IEEE TRANSACTIONS ON COMPUTERS

Can I/O Variability be Reduced on QoS-less
HPC Storage Systems?

Dan Huang, Qing Liu*, Jong Choi, Norbert Podhorszki, Scott Klasky, Jeremy Logan, George Ostrouchov,
Xubin He, Senior Member, IEEE, and Matthew Wolf

Abstract—For a production high-performance computing (HPC) system, where storage devices are shared between multiple
applications and managed in a best effort manner, 1/0 contention is often a major problem. In this paper, we propose a balanced
messaging-based re-routing in conjunction with throttling at the middleware level. This work tackles two key challenges that have not
been fully resolved in the past: whether I/O variability can be reduced on a QoS-less HPC storage system, and how to design a runtime
scheduling system that can scale up to a large amount of cores. The proposed scheme uses a two-level messaging system to re-route
1/O requests to a less congested storage location so that write performance is improved, while limiting the impact on read by throttling
re-routing. An analytical model is derived to guide the setup of optimal throttling factor. We thoroughly analyze the virtual messaging
layer overhead and explore whether the in-transit buffering is effective in managing 1/0 variability. Contrary to the intuition, in-transit
buffer cannot completely solve the problem. It can reduce the absolute variability but not the relative variability. The proposed scheme
is verified against a synthetic benchmark as well as being used by production applications.

Index Terms—High-performance computing, storage, quality of service, variability

1 INTRODUCTION

N high-performance computing (HPC) systems, parallel

storage systems have become the primary solution for
managing big datasets generated from scientific simula-
tions. These systems use a range of 100s to 1000s of storage
devices to achieve the throughput and capacity demanded
by applications. Despite strong peak performance that were
achieved during the maintenance windows when users are
disallowed to access the systems and the I/O system is
quiet, we have seen subpar performance with significant
I/0 fluctuations in production environments, observing as
much as an order of magnitude variation in throughput
across storage devices and runs. A root cause of such
performance degradations and variations is the interference
incurred by applications running simultaneously and shar-
ing storage resources, as shown by previous work [1], [2],
[3], [4]. I/O contention is detrimental to the performance of
application whose I/O time is a significant part of run time,
as the contention leads to variations in completion times
across processes. Most parallel applications are forced to
operate in a tightly synchronized manner, which means that
a process that finishes its I/O more quickly is still forced
to wait for its slower peers. The aggregate computational
cycles wasted can be far too costly to ignore, especially for
the application with significant I/O time. Furthermore, the
variability in I/O time makes the job time less predictable.
If a job does not finish on schedule due to the interference
from a competing job, the portion of the run starting from
the most recent checkpoint has to be re-done.

e D. Huang and Q. Liu are with the Department of Electrical and Computer
Engineering, New Jersey Institute of Technology, Newark, NJ.

e |. Choi, N. Podhorszki, S.Klasky, J. Logan, G. Ostrouchov, and Matthew
Wolf are with Oak Ridge National Laboratory, Oak Ridge, TN.

e X. He is with the Department of Computer and Information Sciences,
Temple University, Philadelphia, PA.

o ¥ Corresponding author.

Nevertheless, on next generation HPC systems, increas-
ing I/0 throughput is still the overarching theme and I/O
variability continued to be less emphasized. As such, an ap-
plication is typically allowed to access shared or dedicated
storage devices to maximize its I/O throughput. For exam-
ple, on the Cori system' at National Energy Research Scien-
tific Computing Center (NERSC), storage devices within the
burst buffer and the parallel file system can be accessible
to applications, when the applications are allocated the
shared buffer and storage resources. A file placed onto the
burst buffer is striped onto all storage devices, thus greatly
increasing the likelihood for an application to compete
with others. With the growing scale of HPC systems and
application data, the I/O variations can become worse if
left unmanaged, and new approaches are needed to address
this issue on HPC systems with massive parallelism.

In HPC domain, most existing research on storage and
I/0 quality of service (QoS) fall into three broad categories:
server-side scheduling [5], [6], [7], [8], [9] and log-structured
file system (LFS) [10], [11], none of which have been adopted
in the current petascale production systems, unfortunately.
This is mainly attributed to the following: 1) the I/O
scheduling is often made by a single entity, and this greatly
limits the number of clients that do simultaneous writes to
the file system, 2) the usage of large memory space as cache
compromises the resolution and fidelity of numerical calcu-
lations. In non-HPC domains, e.g. data centers and cloud
storage, the current dominant method is work-conserving
resource allocation [12], [13], [14], [15], [16], [17]. A basic
example, e.g. WEQ [18], is round-robin scheduling for re-
quests at the same priority level and placing a premium on
requests of higher priority levels. However, these methods
do not monitor the congestion status on storage devices

1. http:/ /www.nersc.gov /users/computational-systems /cori/

IEEE TRANSACTIONS ON COMPUTERS

and can not reduce the workload imbalance in a resource-
constrained environment. Nevertheless, the throughput of
a HPC write workload, as shown in Figure la and 1b,
exhibits high temporal and spatial speed variance due to the
workload imbalance on storage devices. Without knowing
the I/O congestion and imbalance status, a work-conserving
scheduler’s best choice is viewing storage systems as a
black-box and sending out re-ordered 1/0O requests as fast
as possible for the purpose of using more shares of the
resources. Under such situation, congestion easily occurs at
many levels in the system, hurting the overall efficiency [9].

In light of these limitations, this work designs a novel
scheme in which clients collectively participate in the I/O
scheduling through lightweight messaging to enable I/O re-
routing in the presence of hotspots. In contrast to the prior
approaches, no additional caching, system-wide or server-
side scheduler is used here for mitigating variability, and the
scheduling decision is managed in a hierarchical structure
to sustain the parallelism up to the 100,000-core level. The
major contributions in this paper are as follows.

o We design a two-level virtual messaging layer (Section
3.1), which facilitates I/O re-routing and throttling
for a large number of clients. The key idea is that via
messaging, the I/O activities on each storage device
can be coordinated, and the slow storage devices can
be discovered and managed. The I/O re-routing is
designed to operate in a lazy manner so that the
constant monitoring can be avoided. In addition, we
show that a limited storage probing via a one-time
STATUS_INQ message, which is issued during the
initial period of re-routing, can obtain the storage
device load, and reduce the failure messages due to
race condition.

e The impact of I/O re-routing to the write and read
performance is thoroughly investigated, and an an-
alytical model is developed to guide the selection
of throttling factor (Section 3.3 and 3.4). As a result
of re-routing, each storage device receives a varying
amount of data depending on how heavily it is
loaded. This has the effect of creating new hotspots
for reading. Our approach avoids the excessive re-
routing and incorporates an analytical model to
guide the selection of throttling factor.

e We further investigate the I/O variability on the
emerging burst buffer storage that will be deployed
on the next generation HPC systems (Section 4). Con-
trary to the common intuition, burst buffers, despite
being fast, does not cure the variability issue. Per-
formance variability remains a challenge in the next
generation HPC systems, which share the emerging
burst buffer storage. To the best of our knowledge,
our work provides the first deep dive into the per-
formance variability issue on the new HPC storage
architecture, that is, burst buffer. Our findings can
help HPC developers and platform owners improve
I/0 performance and motivate further research ad-
dressing the problem across all components of the
I/0 stack on the emerging burst buffer storage.

o This work has been tested using production appli-
cations on leadership class systems during the op-

2
gs.o g
g 25 %:2.0
o o
220 S5t
c [=4
'8 f1 0
=4 ol
£1.0f &
[=2] [=2]
o5 gos
= =
= =
0 20 40 60 80 100 0 20 40 60 80 100
Runs Runs

(a) storage device #0 (Titan).

1.8 ®| 92.0F X

2 o 7] £

[os) L 5@

g1.6 2,4

S1.4; ISH s

12} o £1.2F R

310, 0 b Sme . % o | Bogl °oe

: g o S’ P 0o BEog o o 7.0

I g L R S L

<] o o o s o

Foét, . ., e 55 JEO4RS 7 T e
20 40 60 80 100 0 20 40 60 80 100

(b) storage device #0 (Hopper).

Storage Device

Storage Device

(c) storage deviceI%O-#99 (Titan). (d) storage device #?)-#99 (Hopper).

