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Abstract.  In this paper we study macroscopic thermodynamic properties 
of a stochastic microscopic heat conduction model that is reduced from 
deterministic problems. Our goal is to numerically check how the ‘low energy 
site eect’ inherited from the deterministic model would aect the macroscopic 
thermodynamic properties such as the thermal conductivity and the local 
thermodynamic equilibrium. After a series of numerical computations, our 
conclusion is that neither the thermal conductivity nor the existence of local 
thermodynamic equilibrium is qualitatively changed by this eect.
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1.  Introduction

In general, nonequilibrium statistical mechanics is not as well-developed as its equi-
librium counterpart. Mathematical justifications to the many fundamental problems 
in nonequilibrium statistical physics are not complete yet. The derivation of Fourier’s 
law from microscopic Hamiltonian dynamics is one of such century-old challenges. It 
is not clear yet how macroscopic thermodynamic laws including Fourier’s law can be 
rigorously proved from the motion and interactions of a large number of Newtonian 
particles [1].

A more precise example is a long and thin tube that contains many kinetic particles. 
A particle only does free motion and elastic collisions. Now assume the two ends of this 
tube are thermalized in a way that the particle collides with a random particle cho-
sen from a Boltzmann distribution when hitting the left or right boundary. When the 
temperatures of these two Boltzmann distributions are distinct, the system is driven 
out from its thermal equilibrium by the boundary eect. Needless to say, this prob-
lem is far beyond the reach of the current dynamical systems technique. In fact, most 
results about dynamical billiards are for one-particle billiard systems [4], with only a 
few exceptions [21, 22].

In our earlier paper [12], we attempted to reduce this ‘particle in a tube’ problem 
to a mathematically tractable stochastic energy exchange model by numerical simula-
tions. The idea is to divide the tube into a large number of localized cells as in [2], such 
that each particle is trapped in a cells, but collisions between particles in adjacent cells 
are still allowed through the opening between neighboring cells. See figure 1 for details. 

https://doi.org/10.1088/1742-5468/ab0c16
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Then we use numerical tools to investigate the rule of energy exchanges between 
cells. We refer section 2.2 for a detailed description of the energy exchange rule. This 
gives a stochastic energy exchange model that approximates the time evolution of the 
energy profile of the billiards model. The stochastic energy exchange model consists 
of a chain of sites that is connected to two heat baths at both its ends. Each site car-
ries some energy, which can be exchanged with neighboring sites at exponentially 
distributed random times. The rule of energy redistribution at an energy exchange is 
also random. Many rigorous results can be proved for the resultant stochastic energy 
exchange model. Among which, our earlier paper [13] rigorously proved that the speed 
of convergence to the steady state, i.e. the nonequilibrium steady state (NESS), of this 
model is polynomial. On the other hand, a slightly dierent stochastic exchange model 
can be derived by working on the time rescaling limit when particles in adjacent cells 
barely collide [6–8]. It is known that the speed of convergence of the second model is 
exponential [9, 17, 20].

The slow speed of convergence of the model in [13] is due to the presence of a low 
energy particle. Because of the localization, the next energy exchange will not happen 
for a long time period if the kinetic energy of one of the involved particles is low. The 
slow particle has to move to the ‘gate’ by itself in order to exchange energy with oth-
ers. As a result, the energy transport is temporarily blocked by this low energy particle. 
The stochastic energy exchange model inherits this feature from the original determin-
istic heat conduction model. If a site carries a very low amount of energy, it will wait 
a long time for the next energy exchange. We call this the low energy site eect. Since 
the energy transport is occasionally halted by low energy sites, one natural question is 
that: would the low energy site eect in a stochastic energy exchange model qualita-
tively change the thermal conductivity? 

A more fundamental question is about the existence of the local thermodynamic 
equilibrium (LTE). The existence of LTE means that the marginal distribution of the 
non-equilibrium steady state with respect to finite local sites converges to a thermal 
equilibrium when the length of the chain approaches to infinity. Heuristically, this 
implies the existence of a well-defined local temperature. There are very limited rig-
orous results about the existence of LTE due to its significant diculty [10, 16, 19], 
all of which are for very simple heat conduction models. It is also tempting to check 

Figure 1.  A billiards-like microscopic heat conduction model. Each particle is 
trapped in its own cell. Collisions through the opening between the two cells 
are allowed. Red and blue sections of the boundary are thermalized in a way so 
that the particle receives a random kick after colliding with these two sections. 
The random kick mimics a collision with a particle drawn from a Boltzmann 
distribution.

https://doi.org/10.1088/1742-5468/ab0c16
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whether the low energy site eect would make the stochastic energy exchange model 
fail to achieve LTE.

Diering from the thermal equilibrium, NESS usually does not have an explicit 
form. We are able to prove its existence, uniqueness, ergodicity, and hydrodynamic 
limits in some situations. But in general a detailed description of NESS is not possible. 
In fact, this is one reason why any rigorous justification of non-equilibrium statistical 
physics is challenging. Since mathematical studies of the thermal conductivity and 
LTE are too dicult, we will have to seek help from numerical simulations.

The main subject of this paper is to answer the two questions raised above numer
ically. In a stochastic energy exchange model, we choose two dierent rate functions 
corresponding to exponential and polynomial ergodicity, respectively. The we use law 
of large numbers of martingale dierence sequences to show that the thermal conduc-
tivity is both well defined and computable through Monte Carlo simulations. And the 
marginal distribution of the NESS is obviously well defined and computable because 
of the ergodicity. Hence it is not dicult to design a series of numerical simulations 
to compute the thermal conductivity and the marginal distribution. Our simulations 
are implemented by the Hashing-Leaping method (HLM) developed in [15], which is 
significantly faster than most implementation methods of the stochastic simulation 
algorithm (SSA). Parallel computing is used to collect enough samples.

