sensors is based primarily on the 
Shannon–Nyquist sampling theorem, which states that a 
signal of bandwidth W Hz is fully determined by its dis-
crete time samples provided the sampling rate exceeds 2 W 

samples per second. For discrete time signals, the Shannon–
Nyquist theorem has a very simple interpretation: the number of 
data samples must be at least as large as the dimensionality of 
the signal being sampled and recovered. This important result 
enables signal processing in the discrete time domain without 
any loss of information. However, in an increasing number of 
applications, the Shannon–Nyquist sampling theorem dictates 
an unnecessary and often prohibitively high sampling rate (see 
“What Is the Nyquist Rate of a Video Signal?”). As a motivating 
example, the high resolution of the image sensor hardware in 
modern cameras reflects the large amount of data sensed to cap-
ture an image. A 10-megapixel camera, in effect, takes 

10 million measurements of the scene. Yet, almost immediately 
after acquisition, redundancies in the image are exploited to 
compress the acquired data significantly, often at compression 
ratios of 100:1 for visualization and even higher for detection 
and classification tasks. This example suggests immense wast-
age in the overall design of conventional cameras. 

Compressive sensing (CS) (see “CS 101” and [6], [14], [16], 
and [24]) is a powerful sensing paradigm that seeks to allevi-
ate the daunting sampling rate requirements imposed by the 
Shannon–Nyquist principle. CS exploits the inherent structure 
(or redundancy) within the acquired signal to enable sampling 
and reconstruction at sub-Nyquist rates. The signal structure 
most commonly associated with CS is that of sparsity in a 
transform basis. This is the same structure exploited by image 
compression algorithms, which transform images into a basis 
[e.g., using a wavelet or discrete cosine transform (DCT)] 
where they are (approximately) sparse. In a typical scenario, 
a CS still-image camera takes a small number of coded, linear 
measurements of the scene—far fewer measurements than the 
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number of pixels being reconstructed. Given these measure-
ments, an image is recovered by searching for the image that 
is sparsest in some transform basis (wavelets, DCT, or other) 
while being consistent with the measurements. 

In essence, CS provides a framework to sense signals with 
far fewer measurements than their ambient dimensionality (i.e., 
Nyquist rate), which translates to practical benefits including 
decreased sensor cost, bandwidth, and time of acquisition. These 
benefits are most compelling for imaging modalities where sens-
ing is expensive; examples include imaging in the nonvisible 
spectrum (where sensors are costly), imaging at high spatial and 
temporal resolutions (where the high bandwidth of sensed data 
requires costly electronics), and medical imaging (where the time 
of acquisition translates to costs or where existing equipment is 
too slow to acquire certain dynamic events). In this context, archi-
tectures like the single-pixel camera (SPC) [27] provide a prom-
ising proof of concept that still images can be acquired using a 
small number of coded measurements with inexpensive sensors.

There are numerous applications where it is desirable to 
extend the CS imaging framework beyond still images to incor-
porate video. After all, motion is ubiquitous in the real world, 
and capturing the dynamics of a scene requires us to go beyond 
static images. A hidden benefit of video is that it offers tremen-
dous opportunities for more dramatic undersampling (the ratio 
of signal dimensionality to measurement dimensionality). That 

is, we can exploit the rich temporal redundancies in a video to 
reconstruct frames from far fewer measurements than is pos-
sible with still images. Yet the demands of video CS in terms 
of the complexity of imaging architectures, signal models, and 
reconstruction algorithms are significantly greater than those of 
compressive still-frame imaging.

There are three major reasons that the design and imple-
mentation of CS video systems are significantly more difficult 
than those of CS still-imaging systems. The first challenge is 
the gap between compression and CS. State-of-the-art video 
models rely on two powerful ideas: first, motion fields enable 
the accurate prediction of image frames by propagating inten-
sities across frames; second, motion fields are inherently more 
compressible than the video itself. This observation has led 
to today’s state-of-the-art video compression algorithms (not 
to be confused with CS of videos) that exploit motion infor-
mation in one of many ways, including block-based motion 
estimation (MPEG-1), per-pixel optical flow (H.265), and 
wavelet lifting (LIMAT). Motion fields enable models that 
can be tuned to the specific video that is being sensed/pro-
cessed. This is a powerful premise that typically provides an 
order of magnitude improvement in video compression over 
image compression.

The use of motion fields for video CS raises an important 
challenge. Unlike the standard video compression problem, 

Conventional videos, sampled at 24–60 frames/second 
(fps), may, in fact, be highly undersampled in time—
objects in the scene can move multiple pixels between 
adjacent frames. Some compressive sensing (CS) architec-
tures, however, measure a video at a much higher tempo-
ral rate. For example, the single-pixel camera (SPC) may 
take tens of thousands of serial measurements per second. 
In such cases, the scene may change very little between 
adjacent measurements. This raises some interesting ques-
tions: what is the Nyquist rate of a video signal, and how 
does it compare to CS measurement rates?

One can gain insight into these questions by considering 
the three-dimensional analog video signal that arrives at a 
camera lens; both conventional and CS imaging systems 
can be viewed as blurring this signal spatially (due to the 
optics and the pixelated sensors) and sampling or measuring 
it digitally. If a video consists of moving objects with sharp 
edges, then the analog video will actually have infinite band-
width in both the spatial and temporal dimensions. However, 
it can be argued that the support of the video’s spectrum will 
tend to be localized into a certain bowtie shape, as shown 
in blue in Figure S1. The salient feature of this shape is that 
high temporal frequencies coincide only with high spatial 
frequencies. Thus, because of the limited spatial resolution of 

both the camera optics and the pixel sensors, when the spa-
tial bandwidth of the video is limited, so too is its temporal 
bandwidth, as illustrated by the black rectangle in the figure. 
This suggests that the video sensed by architectures such as 
the SPC may in fact have a finite temporal bandwidth, and 
this fact can be used to reduce the computational complexity 
of sensing and reconstructing the video. In particular, it is not 
necessary to reconstruct at a rate of thousands of fps. 
Additional details are provided in [62].