Fig. 1: Performance of storage devices on Lustre file system
(version 2.8.0). This figure shows even with the Lustre internal
load balancing via the round-robin data placement, the storage
performance is still unbalanced.

erational hours. This technique effectively controls
I/O traffic in a way that write performance can
be improved without significantly degrading read
performance. In addition, this work is implemented
at the middleware level, without imposing major file
system or operating system changes. As far as we
know, our technique is the only one that can be used
in a production setting.

The code is publicly available at https://lgnjupt@
bitbucket.org/Iqnjupt/aio.git.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the measurement results on two leadership
class systems and motivates the I/O variation problem.
Section 3 discusses the design and implementation details
of I/O re-routing with throttling. Section 4 discusses the
in-transit buffering. Section 5 presents performance evalua-
tions, along with related work and conclusions in the end.

2 OBSERVATION AND MOTIVATION

In this section, we present the measurements collected on
two leadership systems, and demonstrate that I/O con-
tention does exist and can be severe on production storage
systems. The choice of using shared, best effort storage sys-
tem is attributed to the fact that shared storage is much more
economical and convenient than the dedicated storage. The
experiments were done on Titan? at Oak Ridge National
Laboratory, currently the 5th fastest machine®, and Hopper
at NERSC. Each machine deploys a massively parallel stor-
age system, comprised of 100s to 1,000s storage devices for
a given file system partition. For the first experiment, in Fig-
ure 1(a) and (b), we write 16 MB blocks to the storage device

2. https:/ /www.olcf.ornl.gov /titan
3. http:/ /www.top500.0org

https://lqnjupt@bitbucket.org/lqnjupt/aio.git
https://lqnjupt@bitbucket.org/lqnjupt/aio.git

IEEE TRANSACTIONS ON COMPUTERS

Rank 0 Rank 1 B interf
o Application 1’s Interference Application 1’s] nterierence
. Application 1 1/0 node P 1/0 queue = m /0 queve [0
O Application 2 . Burst buffer /’, T) Kssume each 1/0 request takes t to
” [] [complete. The application 1/0 takes
Computing Nodes (CN) 1/0 Queue at O [3t to finish on rank 0 and takes 5t on
. . . . O O O O device level [l [Jrank 1. Without rerouting, the
[application finishes /0 in 5t.
00000000 Storage _
Device #0 | [ll] Application 1's I/O request Storage
. . . . O O O O) Dlnterference from other apps DE\{IC(? ’fl
00000Q00CO® IR routed O request Sstatic 1/0
. VML Application 1’s I/O queue 1/0 Re-routing
--- Interference
o e
-’ 1/0 queue D
| . ; 1 {] Interference B With re-routing, the application 1/0
‘ Storage Fabric (Infiniband) o takes 4t to finish on rank 0 and takes
1/0 queue at E O 4t on rank 1. Overall the application
- - - device level] [finishes 1/0in 4t.
Storage Storage Storage :
Device #0 Device #1 Device #2 | =--._____ _ Storage Storage
Tl Device #0 | Device #1 |

HPC computing and storage system

Application 1/0O path on HPC system

Fig. 2: Re-routing vs. static I/O. The left part illustrates that two applications are running on an HPC system, where the computing
nodes are allocated and the storage devices are shared. In the right part, the upper and lower subfigures show how application
1’s I/O requests are handled in static I/O and re-routing, respectively. In both cases, I/O requests are issued from two MPI ranks
and served by two storage devices. As a result of re-routing (lower figure), one I/O request is re-routed from storage device #1 to
#0, thus avoiding the relatively higher interference on storage device #1.

#0 in the system to test the perceived speed of an individual
storage device. The results were collected over 100 iterations
to show the severity of the throughput fluctuation over time.
For example, on Hopper (Figure 1(b)), the peak is more
than 10x higher than the lowest performance. The results
indicate that the performance of the storage system is indeed
very bursty and fairly random. Figure 1(c) and (d) shows
the performance snapshot of 100 storage devices. Although
most of the storage devices offer a similar throughput, there
are a number of outliers that are significantly slower.

The main driver behind this work is that I/O interfer-
ence has been significantly impacting HPC application per-
formance. The reason is that the majority of scientific codes
require tight synchronization, in which processes need to
synchronize at some point during the calculation in order
to get to a coherent state, and prepare for the next iteration
of calculations. Many large scale scientific codes use Mes-
sage Passing Interface (MPI) collectives to exchange state
between processes. For example, the fusion code XGC14
decomposes the toroidal simulation space across processes.
In each step, electrons are pushed to an adjacent domain
by Lorentz force in the electromagnetic field, and hence
processes need to communicate the particle data to ensure
the correctness. With hotspots in the storage system, each
process progresses differently in time, and at some point
a fast process has to sync with other processes for the
particle data. For leadership systems where there are a large
amount of cores, the speed gap between the fastest and
slowest device can be huge. For example in the test runs
in Figure 1(d), the speed of storage device #98 on Hopper
is five times faster than that of storage device #48. The
consequence is that CPU cycles are wasted on fast processes

4. http:/ /theorycodes.pppl.wikispaces.net/XGC1

as a result of synchronization, which reduces the overall
system utilization.

3 1/0 RE-ROUTING

The proposed I/O re-routing mitigates the imbalance in
storage systems by re-directing the I/O traffic to less loaded
storage locations, thereby reducing the amount of data being
written to the congested devices. The core component of /O
re-routing is a virtual messaging layer that serves to dis-
seminate the storage state to each process that participates
in I/0O. Each process is attached to this messaging layer,
and is notified and re-directed to a new target if its current
target becomes heavily congested. On the other hand, if a
target has accepted too much new traffic, the messaging
layer is responsible for identifying and forwarding a request
to another location.

TABLE 1: An example of VML queue size over time. Re-routing
occurs at 3t (shaded cells).

Time Static I/0 Re-routing
Rank 0 | Rank1 | Rank 0 | Rank1
0 2 2 2 2
t 1 2 1 2
2t 1 2 1 2
3t 0 2 1 1
4t 0 1 0 0
5t 0 0 0 0
3.1 Virtual Messaging Layer (VML)
In this section we address three key research questions in
re-routing.

Question 1: How can an application discover a highly loaded
storage device? What is the criteria of marking a storage device
as loaded? A key challenge is that I/O statistics are not
easily available in a parallel file system, and fine-grained

IEEE TRANSACTIONS ON COMPUTERS

system level 1/O statistics are typically not maintained due
to the associated overhead. For example, on the production
Lustre file system on Titan and GPFS on Mira®, the per
storage device statistics, such as bytes read/written and
throughput, are not available to applications. On the other
hand, the POSIX block interface is designed to write and
read a number of bytes from a given offset, and performance
information is not available and exposed from it. There has
been some recent work on extending this block interface
to gain more semantic knowledge [19], [20]. However, it
is not straightforward to adapt these to obtaining I/O
load on parallel storage systems. A possible yet intrusive
approach is to have a monitoring daemon process run in the
background at each storage device, which samples the I/O
load periodically and reports back to a client process. This
approach has its obvious performance disadvantages, as it
incurs additional I/O costs to both storage and network.

A key design decision we made is to avoid measuring
I/0 load directly, and instead re-route I/O requests during
the late stage of 1/0, ie., after all I/O requests issued
to one of the storage devices are served. Such a storage
device is deemed to be idle, and 1/O re-routing of requests
from other loaded devices is initiated. An example of the
re-routing process is shown in Figure 2. The rationale is
that if a storage device is under more interference than
others, its application-level queue will be processed more
slowly. Re-routing traffic away from it would reduce its
load, while circumventing the expensive I/O monitoring.
In Figure 2, we assume each I/O request takes ¢ seconds
to complete if no interference. Due to the interference from
other applications, static I/O (i.e., no re-routing) takes 5t
to finish 1/O. With re-routing, a request issued to storage
device #1 can be re-routed to storage device #0 at time 3¢,
thus reducing the total I/O time to 4¢. Table 1 further shows
the queue length over time.

Question 2: How to re-direct a client process to a faster
storage device? In this work, we designed a thin messag-
ing layer called VML to coordinate the I/O activities of
clients including registration and re-routing. The purpose of
VML is to provide the necessary messaging capabilities to
client processes. VML receives the incoming 1/O requests
from client processes, grants permission to do I1/0O, and
re-directs a request to a faster storage device. It internally
uses short messages to disseminate storage state to each
participating group so that the occurrence of congestion can
be reported quickly and acted upon. On the other hand, the
high-speed interconnects today have extremely low latency
which also makes this approach favorable. For instance, the
Cray Gemini network on Titan has a low message latency of
2.5 us, which is nearly negligible as compared to disk I/O
latencies, and can process tens of millions of MPI messages
per second®.