Our numerical simulations shows that the low energy site eect will not qualita-
tively aect the thermal conductance, which is supposed to be proportional to the 
reciprocal of the length of the chain. This implies the existence of a ‘normal’ thermal 
conductivity. The thermal conductivity of the model with a slow speed of convergence 
can be increased by changing it to 2D. Then the eect of low energy site is significantly 
reduced. The existence of LTE is a more subtle issue. To check it, one needs to accu-
rately compute the marginal distribution of the NESS. However, the slow convergence 
speed to NESS caused by the low energy eect imposes many challenges to such a 
computation. After working carefully on the sampling technique and the algorithm, 
we conclude that LTE is achieved in our model regardless aected by the low energy 
eect or not.

The paper is organized in the following way. The stochastic energy exchange model, 
its connection to deterministic dynamical system, and relevant rigorous results are 
introduced in section  2. Section  3 is about the law of large number and numerical 
results of the thermal conductivity. The existence of LTE is investigated in section 4. 
Section 5 is the conclusion.

2. Model description

2.1. Reduction from deterministic dynamics

Consider an 1D chain of billiard tables  as described in figure  1, called the locally 
confined particle system. One disk-shaped particle is ‘trapped’ in a billiard table such 
that each particle is allowed to collide with those particles in adjacent billiard tables, 
but cannot leave its billiard table. In addition, we assume that the boundary of each 
billiard table  is piecewise C3 and strictly convex inward, so that it forms a chaotic 

https://doi.org/10.1088/1742-5468/ab0c16
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dynamical billiards system by itself [3]. This model is intensively studied because this 
is probably the simplest deterministic dynamical system that models the microscopic 
heat conduction. The kinetic energy is transported through collisions between particles.

Due to the significant diculty of studying a chaotic multibody system, a natural 
question is whether one can reduce this deterministic dynamical system to a Markov 
process. More precisely, we look for a stochastic energy exchange process that only 
keeps track of the time evolution of the energy profile. Obviously the process of energy 
evolution is not Markovian. But since the chaotic billiards system has very good sta-
tistical properties, we expect this deterministic energy evolution process to be well 
approximated by a Markov process, at least under some rescaling limit.

There have been two dierent studies about the reduction from the billiard system 
in figure 1 to a Markov process. One study was conducted by [6, 7], which essentially 
assumes that the gap between two tables is extremely small. Then we can take a time 
rescaling limit such that the expected number of particle-particle collisions per unit 
time is still 1. The conclusion of this study is that at this time rescaling limit, the prob-
ability that two particles with energy (E1,E2) collide during the next time interval with 
length dt � 1 is approximately 

√
E1 + E2 dt. Now assume the energy exchange process 

is Markov. Then the interval between the two consecutive energy exchanges should be 
an exponentially distributed random variable, whose rate is  ∼

√
E1 + E2 . We refer read-

ers to [6] for the precise formula of the energy exchange kernel.
The other point of view, however, focuses on the dynamics at the original time 

scale. If the billiards table is properly chosen, the time distribution of the next particle-
particle collision is very close to an exponential distribution. Instead of taking the time 
rescaling limit, one can numerically probe the slope of the exponential tail of the first 
collision time. Additional simulations in [12] demonstrate that the conditional distribu-
tion of the time duration between two consecutive collisions have the same exponential 
tail. Therefore, the energy exchange times of the billiards model can be approximated 
by a Poisson clock. The rate of this clock, or the slope of the exponential tail, is 
called the stochastic energy exchange rate. When two adjacent particles have energies 
(E1,E2), the numerical simulation in [12] shows that the slope of this exponential tail 

is  ∼
√

min{E1,E2}. In other words, the rate of the exponential clock about the energy 
exchange event should be  ∼

√
min{E1,E2}. This rate respects the dynamics of the bil-

liards system at its original time scale. It is easy to see that a slow particle needs a long 
time to move to the ‘gate area’ in order to have a collision, which causes the low energy 
site eect. Hence the next collision time mainly depends on the lower particle energy 
in a nearest neighbor pair particles. We refer to [12] for further discussions about this 
clock rate.

It remains to discuss the rule of energy redistribution at a collision. The analysis 
and numerical simulation in [14] shows that although the explicit formula of an energy 
redistribution is too complicated to be useful, the amount of exchanged energy has a 
positive density everywhere. Hence it is proper to assume that the energy repartition 
is done in a ‘random halves’ way as described in equation  (2.1). More precisely, we 
assume that the energies of two colliding particles are pooled together at first. Then a 
(uniformly distributed) random proportion of the total energy goes to the left, and the 
rest energy goes to the right. This simplified rule has been used in many early studies 
[9, 10, 17, 20].

https://doi.org/10.1088/1742-5468/ab0c16


Thermal conductivity and local thermodynamic equilibrium of stochastic energy exchange models

6https://doi.org/10.1088/1742-5468/ab0c16

J. S
tat. M

ech. (2019) 043205

2.2. Stochastic energy exchange process

In summary, the locally confined particle system in figure 1 can be reduced to the fol-
lowing two stochastic energy processes with two dierent rate functions. Each process 
corresponds to one approach of model reduction. Consider a chain of N sites carrying 
energy E1, · · · ,EN  respectively. An exponential clock is associated to each pair of 
sites (Ei,Ei+1). The rate of this clock is R(Ei,Ei+1). When the clock rings, an energy 
exchange event occurs immediately. The rule of energy exchange is that

(E ′
i,E

′
i+1) = ( p(Ei + Ei+1), (1− p)(Ei + Ei+1)),� (2.1)

where p  is a uniform random variable on (0, 1). We assume the rate func-
tion R(Ei,Ei+1) has two dierent choices R = R1(Ei,Ei+1) =

√
Ei + Ei+1  and 

R = R2(Ei,Ei+1) =
√

EiEi+1/(Ei + Ei+1), corresponding to the dynamics at the time 
rescaling limit and the original time scale, respectively. Note that here we choose 

R2(Ei,Ei+1) =
√
EiEi+1/(Ei + Ei+1) because it is a smooth function that mimics the 

shape of 
√

min{Ei,Ei+1}, and it admits an explicit thermal equilibrium.
The rule of energy exchange with the boundary is the same. We assume this chain 

is connected to two heat baths with temperatures TL and TR respectively. Two more 
exponential clocks with rates R(TL,E1) and R(EN ,TR) are associated to the two ends of 
the chain respectively. When the left (resp. right) clock rings, the first (resp. last) site 
updates energy according to the following rule

E ′
1 = p(E1 + E(TL)) (resp. E ′

N = p(EN + E(TR))),� (2.2)
where p  is a uniform random variable on (0, 1), and E(λ) mean an exponential random 
variable with mean λ.

