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Abstract. In this paper we study macroscopic thermodynamic properties
of a stochastic microscopic heat conduction model that is reduced from
deterministic problems. Our goal is to numerically check how the ‘low energy
site effect’ inherited from the deterministic model would affect the macroscopic
thermodynamic properties such as the thermal conductivity and the local
thermodynamic equilibrium. After a series of numerical computations, our
conclusion is that neither the thermal conductivity nor the existence of local
thermodynamic equilibrium is qualitatively changed by this effect.
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1. Introduction

In general, nonequilibrium statistical mechanics is not as well-developed as its equi-
librium counterpart. Mathematical justifications to the many fundamental problems
in nonequilibrium statistical physics are not complete yet. The derivation of Fourier’s
law from microscopic Hamiltonian dynamics is one of such century-old challenges. It
is not clear yet how macroscopic thermodynamic laws including Fourier’s law can be
rigorously proved from the motion and interactions of a large number of Newtonian
particles [1].

A more precise example is a long and thin tube that contains many kinetic particles.
A particle only does free motion and elastic collisions. Now assume the two ends of this
tube are thermalized in a way that the particle collides with a random particle cho-
sen from a Boltzmann distribution when hitting the left or right boundary. When the
temperatures of these two Boltzmann distributions are distinct, the system is driven
out from its thermal equilibrium by the boundary effect. Needless to say, this prob-
lem is far beyond the reach of the current dynamical systems technique. In fact, most
results about dynamical billiards are for one-particle billiard systems [4], with only a
few exceptions [21, 22].

In our earlier paper [12], we attempted to reduce this ‘particle in a tube’ problem
to a mathematically tractable stochastic energy exchange model by numerical simula-
tions. The idea is to divide the tube into a large number of localized cells as in [2], such
that each particle is trapped in a cells, but collisions between particles in adjacent cells
are still allowed through the opening between neighboring cells. See figure 1 for details.
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Figure 1. A billiards-like microscopic heat conduction model. Each particle is
trapped in its own cell. Collisions through the opening between the two cells
are allowed. Red and blue sections of the boundary are thermalized in a way so
that the particle receives a random kick after colliding with these two sections.
The random kick mimics a collision with a particle drawn from a Boltzmann
distribution.

Then we use numerical tools to investigate the rule of energy exchanges between
cells. We refer section 2.2 for a detailed description of the energy exchange rule. This
gives a stochastic energy exchange model that approximates the time evolution of the
energy profile of the billiards model. The stochastic energy exchange model consists
of a chain of sites that is connected to two heat baths at both its ends. Each site car-
ries some energy, which can be exchanged with neighboring sites at exponentially
distributed random times. The rule of energy redistribution at an energy exchange is
also random. Many rigorous results can be proved for the resultant stochastic energy
exchange model. Among which, our earlier paper [13] rigorously proved that the speed
of convergence to the steady state, i.e. the nonequilibrium steady state (NESS), of this
model is polynomial. On the other hand, a slightly different stochastic exchange model
can be derived by working on the time rescaling limit when particles in adjacent cells
barely collide [6-8]. It is known that the speed of convergence of the second model is
exponential [9, 17, 20].

The slow speed of convergence of the model in [13] is due to the presence of a low
energy particle. Because of the localization, the next energy exchange will not happen
for a long time period if the kinetic energy of one of the involved particles is low. The
slow particle has to move to the ‘gate’ by itself in order to exchange energy with oth-
ers. As a result, the energy transport is temporarily blocked by this low energy particle.
The stochastic energy exchange model inherits this feature from the original determin-
istic heat conduction model. If a site carries a very low amount of energy, it will wait
a long time for the next energy exchange. We call this the low energy site effect. Since
the energy transport is occasionally halted by low energy sites, one natural question is
that: would the low energy site effect in a stochastic energy exchange model qualita-
tively change the thermal conductivity?

A more fundamental question is about the existence of the local thermodynamic
equilibrium (LTE). The existence of LTE means that the marginal distribution of the
non-equilibrium steady state with respect to finite local sites converges to a thermal
equilibrium when the length of the chain approaches to infinity. Heuristically, this
implies the existence of a well-defined local temperature. There are very limited rig-
orous results about the existence of LTE due to its significant difficulty [10, 16, 19],
all of which are for very simple heat conduction models. It is also tempting to check
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whether the low energy site effect would make the stochastic energy exchange model
fail to achieve LTE.

Differing from the thermal equilibrium, NESS usually does not have an explicit
form. We are able to prove its existence, uniqueness, ergodicity, and hydrodynamic
limits in some situations. But in general a detailed description of NESS is not possible.
In fact, this is one reason why any rigorous justification of non-equilibrium statistical
physics is challenging. Since mathematical studies of the thermal conductivity and
LTE are too difficult, we will have to seek help from numerical simulations.

The main subject of this paper is to answer the two questions raised above numer-
ically. In a stochastic energy exchange model, we choose two different rate functions
corresponding to exponential and polynomial ergodicity, respectively. The we use law
of large numbers of martingale difference sequences to show that the thermal conduc-
tivity is both well defined and computable through Monte Carlo simulations. And the
marginal distribution of the NESS is obviously well defined and computable because
of the ergodicity. Hence it is not difficult to design a series of numerical simulations
to compute the thermal conductivity and the marginal distribution. Our simulations
are implemented by the Hashing-Leaping method (HLM) developed in [15], which is
significantly faster than most implementation methods of the stochastic simulation
algorithm (SSA). Parallel computing is used to collect enough samples.