Question 3: What are the assumptions about the behavior
of the interfering applications? What are the changes to applica-
tions? We treat the interfering applications as a black box
and do not make assumptions about their patterns and I/O
mechanisms. As compared to CALCioM [3], we do not force

5. https:/ /www.alcf.anl.gov/mira
6. https:/ /www.cray.com/sites /default/files /resources/CrayXE6
Brochure.pdf

4

all applications on the system to adopt the same I/O APlIs,
which is in practice impossible. The interfering applications
can use any I/O libraries by choice. We implemented the
re-routing as a new transport into Adaptable I/O System
(ADIOS) [21]. Existing ADIOS-enabled applications can take
advantage of this work without changing their code.

TABLE 2: List of variables

Name || Definition

B the bandwidth of a storage device

D the application data block size

G a group of processes

GC a global coordinator

M the total number of storage devices

M, 0ise|| the total number of storage devices under noise
N the total number of processes

Npoise || the total number of interfering processes
P a process

SC sub-coordinator

SD storage device

TF throttling factor

Figure 3 illustrates the overall architecture of the I/O
re-routing framework. Here a group represents a set of
processes that share a common initial storage target location
to write (e.g., P1, P5, Ps and Py sharing SD;). This target
may change when the ensuing I/O re-routing happens. In
this case, the re-routed process will leave its original group
and join a new group where the I/O load is expected to be
lighter. VML uses a group-based two-level control frame-
work to facilitate message exchange. To enable messages
between groups, a global coordinator (GC) is selected for all
groups and a sub-coordinator (SC) is selected to arbitrate
the messaging between the SC and the individual process
(P). The reason for the two-level design is to make the
communication layer more scalable and to avoid having the
GC handle messages directly from every process, which
otherwise would greatly limit scalability. Implementation
wise, SC/GC can be a process or a pthread launched along-
side applications, which allows an application and VML to
run concurrently so that the execution of one does not block
the other. For the convenience of discussion, a process is
denoted as P; where 0 < 7 < N and N is the total number
of processes. The number of storage devices is M and,
without loss of generality, we also assume N is multiple
of M. Therefore the number of processes that each group
has is N/M and hence, for group G;, the initial process set
it contains is [Pn/ar.i; Pn/ar.(i+1)—1]. The SC;j is the sub-
coordinator for group G;, which manages exclusively the
i-th storage device SD;. The one-to-one mapping between
SC; and S D; assumed here is for the convenience of discus-
sion and in general an SC can write to any SD. Note SC;
can be attached to one of the processes in the group, e.g.,
Pn/pr.i, and GC can be attached to one of the SC's.

Question 4: What are the scalability requirements in HPC
systems? Resource management systems (e.g. YARN [22]
and Mesos [23]) in non-HPC clusters are designed to scale
with the size of clusters and the number of concurrent
jobs. In contrast, the scalability of re-routing framework
is constrained by the HPC cluster hardware configuration,
which are much less frequently scaled out compared to non-

IEEE TRANSACTIONS ON COMPUTERS

HPC clusters, e.g. ORNL Titan launched in 2012 [24]. HPC
jobs are performed with exclusively assigned computing
resources and typically one job process is affiliated to a CPU
core (Figure 2). Thus, despite the number of co-running job
on an HPC cluster, the maximum number of job processes
is under the constraint of computing resources (the number
of CPU cores). For example, ORNL adopts PBS/Torque as a
centralized resource management to allocate compute nodes
to perform jobs. PBS/Torque accepts an HPC job, and allo-
cates requested computing resources (e.g. compute nodes
and CPU cores) to perform the job [25]. The computing
resource capacity of ORNL Titan is the total of 299,008
CPU cores on 18,688 nodes. Thus, the re-routing framework
takes group-based two-level control to facilitate message
exchange, which is evaluated on the current leading HPC
facilities with effective and efficient performance.

Question 5: Will the I/O re-routing lead to oscillation?
For a storage system that has variable performance, the
proposed solution will indeed write to different targets,
and that is exactly the goal of this work. For example,
if storage device #1 experiences fast, slow, and then fast
performance in time, we believe we need to write to device
#1 first, then some other device, and write to device #1 again.
However, if there are no oscillations, device #1 will not be
selected at the later time, and we lose the opportunity to
shorten the I/O time. Carefully note that the granularity of
oscillation in this work is application-level blocks (typically
MB in size for HPC applications), and once a block starts
being written, it cannot change its destination. Therefore,
the oscillations are not very frequent and do not incur
the extra overhead. In addition, our proposed Throttling
Factor (TF) can limit the degree of the re-routing oscillation
between sub-coordinators (SCs). TF denotes the ratio of the
amount of data re-routed to the associated group versus the
amount of data that originally belonged to the group and
has been written (i.e., local data). If oscillation happens, the
amount of re-routed data is increased resulting in the TF
value increasing. When TF reaches a threshold, this SC will
reject re-route requests and terminate the oscillation. We also
explain this in Section 3.4.

3.2 Re-Routing

The re-routing runtime involves both intra- and inter-group
level messages, which are listed in Appendix A. Intra-group
messages occur only within a group G; orchestrated by
SC;. Its main functionality is to provide admission con-
trol and re-direction to an individual process and update
GC about its status (busy or idle). Before a process can
start writing to storage, it must first ask for permission by
sending WRITE_SUBMISSION message to its SC;. If
there are outstanding requests at SD; being processed, the
permission message is held off. Otherwise, a DO_W RITE
message is sent off to the client process and the I/O op-
eration proceeds. In the case of re-direction, a remote SC;
in group j will issue DO_W RITE to redirect a process to
write to SD;.

Inter-group messages are exchanged between two
groups, e.g.,GG; and G, facilitated by SC;, SC; and GC'. The
runtime system utilizes these messages to discover an idle
group and a busy group, and then offload requests from one

5

to another. The I/O re-routing phase is jumpstarted by SC;
issuing WRITE_IDLE message to GC, indicating group
G, (and hence S D;) has finished all its pending requests and
is in idle state. This only occurs when all pending processes
within G finish writing. GC' is a central controller which
keeps track of the busy/idle state of all storage locations,
and upon receiving a WRITE_IDLE message, GC' up-
dates the state of G; to idle and searches for a group G; that
is in the busy state. If group G is found, GC' then initiates
re-routing process via sending REROUTE_REQ to SCj to
request offloading portion of its I/O load. When this request
is acknowledged by REROUTE_ACK, GC' constructs a
WRITE_MORE message with its payload carrying the
re-routed process ID - Py to SCj;, and re-directs process
Py, to write to the new storage device via DO_W RITE.
If REROUTE_REJECT is received, for example, due to
requests have been offloaded to other groups as a result
of race condition, a new REROUTE_RE(Q will be con-
structed and sent out to another group that is busy. At this
point, the re-routing phase is ended and no group is in idle
state. The process of re-routing will start again when there
is a new idle group emerged. When all I/O requests are
finished (i.e., when file is closed), VML will be de-attached
from each process and then released. An example of the
message flow is illustrated in Figure 3.

3.3 Re-Routing with Throttling

The I/O re-routing scheme is aggressive in the sense that
it places a larger burden on a fast storage device, and the
consequence is that a varying amount of data is written to
each storage device, depending on the degree of imbalance
experienced. This is problematic for data that will be read
back in the future (i.e., post-processing) when hotspots may
disappear or transition to a different pattern. The overly
aggressive nature of re-routing write operations can create
a secondary load imbalance for reading, i.e., some storage
devices have significantly more data to read than others. To
address this problem, we apply a throttling technique that
can limit how much data is allowed to be re-routed during
writing, thus avoiding hotspots while lessening the impact
of re-routing on read performance. The key idea is that since
there are a small number of stragglers and most of clients are
relatively fast, there are a large number of candidate storage
devices to be offloaded to. Therefore, we should balance
the traffic to them, instead of offloading solely to the fastest
ones. To achieve this, we introduce the notion of throttling
factor (TF) for each SC, which is defined as the ratio of the
amount of data re-routed to the associated group versus the
amount of data that originally belonged to the group and
has been written (i.e., local data). For each storage device,
TF essentially limits the size of new I/O requests that can be
accepted inbound by an SC. If the current ratio is no greater
than TF, the re-routed request will be granted. Otherwise,
the storage device is considered to have accommodated
too many re-routed requests and the new request will be
rejected. In that case GC' will look for the next idle SC.