What Is the Nyquist Rate of a Video Signal?
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FIGURE S1. The limited spatial resolution of an imaging system may 
also limit its temporal bandwidth.
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where the frames of the video are explicitly available to per-
form motion estimation, in CS, we have access only to coded 
and undersampled measurements of the video. We are thus 
faced with a chicken-or-egg problem. Given high-quality video 
frames, we could precisely estimate the motion fields; but 
we need precise motion estimates in the first place to obtain 
high-quality video frames. The second challenge is the laws of 
causality and imaging architectures. Time waits for no one. A 
distinguishing property of the video sensing problem over still 
imaging is the fundamental difference between space and time. 
The ephemeral nature of time poses significant limitations on 
the measurement process—clearly, we cannot obtain additional 
measurements of an event after it has occurred. As a conse-
quence, it is entirely possible that a compressive camera does 
not capture a sufficient number of measurements to recover the 
frames of the video. Overcoming this challenge requires both 
an understanding of the spatial-temporal resolution tradeoffs 
associated with video CS and development of novel compressive 

imaging architectures that can deliver very high measurement 
rates or reconstruct at different resolutions depending on the 
available data. The third challenge is computational complex-
ity. Even moderate resolution videos result in high bandwidth 
streaming measurements. Typical CS video recovery algorithms 
are highly nonlinear and often involve expensive iterative opti-
mization routines. Fast (or even real-time) reconstruction of CS 
video is challenging because it requires a data measurement sys-
tem, fast iterative algorithms, and high-performance hardware 
jointly designed to enable sufficiently high throughout.

The goal of this article is to overview the current approach-
es to video CS and demonstrate that significant gains can be 
obtained using carefully designed CS video architectures and 
algorithms. However, these gains can only be realized when 
there is cohesive progress across three distinct fields: video 
models, compressive video sensing architectures, and video 
reconstruction algorithms. This article reviews progress that 
has been made in advancing and bringing these fields together. 

Compressive sensing (CS) exploits the fact that a small and 
carefully selected set of nonadaptive linear measurements of a 
compressible signal, image, or video carries enough informa-
tion for reconstruction and processing [16], [24]; for a tutorial 
treatment see [6], [14].

The traditional digital data acquisition approach uniformly 
samples the three-dimensional analog signal corresponding 
to the time variations of a scene; the resulting samples 
[ , , ]V x y t  in space ( ,x y) and time (t) are sufficient to perfectly 

recover a bandlimited approximation to the scene at the 
Nyquist rate. Let the abstract vector s  represent the Nyquist-
rate samples of the scene [ , , ];V x y t  see “What Is the Nyquist 
Rate of a Video Signal?” for a discussion of the Nyquist rate 
of a time-varying scene. Because the number of samples 
required for real-world scenes, ,N  is often very large, for 
example, in the billions for today’s consumer digital video 
cameras, the raw image data is typically reduced via data 
compression methods that typically rely on transform coding.

As an alternative, CS bypasses the Nyquist sampling 
process and directly acquires a compressed signal 
representation using M N1  linear measurements 
between s  and a collection of linear codes { [ ]}m m

M
1z =  as 

in [ ] , [ ]y m s mG Hz= . Stacking the measurements [ ]y m  into 
the M -dimensional vector y  and the transpose of the 
codes [ ]m Tz  as rows into an M N#  sensing matrix ,U  
we can write .y sU=

The transformation from s to y  is a dimensionality reduction 
and does not, in general, preserve information. In particular, 
because ,M N1  there are infinitely many vectors sl that sat-
isfy .y sU= l  The magic of CS is that U can be designed 
such that sparse or compressible signals s can be recovered 
exactly or approximately from the measurements .y   

By sparse, we mean that only K N%  of the entries in s are 
nonzero, or that there exists a sparsifying transform W such 
that most of the coefficients of : sa W=  are zero. By compress-
ible, we mean that s  or a  is approximately sparse. Let 

: [ , , ], N
1

1 2 f} } }W =-  represent the inverse of the NN #  
basis matrix; then, s 1aW= -  and y s 1aU UW= = - .

Typically in CS, the sparse signal s  or its sparse coeffi-
cients a  is recovered by solving an optimization problem 
of the form (1), where f  measures the fidelity of the recov-
ery (e.g., using the squared error y 1

2
2

aUW- - ) and g  is 
a regularization penalty (e.g., the 1, -norm ,1a  which 
promotes sparsity of a ). In these cases, the resulting prob-
lem is convex, which guarantees a single global minimizer 
that can be found using a range of algorithms.

While the design of the sensing matrix U is beyond the 
scope of this review, typical CS approaches employ a ran-
dom matrix. For example, we can draw the entries of U as 
independent and identically distributed !1 random vari-
ables from a uniform Bernoulli distribution [8]. Then, the 
measurements y  are merely M different sign-permuted linear 
combinations of the elements of .s  Other choices for U  
exist in the literature, such as randomly subsampled Fourier 
or Hadamard bases. In this case, multiplication by U can be 
accomplished using fast transform algorithms, which enables 
faster reconstruction than is possible with random matrices.

It is important to emphasize that CS is not a panacea for 
all the world’s sampling problems [7]. In particular, to 
apply the concept profitably, it is critical that the signal s  
possess a lower inherent dimensionality than its ambient 
dimensionality (e.g., sparse structure) and that the degree 
of undersampling /N M  be balanced with respect to the 
signal’s signal-to-noise ratio [22].

CS 101
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We discuss some of the landmark results in video CS and high-
light their key properties and the rich interplay among models, 
architectures, and algorithms that enable them. We also lay out 
a research agenda to attack the key open research problems and 
practical challenges to be resolved in video CS.

Video sensing systems
In this section, we discuss the current compressive imaging 
architectures that have been proposed for CS video. The archi-
tectures can be broken down into three categories (see Table 1).

■■ Spatial multiplexing cameras (SMCs): SMCs optically 
superresolve a low-resolution sensor to boost spatial resolu-
tion. SMCs are invaluable in regimes where high-resolution 
sensors are unavailable, as in terahertz/millimeter-wave and 
magnetic resonance imaging (MRI), or extremely costly,  
as in short or medium wavelength infrared (SWIR and 
MWIR) sensing.

■■ Temporal multiplexing cameras (TMCs): TMCs optically 
superresolve a low-frame-rate camera to boost temporal 
resolution. TMCs are mainly used to overcome the limita-
tions imposed on the measurement rate by the analog-to-
digital converter (ADC) and are optimized to produce a 
high-frame-rate video at high spatial resolution with low-
frame-rate sensors.

■■ Spectral and angular multiplexing cameras (SAMCs): 
SAMCs boost resolution in the spectral domain, which 
can be useful for hyperspectral and light-field video sens-
ing. As with TMCs, the bottleneck of these architectures is 
also the measurement rate constraint imposed by the ADC.
Each of these flavors of a CS system aims to break the 

Nyquist barrier to obtain either higher spatial, temporal, or 
spectral resolution. In the following sections we discuss the 
key design considerations and existing implementations of 
these three camera types.