Our numerical simulations shows that the low energy site effect will not qualita-
tively affect the thermal conductance, which is supposed to be proportional to the
reciprocal of the length of the chain. This implies the existence of a ‘normal’ thermal
conductivity. The thermal conductivity of the model with a slow speed of convergence
can be increased by changing it to 2D. Then the effect of low energy site is significantly
reduced. The existence of LTE is a more subtle issue. To check it, one needs to accu-
rately compute the marginal distribution of the NESS. However, the slow convergence
speed to NESS caused by the low energy effect imposes many challenges to such a
computation. After working carefully on the sampling technique and the algorithm,
we conclude that LTE is achieved in our model regardless affected by the low energy
effect or not.

The paper is organized in the following way. The stochastic energy exchange model,
its connection to deterministic dynamical system, and relevant rigorous results are
introduced in section 2. Section 3 is about the law of large number and numerical
results of the thermal conductivity. The existence of LTE is investigated in section 4.
Section 5 is the conclusion.

2. Model description

2.1. Reduction from deterministic dynamics

Consider an 1D chain of billiard tables as described in figure 1, called the locally
confined particle system. One disk-shaped particle is ‘trapped’ in a billiard table such
that each particle is allowed to collide with those particles in adjacent billiard tables,
but cannot leave its billiard table. In addition, we assume that the boundary of each
billiard table is piecewise C® and strictly convex inward, so that it forms a chaotic
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dynamical billiards system by itself [3]. This model is intensively studied because this
is probably the simplest deterministic dynamical system that models the microscopic
heat conduction. The kinetic energy is transported through collisions between particles.

Due to the significant difficulty of studying a chaotic multibody system, a natural
question is whether one can reduce this deterministic dynamical system to a Markov
process. More precisely, we look for a stochastic energy exchange process that only
keeps track of the time evolution of the energy profile. Obviously the process of energy
evolution is not Markovian. But since the chaotic billiards system has very good sta-
tistical properties, we expect this deterministic energy evolution process to be well
approximated by a Markov process, at least under some rescaling limit.

There have been two different studies about the reduction from the billiard system
in figure 1 to a Markov process. One study was conducted by [6, 7], which essentially
assumes that the gap between two tables is extremely small. Then we can take a time
rescaling limit such that the expected number of particle-particle collisions per unit
time is still 1. The conclusion of this study is that at this time rescaling limit, the prob-
ability that two particles with energy (FE4, Es) collide during the next time interval with
length dt < 1 is approximately v/E; + E5dt. Now assume the energy exchange process
is Markov. Then the interval between the two consecutive energy exchanges should be
an exponentially distributed random variable, whose rate is ~v/F; + E5. We refer read-
ers to [6] for the precise formula of the energy exchange kernel.

The other point of view, however, focuses on the dynamics at the original time
scale. If the billiards table is properly chosen, the time distribution of the next particle-
particle collision is very close to an exponential distribution. Instead of taking the time
rescaling limit, one can numerically probe the slope of the exponential tail of the first
collision time. Additional simulations in [12] demonstrate that the conditional distribu-
tion of the time duration between two consecutive collisions have the same exponential
tail. Therefore, the energy exchange times of the billiards model can be approximated
by a Poisson clock. The rate of this clock, or the slope of the exponential tail, is
called the stochastic energy exchange rate. When two adjacent particles have energies
(E1, Es), the numerical simulation in [12] shows that the slope of this exponential tail
is ~y/min{ £y, Es}. In other words, the rate of the exponential clock about the energy
exchange event should be ~y/min{E;, F5}. This rate respects the dynamics of the bil-
liards system at its original time scale. It is easy to see that a slow particle needs a long
time to move to the ‘gate area’ in order to have a collision, which causes the low energy
site effect. Hence the next collision time mainly depends on the lower particle energy
in a nearest neighbor pair particles. We refer to [12] for further discussions about this
clock rate.

It remains to discuss the rule of energy redistribution at a collision. The analysis
and numerical simulation in [14] shows that although the explicit formula of an energy
redistribution is too complicated to be useful, the amount of exchanged energy has a
positive density everywhere. Hence it is proper to assume that the energy repartition
is done in a ‘random halves’ way as described in equation (2.1). More precisely, we
assume that the energies of two colliding particles are pooled together at first. Then a
(uniformly distributed) random proportion of the total energy goes to the left, and the
rest energy goes to the right. This simplified rule has been used in many early studies
[9, 10, 17, 20].
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2.2. Stochastic energy exchange process

In summary, the locally confined particle system in figure 1 can be reduced to the fol-
lowing two stochastic energy processes with two different rate functions. Each process
corresponds to one approach of model reduction. Consider a chain of N sites carrying
energy FEi,---, En respectively. An exponential clock is associated to each pair of
sites (E;, Fiy1). The rate of this clock is R(E;, E;+1). When the clock rings, an energy
exchange event occurs immediately. The rule of energy exchange is that

(B}, Elyy) = (p(Ei + Ei1), (1 = p)(Ei + Eija)), (2.1)

where p is a uniform random variable on (0,1). We assume the rate func-
tion R(E;, E;y1) has two different choices R = Ry(E;, E;11) =+E;+ F;;; and
R = Ry(E;, Eiy1) = \/EiEi11/(E; + Eit1), corresponding to the dynamics at the time
rescaling limit and the original time scale, respectively. Note that here we choose
Ry(E;, Eiy1) = \/E;:Ei11/(E; + Ei11) because it is a smooth function that mimics the
shape of \/ min{E;, F; 11}, and it admits an explicit thermal equilibrium.