In Appendix A, we detail the re-routing algorithms
at GC, SC and individual processes.

IEEE TRANSACTIONS ON COMPUTERS

SC; — Sub-coordinator for group i
GC - Global coordinator

P, —Processori

8D, - Storage device i

1/0 Re-routing Framework

WRITE_IDLE
RE-ROUTE REQ
RE-ROUE ACK

@
©)
©
®

WRITE_MORE

©)

Re-routing Virtual
(@ Messaging Layer

DO_WRITE

Interconnection network

sD, sD,

File 0 File 1

®
sC, SC,
---------------- e ‘
e
P8 P9 P10 P11 P12 P13 P14 P15
sD, SD,

File 2 File 3

Fig. 3: I/ O Re-routing. Note this figure illustrates a sample system that has 16 MPI processes and 4 storage devices. The re-routing
starts with SCy sending WRITE_IDLE to GC, notifying that SDy is the idle state. GC subsequently identifies SDs to be in
the busy state, and sends REROUTE_REQ to request re-routing. SC3 acknowledges the request via REROUTE_ACK with
payload Pi5. Next, SCy sends DO_W RITE to P15 and direct the MPI process to write to SDyg.

3.4 Analytical Modeling of Throttling Factor

This section addresses the question of how to determine the
best TF value using a simplistic analytical model. Although
in reality, it is nearly impossible to have priori knowledge
about the pattern of interference, this section aims to gain a
theoretical understanding of the relationships between the
intensity of interference and TF. Suppose the number of
interfering processes is Npoise and the number of storage
devices that are under noise is M,,qis.. Without losing gen-
erality, we assume SDg to SDyy, ,,..—1 are the ones injected
with noise. Therefore there are pei= competing noise
streams on each of the interfered storage devices. To sim-
plify the model, we also assume that noise is continuously
streamed into the system and each data block has the same
size as the application requests. An application data block
is denoted as D; and the bandwidth of storage device is B.
Without noise, each storage should finish within T} = %’
seconds theoretically, neglecting disk seek overhead. After
noise is injected, the interfered storage should complete
within T; = %’ (JI\V"#Jrl) seconds, where 0 < j < Nnoise
If re-routing is enabled, each storage should have equal
or similar timing as a result of offloading, because a slow
storage device would continue to offload until it catches
up with the fast ones. Suppose a slow storage device, SD;,
offloads Doyt,j,0 < § < Mpoise, and a fast device receives
Diniy Mpoise < 1@ < M. Those SDs under noise should
have

Din ;i
TFL. pu— 2 p—
D

Nnoise
1) (Fpgme) + 1)
@

The details can be found in prior work [1]. With the
threshold, T'F;, I/O re-routing oscillation can also be in
control. Here, D is the total amount of written data by
a SC. If re-routing is enabled and every process writes

equal amount of data, then D is a constant [1]. DT is

Mnoise . ((Npoise

noise

determined by D, ;, which is the re-routed data. When re-
routing oscillation happens, D;, ; and DT" are increased.
When 224 yeaches to the threshold TF;, the I/O re-routing
behavior of SC; is suspended, resulting in the termination
of the oscillation.

Next in Section 5.3, we will examine the analytical model
against the experiment results for the synthetic benchmark
and Pixie3D. For the heavy interference setup in this paper,
we have Ny pise = 64, M,,0ise = 4, M = 16, therefore T'F; =
0.31. For the light interference setup, we have N, ise = 16,
Myoise = 1, M = 16, therefore T'F; = 0.06.

Portion of data on SD; re-routed to SD;
D

incoming.j

D, to0ina.i
outgoing, i
D, o}

SD; SD

! J

File 0 File 1

Fig. 4: An analytical model of re-routing.

3.5 Understanding the Message Overhead

I/0 re-routing in conjunction with throttling involves short
but frequent messages between GC, SC's and clients. De-
spite that the messaging load at 100K-core (shown in Section
5) is well within the capability of the interconnect, our goal
here is to understand the behavior of VML and pinpoint
any potential overhead that can be reduced, so that re-
routing can be utilized on future larger systems where the
messaging load is expected to be higher. Figure 5 illus-
trates percentage-wise the amount of messages exchanged
at GC for XGC1. To understand the messaging overhead,

IEEE TRANSACTIONS ON COMPUTERS

100 WRITE IDLF{MQRE
80 3 é
5 o <
o
£ 60 | 5] 3
3 = 2 &£
& 40t % _
< 3
20 ¢ & §
>
0 . 5
Send Intra-vs. Message Re-Route
vs. Inter- type REQ/ACK

Recv group

Fig. 5: XGC1 messaging overhead at GC.

we classify the messages into four categories: messages
sent vs. received (Ist bar), intra-group vs. inter-group
messages (2nd bar), the breakdown of inter-group mes-
sages (3rd bar), and re-routing success vs. failure rate (4th
bar). The inter-group messages that are recorded include
(GROUP_CLOSE, GROUP_CLOSE_ACK), (REROUTE_REQ,
REROUTE_ACK or REROUTE_REJECT), (WRITE_IDLE
and WRITE_MORE) pairs. In Figure 5, it is clear that
REROUTE_REC(Q related messages dominate the inter-
group messages and, most importantly, failed re-route mes-
sages, i.e., REROUTE_REJECT, constitutes a high per-
centage of messages exchanged. The occurrence of failed re-
routing is due to the race condition where a large number of
SC's finish at about the same time and compete for requests
from a small number of busy SCs. This is mainly due to
that, GC is unaware of the procession of queue size of each
SC beyond being busy or idle, and can direct a number of
SC's to offload from a busy SC whose queue length is short.

To solve this problem, we aim to provide limited
visibility into the queue length via issuing a one-time
probe message, called STATUS_INQ, to each SC' as soon
as the very first WRIT_IDLE is received by GC.
Once an SC receives STATUS_INQ, it immediately sends
back STATUS_REPLY reporting its current queue size.
When GC collects all the STATUS_REPLY messages,
it sorts the SCs by the queue size. For the subsequent
WRITE_IDLE messages, REROUTE_REQ will be sent to
the SC with the highest queue size first. If failed, the SC
with the second highest queue length will be tried, and so
forth. In doing so, the chance of success can be increased by
avoiding those with a short queue.

4 IN-TRANSIT BUFFERING

In-memory buffering (e.g., burst buffer) provides an isola-
tion layer between applications and the storage systems,
and utilizes fast storage medium to provide higher per-
ceived performance to applications. Data buffered can be
drained asynchronously to persistent storage, so that appli-
cations are shielded from the potentially higher contention.
The in-memory buffering can be local or remote or both.
Since HPC simulations typically output large amounts of
data, the local buffering may comprise the memory usage of
HPC applications, and therefore we choose in-transit buffer-
ing where data are streamed to auxiliary compute nodes.
The key idea of using in-transit buffering, Figure 6, is that
data can be staged from simulations to auxiliary (remote)

7

compute resources through high-speed interconnect, and
simulations can proceed asynchronously while data can be
drained from the buffer to the storage systems.

@ @ @ ‘E‘ 1. Write buffer
1 2. Read buffer

2 @ 22 In-transit buffering; 3, prain the data to

@ @ @ @ Mo S— ‘' persistent storage
o] |

Fig. 6: In-transit buffering.

I/0 buftering is not a new idea. In fact, buffering has
long been used as a standard method to minimize I/O
overhead. However, it is not designed to support large
parallel I/O operations and it is unclear that how effective
is the in-transit buffering across interconnect and draining
in dealing with I/O variability. Moreover, it lacks metadata
support, which further limits its broad adoption within HPC
I/0. More recently, the creation of hardware based buffering
areas, known as burst buffers [26], has started to emerge in
a production HPC environment, such as the Cori system
at NERSC and Summit’” at ORNL, with additional featured
being developed. This type of system-wide and special-
purpose hardware supported buffering may help reduce
I/0 overhead, but it is unclear its effectiveness in reducing
1/0 variability. For example, on Cori, the burst buffer is fea-
tured as a storage system that absorbs burst. However, the
fact that a DataWarp node® is shared among all applications,
thus still creating opportunities for inter-job interferences.
Therefore, this work uses the in-memory buffering enabled
by Dataspaces [27], where a small number of dedicated
compute nodes are utilized to absorb and write out data
to parallel file systems asynchronously. DataSpaces is a
scalable data sharing framework designed to support dy-
namic interaction and coordination amongst large-scale sci-
entific applications. DataSpaces is built on a RDMA-based
asynchronous memory-to-memory data transport layer to
provide low latency and high throughput data transfer.