SMCs
SMCs apply CS multiplexing in space to boost the spatial 
resolution of images and videos obtained from sensor arrays 
with low spatial resolution. The use of a low-resolution sen-
sor enables SMCs to operate at wavelengths where corre-
sponding full-frame sensors are too expensive, such as at 
SWIR, MWIR, terahertz, and millimeter wavelengths. SMCs 
employ a spatial light modulator, such as a digital micro-
mirror device (DMD) or liquid crystal on silicon (LCoS), to 
optically compute a series of coded inner products with the 
rasterized scene s; these linear inner products determine  
the rows of the sensing matrix U  (recall the notation from 
“CS 101”). It is worth mentioning that the SMC approach  

Table 1. The key architectures for CS video and their properties. 

Type Name Application Modulator Best-known capabilities Limitations

SMC SPC Infrared 
imaging

DMD Spatial resolution 128 × 128
Time resolution 64 fps  
Result [27]

Operational speed of DMD

LiSens/FPA-CS Infrared 
imaging

DMD Spatial resolution 1,024 × 768
Time resolution 10 fps  
Result [19], [78]

Need for precise optical 
alignment/calibration

TMCs Coded strobing High-speed 
imaging

Mechanical/ 
ferroelectric shutter

Spatial resolution (sensor)
Time resolution 2,000 fps
Result [75]

Periodic scenes

Flutter shutter High-speed 
imaging

Mechanical/ 
ferroelectric shutter

Spatial resolution (sensor)
Time resolution 4 × sensor fps
Result [64]

Locally linear motion 

P2C2 High-speed 
imaging

LCoS Spatial resolution (sensor)
Time resolution 16 × sensor fps
Result [65]

Dynamic range of sensor

Per-pixel shutter High-speed 
imaging

LCoS/electronic 
shutter

Spatial resolution (sensor)
Time resolution 16 × sensor fps
Result [39]

Light loss

CACTI High-speed 
imaging

Translating mask Spatial resolution (sensor)
Time resolution 100 × sensor fps
Result [51]

Mechanical motion

Light-field video Dynamic 
refocusing

LCoS, used as
programmable 
coded aperture

Time resolution sensor fps
Result [71]

Loss of spatial resolution can 
be severe for high spectral/
angular resolutions

Hyperspectral 
video

CASSI Spectroscopy Static mask Time resolution sensor fps
Result [76]

fps: frames/second; FPA: focal plane array; P2C2: programmable pixel compressive camera; CACTI: coded aperture compressive temporal imaging; CASSI: coded aperture 
snapshot spectral imaging.
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is equally applicable to modalities outside 
the scope of this article, such as MRI [52], 
where the physics of image formation pro-
duces a measurement system that can be 
interpreted as subsampling the Fourier 
transform of the sensed image.

SPC
The SPC [27] acquires images using only a 
single sensor element (i.e., a single pixel) 
and taking significantly fewer multiplexed 
measurements than the number of scene 
pixels. In the SPC, light from the scene is 
focused onto a programmable DMD, which directs light from 
a subset of activated micromirrors onto the single photodetec-
tor. The programmable nature of the DMD’s micromirror ori-
entation enables one to direct light either toward or away from 
the photodetector. As a consequence, the voltage measured at 
the photodetector corresponds to an inner product of the 
image focused on the DMD and the micromirrors directed 
toward the sensor (see Figure 1). Specifically, at time ,t  if the 
DMD pattern is represented by [ ]tz  and the time-varying 
scene by [ , , ]V x y t  (where x  and y  are the two spatial dimen-
sions and t  is the temporal dimension), then the photodetector 
measures a scalar value [ ] [ ], [·, ·, ] [ ]y t t V t e tG Hz= + , where 
·, ·G H denotes the inner product between the vectors and [ ]e t  

accounts for the measurement noise. If the scene is static, that 
is, [ , , ] [ , ],V x y t V x y0=  then the measurement vectors can be 
stacked as columns into a measurement matrix, with 

[ , , , ]M
T

1 2 fz z zU = . The SPC leverages the relatively high 
pattern rate of the DMD, which is defined as the number of 
unique micromirror configurations that can be obtained in 
unit time. This pattern rate, typically 10–20 kHz for commer-
cially available devices, defines the measurement bandwidth 
(i.e., the number of measurements per second) and is one of 
the key factors that defines the achievable spatial and tempo-
ral resolutions. Because SPCs rely on the DMD to modulate 

images onto a single sensor, the spatial res-
olution is limited by the density of mirrors 
on the DMD.

Since the proposal of the original SPC in 
[27], numerous authors have developed alter-
native SPC architectures that do not require a 
DMD for spatial light modulation. In [41], a 
liquid-crystal display panel is used for spatial 
light modulation; the use of a transmissive 
light modulator enables a lensless architec-
ture. Sen and Darabi [70] use a camera-pro-
jector system to construct an SPC exploiting 
a concept referred to as dual photography 

[69]; the hallmark of this system is its use of active and coded 
illumination that can be beneficial in certain applications, par-
ticularly microscopy.

Beyond SPCs—Multipixel detectors
As mentioned previously, the measurement rate of an SPC 
is limited by the pattern rate of its DMD, which is typically 
in the tens of kilohertz. This measurement rate can be insuf-
ficient for scenes with very high spatial and temporal reso-
lutions. This issue can be combatted using an SMC with  
F  sensor pixels (photodetectors), each capturing light from 
a nonoverlapping region of the DMD. The measurement 
rate of the SMC increases linearly with the number of pho-
todetectors. Taking into account that the maximum mea-
surement rate is capped by the sampling rate of the ADC, 
we can write the measurement rate for an SMC with F   
photodetectors as 

, ,min F R RDMD ADC#" ,

where RDMD  is the pattern rate of the DMD and RADC  is the 
sampling rate of the ADC. Hence, the smallest number of pho-
todetectors for which the measurement rate is maximized is

.(minimum number of sensor pixels) /F R Rmin ADC DMD=baraniuk01-2602099

DMD

Photodetector

Main Lens 

Relay Lens ,

Image
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Pattern on
the DMD 

A/D

FIGURE 1. The operation principle of the SPC. Each measurement corresponds to an inner product between the binary mirror–mirror orientation pattern on 
the DMD and the scene to be acquired. (Figure courtesy of [67].)

Fast (or even real-time) 
reconstruction of CS 
video is challenging 
because it requires a data 
measurement system, 
fast iterative algorithms, 
and high-performance 
hardware jointly designed 
to enable sufficiently  
high throughout.
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In essence, at F Fmin=  we can obtain the measurement rate of 
a full-frame sensor but using a device with potentially a frac-
tion of the number of photodetectors. This can be invaluable 
for sensing in many wavebands, for example, SWIR.

As a case study, consider an SMC with a DMD pat-
tern rate R 10DMD =  kHz and an ADC with a sampling rate 
R 10ADC =  MHz. Then, for a sensor with ,F 1 000min =  pixels, 
we can acquire 10 million measurements per second. An SPC, in 
comparison, would acquire only 10,000 measurements per sec-
ond. Consequently, multipixel SMCs can acquire videos at sig-
nificantly higher spatial and temporal resolutions than an SPC.