The rule of energy exchange with the boundary is the same. We assume this chain
is connected to two heat baths with temperatures 71, and Tr respectively. Two more
exponential clocks with rates R(11, Ey) and R(Ey, Tr) are associated to the two ends of
the chain respectively. When the left (resp. right) clock rings, the first (resp. last) site
updates energy according to the following rule

Ey =p(Ey +E(T1))  (resp. By = p(Ex + E(Tkr))), (2.2)

where p is a uniform random variable on (0, 1), and £()\) mean an exponential random
variable with mean A.

The stochastic energy exchange process described above generates a Markov process
®, on RY. Let E = (E4,--- ,En) € RY be a state of the Markov process and f(E) be
a measurable function. To distinguish the two rate functions, we denote the Markov
process by @} if the rate function is Ry and by ®? if the rate function is Ry. The upper
index is dropped when it does not lead to confusion.

The infinitesimal generator £; of ®% for 1 = 1,2 is

N-1 1
Lif(E)= Z Ri(Ey, En+1)[/0 (B p(Ep + Enta), (1= p)(En + Epta),
n=1

o, Ey)dp — f(E)]
. = i —z/T, _
T R R R I )
+ Ri(Ex, Tl / N / CH(By, - Enoyp(Bx + x))TiRe—f/TR drdp— f(B)].  (23)
0 0

2.3. Rigorous results for the stochastic energy exchange process

Let V(E) be a strictly positive function. For any signed measure ;1 on Rf , denote

lullv = [ V®)al(aE) 2.4

RY

https://doi.org/10.1088/1742-5468 /ab0c16 6


https://doi.org/10.1088/1742-5468/ab0c16

Thermal conductivity and local thermodynamic equilibrium of stochastic energy exchange models

by the V-weighted total variation norm and ||u||7v by the total variation norm. Further,

let Ly (RY) be the collection of V-integrable probability measures.
We have the following results for @} (from [17]) and ®Z (from [13]).

Theorem 2.1. @} admits a unique invariant probability measure that is absolutely con-
tinuous with respect to the Lebesque measure. In addition, there exist constants ¢ > 0
and p € (0,1) such that

IPY(E, ) = wllv < cV(E)p'
for every E € RY, where V(E) =1+ YV, E;.

Theorem 2.2. Assume further that there exists a constant K > Ty, Tg such that
R(E;, Ei11) = min{ K, \/min{E;, E;11}. Then ®; admits a unique invariant probability
measure that is absolutely continuous with respect to the Lebesgue measure. In addition,
for any v > 0, there exists 1 > 0 such that for any p € Ly, (RY),

lim t'7||uP" — 7||rv = 0,
t—o0

where
N N N-m+1 m—1
V=Y Ei+> > O Ep)™, 2.5)
i=1 m=1 =1  j=0

andam:1—(2m_1—1)/(2N—1)f0rm:17 ,N.

We remark that a slightly different rate function R(E;, E; 1) = min{ K, \/min{ E;, E; 1 }
is used in theorem 2.2 for technical reasons in order to make a rigorous proof possible in
[13]. It has the same scaling as R» in low energy configurations but makes the proof much
simpler (which still contains 35 pages of technical calculation). We expect the speed of
convergence to the invariant probability measure of ®? to be the same as described in
theorem 2.2. In other words, the ergodicity of ®} and ®? are qualitatively different. The
speed of convergence to the steady state is exponential for @} but polynomial for ®2.

3. Comparison of thermal conductivity

As discussed in the previous section, two rate functions generate two Markov processes
®! and ®? with very different asymptotic properties. ®? has a much slower speed of
convergence to its invariant probability measure due to the low energy site effect,
which is inherited from the deterministic billiard model. As a result, after an energy
exchange event of @2, if a site gets a very low amount of energy, the energy transport
will be blocked for a while until this low energy site ‘recovers’ by itself. One natural
question is that: how much would the low energy site effect affect macroscopic thermo-
dynamic properties? Would it cause an ‘abnormal’ thermal conductivity that depends
on the system size? In this section, we will address this issue numerically.

https://doi.org/10.1088/1742-5468/ab0c16 7
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3.1. Thermal conductivity for 1D model

Let 7 be the invariant probability measure of ®;. The thermal conductivity of the sto-
chastic energy exchange model is defined as

N-1

1 1
- N R(E,LE, Ei+ Ep)dp — E,
K TR_TL/{(il R( +1)/0 p(E; + Eiva)dp )

00 1
+ R(Ty, Ey) (B — / / p(Ey + x)e_x/TL dpdx)
o Jo

00 1
+R(Ey, TR)(/ / p(Ex + z)e /TR dpda — EN)} m(dE). (3.1)
o Jo

Equation (3.1) reflects the ratio of the energy flux to the temperature gradient within
an infinitesimal amount of time when starting from 7. We claim that « is a computable
quantity, i.e. the law of large numbers can be applied to . The thermal conductance,
denoted by q, is the ratio of k to the system size, i.e. q = x/(N + 1).