We consider the following three quantities to help fur-
ther characterize I/O variability: mean I/O time (u), stan-
dard deviation of the I/O times from the mean (o), and
the coefficient of variation (c,). The ¢,, also known as
relative standard deviation, is defined by o/, as the ratio
of the standard deviation o to the mean p. As shown later,
contrary to the intuition, using the in-transit buffering does
not provide a complete solution for the I/O variability woes.
The effectiveness of in-transit buffering is contingent upon
the volume and velocity of data produced by an application.
Furthermore, to fairly evaluate staging solutions, we must
weigh the performance gains against the additional cost of
compute resources.

7. https:/ /www.olcf.ornl.gov /summit/
8. https://www.cray.com/datawarp

IEEE TRANSACTIONS ON COMPUTERS

[— = Static
—°7 1/0 Re-routing

[—o=— Static
—°7 1/0 Re-routing

o
S

1/0 Time (én 100_‘5905)
® [N
1/0 Time (in 100 secs)
o o
bl

o <
»
Maaiasasasaci
e

=)
T

n L [o] n "
100 1000 100 1000
Number of processes Number of processes

(a) Synthetic bench (Titan). (b) Synthetic bench (Hopper).

—o— Static /0
F —°— /O Re-routing

25 —=— Static 1/0
b °— 1/0O Re-routing

N
=}
®

=)
T

o
T
IN

T

1/0 Time (in 100 secs)
u

N
T

1/0 Time (in 100 secs)

o o
T T
o
u

. N . .
10000 100 1000 10000

Number of processes

(d) Pixie3D (Hopper).

n .
100 1000
Number of processes

(c) Pixie3D (Titan).

Fig. 7: Runs with manual noise injection.

5 EVALUATION

To gauge the effectiveness of I/O re-routing and throttling,
we collected measurements on two leadership systems:
Titan and Hopper. Titan is a Cray XK7 machine and has
18,688 compute nodes, in addition to the dedicated login
and service nodes. Each compute node contains a 16-core
2.2 GHz AMD Opteron processor and an NVIDIA Kepler
GPU. Each node has 2 GB DDR3 memory per core, and
a Gemini interconnect. We run a number of production
applications on the Lustre file system, which has 1,008
storage devices. Hopper is a Cray XE6 machine and has
6,384 compute nodes, with each consisting of two twelve-
core AMD MagnyCours 2.1 GHz processors, with 2 GB
DDR3 memory per core. Hopper has a total of 156 storage
devices. Our experiments include the runs in which the
interference is from other applications, and runs in which
we manually inject noise. For the latter, the purpose is
to control the interference so that for both re-routing and
static I/O, the intensity of interferences can be maintained
to be identical to the best of our abilities. For those runs
that have manual noise injected, by default 16 MB data
blocks are continuously written to the file system, unless
otherwise noted. For the results with I/O re-routing, TF
is set to 0.1 by default. We tested two simple interference
settings: heavy interference and light interference. For heavy
interference, Npoise = 64, Myoise = 4. For light interference,
Nnoise = 16, M0 = 1. Each data point is the average of
20 measurements collected, unless otherwise noted.

We ran four sets of workloads: a synthetic benchmark,
Pixie3D (kernel) [28], fusion XGC1(production application)
and QMCPack’ (production application): The synthetic
benchmark used in our tests is a simple MPI-based parallel
code that writes and reads configurable size of data per
process, with no computation involved.

Pixie3D [28] is a large extended Magneto-Hydro-Dynamic
(MHD) code that solves extended MHD equations using
fully implicit Newton-Krylov algorithms. The output from
Pixie3D contains eight double-precision 3D cubes. Each 3D

9. http:/ /qmcepack.org

8

array is typically sized 256 x 256 x 256 (hero), 128 x 128 x 128
(large), 64 x 64 x 64 (medium) and 32 x 32 x 32 (small),
depending on the desired resolution as well as memory
constraint. Here we only present the results of 32 x 32 x 32
setup for Pixie3D and other settings bear similar findings.

XGC1 is a gyrokinetic particle-in-cell code that simu-
lates the development of an edge pedestal in the radial
density and temperature profiles of tokamak fusion plas-
mas. XGC1 calculation can scale up very well to a large
amount of MPI processes with each process generating tens
of megabytes, and therefore fast I/O is crucial to XGCI.
In general, XGC I/O outputs both checkpoint and analy-
sis data, whose frequency being adjustable depending the
science needs as well as I/O throughput sustained from
the storage system. In the runs conducted here, checkpoint
period (sml_restart_write_period) is set to 10 timesteps,
and analysis output period (diag_3d_period) is set to 5
timesteps (2 MB field data and 2 KB 2D diagnosis output).
Although the analysis output is more frequent than the
checkpoint, the size is much smaller and is dumped out
in serial. Therefore in the XGC1 performance study, we only
focus on the more challenging checkpoint output.

QOMCPack is an open-source many-body ab initio Quan-
tum Monte Carlo code for computing the electronic struc-
ture of atoms, molecules, and solids. It can be used to
perform both Variational Monte Carlo (VMC) and Diffusion
Monte Carlo (DMC) simulations. The QMCPack runs were
conducted using weak-scaling, and there are two key pa-
rameters: steps, which is the total number of simulation
steps, and blocks, which is the number of VMC/DMC
blocks. In VMC runs, we dump out two 10 x 256 x 3
single-precision floating point variables from each process,
momentum (which is of complex type), and position. In DMC
runs, the size of the variables is 531 x 256 x 3.

5.1 Write Performance

In this section, we evaluate the write performance of re-
routing with and without manual noise injection. Figure
7(a) and (b) show the total write time of the synthetic
benchmark on Titan and Hopper, respectively. Herein the
benchmark writes 2 MB chunks continuously from 64 to
4,096 processes with light noise being injected. It is clear
that the I/O re-routing results in a much improved write
performance at all process counts, as compared to the static
I/0. The performance gain is particularly notable at a large
scale. For example, at 4,096-core, I/O re-routing yields a
67% reduction of write time on Titan and 33% reduction
on Hopper, respectively. These runs demonstrate that as the
scale becomes larger, the static I/O is more susceptible to
the interference and brings larger performance degradations
against the re-routing. Similar results of Pixie3D are shown
in Figure 7(c) and (d).

Figure 8 shows a set of runs conducted during the
production windows of Titan and Hopper, and the inter-
ferences are from other concurrent applications. These runs
give us an indication of how the I/O re-routing performs
in a realistic environment, where interferences are of a
stochastic nature. Figure 8(a) shows the benchmark per-
formance observed during a 2-hour production window
on Titan and Hopper. The static I/O and re-routing runs

IEEE TRANSACTIONS ON COMPUTERS

16F — Static | SO0 Static
2 /O Re-routing (TF=0.1)
=15 2 gl
g g
2 14 te
=1 2
o Eat
=, o
3 T2r
g - wae| DL, |
0 50 100 150 200 250 20 40 60 80 100

Runs

(b) Synthetic bench (Hopper).

Runs

(a) Synthetic bench (Titan).

= —— Static ®1.6f — Static
81.5F - 1/0 Re-routing (TF=0.1) 3 * 1/0 Re-routing (TF=0.1)
> F S1.4r
o o
8 e
= Eqof
= E [}
© £
Erat 51f
o e WWM
PRA A s i ;
10k
0 5 10 15 20 25 0 10 20 30
Runs Runs
(c) Pixie3D (Titan). (d) Pixie3D (Hopper).
2.0 Static 1/0 —

1/0 Re-routing

-
[

10 20 30 40 50 60 70 80 90 100
Checkpoint ID

1/0 time (in 100 secs)
o

(e) XGCa (Titan).

Stafic 110 ——
78 O Re-routing 86

Static 110 ——
1/O Re-routing

/0 Time (sec)
SO
NS

~
3

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

D

VMC output DMC outpu
00:42 AM to 3:42 AM, 11/07/2014, no noise injected 00:42 AM to 3:42 AM, 11/07/2014, no noise injected

(f) VMC (Titan). (g) DMC (Titan).