The stochastic energy exchange process described above generates a Markov process 

Φt on RN
+ . Let E = (E1, · · · ,EN) ∈ RN

+  be a state of the Markov process and f(E) be 
a measurable function. To distinguish the two rate functions, we denote the Markov 
process by Φ1

t if the rate function is R1 and by Φ2
t if the rate function is R2. The upper 

index is dropped when it does not lead to confusion.
The infinitesimal generator Li of Φi

t for i = 1, 2 is

Lif(E) =
N−1∑
n=1

Ri(En,En+1)[

∫ 1

0

f(E1, · · · , p(En + En+1), (1− p)(En + En+1),

· · · ,EN)dp− f(E)]

+Ri(TL,E1)[

∫ ∞

0

∫ p

0

f( p(E1 + x),E2, · · · ,EN)
1

TL

e−x/TL dx dp− f(E)]

+Ri(EN ,TR)[

∫ ∞

0

∫ p

0

f(E1, · · · ,EN−1, p(EN + x))
1

TR

e−x/TR dx dp− f(E)].

�

(2.3)

2.3. Rigorous results for the stochastic energy exchange process

Let V (E) be a strictly positive function. For any signed measure µ on RN
+ , denote

‖µ‖V =

∫

RN
+

V (E)|µ|( dE)� (2.4)

https://doi.org/10.1088/1742-5468/ab0c16
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by the V -weighted total variation norm and ‖µ‖TV  by the total variation norm. Further, 

let LV (RN
+ ) be the collection of V -integrable probability measures.

We have the following results for Φ1
t (from [17]) and Φ2

t (from [13]).

Theorem 2.1.  Φ1
t admits a unique invariant probability measure that is absolutely con-

tinuous with respect to the Lebesgue measure. In addition, there exist constants c  >  0 
and ρ ∈ (0, 1) such that

‖P t(E, ·)− π‖V � cV (E)ρt

for every E ∈ RN
+, where V (E) = 1 +

∑N
i=1 Ei.

Theorem 2.2.  Assume further that there exists a constant K � TL,TR such that 
R(Ei,Ei+1) = min{K,

√
min{Ei,Ei+1}. Then Φt admits a unique invariant probability 

measure that is absolutely continuous with respect to the Lebesgue measure. In addition, 

for any γ > 0, there exists η > 0 such that for any µ ∈ LVη(RN
+ ),

lim
t→∞

t1−γ‖µP t − π‖TV = 0,

where

Vη =
N∑
i=1

Ei +
N∑

m=1

N−m+1∑
i=1

(
m−1∑
j=0

Ei+j)
amη−1,� (2.5)

and am = 1− (2m−1 − 1)/(2N − 1) for m = 1, · · · ,N.

We remark that a slightly dierent rate function R(Ei,Ei+1) = min{K,
√

min{Ei,Ei+1} 
is used in theorem 2.2 for technical reasons in order to make a rigorous proof possible in 
[13]. It has the same scaling as R2 in low energy configurations but makes the proof much 
simpler (which still contains 35 pages of technical calculation). We expect the speed of 
convergence to the invariant probability measure of Φ2

t to be the same as described in 
theorem 2.2. In other words, the ergodicity of Φ1

t and Φ2
t are qualitatively dierent. The 

speed of convergence to the steady state is exponential for Φ1
t but polynomial for Φ2

t .

3. Comparison of thermal conductivity

As discussed in the previous section, two rate functions generate two Markov processes 
Φ1

t and Φ2
t with very dierent asymptotic properties. Φ2

t has a much slower speed of 
convergence to its invariant probability measure due to the low energy site eect, 
which is inherited from the deterministic billiard model. As a result, after an energy 
exchange event of Φ2

t , if a site gets a very low amount of energy, the energy transport 
will be blocked for a while until this low energy site ‘recovers’ by itself. One natural 
question is that: how much would the low energy site eect aect macroscopic thermo-
dynamic properties? Would it cause an ‘abnormal’ thermal conductivity that depends 
on the system size? In this section, we will address this issue numerically.

https://doi.org/10.1088/1742-5468/ab0c16
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3.1. Thermal conductivity for 1D model

Let π be the invariant probability measure of Φt. The thermal conductivity of the sto-
chastic energy exchange model is defined as

κ =
1

TR − TL

∫ {
(
N−1∑
i=1

R(Ei,Ei+1)

∫ 1

0

p(Ei + Ei+1) dp− Ei)

+R(TL,E1)(E1 −
∫ ∞

0

∫ 1

0

p(E1 + x)e−x/TL dp dx)

+R(EN ,TR)(

∫ ∞

0

∫ 1

0

p(EN + x)e−x/TR dp dx− EN)

}
π( dE).

�

(3.1)

Equation (3.1) reflects the ratio of the energy flux to the temperature gradient within 
an infinitesimal amount of time when starting from π. We claim that κ is a computable 
quantity, i.e. the law of large numbers can be applied to κ. The thermal conductance, 
denoted by q, is the ratio of κ to the system size, i.e. q = κ/(N + 1).