There have been many multipixel extensions to the SPC 
concept. The simplest approach [46] maps the DMD to a 
low-resolution sensor array, as opposed to a single photodetec-
tor, such that each pixel on the sensor observes a nonoverlapping 
patch or a block of micromirrors on the DMD. SMCs based on 
this design have been proposed for sensing in the visible [78], 
SWIR [19], and MWIR [54]. Figure 2 shows an example of 
the increased measurement rates offered by the LiSens camera 
[78], which uses a linear array of 1,024 photodetectors. More 

recently, there have also emerged multipixel multiplexing-based 
cameras that completely get rid of the lens and replace the lens 
with a mask and computational reconstruction algorithms [2].

TMCs
TMCs apply CS multiplexing in time to boost the temporal res-
olution of videos obtained from sensor arrays with low tempo-
ral resolution. Again, let [ , , ]V x y t  be a three-dimensional (3-D) 
signal representing a time-varying scene. Due to the assumed 
low frame rate of the sensor, we obtain a scene measurement 
once every T  seconds, where T  is too large. If the SLM has an 
operational speed of one pattern every TSLM  seconds, then each 
measurement of a TMC takes the form of a coded image:

[ , , ] [ , , ] [ , , ],y x y t x y j V x y t jT
j

C

0
0

1

0 SLMz= +
=

-

/

where [ , , ]x y jz  is the attenuation pattern on the SLM at spatial 
location ( , )x y  and time jTSLM. Here, each coded image mea-
sured by the TMC multiplexes C frames of the high-speed 
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FIGURE 2. The multipixel SMCs support significantly higher sensing rates than an SPC. (a) The measurement rate as a function of the number of sensor 
pixels. An optimized SMC with Fmin  pixels delivers the highest possible measurement rate. (b) Lab prototypes of the SPC and LiSens cameras, each placed 
on the one arm of a single DMD. The measurement rate of the LiSens camera is nearly 1 MHz, while that of the SPC is 20 kHz. (c) Comparisons between 
LiSens, which uses 1,024 sensor pixels, and an SPC for a static scene. Each row corresponds to a different capture duration, defined as the total amount 
of time that the cameras have for acquiring compressive measurements. The larger measurement rate of the LiSens camera enables it to sense scenes 
with very high spatial resolution even for small capture durations. (Photos courtesy of [78].) 
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video, and hence, we obtain one coded 
image every CTSLM  seconds. Our goal is to 
recover the frames of the high-speed video 
[ , , ]V x y kTSLM  from a single or a sequence 

of coded images/measurements.

Global shutters
The simplest instance of a TMC uses a glob-
al shutter together with a conventional cam-
era. In a global shutter, the SLM code 
[ , , ] [ ]x y j jU U=  is spatially invariant, which can be imple-

mented by using a programmable shutter or by using the image 
sensor’s built-in electronic shutter. Veeraraghavan et al. [75] 
showed that periodic scenes can be imaged at very high tempo-
ral resolutions using a global shutter [64]. This idea has been 
extended to nonperiodic scenes in [40], where a union-of-sub-
space model was used to temporally superresolve the captured 
scene. However, global shutters are fundamentally limited to 
providing only spatially invariant coding of the video; this can 
be insufficient to provide a rich-enough encoding of a high-
speed video. Hence, in spite of their simplicity, global shutters 
fail for scenes with complex motion patterns.

Per-pixel shutters
Reddy et al. [65] proposed the programmable pixel compressive 
camera (P2C2), which extends the global shutter idea with per-
pixel shuttering. Here, each pixel has its own unique code that is 
typically binary valued and pseudorandom. The P2C2 architec-
ture uses an LCoS SLM placed optically at the sensor plane and 
carefully aligned to a high-resolution two-dimensional (2-D) 
sensor. The P2C2 prototype achieves 16# temporal superreso-
lution, even for complex motion patterns. Hitomi et al. [39] 
extended the P2C2 camera using a per-pixel coding that is more 
amenable to implementation in modern image sensors with per-
pixel electronic shutters. Here, [ , , ] [ ( , )]x y j j j x y0dU = - ; that 
is, each pixel observes the intensity at one of the subframes of 
the high-speed video, and the selection of this subframe varies 
spatially. Llull et al. [51] and Koller et al. [47] proposed a TMC 
that achieves temporal multiplexing via a translating mask in 
the sensor plane. This approach avoids the hardware complexity 
involved with DMD and LCoS SLMs and enjoys other benefits, 
including low operational power consumption at the cost of 
having a mechanical component (the translating mask).

Additional TMC designs
Gu et al. [36] used the rolling shutter of a complementary metal–
oxide–semiconductor (CMOS) sensor to enable higher temporal 
resolution. The key idea is to stagger the exposures of each row 
randomly and use image/video models to recover a high-frame-
rate video. Harmany et al. [37] extended coded aperture systems 
by incorporating a global shutter; the resulting TMC provides 
immense flexibility in the choice of the measurement matrix U.

SAMCs
SAMCs apply CS multiplexing to sense variations of light in a 
scene beyond the spatial and temporal dimensions. Two specific 

examples include hyperspectral CS video 
cameras that sense spatial, spectral, and 
temporal variations of light in a scene and 
light-field video cameras that sense spatial, 
angular, and temporal variations. In both 
cases, imaging at high resolution across all 
modalities simultaneously requires that we 
handle both high measurement rates (this is 
typically limited by the ADC sampling rate) 
and low light levels (due to scene light 

being resolved into various modalities). CS techniques, more 
specifically, signal models, can address both bottlenecks. 
Examples of compressive cameras include the coded aperture 
snapshot spectral imaging architecture [76] and compressive 
hyperspectral imaging using spectrometers [50] for spectral 
multiplexing and the work of Marwah et al. [58] and Tambe 
et al. [71] for angular multiplexing.

Models for video structure
Recovering a video from compressive linear measurements 
requires one to extract the video signal s  from the measure-
ments y sU=  (recall “CS 101”). Here, s  might represent a 
certain block of pixels, an entire video frame, or an ensemble 
of frames, depending on the sensing architecture and the spe-
cific recovery algorithm employed. All of these are functions 
of the underlying time-varying scene [ , , ]V x y t . Because the 
number of measurements M  is less than the video signal’s 
ambient dimensionality ,N  infinitely many vectors sl may sat-
isfy .y sU= l  Hence, to recover s  from y, a model that cap-
tures the scene structure (or a priori information) of s  with a 
small number of degrees of freedom is required; the model can 
then be included in the recovery algorithm. This section sur-
veys several popular models for characterizing low-dimension-
al structure in videos.