Let to <t; <ty <--- be the time at which an energy exchange occurs. Let J; be
the energy flux from right to left associated to the energy exchange event occurring
at time ¢, If the energy exchange event is between site k and site k+ 1, we have
Ji = Ex(t]) — Ex(t;). If the energy exchange is between site 1 (resp. site N) and the left
(resp. right) boundary, we have J; = E\(t;) — E\(t]) (resp. J; = Ex(t]) — E1(t:)).

Theorem 3.1. Assume there exists a constant K > Ti,, TR such that R can not exceed
K. In other words, R; and Ry are modified to min{ K, /E; + E;11} and min{ K, Libip1 }

E; +Ez+1
respectively. Assume further m(|E|?) < oo, then
Ii_’lll—I};oTTR—TLZJ < 00 a.s. (32)

We remark that two ‘assumptions’ in theorem 3.1 are actually provable with extra
work. Since the theme of the present paper is about numerical computations, we sim-
ply assume these properties to avoid further distractions. A closer look at the proofs in
paper [17] and [13] reveals that =(||E||?) is finite for both ®} and ®2. And the assump-
tion of an upper bound K can be removed by using the estimation of expected energy
gain introduced in proposition 5.1 of [17].

Proof. Let 0 < h < 1 be a time step. Let ®,, := ®,,, be the time-h sample chain of ®;.
Let Y, be the total energy flux during the time period [nh, (n + 1)h), i.e

11
Yo = hTg — Ty, Z Ji (3.3)

nh<t;<(n+1)h

Then we have

1 1 1 &
lim ———— J; = lim — Y,.
Tl—r>Iolo TTR — TL T m1—>H<1>o m ; (34)

https://doi.org/10.1088/1742-5468 /ab0c16 8
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Hence it is sufficient to prove the law of large numbers for Y.
Let Z, = Eg,[Y,]. It is easy to see that Z, is an observable of ®,,. Now let F,, be the
o-field generated by ®¢,--- ,®,. Let Y =Y, — Z,. It is easy to see that

EY, | Fal =

Hence Y, is a martingale difference sequence with respect to {F,}ns0. It is well known
that if

= E| Y’
> | 0o, (3.5)

n=1

we have

ol
e Y=o

n=1

(This is the law of large numbers for martingales, see for example theorem 3.3.1 of [5].)
In addition, we have

1 1
EHYTH ] HY | ] (hR—T)QE[E‘I’"[ Z ||(bti + XZH%]]) (3.6)
nh<t;<(n+1)h

where X; are i.i.d. random variables with law max{&(71),E(Tr)}. This is because J;
cannot exceed the sum of total energy and the energy coming from the boundary. In ad-
dition, assume t;,t;4+1, - - ti+m are the first m + 1 energy exchange times right after nh,

then the update of the total energy is bounded by H<I>t+ M <@l + X+ 4 X
Since the clock rate is bounded by K from above, it’ is easy to see that

N

Eo,[ > 1215 <ED (a1 +2X:)7, (3.7)

nh<t;<(n+1)h i=1

where N is a Poisson random variable with mean Kh. Then some straightforward
calculation shows that there exists an hy > 0, such that for any h we have

N

EDD ([1all +2X,)%) < Comax{|[®,[7, 1}, 3.8)

=1

where the constant Cj only depends on hy.
By the law of large number of Markov process, we have

E[(max{[|®x[l1, 1})*] = m((max{[| Ell1, 1})*) < 7(| E[}) + 1 < oo (3.9)

Then by equations (3.6)—(3.9), we have

https://doi.org/10.1088/1742-5468/ab0c16 9
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= IE|Y’

(3.10)

n=1

Hence the condition in equation (3.5) is satisfied, and the law of large numbers of Y,
holds. We have

. !/
dm ) Yi=o0
In addition, by the law of large numbers of Markov process, we have

—ZZ — ]E ZJ (3.11)

almost surely. And the right hand side of equation (3.11) is finite because clock rates
cannot exceed K < oo. Therefore, we have

o1 1 1 &
%EEO?TR—TL;J"_JE%OEZY ZZJU&?@ZY' Ew[gji]<m

(3.12)

almost surely.
By the invariance of , the quantity 7 Ex[>_; <p Ji] is independent of h. Since h can be
arbitrarily small, by equation (3.12), we have

o1 1 o1
dn g 2k T e A= (5:19)
where k is the infinitesimal flux defined in equation (3.1). O

Then we compute thermal conductivities of @} and ®7 by simulating .

Numerical simulation 1: Let Ty, = 1, Ty = 2. According to theorem 3.1, we can
compute the thermal conductance

1 1 1
= lim — Ji
q TEISOTNHTR—TL;

over a long trajectory. In our simulation 7' is chosen to be 2 x 10%. We compute the
thermal conductance q for N = 6,8, 10, -- ,100. The simulation results for ®} and ®?
are presented in figure 2.