Let t0 < t1 < t2 < · · · be the time at which an energy exchange occurs. Let Ji be 
the energy flux from right to left associated to the energy exchange event occurring 
at time ti. If the energy exchange event is between site k and site k  +  1, we have 
Ji = Ek(t

+
i )− Ek(ti). If the energy exchange is between site 1 (resp. site N) and the left 

(resp. right) boundary, we have Ji = E1(ti)− E1(t
+
i ) (resp. Ji = EN(t

+
i )− E1(ti)).

Theorem 3.1.  Assume there exists a constant K � TL,TR such that R can not exceed 

K. In other words, R1 and R2 are modified to min{K,
√
Ei + Ei+1} and min{K,

√
EiEi+1

Ei+Ei+1
} 

respectively. Assume further π(|E|2) < ∞, then

κ = lim
T→∞

1

T

1

TR − TL

∑
ti<T

Ji < ∞ a.s.� (3.2)

We remark that two ‘assumptions’ in theorem 3.1 are actually provable with extra 
work. Since the theme of the present paper is about numerical computations, we sim-
ply assume these properties to avoid further distractions. A closer look at the proofs in 
paper [17] and [13] reveals that π(‖E‖21) is finite for both Φ1

t and Φ2
t . And the assump-

tion of an upper bound K can be removed by using the estimation of expected energy 
gain introduced in proposition 5.1 of [17].

Proof.  Let 0 < h � 1 be a time step. Let Φn := Φhn be the time-h sample chain of Φt. 
Let Yn be the total energy flux during the time period [nh, (n+ 1)h), i.e.

Yn =
1

h

1

TR − TL

∑
nh�ti<(n+1)h

Ji.� (3.3)

Then we have

lim
T→∞

1

T

1

TR − TL

∑
ti<T

Ji = lim
m→∞

1

m

m∑
n=1

Yn.� (3.4)

https://doi.org/10.1088/1742-5468/ab0c16
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Hence it is sucient to prove the law of large numbers for Yn.
Let Zn = EΦn [Yn]. It is easy to see that Zn is an observable of Φn. Now let Fn be the 

σ-field generated by Φ0, · · · , Φn. Let Y ′
n = Yn − Zn. It is easy to see that

E[Y ′
n | Fn] = 0.

Hence Y ′
n is a martingale dierence sequence with respect to {Fn}n�0. It is well known 

that if
∞∑
n=1

E[|Y ′
n|2]

n2
< ∞,� (3.5)

we have

lim
m→∞

1

m

m∑
n=1

Y ′
n = 0.

(This is the law of large numbers for martingales, see for example theorem 3.3.1 of [5].) 
In addition, we have

E[|Y ′
n|2] � E[|Yn|2] � (

1

h

1

TR − TL

)2E[EΦn [
∑

nh�ti<(n+1)h

‖Φti +Xi‖21]],

�

(3.6)

where Xi are i.i.d. random variables with law max{E(TL), E(TR)}. This is because Ji 
cannot exceed the sum of total energy and the energy coming from the boundary. In ad-
dition, assume ti, ti+1, · · · ti+m are the first m  +  1 energy exchange times right after nh, 

then the update of the total energy is bounded by ‖Φt+i+m
‖1 � ‖Φn‖1 +Xi + · · ·+Xm.

Since the clock rate is bounded by K from above, it is easy to see that

EΦn [
∑

nh�ti<(n+1)h

‖Φti‖21] � E[
N∑
i=1

(‖Φn‖1 + 2Xi)
2],� (3.7)

where N is a Poisson random variable with mean Kh. Then some straightforward 
calculation shows that there exists an h0  >  0, such that for any h we have

E[
N∑
i=1

(‖Φn‖1 + 2Xi)
2] � C0 max{‖Φn‖21, 1},� (3.8)

where the constant C0 only depends on h0.
By the law of large number of Markov process, we have

E[(max{‖Φn‖1, 1})2] → π((max{‖E‖1, 1})2) < π(‖E‖21) + 1 < ∞.� (3.9)

Then by equations (3.6)–(3.9), we have

https://doi.org/10.1088/1742-5468/ab0c16
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∞∑
n=1

E[|Y ′
n|2]

n2
< ∞.� (3.10)

Hence the condition in equation (3.5) is satisfied, and the law of large numbers of Y ′
n 

holds. We have

lim
m→∞

m∑
n=1

Y ′
n = 0.

In addition, by the law of large numbers of Markov process, we have

1

m

m∑
n=1

Zn → 1

h
Eπ[

∑
ti<h

Ji]� (3.11)

almost surely. And the right hand side of equation (3.11) is finite because clock rates 
cannot exceed K < ∞. Therefore, we have

lim
T→∞

1

T

1

TR − TL

∑
ti<T

Ji = lim
m→∞

1

m

m∑
n=1

Yn =
1

m

m∑
n=1

Zn + lim
m→∞

m∑
n=1

Y ′
n =

1

h
Eπ[

∑
ti<h

Ji] < ∞�

(3.12)
almost surely.

By the invariance of π, the quantity 1
h
Eπ[

∑
ti<h Ji] is independent of h. Since h can be 

arbitrarily small, by equation (3.12), we have

lim
T→∞

1

T

1

TR − TL

∑
ti<T

Ji = lim
h→0

1

h
Eπ[

∑
ti<h

Ji] = κ,� (3.13)

where κ is the infinitesimal flux defined in equation (3.1).� □ 

Then we compute thermal conductivities of Φ1
t and Φ2

t by simulating κ.