Fig. 8: Runs during production windows.

were interleaved to achieve maximum fairness. Here the
I/0O re-routing yields a much lower variance versus the
static I/O (28 versus 16,136 on Hopper), as well as a lower
average I/0O time (8.47 secs vs 41.42 secs on Hopper). Fig-
ure 8(c)-(g) similarly show Pixie3D, XGC1, and QMCPack,
respectively. They were set up to compute 1,000 timesteps
(sml_mstep = 1000) and produce 100 checkpoints from
1,024 compute nodes with one process per core. Figure 8(f)
and (g) show VMC and DMC production run performance
at 1,024 processes with 50 blocks and 100 steps.

5.2

In Figure 9, we further evaluate the sensitivity of 1/O per-
formance with regard to TE. For Pixie3D runs (Figure 9(b)),
the static I/O exhibits a much longer I/O time, particularly
under the heavy interference, 290 secs vs. 125 secs of re-
routing, resulting in a 57% improvement with TF set to 0.2.
We observed that under the light interference, a small TF
(i.e., TF=0.1) is sufficient to get the most out of re-routing.
Meanwhile, under the heavy interference, a larger TF (i.e.,
TF=0.2) is needed to allow a higher percentage of traffic
being re-routed. This behavior, that a relatively small TF
is sufficient to achieve a large performance margin, can

Impact of TF to Write and Read

9

be attributed to the observation that a large fraction of
storage devices perform well and only a small percentage
are stragglers, as observed in Figure 1. A low TF is sufficient
in re-routing the stragglers to fast storage devices - if one
storage device exceeds TF and cannot take more traffic, GC
can find the next available fast storage devices. However,
with the intensity of interference getting stronger, increasing
TF is needed to allow more traffic to be re-routed.

Static /0 mm— Static /O mm—
Re-Routing(TF=0.1)
Re-Routing(TF=0.2) s
Re-Routing(TF=0.4)

40 Re-Routing(TF=0.1)
Re-Routing(TF=0.2) mmmmm 250
Re-Routing(TF=0.4)

w w
R

[N
S &

Total 1/0 Time (secs)
o

Total /0 Time (secs)

10

w

o

Light Interference Heavy Interference

(a) Synthetic bech.

Light Interference Heavy Interference

(b) Pixie3D.

Fig. 9: Impact of TF to write.

—— Static | —— static
5[—— 1/0 Re-routing (FF=0.1) 5F ——— 1/O Re-routing (TF=0.1)
—— 1/O Re-routingATF+0.2) ——— 1/O Re-routing (TF=0.2)
)

—— VO Re-routifig (TF0.4), 4| —=— /O Re-routing (TF=0.4
g / 8,
2 o3r ﬂ\./l~++f‘.\l\-/.
Eal E [
= 3 Iy \ o .
° 7] 30 aast St o tags e e = = Sew ewe

N

L L
10 15

A
AL A
Moo \,”*v/ VTN gy
L
5

(b) Pixie3D.

(a) Synthetic bench.

Fig. 10: Impact of TF to read.

Figure 10 shows the time it takes to read the data
previously generated under the heavy interference. For the
benchmark runs, we read the entire datasets that were
written previously. For Pixie3D, we extract the eighth cube
from the output data, i.e., post-processing data retrieval. The
read times here show a tiered separation among curves with
different TF values. Although the static I/O is inefficient for
write performance in the presence of interference, it does
yield the best performance for reading, as data are evenly
distributed across storage devices. As TF increases, the read
time also increases. To achieve a balance between write and
read, one needs to set a relatively small TF so that re-routing
can come into play with minimal impact to read. The details
can be found in Section 3.4.

5.3 Analytical vs. Experimental Results of TF

Figure 11 and 12 evaluate the fidelity of the analytical model
we developed. The plots here show both the measurements
and the optimal value of TF calculated by our analytical
model. It is evident that the optimal value of TF calculated
from the analytical model approximates the one that yields
the lowest I/O time. Enlarging TF beyond this optimal value
does not yield substantial write performance improvement.
For Pixie3D runs, the light and heavy interference were
adjusted to 256 KB/write to match the size of Pixie3D
32 x 32 x 32 cube, to make the model assumption valid.
In Figure 12, the model-predicted TF yields an increase of
I/0 time that is below 0.4% for light interference and 0.6%
for heavy interference, respectively.

IEEE TRANSACTIONS ON COMPUTERS

1/0 Re-routing (Experimental) —=— 1/0 Re-routing (Experimental) —=—

728
2
16 Light Inteference N 226 Heavy Inteference
(’\Frw\se:“s‘ Mugise=1, 2MB/write) <z (Nnoise=64, My oice=4, 2 MB/write)

N

Total /0 Time (secs)
@

Analytical Best Analytical Best

0 005 01 015 02 025 03 035 04
TF TF

(a) Light interference. (b) Heavy interference.

Fig. 11: Model-predicted TF (Synthetic bench)

0
a
=)
&

1/0 Re-routing (Experimental) —s— 1/O Re-routing (Experimental) ——

3
IS
=)
3

)
@

Light Inteference)
(Nroise™16. Mngise=1, 256KB/write)

©
a

Heavy Inteference
(Nroice=64, Mpoice=4, 256 KBlwrite)

©
S

)

Total I/O Time (secs)
8
o
&

=)
S

Total /O Time (secs)

@
3

9 75
0 002 004 006 008 0.1 012 0.14 0.16 0 005 01 045 02 025 03 035 04
TF TF

(a) Light interference. (b) Heavy interference.

Fig. 12: Model-predicted TF (Pixie3D)

5.4 Messaging Overhead

In Figure 13(a), the messaging load of XGC1 at GC, with
respect to the fraction of interconnect capability consumed,
is measured till 131,072-core. We scale up the runs using
the weak scaling by increasing sml_nphi_total, which is
the number of toroidal domains simulated in XGC1. Note
that the core-to-storage ratio is kept the same to ensure
the storage resources used are proportional to the compute
resources. Since GC handles messages from members of its
group and each SC' to coordinate traffic redirection, GC is
anticipated to be the location with the highest messaging
load in the system. While we observe a clear increased
messaging load of the re-routing over the static I/O, the
load is well below what the interconnect can sustain (tens of
millions of MPI messages per second). In Figure 13(b), the
application run time, including that of I/O and computa-
tion, is measured against the number of cores. With the re-
routing outperforming the static I/O at all core counts, this
result illustrates the overall effectiveness of I/O re-routing,
even with the added messaging overhead. Figure 14 shows
similar results for QMCPack till 128,000-core.

=)
>

1800

Static I/O Static I/0 m—

1/0 Re-Routing 1/0 Re-Routing

<,
2
o
=]

(sec)

3
S
un Time
>
S
IS

o
51500
9]

<,
IS

1400

e
)

Fraction of Gemini Capability Used
S
&
Total X

S,
&

1300
8192 16384 32768 65536 131072

of Cores

8192 16384 32768 65536 131072
of Cores

(a) Messaging overhead at GC. (b) Total run time.

Fig. 13: XGCl.

10

=)
>

Static 1/0
1/0 Re-Routing

Static /0O
1/0 Re-Routing

o e e e
N R N
C
N
=)
S

S,
&

Fraction of Gemini Capability Used
S

4

x

3

a

=

(<]

T740

°

=
720

1k 2k 4k 8k 16k 32k 64k 128k
of Cores

<,
&

1k 2k 4k 8k 16k 32k 64k 128k
of Cores

(a) Messaging overhead at GC(b) Total run
(blocks=10,steps=20). (blocks=10,steps=20).
Fig. 14: QMCPack.
Static /O = 1/0 Re-Routing ailed

o
S

1/0 Re-routing with STATUS_INQ s

Normalized Performance
< oo ot
» [} ©
Percentage
(o2
o
Inter

o

N}
N
=)

i}
o
2
3
=
L@
. I8

S}
o

1/0 Time Message Rate
XGC1 (8192-core, strong interference) VS.

Int;a- Message Re-Route
VS.
Recv Inter-group

type. REQ/ACK

(a) Performance comparison. (b) Message classification.

Fig. 15: XGC1 with a one-time STATUS_INQ.