According to the plot given above, we see that q is proportional to 1/N for both
cases, although the thermal conductance of ®? is much lower. In other words, in spite of
a much slower ergodicity and the presence of the low energy site effect, ®? still gives a
‘normal’ thermal conductivity that is independent of the system size. The effect of low
energy site will quantitatively reduce the thermal conductivity, but not qualitatively
change the scaling of the thermal conductivity. In contrast, note that many harmonic

https://doi.org/10.1088/1742-5468 /ab0c16 10
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Rate function Ry Rate function R»
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Figure 2. Thermal conductance for ®} and ®?. Red line is the linear fit of x versus
1/N. Left: Ry = /E, + Ey. Right: Ry = \/E\Ey/(E) + E»).

chains and anharmonic chains admit ‘abnormal’ thermal conductivities. We refer to
the review article [11] for a summary of these results.

3.2. Thermal conductivity of 2D model

The thermal conductivity of a 2D stochastic energy exchange model is also interesting.
Obviously the low thermal conductivity of ®? is mainly contributed by the occurrence
of low energy sites. The occasional occurrence of a low energy site can block the energy
transport for a long time, and significantly reduce the thermal conductivity. This
problem can be alleviated by increasing the dimension of the system. Instead of an 1D
chain, we consider a 2D array of energy sites. The upper and lower edges are adiabatic,
while the left and right edges connect to the heat bath.

More precisely, we consider an M x N array of sites. An exponential clock with rate
R = R; or R, is associated to each pair of nearest neighbor sites. When the clock rings,
the rule of energy redistribution is same as described in equation (2.1). In addition, sites
with indices (4,1) (resp. (i, N)) for ¢ = 1,--- , M are connected to the left (resp. right)
heat bath. The rule of energy exchange with the heat bath is same as in equation (2.2).

The thermal conductivity x can then be defined and computed analogously. We have

M N-1

1 1
= MTR_TL/{ ZZR ig> 7J+1)/0 p(Eij + Eijy1)dp — E; )

=1 j=1

+ZRTL7 i,1 Ezl_/ / 21+x I/TLdpdx)

+ZR Ein, Tk) / / Ein +x)e E/Tdedx—Ei,N)}w(dE).
(3.14)
https://doi.org/10.1088/1742-5468/ab0c16 11
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And again, we denote q = k/(IN + 1) as the thermal conductance.

Similar to the previous subsection, x is a computable quantity. Let to <t} <ty < ---
be the time at which an ‘horizontal’ energy exchange, i.e. energy exchange between
E;; and E; j1; (or heat bath) occurs. Let J;, be the energy flux from right to left associ-
ated to the energy exchange event occurring at time ¢;. If the energy exchange event
is between site (i, ) and site (7,7 + 1), we have J, = F; ;(t}) — E; ;(t). If the energy
exchange is between site 1 (resp. site N) and the left (resp. right) boundary, we have
Jo = Eiq(ty) — Eia(t)) (vesp. J; = Ey v () — Ein(tr).

A similar approach as in theorem 3.1 implies

Bt e I .15
t,<T
Numerical simulation 2: Let 71, =1, TR =2, N=50, and M =1,2,---,20. By
equation (3.15), we can simulate the thermal conductance q by computing

over a long trajectory. In our simulation 7' is chosen to be 1 x 107. Then we compare q
for each M from 1 to 20. Simulation results of q versus M for ®} and ®? are presented
in figure 3.

Figure 3 confirms our speculation. With rate function R; = v/ E; + Es, the thermal
conductivity changes inconspicuously even the width of the system increases. With
rate function Ry = \/ E\Es/(Ey + E3), q (as well as k) increases significantly when
M changes from 1 to 2, and keeps increasing with increasing M. This demonstrates
the dimension effect. When a site loses most of its energy in an energy exchange and
becomes ‘silent’ for a while, the energy transport is completely blocked in an 1D
model. With an extra dimension, the energy can still be transported by circumventing
the ‘silent’ site. In addition, the probability that the energy transport is completely
blocked becomes much lower in a 2D model.

4. Comparison of local thermodynamic equilibrium (LTE)

The LTE assumption means that although the entire system is non-equilibrium, the
marginal distribution of the steady state with respect to a ‘local’ subset is still close
to a thermal equilibrium. The existence of LTE is equivalent to the existence of a
well-defined local temperature. In the study of microscopic heat conduction models,
the existence of L'TE usually means the marginal distribution of NESS with respect to
finite many local sites converges to a thermal equilibrium as the length of the chain
goes to infinity. We refer to [16, 19] for further discussion and known rigorous results
about the existence of LTE.

4.1. Non-equilibrium steady state under the LTE assumption

The two rate functions in section 2 are chosen in a way that the theoretical thermal equi-
librium can be explicitly given. We start this subsection with the following proposition.

https://doi.org/10.1088/1742-5468 /ab0c16 12
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Rate function Ry Rate function Rs
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Figure 3. Thermal conductance q versus M of the 2D system for ®; and ®2.
Length of the chain is fixed as N = 50. M varies from 1 to 20. Left: R, = v E| + F».

Right: Ry = \/E\Ey/(Ey + E»).

Proposition 4.1. Assume the chain is infinitely long on both sides. The process ®}
(resp. ®?) admits a family of invariant probability measures

™= H 7TiT T >0, (4.1)
where w! are i.i.d. exponential random variables (resp. gamma random variables) with
mean T (resp. parameters 1/2 and T).