Single-frame structure
The structure of a single video frame can be characterized 
using standard models for conventional 2-D images. Natural 
images have been shown to exhibit sparse representations in 
the 2-D DCT, 2-D wavelet, and curvelet domains [15], [56]. 
Images have also been shown to have sparse gradients. The 
total variation (TV) seminorm promotes such gradient spar-
sity simply by minimizing the 1,  norm of an image’s 2-D 
gradient [52]. To fully exploit the structure in a 3-D video, 
one needs to characterize the spatial and temporal dimen-
sions simultaneously, rather than reconstructing each frame 
independently and only accounting for spatial structure. 
Hence, the spatial 2-D regularizers described previously 
often appear as building blocks of more sophisticated 3-D 
video models.

Sparse innovation models
One of the simplest possible models accounting for multi-
frame structure assumes that a video can be reduced into a 
static and a dynamic component. This model—while restric-
tive—is applicable, for example, in surveillance applications, 

SMCs apply CS  
multiplexing in space 
to boost the spatial 
resolution of images  
and videos obtained from 
sensor arrays with  
low spatial resolution. 
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where a scene is observed from a distant 
static camera. We can decompose each 
frame of such a video into a static back-
ground frame and a number of small 
(sparse) foreground objects that may 
change location from frame to frame. A 
natural way of modeling such structure is 
to assume that the differences between 
consecutive frames have a sparse represen-
tation in some transform basis. That is, for 
two consecutive video frames [ , , ]V x y t1  and [ , , ]V x y t2 , one 
may assume that the difference frame [ , , ] [ , , ]V x y t V x y t2 1-  
has a sparse representation in a basis such as a 2-D wavelet 
basis. Such models have been explored in detail in the con-
text of CS [17], [57], [74] and can be viewed as special cases 
of the more advanced motion-compensation techniques 
described below.

Low-rank matrix models
An alternative approach to scene modeling involves reorganiz-
ing a 3-D video signal into a 2-D matrix, where each column 
of the matrix contains a rasterized ordering of the pixels of one 
video frame. A variety of popular concise models for matrix 
structure can then be interpreted as models for video structure. 
One of the most prominent models asserts that the matrix is 
low rank; this is equivalent to assuming that the columns of the 
data matrix live in a common, low-dimensional subspace. In 
the context of video modeling, a seminal result by Basri and 
Jacobs [9] showed that collections of images of a Lambertian 
object under varying lighting often cluster close to a nine-
dimensional subspace. This property can be useful for model-
ing videos of stationary scenes where the illumination 
conditions change over time.

To account for both variations in background illumination 
and for sparse foreground objects that move with time, one can 
extend the low-rank matrix model to a low-rank-plus-sparse 
model [79], [80]. A sparse matrix, added to the original low-
rank matrix, accounts for sparse foreground innovations, such 
as small moving objects. Again, such models are particularly 
suitable for surveillance applications.

TV minimization and sparse dictionaries
Sparsifying transforms such as wavelets, curvelets, and the 
DCT have natural extensions to 3-D [56], [77], [82] and can be 
employed for jointly reconstructing an ensemble of video 
frames. TV minimization can also be extended to 3-D [35], [49]; 
minimizing the 3-D TV seminorm of a video promotes frames 
with sparse gradients across spatial and temporal dimensions.

It is also possible to learn specialized (possibly overcom-
plete) bases that enable sparse representations of patches, 
frames, and videos from training data. A variety of so-called 
dictionary learning algorithms have been proposed that learn 
sparsifying frames W  (see, e.g., [1] and “CS 101”). Dictionary 
learning algorithms can be used not only to generate diction-
aries that sparsify images but also to sparsify videos in both 
the spatial and temporal dimensions. This approach has been 

successfully employed for CS video recon-
struction in [39].

Linear dynamical systems
Linear dynamical systems (LDSs) model 
the dynamics in a video using linear sub-
space models. Such models have been 
used extensively in the context of activity 
analysis and dynamic textures. Video CS 
using LDS reduces to the estimation of the 

LDS parameters, including the observation matrix and the 
state transition matrix, from compressive measurements. 
Approaches for parameter estimation have included recur-
sive [73] as well as batch methods [66]. Furthermore, [66] 
demonstrates the use of the recovered LDS parameters for 
activity classification.

Motion compensation
While regularizers such as 3-D wavelets and 3-D TV minimi-
zation can be used for CS video reconstruction, it is worth not-
ing that conventional video compression algorithms (such as 
H.264) do not employ such simple techniques. Rather, 
because objects in a video may move (or translate) several 
pixels between adjacent frames, it is typical to employ block-
based motion compensation and prediction, where each video 
frame is partitioned into blocks, the location of each block is 
predicted in the next frame, and only the residual of this pre-
diction is encoded.

Some CS video architectures may require reconstructions 
of video sequences with high temporal frame rates. In these 
cases, there may be relatively little object motion between 
consecutive frames. Consequently, motion compensation may 
not be required, and techniques such as 3-D TV may result in 
high-quality scene recovery.

In other cases, however, it may be necessary to predict and 
compensate for the motion of objects between consecutive 
frames. This presents an interesting chicken-or-egg problem:  
motion compensation can help in reconstructing a video, but 
the motion predictions themselves cannot be made until (at 
least part of) the video is reconstructed. One iterative, multi-
scale technique has been proposed [62] that alternates between 
motion estimation and video reconstruction: the recovered 
video at coarse scales (low spatial resolution) is used to esti-
mate motion, which is then used to boost the recovery at finer 
scales (high spatial resolution). Given the estimated motion 
vectors, a motion-compensated 3-D wavelet transform can be 
defined using the LIMAT technique [68]. Another approach 
initially reconstructs frames individually, estimates the motion 
between the frames, and then attempts to reconstruct any resid-
ual not accounted for by the motion prediction [30]; see also  
[45] for a related technique. The logistics of block-based video 
sensing and reconstruction are discussed in detail in [30].

Optical flow
A more general approach to motion compensation involves the 
optical flow field. Given two frames of a video, [ , , ]V x y t1  and 

One of the simplest 
possible models 
accounting for multiframe 
structure assumes that  
a video can be reduced 
into a static and a  
dynamic component.
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[ , , ]V x y t2 , optical flow refers to the flow field { ( , ), ( , )}u x y v x y  
such that [ ( , ), ( , ), ]V x u x y y v x y t1+ + = [ , , ]V x y t2 . Optical flow 
enables one to represent the frames of a video using a small 
collection of key frames plus optical flow fields that synthesize 
(extrapolate) the video from the key frames. Optical flow fields 
are often significantly more compressible than images. Such an 
approach is closely related to the block-based motion compen-
sation models described earlier but is distinguished by its 
explicit attempt to model motion on a per-pixel basis.