In Figure 15, we measure the effectiveness of the one-
time STATUS_INQ in reducing the messaging load (Sec-
tion 3.5) for XGC1. In Figure 15(a), the normalized I/O
time and message rate are measured, comparing the static
I/O and re-routing with/without STATUS_INQ. With
STATUS_INQ, the overall messaging load is reduced by
about 50%, while achieving the same I/O time as the re-
routing without STATUS_INQ. There are two conclu-
sions we can draw from this result. First, even without
further message reduction, the incurred messaging load of
re-routing can be very well handled by the interconnect on
the leadership systems, and therefore, the overall applica-
tion performance is not negatively impacted by the VML-
enabled re-routing. Second, a one-time probe into storage
state during the re-routing phase can further help identify
the stragglers and reduce the failed messages. Figure 15(b)
shows percentage-wise the amount of messages sent and
received, intra-group vs. inter-group messages, the break-
down of inter-group messages, and success vs. failure rate of
REROUTE_REQ. Compared to Figure 5, the percentage
of REROUTE_REJECT is significantly reduced, result-
ing in a lower messaging rate.

5.5 The Effectiveness of In-Transit Buffering

To measure file I/O performance in a fair way, we restrict
ourselves to use only 512 storage devices for all cases, and
maintain the total number of processes to be multiples of
512, so that each storage device can have equal workload.
For the in-transit buffering, we test DataSpaces with the di-
rect end-to-end data transport method. DataSpaces requires
a staging area consisting of additional compute nodes for
running metadata servers and staging nodes. We limit this
overhead to be less than 5% of the compute nodes allocated
to the main simulation, i.e., we prepare an extra 1/32

time

IEEE TRANSACTIONS ON COMPUTERS

11

512 512 512 512 1024 1024 1024 1024 2048 2048 2048 2048 4096 4096 4096 4096 8192 8192 8192 8192
5MB 10MB || s0MB | | 100MB | | 5MB 10MB || 50MB | | 100MB | 5MB 10MB | 50MB | 100MB | 5MB 10MB | 50MB | 100MB | 5MB 10MB | 50MB | 100MB
6.95
6 5.96 5.99
w
8
2
g
84 351
[
[}
g 2.06
3 2 1.85 177 15 - 175 176 193
0.87 0.99 0.92 12
036 042 13 017|047 &8 0, . 016 |p . . 0.16 .012 015 0.18 o4 011 0.2
[Fite [in-transit bufrering
(a) Average I/O performance.
512 512 512 512 1024 1024 1024 1024 | 2048 | 2048 | 2048 || 2048 | 4096 | 4096 | 4096 | 4096 | 8192 | 8192 | 8192 8192
5MB 10MB 50MB 100MB 5MB 10MB 50MB 100MB 5MB 10MB 50MB 100MB 5MB 10MB 50MB 100MB 5MB 10MB 50MB 100MB
©1.004
8
g
Q
3
3(}75'
20. 0.66
c
S
S 50 05
g .5
0.33
B 0.25 028 03 027
0254 - o7
2 0.05 005 008 0.04 0.08 2.1 0.13 obs 0.11 0.11 .
2} 0.03 0.03 | 0.02 0.02 0.03 0.02 |0.04 4 0.03 0 0 - 0 0 04 0.01 - - 0.03 0.03 0.02 0.01
0.00 - = ey e e s 0l (0 [O 0 O 0l I | e
[Fie [l in-ransit buftering
(b) Standard deviation.
512 512 512 512 1024 1024 1024 1024 2048 2048 2048 2048 4096 4096 4096 4096 8192 8192 8192 8192
5MB 10MB 50MB 100MB 5MB 10MB 50MB 100MB 5MB 10MB 50MB 100MB 5MB 10MB 50MB 100MB 5MB 10MB 50MB 100MB
0.86
0.82 0.85
go7s 067
8
S ols 0.52
27 041
g 0.37 038 0.37
2 032 0
g 0.26 : 027
025 0.23 0.21
3 o I 014014 ohsobe 0413 013012 | 13006 015 o 0.16 ohs
X 0.05 .. 08008 |4 05 0.05 003 004 |0.050.04 0.06
oo/ | Il == [] — - - || | |

[File [in-transit buffering

(c) Coefficient of I/O variation.

Fig. 16: Performance comparison between file I/O and in-transit buffering. We conducted experiments over a few weeks of time
period with different data volumes (from 5 MB up to 100 MB of data per process) over different scales, ranging from 512 up to

8,192 nodes. All tests were performed on Titan.

of the number of compute nodes for running DataSpaces
servers and an additional 1/64 compute nodes for buffer-
ing nodes (i.e., 4.7% overhead in total). First, we measure
the performance of parallel data writing and compare the
performance between file I/O and in-transit buffering in
various data volumes and scales. We let each process write
four different data sizes (5, 10, 50, and 100 MB data per
process, respectively) in five different scales using 512, 1,024,
2,048, 4,096, and 8,192 compute nodes (1 process per node).
To capture the variability during production windows, we
conducted the experiments several times (ranging from 45
up to 180) for each configuration over a few weeks. Figure
16 shows (a) the average I/O times based on the results we
observed, and (b) the absolute variances. In-transit buffering
not only outperforms file I/O in all the cases we tested, but
also shows smaller absolute variability. However, in Figure
16(c), we observe that the relative variability of in-transit
buffering is worse than that of file I/O in a number of cases.
Although the I/O time has been reduced, it may still be
subject to be affected by the external effects or noises on the

interconnect, and thus the relative variance is not reduced.

Next, we perform a set of experiments to understand
how the interference can affect the performance of in-transit
buffering, and in turn can disturb the performance of the
main simulation. For example, Figure 17 shows an instance
of an application that finishes 10 iterations. At each step,
it performs a 30-second computation, followed by 100 GB
checkpoint writing. We use three different I/O methods: (a)
file I/O without in-transit buffering, (b) in-transit buffering
without interference, and (c) in-transit buffering with inter-
ference. 1,024 processes are used for the main simulation
and 32 processes are assigned for in-transit buffering. To
observe the performance under the influence of interference,
we manually inject interference using only 4 processes. Each
interference process writes 100 MB of data concurrently onto
only one storage device that the main simulation works on.

In Figure 17, we can make a few observations. First, com-
pared with (a) and (b), we observe the in-transit buffering
can reduce the main simulation time as it hands over its I/O
to the interconnect, instead of persistent storage. Second,

|EEE TDANMCAATIANE AR ANMDIITEDC

Main
simulation I I | | | | | I I |
Timeline
(sec) ¥0.0 +50.0 +100.0 +150.0 +200.0 +250.0 +300.0 +350.0
Main Simulation B Write buffer Read buffer ~ B File Write
(a) No in-transit bufferine
Main
simulation | | ‘ ‘ ‘ ‘ | | ‘ ‘
Buffering
Process H'E'E'E'E'E'E'E ' '
Timeline
(sec) +0.0 +50.0 +100.0 +150.0 +200.0 +250.0 +300.0 +350.0
Main simulation ™ Write buffer Read buffer ™ File Write
(b) In-transit bufferine without interference
Main
simulation ‘ ‘ ‘ I | ‘ I l l |
Buffering
process B N B 0 N BN B B B
Timeline
(sec) +0.0 +50.0 +100.0 +150.0 +200.0 +250.0 +300.0 +350.0

Main simulation ™ Write buffer Read buffer ™ File Write

(¢) In-transit buffering with interference

Fig. 17: An instance of 10 checkpoint writing tasks (a) with
only file I/O, (b) with in-transit buffering without interference,
and (c) in-transit buffering with interference. 1,024 processes are
used for the main simulation and 32 processes are for in-transit
buffering. The main computation takes 30 seconds, followed by
100 GB checkpoint writing. To inject interference, we use only 4
processes and each process writes 100 MB of data concurrently

120 725
§ 10.0 § 2.0
g 80 c15
G 60 Z10
L 5 1.
g 4.0 [' & 05 I
= 20 I = 0. I
= 0. = -_ il - S 00 === —_ .
512 1024 2048 4096 = 512 1024 2048 4096
Number of processes Number of processes
= File 110 In-transit bufferin ®File I/O In-transit buffering

= In-transit buffering with interference m In-transit buffering with interference

(a) Average checkpoint performance. (b) Coefficient of variation.