Numerical simulation 1: Let TL = 1, TR = 2. According to theorem 3.1, we can 
compute the thermal conductance

q = lim
T→∞

1

T

1

N + 1

1

TR − TL

∑
ti<T

Ji

over a long trajectory. In our simulation T is chosen to be 2× 106. We compute the 
thermal conductance q for N = 6, 8, 10, · · · , 100. The simulation results for Φ1

t and Φ2
t 

are presented in figure 2.
According to the plot given above, we see that q is proportional to 1/N for both 

cases, although the thermal conductance of Φ2
t is much lower. In other words, in spite of 

a much slower ergodicity and the presence of the low energy site eect, Φ2
t still gives a 

‘normal’ thermal conductivity that is independent of the system size. The eect of low 
energy site will quantitatively reduce the thermal conductivity, but not qualitatively 
change the scaling of the thermal conductivity. In contrast, note that many harmonic 

https://doi.org/10.1088/1742-5468/ab0c16


Thermal conductivity and local thermodynamic equilibrium of stochastic energy exchange models

11https://doi.org/10.1088/1742-5468/ab0c16

J. S
tat. M

ech. (2019) 043205

chains and anharmonic chains admit ‘abnormal’ thermal conductivities. We refer to 
the review article [11] for a summary of these results.

3.2. Thermal conductivity of 2D model

The thermal conductivity of a 2D stochastic energy exchange model is also interesting. 
Obviously the low thermal conductivity of Φ2

t is mainly contributed by the occurrence 
of low energy sites. The occasional occurrence of a low energy site can block the energy 
transport for a long time, and significantly reduce the thermal conductivity. This 
problem can be alleviated by increasing the dimension of the system. Instead of an 1D 
chain, we consider a 2D array of energy sites. The upper and lower edges are adiabatic, 
while the left and right edges connect to the heat bath.

More precisely, we consider an M ×N array of sites. An exponential clock with rate 
R  =  R1 or R2 is associated to each pair of nearest neighbor sites. When the clock rings, 
the rule of energy redistribution is same as described in equation (2.1). In addition, sites 
with indices (i, 1) (resp. (i,N)) for i = 1, · · · ,M  are connected to the left (resp. right) 
heat bath. The rule of energy exchange with the heat bath is same as in equation (2.2).

The thermal conductivity κ can then be defined and computed analogously. We have

κ =
1

M

1

TR − TL

∫ {
(

M∑
i=1

N−1∑
j=1

R(Ei,j,Ei,j+1)

∫ 1

0

p(Ei,j + Ei,j+1) dp− Ei,j)

+
M∑
i=1

R(TL,Ei,1)(Ei,1 −
∫ ∞

0

∫ 1

0

p(Ei,1 + x)e−x/TL dp dx)

+
M∑
i=1

R(Ei,N ,TR)(

∫ ∞

0

∫ 1

0

p(Ei,N + x)e−x/TR dp dx− Ei,N)

}
π( dE).

� (3.14)

Figure 2.  Thermal conductance for Φ1
t and Φ2

t . Red line is the linear fit of κ versus 

1/N. Left: R1 =
√
E1 + E2. Right: R2 =

√
E1E2/(E1 + E2).
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And again, we denote q = κ/(N + 1) as the thermal conductance.
Similar to the previous subsection, κ is a computable quantity. Let t0 < t1 < t2 < · · · 

be the time at which an ‘horizontal’ energy exchange, i.e. energy exchange between 
Ei,j  and Ei,j±1 (or heat bath) occurs. Let Jk be the energy flux from right to left associ-
ated to the energy exchange event occurring at time tk. If the energy exchange event 

is between site (i, j) and site (i, j + 1), we have Jk = Ei,j(t
+
k )− Ei,j(tk). If the energy 

exchange is between site 1 (resp. site N) and the left (resp. right) boundary, we have 

Jk = Ei,1(tk)− Ei,1(t
+
k ) (resp. Ji = Ei,N(t

+
k )− Ei,N(tk)).

A similar approach as in theorem 3.1 implies

κ = lim
T→∞

1

M

1

TR − TL

∑
tk<T

Jk.� (3.15)

Numerical simulation 2: Let TL = 1, TR = 2, N  =  50, and M = 1, 2, · · · , 20. By 
equation (3.15), we can simulate the thermal conductance q by computing

lim
T→∞

1

M

1

TR − TL

∑
tk<T

Jk

over a long trajectory. In our simulation T is chosen to be 1× 107. Then we compare q 
for each M from 1 to 20. Simulation results of q versus M for Φ1

t and Φ2
t are presented 

in figure 3.
Figure 3 confirms our speculation. With rate function R1 =

√
E1 + E2, the thermal 

conductivity changes inconspicuously even the width of the system increases. With 

rate function R2 =
√

E1E2/(E1 + E2), q (as well as κ) increases significantly when 
M changes from 1 to 2, and keeps increasing with increasing M. This demonstrates 
the dimension eect. When a site loses most of its energy in an energy exchange and 
becomes ‘silent’ for a while, the energy transport is completely blocked in an 1D 
model. With an extra dimension, the energy can still be transported by circumventing 
the ‘silent’ site. In addition, the probability that the energy transport is completely 
blocked becomes much lower in a 2D model.

4. Comparison of local thermodynamic equilibrium (LTE)

The LTE assumption means that although the entire system is non-equilibrium, the 
marginal distribution of the steady state with respect to a ‘local’ subset is still close 
to a thermal equilibrium. The existence of LTE is equivalent to the existence of a 
well-defined local temperature. In the study of microscopic heat conduction models, 
the existence of LTE usually means the marginal distribution of NESS with respect to 
finite many local sites converges to a thermal equilibrium as the length of the chain 
goes to infinity. We refer to [16, 19] for further discussion and known rigorous results 
about the existence of LTE.

4.1. Non-equilibrium steady state under the LTE assumption

The two rate functions in section 2 are chosen in a way that the theoretical thermal equi-
librium can be explicitly given. We start this subsection with the following proposition.
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Proposition 4.1.  Assume the chain is infinitely long on both sides. The process Φ1
t 

(resp. Φ2
t) admits a family of invariant probability measures

π =
∞∏

i=−∞

πT
i T > 0,� (4.1)

where πT
i  are i.i.d. exponential random variables (resp. gamma random variables) with 

mean T (resp. parameters 1/2 and T).