A key challenge in the use of optical flow models for video 
CS is—once again—that, in the context of sensing, we do 
not have access to the flow fields nor do we have access to 
high-quality images from which to estimate the flow fields. 
Reddy et al. [65] resolve this chicken-or-egg problem by first 
recovering a video with simple image-based priors, estimat-
ing the optical flow field on the initial reconstruction, and 
subsequently recovering the video again while simultaneously 
enforcing the brightness constancy constraints derived using 
optical flow. They show that a 30-frames/second (fps) sensor 
can be superresolved to a 240–480-fps sensor by temporal 
modulation using an LCoS device. In the context of SMCs, 
Sankaranarayanan et al. [67] use a specialized dual-scale sens-
ing (DSS) matrix that provides robust and computationally 
inexpensive initial scene estimates at a lower spatial resolution. 
This enables this approach to robustly estimate optical flow 
fields on a low-resolution video. Optical flow-based video CS 
has also been applied for the dynamic MRI problem, where 
carefully selected Fourier measurements provide robust initial 
scene estimates [3]. The concept of DSS sensing matrices has 
been improved recently by the sum-to-one (STOne) transform 
[35], which enables the fast recovery of low-resolution scene 
estimates at multiple resolutions.

Video recovery techniques
While the mathematical formulations of video CS recovery 
problems resemble other canonical sparse recovery problems, 
three important factors set video recovery apart from other 
types of sparse coding. First, video recovery problems are 
extremely large and have high memory requirements. 
Methods for high-resolution video recovery must scale to hun-
dreds of millions of unknowns. Second, sparse representations 
of videos with complex structures may contain tens of thou-
sands (or more) of nonzero entries. Consequently, algorithm 
implementations that require large dense matrix systems are 
intractable, and methods must exploit fast transforms. Third, 
high-quality video recovery often involves noninvertible spar-
sity transforms, and so reconstruction methods that handle 
cosparsity models are desirable. Some recovery problems 
require more sophisticated (or unstructured) models, such as 
optical flow constraints, that cannot be handled efficiently by 
simple algorithms. All of these factors impact algorithm per-
formance on different reconstruction applications.

This section overviews the range of existing recovery tech-
niques and investigates the tradeoffs between reconstruction 
quality and computational complexity. For simplicity, we focus 
on two categories of reconstruction methods, variational and 

greedy. Note that there are algorithms that do not fit well into 
these categories (such as iterative hard thresholding [12], which 
has features of both); a discussion of such methods is beyond 
the scope of this article.

Variational methods
Variational methods for CS video recovery perform scene 
reconstruction by solving optimization problems using itera-
tive algorithms. Most variational methods suitable for high-
dimensional problems can be classified into two categories, 
constrained and unconstrained, as detailed next.

Constrained problems
The first category solves constrained problems of the form

	
,s z

( | ) ( )   .argmins f s y g z z ssubject toU W= + =t � (1)

Here, the function f  models the video acquisition process 
(optics, modulation, and sampling), and g  is a regularizer that 
promotes sparsity under the transformation defined by W . 
For example, basic frame-by-frame recovery with 2-D wavelet 
sparsity can be formulated as an unconstrained problem with 
( )f s y y s 2

2U U= -  and ( )g z z 1c= , where s  contains a 
vectorized image frame, U  is the sensing matrix, W  is a 2-D 
wavelet transform, and 02c  is a regularization parameter. 
Under a TV scene model, the matrix W  is a discrete gradient 
operator that computes differences between adjacent pixels. 
3-D TV video recovery can be achieved by stacking multiple 
vectorized video frames into s  and defining W  to be the 3-D 
discrete gradient across both spatial dimensions and time. 
Optical flow constraints can be included by forming a sparse 
matrix W  that differences pixels in one frame with pixels that 
lie along its flow trajectory in other frames.

It can be shown that the solution to (1) corresponds to a 
saddle point of the so-called augmented Lagrangian function

	 ( , , ) ( ) ( ) ,s z f s y g z z s
2

L 2
2m

b
mU W= + + - - 	 (2)

where m  is a vector of Lagrange multipliers. Constrained 
problems of the form (1) for CS video can be solved efficient-
ly using the alternating direction method of multipliers 
(ADMM) [13], [28], [31] or the primal-dual hybrid gradient 
(PDHG) method [18], [29]. The ADMM and PDHG methods 
alternate between minimization steps for s  and z  and maxi-
mization steps for m  until convergence is reached. Such meth-
ods have the key advantage that they enable the inclusion of 
powerful, noninvertible video models such as 3-D TV or opti-
cal flow. This advantage, however, comes at the cost of higher 
memory requirements and somewhat more complicated itera-
tions. To improve the convergence rates of solvers for con-
strained problems, accelerated algorithm variants have been 
developed [18], [32], [33].

Unconstrained problems
If the sparsity transform W  is invertible, then the constraint in 
(1) can be removed by replacing the vector s  with .z1W-  This 
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leads to the second category of recovery methods that solve 
unconstrained problems of the following simpler form:

	
z

( ) ( ) .argminz f z y g zU= +t t 	 (3)

Here, the matrix 1U UW= -t  and z  contains the representation of 
a single frame or the entire video in the sparsity transform domain. 
For example, in the case of wavelet sparsity, solving (3) recovers 
the video’s wavelet coefficients; the final video is obtained by 
applying the inverse wavelet transform to the solution.

Unconstrained problems of the form (3) can be solved 
efficiently using forward–backward splitting (FBS) [20], 
fast iterative shrinkage/thresholding (FISTA) [10], fast adap-
tive shrinkage/thresholding algorithm (FASTA) [34], sparse 
reconstruction by separable approximation (SpaRSA) [81], or 
approximate message passing (AMP) [25], [55]. FBS is the 
most basic variant for solving unconstrained problems and 
performs the following two steps for the iterations , ,k 1 2 f=  
until reaching convergence:

	 ( | )z z f z y*k k k k1 dx U U= ++t t t  and� (4)

	
z

( ) ,argminz g z z z
2
1k k1 1

2
2

= + -+ +t � (5)

where { }kx  is some step size sequence. FBS finds a global 
minimum of the objective function (3) by alternating between 
the explicit gradient-descent step (4) in the function f  and the 
proximal (or implicit gradient) step (5) in the function .g  
The key operations of the gradient step (4) are matrix–vector 
multiplications with Ut  and .*Ut  These multiplications can be 
carried out efficiently when Ut  is a composition of fast trans-
forms, such as subsampled Hadamard/Fourier matrices and 
wavelet or DCT operators. When g  is a simple sparsity-pro-
moting regularizer, such as the 1,  norm, the proximal step (5) 
is easy to compute in closed form using wavelet shrinkage. 
The computational complexity of FBS can be reduced signifi-
cantly using adaptive step-size rules for selecting { }kx , accel-
eration schemes, restart rules, momentum (or memory) terms, 
and so forth, as is the case for FISTA, FASTA, SpaRSA, and 
AMP. See the review article [34] for more details.