Proof. Since there is no energy exchange with the boundary, it is sufficient to check
the interaction between E; and E;,;.

When starting from the probability distribution 7 given in the theorem, the prob-
ability that ®; leaves (E;, E;, 1) on the next infinitesimal time interval (0, dt) is

\ E’Z + Ei+1e_Ei/Te_Ei+1/T dt.

On the other hand, when starting from 7, the probability density that ®! enters an
infinitesimal neighborhood of (F;, F;,1) on the same time interval is

Fitbin 1 JT . —(Bi+Eis1—2)/T
dt - -, E,+ FE, 1 — TE T BT BT/
/0 BB Vo + (B + By —x)e /e T

=\/E; + B e B/Te Bnt/T gt (4.2)

Therefore, 7 is invariant for ®; if m; are i.i.d. exponential distributions.
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The case of ®? is the same. The probability that ®? leaves (E;, E;y1) is

EiF;q . 1 1 o BilT 1 1 e~ Eitt/T gt
Ei+Eiyn VTI(1/2) VE; VTT(1/2) VEina
! ! e (BitEir)/T q¢. (4.3)

T Tr VE; + Eiq

The probability density that ®? enters an infinitesimal neighborhood of (E;, E; 1) is

u /Ei+Ei+1 1 x(EZ +E 1 — I) 1 1 —a/T
. . _e
0 Ei+ Ei\ 2+ (Ei+ By — ) VTD(1/2) V7

. 1 1 e*(Ei+Ei+1*$)/T dx
\/TF(l/Q) \/Ez' + Ei+1 — X
1 1 @eary (4.4)

T Tr VE; + Ei

Therefore, 7 is invariant for ®7 if 7; are i.i.d. gamma distributions. This completes the
proof. O

This theoretical thermal equilibrium does not work well for a finite chain due to
boundary effects. However, we are curious about whether the marginal distribution of
the NESS with respect to finite local sites converges to i.i.d. exponential (or gamma)
distributions when N — oo. If the answer is yes, then the LTE is established. Note
that here we adopt a strict definition of the LTE. We see that LTE is achieved only if
the marginal distribution of the NESS with respect to many local sites converges to the
thermal equilibrium described before. There is also literature about weaker versions of
LTE [18], i.e. the marginal distribution with respect to one site or one point.

We plan to use the energy profile and the thermal conductivity to make a prelimi-
narily check as to whether LTE is achieved. It is not difficult to calculate the theoretical
energy flux J; ;11 if we know the joint distribution of (£;, E;y1). This theoretical flux can
be then used to compute a theoretical energy profile. Then we can compare the theor-
etical energy profile and its empirical counterpart (which is relatively easy to compute).

The following two propositions follow from simple calculations.

Proposition 4.2. If the joint marginal distribution of the invariant probability measure
of ®; with respect to site E; and FEj;; is the product measure of two exponential distribu-
tions with mean T and T respectively, then the mean energy flux from site i + 1 to site
118

VT(3T2 4 973272 L 11TT + 9TY2T3/2 4 372) .

Jisg1 = _ T-T).
i+l ST 1 Ty ( ) (4.5)
Proof. We have
R y— 1 —x/T I T
Jijit1 = /0 /O 5 VI+y- 7 . e vt dz dy. (4.6)
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Let u=y — 2z and v =2+ y. The rest are straightforward calculations about the
integral. ]

Proposition 4.3. If the joint marginal distribution of the invariant probability measure
of ®? with respect to site E; and E;,; is the product measure of two gamma distributions

with parameters (1/2,T) and (1/2,T) respectively, then the mean energy fluz from site
1+ 1 to site i 1s
T1/2T1/2(T+3T1/2T1/2+T) R
- T-T). 4.7)
4\/7_T(T1/2—|—T1/2>3

Gitl =

Proof. We have

e R xy 1 /T 1 /T
Jiiv1 = / / : . e e VT dxdy.
Todo e 2 Vaty VIT()2) VIT(1/2)

(4.8)
Let u=y — z and v =2 4+ y. The rest are straightforward calculations about the int-
egral. ]

4.2. Numerical study of the LTE assumption

We propose the following three numerical simulations to check the validity of the
LTE assumption. Note that the rule of boundary interaction is different from that in
the middle of the chain. Hence marginal distributions with respect to boundary sites
always have boundary effects, and the system does not reach thermal equilibrium even
if 71, = Tr. We will show that when the length of the chain increases, the boundary
effect gradually disappears. At the limit, the marginal distribution with respect to finite
many sites that are in the middle of the chain converges to the theoretical thermal
equilibrium given by proposition 4.1.

Numerical simulation 3. We first simulate the marginal distribution with
respect to a single site. Let Ty, =1, Ty = 2, N = 10, 20,40, 60,80. We simulate pro-
cesses @] and ®? over a long trajectory and collect the energy profile at sampling times
h,2h,---,8 x 105h. h is chosen to be 2 for ®! and 10 for ®?. The time-h skeleton of
a time-continuous Markov process preserves its invariant probability measure. Hence
we can compute the marginal distribution of the invariant probability measure with
respect to each site.