Proof.  Since there is no energy exchange with the boundary, it is sucient to check 
the interaction between Ei and Ei+1.

When starting from the probability distribution π given in the theorem, the prob-
ability that Φ1

t leaves (Ei,Ei+1) on the next infinitesimal time interval (0, dt) is

√
Ei + Ei+1e

−Ei/T e−Ei+1/T dt.

On the other hand, when starting from π, the probability density that Φ1
t enters an 

infinitesimal neighborhood of (Ei,Ei+1) on the same time interval is

dt ·
∫ Ei+Ei+1

0

1

Ei + Ei+1

√
x+ (Ei + Ei+1 − x)e−x/T e−(Ei+Ei+1−x)/T dx

=
√

Ei + Ei+1e
−Ei/T e−Ei+1/T dt.

�
(4.2)

Therefore, π is invariant for Φ1
t if πi are i.i.d. exponential distributions.

Figure 3.  Thermal conductance q versus M of the 2D system for Φ1
t and Φ2

t . 
Length of the chain is fixed as N  =  50. M varies from 1 to 20. Left: R1 =

√
E1 + E2. 

Right: R2 =
√
E1E2/(E1 + E2).
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The case of Φ2
t is the same. The probability that Φ2

t leaves (Ei,Ei+1) is√
EiEi+1

Ei + Ei+1

· 1√
TΓ(1/2)

1√
Ei

e−Ei/T · 1√
TΓ(1/2)

1√
Ei+1

e−Ei+1/T dt

=
1

Tπ

1√
Ei + Ei+1

e−(Ei+Ei+1)/T dt.

�

(4.3)

The probability density that Φ2
t enters an infinitesimal neighborhood of (Ei,Ei+1) is

dt ·
∫ Ei+Ei+1

0

1

Ei + Ei+1

√
x(Ei + Ei+1 − x)

x+ (Ei + Ei+1 − x)
· 1√

TΓ(1/2)

1√
x
e−x/T

· 1√
TΓ(1/2)

1√
Ei + Ei+1 − x

e−(Ei+Ei+1−x)/T dx

=
1

Tπ

1√
Ei + Ei+1

e−(Ei+Ei+1)/T dt.

�

(4.4)

Therefore, π is invariant for Φ2
t if πi are i.i.d. gamma distributions. This completes the 

proof.� □ 

This theoretical thermal equilibrium does not work well for a finite chain due to 
boundary eects. However, we are curious about whether the marginal distribution of 
the NESS with respect to finite local sites converges to i.i.d. exponential (or gamma) 
distributions when N → ∞. If the answer is yes, then the LTE is established. Note 
that here we adopt a strict definition of the LTE. We see that LTE is achieved only if 
the marginal distribution of the NESS with respect to many local sites converges to the 
thermal equilibrium described before. There is also literature about weaker versions of 
LTE [18], i.e. the marginal distribution with respect to one site or one point.

We plan to use the energy profile and the thermal conductivity to make a prelimi-
narily check as to whether LTE is achieved. It is not dicult to calculate the theoretical 
energy flux Ji,i+1 if we know the joint distribution of (Ei,Ei+1). This theoretical flux can 
be then used to compute a theoretical energy profile. Then we can compare the theor
etical energy profile and its empirical counterpart (which is relatively easy to compute).

The following two propositions follow from simple calculations.

Proposition 4.2.  If the joint marginal distribution of the invariant probability measure 
of Φ1

t with respect to site Ei and Ei+1 is the product measure of two exponential distribu-
tions with mean T and T̂  respectively, then the mean energy flux from site i  +  1 to site 
i is

Ji,i+1 =

√
π(3T 2 + 9T 3/2T̂ 1/2 + 11T T̂ + 9T 1/2T̂ 3/2 + 3T̂ 2)

8(T 1/2 + T̂ 1/2)3
(T̂ − T ).� (4.5)

Proof.  We have

Ji,i+1 =

∫ ∞

0

∫ ∞

0

y − x

2
·
√
x+ y · 1

T
e−x/T · 1

T̂
e−y/T̂ dx dy.� (4.6)
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Let u  =  y   −  x and v = x+ y. The rest are straightforward calculations about the 
integral.� □ 

Proposition 4.3.  If the joint marginal distribution of the invariant probability measure 
of Φ2

t with respect to site Ei and Ei+1 is the product measure of two gamma distributions 

with parameters (1/2,T ) and (1/2, T̂ ) respectively, then the mean energy flux from site 
i  +  1 to site i is

Ji,i+1 =
T 1/2T̂ 1/2(T + 3T 1/2T̂ 1/2 + T̂ )

4
√
π(T 1/2 + T̂ 1/2)3

(T̂ − T ).� (4.7)

Proof.  We have

Ji,i+1 =

∫ ∞

0

∫ ∞

0

y − x

2
·
√

xy

x+ y
· 1√

TΓ(1/2)
e−x/T · 1√

T̂Γ(1/2)
e−y/T̂ dx dy.

� (4.8)
Let u  =  y   −  x and v = x+ y. The rest are straightforward calculations about the int
egral.� □ 

4.2. Numerical study of the LTE assumption

We propose the following three numerical simulations to check the validity of the 
LTE assumption. Note that the rule of boundary interaction is dierent from that in 
the middle of the chain. Hence marginal distributions with respect to boundary sites 
always have boundary eects, and the system does not reach thermal equilibrium even 
if TL = TR. We will show that when the length of the chain increases, the boundary 
eect gradually disappears. At the limit, the marginal distribution with respect to finite 
many sites that are in the middle of the chain converges to the theoretical thermal 
equilibrium given by proposition 4.1.

Numerical simulation 3. We first simulate the marginal distribution with 
respect to a single site. Let TL = 1, TR = 2, N = 10, 20, 40, 60, 80. We simulate pro-
cesses Φ1

t and Φ2
t over a long trajectory and collect the energy profile at sampling times 

h, 2h, · · · , 8× 106h. h is chosen to be 2 for Φ1
t and 10 for Φ2

t . The time-h skeleton of 
a time-continuous Markov process preserves its invariant probability measure. Hence 
we can compute the marginal distribution of the invariant probability measure with 
respect to each site.