Greedy pursuit algorithms
Greedy pursuit algorithms are generally used for uncon-
strained problems and iteratively construct a sparse set of 
nonzero transform coefficients. Each iteration begins by 
identifying a candidate sparsity pattern for the unknown vec-
tor z. Then, a least-squares problem is solved to minimize 

z y 2
2

U -t , where z  is constrained to have the prescribed 
sparsity pattern.

Existing greedy pursuit algorithms can be classified into 
sequential greedy pursuit algorithms and parallel greedy pur-
suit algorithms. Sequential methods include orthogonal match-
ing pursuit (OMP), regularized OMP (ROMP), and stagewise 
OMP (StOMP) [26], [61], [72]. These methods successively 
add more and more indices to the support set until a maximum 
sparsity K is reached. Parallel methods, such as compressive 

sampling matching pursuit (CoSaMP) and subspace pursuit 
[21], [60], constantly maintain a full support set of K nonzero 
entries but add strong and replace weak entries in an iterative 
fashion. Parallel greedy pursuit algorithms have the advantage 
that they can enforce structured models on the support set, 
such as a wavelet tree structure [5].

The main drawbacks of greedy algorithms, however, are 
that 1) they are typically unable to handle noninvertible spar-
sity transforms used for video reconstruction such as TV, opti-
cal flow, or overcomplete wavelet frames; 2) accurate solutions 
are guaranteed only when the measurement operator satisfies 
stringent conditions (such as the restricted isometry property or 
similar incoherence conditions [60], [72]); and 3) they require 
solving large linear systems on every iteration. For small num-
bers of unknowns (<10,000), the factorization of these systems 
can be explicitly represented and updated cheaply using rank-
one updates. For the large video CS problems considered here, 
iterative (conjugate gradient) methods are recommended. These 
methods require only matrix multiplications (which can exploit 
fast transforms) and have lower memory requirements because 
they do not require the storage of large and dense matrices.

Reconstruction quality versus computational complexity
There are many choices to make when building a compressive 
video pipeline, including measurement operators, video mod-
els, and reconstruction algorithms. Most reconstruction algo-
rithms are restricted as to what measurement operators and 
sparsity models they can support. To achieve the best perfor-
mance, the reconstruction algorithms, video models, and data 
acquisition pipelines must be designed jointly; this implies 
that there are tradeoffs to be made among reconstruction 
speed, algorithm simplicity, and video quality.

The classical approach to CS video recovery is to search for 
the video that is compatible with the observed measurements 
while being as sparse as possible in the wavelet domain. When 
an invertible wavelet transform is used, the reconstruction 
problem can be transformed into an unconstrained problem of 
the form (3), which can be solved efficiently using variational 
methods such as FBS. If we further assume that the wavelet 
transform is orthogonal, then we can use off-the-shelf greedy 
pursuit algorithms, such as CoSaMP. Unfortunately, while 
unconstrained optimization is simple to implement and highly 
efficient, wavelet-based scene priors generally result in lower 
reconstruction quality than noninvertible/redundant sparsity 
models like TV. For this reason, we are often interested in con-
strained solvers that interface with TV-based video models and 
optical flow constraints.

To examine the associated performance/complexity trad-
eoffs, we compare a variety of reconstruction methods using 
the same measurement operator. A stream of 65,536 STOne 
measurements [35] was acquired from a 256 × 256 pixel 
video having 16 frames. Videos were reconstructed separately 
using various models and solvers that were implemented in  
MATLAB. We consider unconstrained recovery using CoS-
aMP and FBS, which are restricted to using invertible regular-
izers. In the wavelet case, we consider 1) 2-D frame-by-frame 
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recovery that does not exploit correlations across time, and 
2) 3-D wavelet recovery that performs a 3-D wavelet transform 
across space and time. We also consider sparsity under the  
3-D DCT, which is invertible and enjoys extensive use in 
image and video compression. We furthermore consider solv-
ers for constrained problems that handle more sophisticated 
sparsity models. In particular, we compare 3-D TV models 
with PDHG and optical flow constraints with ADMM (as in 
CS-MUVI [67]). As a baseline, we perform CS video recovery 
without scene priors by simply computing ,yTU  the product 
of the adjoint of the measurement operator with the vector 
of measurements. Because the measurement operator is a 
subsampled orthogonal matrix, this corresponds to a least-
squares recovery using the pseudoinverse. All experiments 
are carried out on an off-the-shelf laptop with 16 GB memory 
and a 2.6 GHz i5 central processing unit (CPU) with two 
physical cores (no parallelism was used for reconstruction).

Sample frames from our experiments together with the 
required runtime are shown in Figure 3. We observe that TV 
regularization and optical flow models dramatically outperform 
wavelet-based recovery in terms of video quality. Furthermore, 
3-D models lead to significantly improved image quality with 
fewer artifacts than 2-D models, despite the fact that both recon-
structions see the same amount of data. This demonstrates the 

efficacy of exploiting correlations across time. The key advantage 
of 2-D models is that they enable parallel frame-by-frame recon-
struction, for example, by dispatching different recovery prob-
lems on separate CPU cores. Finally, we see that for these types of 
large-scale reconstruction problems, variational methods require 
substantially lower runtimes than greedy pursuit algorithms. The 
CoSaMP result in Figure 3 is for frame-by-frame reconstructions 
with a sparsity level of K 256=  nonzero wavelet coefficients 
per image. CoSaMP’s runtime increases dramatically for larger 
K or when 3-D regularizers are used. This is because each itera-
tion requires the solution to a large least-squares problem using 
multiple iterative (conjugate gradient) steps. Hence, such greedy 
pursuit algorithms turn out to be efficient only for highly sparse 
signals and not for general CS video problems.

Perspectives and open research questions
The video CS problem has spawned a growing body of 
research that spans signal representations and models, com-
putational sensing architectures, and efficient optimization 
techniques. This has led to a vibrant ecosystem of methodol-
ogies that have transitioned the theoretical ideas of CS into 
concrete application-specific concepts. We conclude by 
highlighting some of the important open questions and 
future research directions.