Then we compare the sample with respect to each site with a desired gamma distri-
bution. This step is done by using the gamfit function in MATLAB. Parameters (o, )
of the gamma distribution with respect to each set are demonstrated in figures 4 and
5. We can find that the marginal distribution with respect to a non-boundary site is
approximately a gamma distribution with parameters (1, 3;) for ®} and (1/2, 3;) for ®?,
where (; changes with the site index. Note that an exponential distribution with mean
A is a gamma distribution with parameters (1, A™!). Hence our numerical result is con-
sistent with the marginal distribution obtained in proposition 4.1.

The goodness of the fit is done by a Chi-square test. We divide the domain into 31
bins [0,0.2),---,[5.8,6.0),[6.0,00). Let p; be the theoretical probability of the desired

https://doi.org/10.1088,/1742-5468/ab0c16 15
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Figure 4. Parameters o and 8 of the gamma distribution fitted from marginal
distributions with respect to all sites. The length of the chain is N = 10, 20, 40, 60, 80.
Rate function Ry = £ + Es.

gamma distribution at each interval and n; be the number of samples falling to this
interval. We calculate

31

(ni - Npi)2
X =) TNy (4.9)
i=1 v

for each site. If the marginal distribution satisfies a gamma distribution, the x? test
statistics should be smaller than the 95th percentile of a x? distribution with 30 degrees
of freedom. Figures 6 and 7 shows our result for the goodness of the fit. We can see
that when the chain is long enough, the marginal distribution with respect to a non-
boundary site is very close to a gamma distribution in both cases, which is exactly the
thermal equilibrium we found in proposition 4.1. In other words, LTE is achieved for a
single site in the chain as the length of the chain grows.

Numerical simulation 4. The next task is to use the energy profile to check
the LTE assumption. Assuming LTE is achieved, the theoretical energy flux can be
obtained from equations (4.5) and (4.7). Then we can compare the empirical energy
profile with the predicted ones when assuming the LTE. The result of numerical
simulation 3 shows that at the boundary the marginal distribution is far from the
gamma distribution. Hence we can only use propositions 4.2 and 4.3 to predict the
energy profile in the middle. The predicted energy profile under the LTE assumption
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Figure 5. Parameters o and § of the gamma distribution fitted from marginal
distributions with respect to all sites. The length of the chain is N = 10, 20, 40, 60, 80.
Rate function Ry = \/ElEQ/(El + Es).

is obtained in the following way. Assume that F; and Fj3s are equal to those in the
empirical energy profile. Since the mean energy flux J;;,; is independent of the choice
of i, we can solve a nonlinear equation involving Fg, E7, - - - , F35 numerically such that
Jo7 = Jrg =+ = J3y35, where terms J;;;; are from equation (4.5) for ®; and (4.7) for
®?. This gives the predicted energy profile from site 6 to site 35. The predicted and
empirical energy profiles for ®! and ®? are compared in figure 8. We can find that in
both cases the predicted energy profile is very close to the empirical one. Note that in
the energy profile, the mean energy of the left (resp. right) boundary site is not close
to Ty, (resp. Tr). This is because the rule of boundary interaction is different from that
of non-boundary sites. In particular, the rate of an energy exchange with the left (resp.
right) boundary is R(Ty, E1) (resp. R(Ey,TRr)) regardless the amount of energy drawn
at the boundary. Hence the effective temperature ‘felt’ by a boundary site is not the
heat bath temperature.

The result in figure 8 suggests that equations (4.5) and (4.7) can produce good
approximations of the macroscopic energy profile. However, the energy profile alone is
not sufficient for us to claim the existence of LTE, as dependent marginal distributions
can still produce the same energy profile. In fact, when the chain is not long enough,
the theoretical mean energy flux by assuming LTE is quite different from the empirical
energy flux. In order to check whether LTE is achieved, we need to accurately compute
the marginal distribution with respect to nearest neighbor sites.
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Figure 6. Values of y’-test statistics (equation (4.9)) of the marginal distribution
of each site. z-axis: site index. y-axis: x2. Rate function R, = \/E, + E».

Numerical simulation 5. Finally, we simulate the joint marginal distribution
with respect to two nearest neighbor sites at the center of the chain. We simulate 8 long
trajectories to generate the joint marginal distribution with respect to (En/2, Enja11)
for increasing N. For each trajectory, we collect samples of (Eny2, Enj241) at each sam-
pling time h,2h, -+ ,2 x 108h. We choose h = 0.25 for ®! and h =1 for ®? because the
average clock rate of ®? is lower. The reason for doing this is because the time-h skel-
eton of a time-continuous Markov process preserves its invariant probability measure.
This approach gives us 1.6 x 10° samples. We need these many samples to achieve the
accuracy needed for verifying the existence of LTE.

Let ag,a1,--- ,a16=0,0.1,--- ,1.6 and ay; = co. We define two auxiliary random
variables Z; and Z, that represent the discretization of Ey/; and Ey/o41 with respect to
the partition generated by ag, a1, - - , a7, respectively. Z; = i (resp. Z» = 1) if and only if

Enja € [ai—1,a;) (vesp. Enjay1 € [a;-1,a;)). In other words Z, Z; takes the value 1 to 17.
We use the collected N = 1.6 x 10° samples to estimate the probability distributions of
Z1, Zy as well as their joint distributions. If Z;, Z5 converges to two independent ran-
dom variables as N — 0o, we believe this implies the independence of Ey/s and Eyja;1.