Then we compare the sample with respect to each site with a desired gamma distri-
bution. This step is done by using the gamfit function in MATLAB. Parameters (α, β) 
of the gamma distribution with respect to each set are demonstrated in figures 4 and 
5. We can find that the marginal distribution with respect to a non-boundary site is 
approximately a gamma distribution with parameters (1, βi) for Φ1

t and (1/2, βi) for Φ2
t , 

where βi changes with the site index. Note that an exponential distribution with mean 
λ is a gamma distribution with parameters (1,λ−1). Hence our numerical result is con-
sistent with the marginal distribution obtained in proposition 4.1.

The goodness of the fit is done by a Chi-square test. We divide the domain into 31 
bins [0, 0.2), · · · , [5.8, 6.0), [6.0,∞). Let p i be the theoretical probability of the desired 
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gamma distribution at each interval and ni be the number of samples falling to this 
interval. We calculate

χ2 =
31∑
i=1

(ni −Npi)
2

Npi
� (4.9)

for each site. If the marginal distribution satisfies a gamma distribution, the χ2 test 
statistics should be smaller than the 95th percentile of a χ2 distribution with 30 degrees 
of freedom. Figures 6 and 7 shows our result for the goodness of the fit. We can see 
that when the chain is long enough, the marginal distribution with respect to a non-
boundary site is very close to a gamma distribution in both cases, which is exactly the 
thermal equilibrium we found in proposition 4.1. In other words, LTE is achieved for a 
single site in the chain as the length of the chain grows.

Numerical simulation 4. The next task is to use the energy profile to check 
the LTE assumption. Assuming LTE is achieved, the theoretical energy flux can be 
obtained from equations  (4.5) and (4.7). Then we can compare the empirical energy 
profile with the predicted ones when assuming the LTE. The result of numerical 
simulation 3 shows that at the boundary the marginal distribution is far from the 
gamma distribution. Hence we can only use propositions 4.2 and 4.3 to predict the 
energy profile in the middle. The predicted energy profile under the LTE assumption 

Figure 4.  Parameters α and β of the gamma distribution fitted from marginal 
distributions with respect to all sites. The length of the chain is N = 10, 20, 40, 60, 80. 
Rate function R1 =

√
E1 + E2.
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is obtained in the following way. Assume that E5 and E36 are equal to those in the 
empirical energy profile. Since the mean energy flux Ji,i+1 is independent of the choice 
of i, we can solve a nonlinear equation involving E6,E7, · · · ,E35 numerically such that 
J6,7 = J7,8 = · · · = J34,35, where terms Ji,i+1 are from equation (4.5) for Φ1

t and (4.7) for 
Φ2

t . This gives the predicted energy profile from site 6 to site 35. The predicted and 
empirical energy profiles for Φ1

t and Φ2
t are compared in figure 8. We can find that in 

both cases the predicted energy profile is very close to the empirical one. Note that in 
the energy profile, the mean energy of the left (resp. right) boundary site is not close 
to TL (resp. TR). This is because the rule of boundary interaction is dierent from that 
of non-boundary sites. In particular, the rate of an energy exchange with the left (resp. 
right) boundary is R(TL,E1) (resp. R(EN ,TR)) regardless the amount of energy drawn 
at the boundary. Hence the eective temperature ‘felt’ by a boundary site is not the 
heat bath temperature.

The result in figure  8 suggests that equations  (4.5) and (4.7) can produce good 
approximations of the macroscopic energy profile. However, the energy profile alone is 
not sucient for us to claim the existence of LTE, as dependent marginal distributions 
can still produce the same energy profile. In fact, when the chain is not long enough, 
the theoretical mean energy flux by assuming LTE is quite dierent from the empirical 
energy flux. In order to check whether LTE is achieved, we need to accurately compute 
the marginal distribution with respect to nearest neighbor sites.

Figure 5.  Parameters α and β of the gamma distribution fitted from marginal 

distributions with respect to all sites. The length of the chain is N = 10, 20, 40, 60, 80. 

Rate function R2 =
√
E1E2/(E1 + E2).
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Numerical simulation 5. Finally, we simulate the joint marginal distribution 
with respect to two nearest neighbor sites at the center of the chain. We simulate 8 long 
trajectories to generate the joint marginal distribution with respect to (EN/2,EN/2+1) 
for increasing N. For each trajectory, we collect samples of (EN/2,EN/2+1) at each sam-
pling time h, 2h, · · · , 2× 108h. We choose h  =  0.25 for Φ1

t and h  =  1 for Φ2
t because the 

average clock rate of Φ2
t is lower. The reason for doing this is because the time-h skel-

eton of a time-continuous Markov process preserves its invariant probability measure. 
This approach gives us 1.6× 109 samples. We need these many samples to achieve the 
accuracy needed for verifying the existence of LTE.

Let a0, a1, · · · , a16 = 0, 0.1, · · · , 1.6 and a17 = ∞. We define two auxiliary random 
variables Z1 and Z2 that represent the discretization of EN/2 and EN/2+1 with respect to 
the partition generated by a0, a1, · · · , a17, respectively. Z1  =  i (resp. Z2  =  i) if and only if 
EN/2 ∈ [ai−1, ai) (resp. EN/2+1 ∈ [ai−1, ai)). In other words Z1,Z2 takes the value 1 to 17. 
We use the collected N = 1.6× 109 samples to estimate the probability distributions of 
Z1,Z2 as well as their joint distributions. If Z1,Z2 converges to two independent ran-
dom variables as N → ∞, we believe this implies the independence of EN/2 and EN/2+1.