Original Video
2-D Wavelet (CoSaMP)

752 Seconds
2-D Wavelet (FBS)

45 Seconds
3-D DCT (FBS)
332 Seconds

Adjoint
0.001 Second

3-D Wavelet (FBS)
134 Seconds

Optical Flow (SPGL1)
415 Seconds

3-D TV (PDHG)
29 Seconds

FIGURE 3. A CS video recovery comparison with different video models. For each model, we recover a 16-frame video with 256 # 256 pixel resolution 
from 216  STOne transform measurements, corresponding to a 16:1 compression ratio. Sparsity models include 2-D (across space) and 3-D (across 
space and time) wavelet sparsity using the Haar wavelet, the 3-D DCT, optical flow constraints, and 3-D TV. For each experiment, we also provide the 
total runtime for recovering 16 frames.
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Real-time CS video recovery with today’s hardware
High-quality CS video recovery requires complex algorithms 
that include powerful video models. While offline video 
recovery is always feasible, reconstruction using more sophis-
ticated scene models (e.g., using optical flow) can easily take 
several seconds to minutes even for only a few low-resolution 
frames. As a consequence, applications that necessitate real-
time video recovery face extreme implementation challenges. 
From our experiments in Figure 3, we see that even the fastest 
algorithms with basic video models are more than 20 # to 
200# below real time when executed in MATLAB on 
off-the-shelf CPUs.

Quite surprisingly, when counting the number of floating-
point operations (FLOPs) required for the main transforms of 
these methods, we observe that real-time CS video recovery 
with variational methods is within reach of existing hardware. 
In fact, variational-based scene recovery of a 256 × 256 pixel 
scene at 12 fps requires only about 20 GFLOPs, which is well 
below that of programmable processing hardware, such as 
CPUs, graphics-processing units (GPUs), and field-program-
mable gate arrays (FPGAs) that achieve peak throughputs 
of a few TFLOPs. Similarly, existing application specific 
integrated circuit (ASIC) designs that target CS recovery 
problems [11], [53] are able to solve variational problems 
with more than 200 GOPS (the computations are typically 
carried out with fixed-point arithmetic instead of floating 
point) using low silicon area and low power when imple-
mented in modern CMOS technology nodes. In Figure 4, 
we compare the complexity versus the resolution of vari-
ous CS video recovery methods. One can observe that even 
higher resolutions like 1080p HD are feasible in real time 
with computationally efficient algorithms. Nevertheless, no 
real-time CS video recovery implementation has been pro-
posed in the open literature, which can mainly be attributed 
to the lack of highly optimized and massively parallel CS 
video recovery pipelines for programmable hardware (CPUs, 
GPUs, or FPGAs) as well as dedicated integrated circuits 
(ASICs). This is definitely a fruitful area for future work.

Compressive inference rather than recovery
The main results of CS are directed toward providing novel 
sampling theorems that determine the feasibility of signal 
reconstruction from an underdetermined set of linear measure-
ments. However, reconstruction is often not the eventual goal 
in most applications, which range from detection and classifi-
cation to tracking and parameter estimation. While these tasks 
can all be performed postreconstruction (on the output of a 
reconstruction procedure), there are important benefits to be 
gained by performing them directly on the compressive mea-
surements. First, tasks like detection, classification, and track-
ing are inherently simpler than reconstruction—hence, there is 
hope that we can perform them with fewer measurements. 
Second, CS reconstruction is intrinsically tied to the signal 
models used for the unknown signal, and these signal models 
prioritize features that deal with visual perception, which often 
is not the most relevant for the subsequent processing tasks. 

Third, as previously discussed at length, CS reconstruction 
algorithms have high computational complexity, and hence 
avoiding a reconstruction step in the overall processing pipe-
line can be beneficial.

There has been some limited work on inference from 
linear compressive measurements. Davenport et al. [23] 
perform compressive classification and detection by using a 
matched filter in the compressive domain. Their key obser-
vation is that random projections preserve distances as well 
as inner products between sparse vectors; thus, inference 
tasks like hypothesis testing and certain filtering opera-
tions can be performed directly in the compressive domain. 
Hegde et al. [38] show that manifold learning (or nonlinear 
dimensionality reduction) can be performed just as well on 
the compressive measurements as on the original data, pro-
vided the data arises from a manifold with certain smooth-
ness properties. Sankaranarayanan et al. [66] demonstrate 
that for time-varying systems well approximated as linear 
dynamical systems, the parameters of the dynamical sys-
tem can be directly estimated given compressive measure-
ments. Recently, Kulkarni and Turaga [44] proposed a novel 
method based on recurrence textures for action recognition 
from compressive cameras especially for self-similar fea-
ture sequences [43]. Apart from these early attempts, there 
is very little in the literature exploring high-level inference 
from compressive imagers.
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FIGURE 4. The complexity (in FLOPs per pixel) versus resolution (in pixels 
per second) for greedy algorithms, variational methods, and optical-flow 
models for the video scene in Figure 3. Variational methods (including 
3-D TV and 3-D/2-D wavelets) require the lowest complexity and enable 
real-time CS video recovery with existing hardware (the diagonal dotted 
line shows the FLOPs limit of current reprogrammable hardware). Optical 
flow models exceed the capabilities of current hardware and require the 
development of more efficient computational methods and faster process-
ing architectures.
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A major hurdle to successful compressive inference in the 
video context is the mismatch between part-based models, used 
in computer vision, and global random embeddings, the corner-
stone of the CS theory. Part-based models have had remarkable 
success over the past decade in object detection and classifica-
tion problems. The key enabler of part-based inference is a local 
feature description that helps isolate objects from background 
clutter and provides robustness against object variations. How-
ever, the conventional CS measurements are dense random 
projections that are not conducive to local feature extraction 
without reconstructing the signal first. Hence, there is an urgent 
need for CS measurement operator designs that enable local 
feature extraction.

From measurements to bits—Toward nonlinear  
sensing architectures
One of the important distinctions between video CS and video 
compression is the nature of representing the compressed data. 
Compression aims to reduce the number of bits used to repre-
sent the video. In contrast, CS measurements are typically rep-
resented in terms of real values with infinite (or arbitrarily 
large) precision; here, the number of actual measurements is 
the criterion to reduce/optimize. The focus on reducing the 
number of measurements is often misplaced in many sensing 
scenarios; for example, in high-speed video CS, the bottleneck 
is solely due to the operating speed of the ADC, whose perfor-
mance is measured in the number of bits acquired per second. 
Hence, compressively sensing while respecting the bottlenecks 
imposed by the ADC sampling frequency requires us to con-
sider measurements in terms of bits. While there has been 
some effort in the area of 1-bit CS [4], [42], [63] and the trad-
eoff between measurement bits and measurement rate [48], 
this aspect is still largely unexplored in literature. In particular, 
there is a need for new kinds of nonlinear sensing architectures 
that optimize system performance in the context of the practi-
cal realities of sensing (quantization, saturation, etc.). Some 
initial progress in this direction for CS has been made in [59], 
but the area remains wide open for research.
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