Then we use the extrapolation of x? values to decide whether Z; and Z, are inde-
pendent. For ¢,7 = 1,---,17, define O;, 0}, and O;; are the sample size corresponding to
{Z1 =1}, {Z=j}, and {Z, = i, Zy = j} respectively. Let E;; = 0,0;/N be the expected
count of O;. The x?-value is given by
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Figure 7. Values of x? test statistics (equation (4.9)) of the marginal distribution
of each site. z-axis: site index. y-axis: x. Rate function Ry = \/FE1Es/(E1 + E»).
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If Z and Z, are independent, then % should be less than the 95th percentile of a chi-
square distribution with degree of freedom 16 x 16, denoted by pgs. We compute x% up
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Figure 9. Left: extrapolation of y% for ®;. Right: extrapolation of x3 for ®?. Red:
X% versus 1/N. Blue: linear extrapolation. Black: ,/pgs, square root of the 95th
percentile of the x? distribution with 256 degrees of freedom.

to N =160 for ®} and N = 240 for ®3 (because the simulation of ®} is slower). Then we
plot N~! versus \/E , use a linear extrapolation to estimate the chi-square score of the
limit case when N — 00, and compare it with the square root of pg5. The result is dem-
onstrated in figure 9. The linear extrapolation shows that x2 values are less than pgs
for both @} and ®?. Hence we believe this simulation result gives a convincing evidence
that when N — oo, the marginal distribution with respect to the nearest neighbor sites
in the middle of the chain converges to independent random variables.

We remark that in order to get the desired accuracy, one needs to efficiently gen-
erate a large number of samples to approximate the invariant probability measure.
This is achieved by using the Hashing-Leaping method proposed in [15] and parallel
computation.

5. Conclusion

In this paper we study a stochastic energy exchange model with two different rate
functions that corresponding to different ways of reduction from a deterministic bil-
liards-like heat conduction model. The Markov chain generated by the model with rate
function Ry = v/E| + Fy (resp. Ry = \/EIEQ/(EI + E»)) is denoted by ®; (resp. ®?).
The two processes have a fundamental difference when a low energy site appears. In ®},
a low energy site can be quickly ‘rescued’ by its neighbors. However, the rate function
of ®? means a low energy site can only be recovered by itself, which usually takes a long
time. It is known that this low energy site effect causes the speed of convergence to the
invariant probability measure to be much slower. We are interested in the difference
of macroscopic thermodynamic properties caused by this difference. Since an explicit
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formula of the nonequilibrium steady state (NESS) is not possible, we carry out a series
of numerical studies in this paper.

The first study is about the thermal conductivity. We first proved that the ther-
mal conductivity is a well-defined and computable quantity. Our simulations find that
both models have thermal conductances that are proportional to 1/N. This implies a
‘normal’ thermal conductivity that is independent of the system size. In other words,
the low energy site effect of ®? does not qualitatively change the thermal conductiv-
ity. However, the thermal conductivity is quantitatively reduced by the low energy
site effect. This can be verified by comparing the thermal conductivities of 1D and 2D
models. In a 2D model the energy transport can bypass the low energy site. Hence an
increase of thermal conductivity for ®? is observed in 2D, while the thermal conductiv-
ity of ®; is roughly unchanged.

The next study is on the marginal distributions at the NESS, which is related to
the existence of local thermodynamic equilibrium (LTE). Our numerical and analytical
studies show that when the chain is sufficiently long, for both ®} and ®2, the marginal
distribution with respect to a non-boundary site approaches to a theoretical thermal
equilibrium (gamma distribution). Additional carefully designed numerical studies reveal
that the marginal distribution of nearest neighboring sites also approaches to the product
of two independent gamma distributions regardless of the rate function. However, the
low energy site effect of ®? causes the chain to be more ‘sticky’. As a result, for the same
system size, nearest neighbor sites of ®? are more dependent than those of ®;.

Understanding the consequence of the ‘low energy site effect’ is an important step in
the derivation of macroscopic thermodynamic laws from non-equilibrium billiards-like
dynamics. Recall that the stochastic energy exchange model ®? serves as an approx-
imation of the time evolution of the energy profile of a billiard model. In our recent
paper [14], we consider many particles that are trapped in the same cell as described
in figure 1. A more realistic stochastic energy exchange model is then derived from
simulating this billiard model. A weaker ‘low energy site effect’ is still observed in this
stochastic energy exchange model. The new stochastic energy exchange model in [14]
is very important because it has a mesoscopic limit equation. Many important macro-
scopic thermodynamic properties like the Fourier’s law, the long-range correlation, and
the fluctuation theorem, can be derived from this mesoscopic limit equation rigorously.
Numerical computation in this paper shows that the ‘low energy site effect’ does not
qualitatively change key macroscopic thermodynamic properties. This not only answers
questions about @7 asked by several researchers in the field, but also makes the ongoing
and future study on the new stochastic energy exchange model in [14] more convincing.
In this sense, the study in the present paper improves our understanding about how
macroscopic thermodynamic laws are derived from microscopic Hamiltonian dynamics.
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