Then we use the extrapolation of χ2 values to decide whether Z1 and Z2 are inde-
pendent. For i, j = 1, · · · , 17, define Oi, Oj , and Oij are the sample size corresponding to 
{Z1  =  i}, {Z2  =  j }, and {Z1 = i,Z2 = j} respectively. Let Eij = OiOj/N be the expected 
count of Oij. The χ2-value is given by

Figure 6.  Values of χ2-test statistics (equation (4.9)) of the marginal distribution 
of each site. x-axis: site index. y -axis: χ2. Rate function R1 =

√
E1 + E2.
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χ2
N =

17∑
i=1

17∑
j=1

(Oij − Eij)
2

Eij

.� (4.10)

If Z1 and Z2 are independent, then χ2
N should be less than the 95th percentile of a chi-

square distribution with degree of freedom 16× 16, denoted by p 95. We compute χ2
N up 

Figure 7.  Values of χ2 test statistics (equation (4.9)) of the marginal distribution 

of each site. x-axis: site index. y -axis: χ2. Rate function R2 =
√
E1E2/(E1 + E2).

Figure 8.  A comparison of predicted and empirical energy profiles. Left panel: 

R1 =
√
E1 + E2. Right panel: R2 =

√
E1E2/(E1 + E2).
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to N  =  160 for Φ1
t and N  =  240 for Φ2

2 (because the simulation of Φ1
t is slower). Then we 

plot N−1 versus 
√

χ2
N , use a linear extrapolation to estimate the chi-square score of the 

limit case when N → ∞, and compare it with the square root of p 95. The result is dem-
onstrated in figure 9. The linear extrapolation shows that χ2

∞ values are less than p 95 
for both Φ1

t and Φ2
t . Hence we believe this simulation result gives a convincing evidence 

that when N → ∞, the marginal distribution with respect to the nearest neighbor sites 
in the middle of the chain converges to independent random variables.

We remark that in order to get the desired accuracy, one needs to eciently gen-
erate a large number of samples to approximate the invariant probability measure. 
This is achieved by using the Hashing-Leaping method proposed in [15] and parallel 
computation.

5. Conclusion

In this paper we study a stochastic energy exchange model with two dierent rate 
functions that corresponding to dierent ways of reduction from a deterministic bil-
liards-like heat conduction model. The Markov chain generated by the model with rate 

function R1 =
√
E1 + E2 (resp. R2 =

√
E1E2/(E1 + E2)) is denoted by Φ1

t (resp. Φ2
t). 

The two processes have a fundamental dierence when a low energy site appears. In Φ1
t , 

a low energy site can be quickly ‘rescued’ by its neighbors. However, the rate function 
of Φ2

t means a low energy site can only be recovered by itself, which usually takes a long 
time. It is known that this low energy site eect causes the speed of convergence to the 
invariant probability measure to be much slower. We are interested in the dierence 
of macroscopic thermodynamic properties caused by this dierence. Since an explicit 

Figure 9.  Left: extrapolation of χ2
N for Φ1

t . Right: extrapolation of χ2
N for Φ2

t . Red: √
χ2
N  versus 1/N. Blue: linear extrapolation. Black: 

√
p95 , square root of the 95th 

percentile of the χ2 distribution with 256 degrees of freedom.
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formula of the nonequilibrium steady state (NESS) is not possible, we carry out a series 
of numerical studies in this paper.

The first study is about the thermal conductivity. We first proved that the ther-
mal conductivity is a well-defined and computable quantity. Our simulations find that 
both models have thermal conductances that are proportional to 1/N. This implies a 
‘normal’ thermal conductivity that is independent of the system size. In other words, 
the low energy site eect of Φ2

t does not qualitatively change the thermal conductiv-
ity. However, the thermal conductivity is quantitatively reduced by the low energy 
site eect. This can be verified by comparing the thermal conductivities of 1D and 2D 
models. In a 2D model the energy transport can bypass the low energy site. Hence an 
increase of thermal conductivity for Φ2

t is observed in 2D, while the thermal conductiv-
ity of Φ1

t is roughly unchanged.
The next study is on the marginal distributions at the NESS, which is related to 

the existence of local thermodynamic equilibrium (LTE). Our numerical and analytical 
studies show that when the chain is suciently long, for both Φ1

t and Φ2
t , the marginal 

distribution with respect to a non-boundary site approaches to a theoretical thermal 
equilibrium (gamma distribution). Additional carefully designed numerical studies reveal 
that the marginal distribution of nearest neighboring sites also approaches to the product 
of two independent gamma distributions regardless of the rate function. However, the 
low energy site eect of Φ2

t causes the chain to be more ‘sticky’. As a result, for the same 
system size, nearest neighbor sites of Φ2

t are more dependent than those of Φ1
t .

Understanding the consequence of the ‘low energy site eect’ is an important step in 
the derivation of macroscopic thermodynamic laws from non-equilibrium billiards-like 
dynamics. Recall that the stochastic energy exchange model Φ2

t serves as an approx
imation of the time evolution of the energy profile of a billiard model. In our recent 
paper [14], we consider many particles that are trapped in the same cell as described 
in figure 1. A more realistic stochastic energy exchange model is then derived from 
simulating this billiard model. A weaker ‘low energy site eect’ is still observed in this 
stochastic energy exchange model. The new stochastic energy exchange model in [14] 
is very important because it has a mesoscopic limit equation. Many important macro-
scopic thermodynamic properties like the Fourier’s law, the long-range correlation, and 
the fluctuation theorem, can be derived from this mesoscopic limit equation rigorously. 
Numerical computation in this paper shows that the ‘low energy site eect’ does not 
qualitatively change key macroscopic thermodynamic properties. This not only answers 
questions about Φ2

t asked by several researchers in the field, but also makes the ongoing 
and future study on the new stochastic energy exchange model in [14] more convincing. 
In this sense, the study in the present paper improves our understanding about how 
macroscopic thermodynamic laws are derived from microscopic Hamiltonian dynamics.
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