Fig. 18: The performances of 10 checkpoint writing with 30
second intervals using three different methods: file I/O only, in-
transit buffering, and in-transit buffering with interference. (a)
shows the average performance at each iteration. The error bars
represent the minimum and maximum values, respectively. (b)
represent the relative variations.

the file I/O performance in (a) varies at each write but, in
the in-transit buffering (b), the variation has been greatly
reduced. Third, more importantly, as shown in (c), under the
influence of interference, we observe the delays in buffering.
Please note the variations of the I/O performance in the in-
transit buffering, and they, in turn, cause the disturbance in
the main simulation. For the in-transit buffers, data are first
held in memory, and then drained to the file system. Due to
the limited memory capacity of buffering nodes, any delays
in the draining to the file system create corresponding de-
lays in the main simulation running in the compute nodes,
to avoid buffer being overwritten.

We repeat the above experiment setting (10 checkpoint
writing after every 30 second interval by using three differ-
ent methods) with different scales. We increase the number
processes of the main simulation from 512 up to 4,096.
The number of in-transit buffering nodes is proportionally

12

increased from 16 up to 128. We maintain the number of
processes causing interference to be 4, and the interference
is injected to a single storage device. In Figure 18(a), the
in-transit buffering outperforms the file I/O if there is no
interference. However, the in-transit buffering with interfer-
ence show severe performance loss and it is even worse than
the file I/O. Also notice that the large variation (depicted
in the error bars) in the buffering under the interference.
Figure 18(b) shows the coefficient of variation. Both methods
(without and with interference) yield a large c,, which
implies the relative variation of in-transit buffering is no
better than file I/O.

6 RELATED WORK

In the HPC domain, I/O contentions have demonstrated
to be at a whole new level simply due to the level of
currency available. With over hundreds of thousands cores
available on a HPC system, the likelihood that two clients
compete for the same storage resource is fairly high. The
earlier work [2], [4] made a number of measurements on a
few large HPC machines during their production runs and
showed contentions can lead to serious I/O performance
degradation in the system. The prior work on the I/O
variability [4] tackled the problem by first looking at write
optimization only using a simplistic approach. The design of
it does not allow for re-routing, and more importantly traffic
throttling is not possible using this approach. Moreover, the
proposed technique uses a single execution thread for both
application write and communication on the coordinator
and sub-coordinator processes. This entire design limits
how effectively and quickly a coordinator can respond to
storage load dynamics, and for light workload, e.g., Pixie3D
small (section 4(b) in [4]), I/O requests cannot be processed
responsively, thus adaptive I/O performance in this case is
on par with non-adaptive I/O. This lowers the adaptability
of the system in general when I/O hotspots are present. Very
recently, researchers used server-side scheduling to address
the problem [7]. While being quite effective, only small scale
has been looked at so far and it is unclear whether they
will work as efficiently at larger scales, such as leadership
class (100,000+ cores) being considered in the paper. Work
by Gainaru et. al. [7] leverages application past behaviors
to tackle the congestion. However, for exploratory science
where application patterns change, its effectiveness may be
limited. In contrast, our work considers interference as a
black box and does not assume that application patterns
are known a priori. Dorier et. al. [3] proposed CALCioM
API which allows an application to nicely inform its I/O
intention so that contentions can be managed. Overall the
work requires all applications on a system be CALCioM-
compliant in order to be effective, which is impractical in
general, and the added communication overhead between
all applications is unclear.

There are works being done in non-HPC areas using
I/0 scheduling [29], [30], [31] and analytical approaches
[9], [32], [33], [34], [35] to reduce contentions. The most
relevant work is BASIL [29], an online storage management
system that automatically performs virtual disk placement
and load balancing across storage devices. BASIL formu-
lated sampling-based empirical models to facilitate virtual

IEEE TRANSACTIONS ON COMPUTERS

machine migrations between devices to balance load. Pesto
[30], a similar work using enhanced empirical models to
schedule workload, resolved a few unsolved challenges in
BASIL, for example the model sensitivity to workloads. The
time scale considered here is relatively large as frequent
VM migrations incur high overhead and service disruptions
even though a single migration causes minimal disruption.

In addition, explicit QoS scheduling mechanisms have
been investigated in storage management solutions over
the years. Wang and Merchant [12] proposed a distributed
I/0 scheduling algorithm that offers system-wide 1/O fair-
ness via distributed SFQ-based [36] scheduling on the co-
ordinators (proxy nodes). In the research on proportion-
ally I/O sharing, several existing schedulers, mclock [14],
pclock [5], FSFQ(D) [37], and IOFlow [38], focus on pro-
portionally sharing available I/O resources via allocations
of I/0O throughput (bytes/s), IOPS (I/O operations/s), or
I/0 queue depth, and vFair [15] focuses on proportionally
sharing cloud storage to VMs with interleaving high/low
I/O-concurrency. IBIS [13] is an interposed scheduler in
the application-level to assign the I/O resources of HDFS
to Hadoop related applications, such as MapReduce and
HBase. Gulati [16] proposed a flow control solution,
PARDA, to enforce fairness on storage arrays and LUNS.
However, these work-conserving scheduling solutions aim
to provide fairness among different I/O flows, rather than
the workload variability and congestion on the storage
nodes of HPC storage system. In addition, as far as we
know, the system-wide and server-side 1/O schedulers in
all production systems in US leadership HPC centers are not
allowed to be modified due to user privilege and security.
As a result, we provide the unique application-level 1/0O
rerouting that was at least possible to be put into produc-
tion, without incurring intrusive changes to systems and
applications.

In the HPC domain, especially in the next-generation
HPC, understanding and solving the performance variabil-
ity problem is important. Previous works [1], [2], [3], [4]
show the root cause of such performance degradations and
variations is the interference incurred by applications run-
ning simultaneously and sharing storage resources. Yildiz et
al. [39] discovered that the performance variability is caused
by cross-application I/O interference in HPC exascale stor-
age systems. This work also reveals that in many situations
interference is a result of bad flow control in the I/O path.
MOANA [40] is a modeling and analysis approach that pre-
dicts HPC I/O variability on shared-memory. Some research
efforts consider network contention as the major contributor
to the I/0O interference. Bhatele et al. [41] investigated the
performance variability in Cray machines and Blue Gene
systems. They found that the interference of multiple jobs
that share the same network links is the primary factor for
high performance variability. Kuo et al. [42] investigated the
influence of file access patterns on the degree of interference
observed. They found that chunk size can determine the
degree of interference and the interference effect induced
by various access patterns in HPC systems can slow down
the applications by a factor of 5. Cao [43] reported a study
to characterize the amount of variability in benchmarking
modern storage stacks, for the purpose of ensuring stable
I/0 performance. In contrast, our work investigate the I/O

13

variability and observe the severe performance loss due
to the large relative I/O variations on the emerging burst
buffer storage.

7 CONCLUSION

This paper attempts to resolve the I/O contention on lead-
ership systems where there are massive parallelism. We
propose a balanced client-assisted re-routing + throttling
approach to alleviate the contention and a theoretical model
to guide the setting of throttling factor (TF). This work
tackles two key challenges that have not been fully re-
solved in the past: how to design a runtime scheduling
system that can scale up to a large amount of cores, and
how to avoid using on-node memory/cache, which would
otherwise compromise fidelity and resolution of HPC ap-
plications, to manage contention. In addition, this work
discusses the effectiveness of using burst buffers to deal
with variability. The performance results indicate that the
scheme works well, e.g., achieving 1.8x improvement in
write and scaling up to 131,072 cores, for benchmarks as
well as production applications on leadership class systems.
We also thoroughly analyze the virtual messaging layer
(VML) overhead and use a one-time STATUS_IN(Q mes-
sage to probe each storage state and reduce the amount
of REROUTE_REJECT messages as well as the overall
messaging load. In contrast to the common belief that burst
buffers can absorb I/O burst, it does not necessarily reduce
the I/0O variability.

8 ACKNOWLEDGEMENTS

This work is supported in part by the US National Science
Foundation Grant CCF-1718297, CCF-1812861 and Depart-
ment of Energy Advanced Scientific Computing Research.
The work performed at Temple is partially sponsored by
the US National Science Foundation under grants #1702474,
#1717660, and #1813081. The experiments of this work are
conducted on the HPC facilities managed by Oak Ridge
National Lab and National Energy Research Scientific Com-
puting Center.

REFERENCES

[1] Q. Liu, N. Podhorszki,]J. Choi, J. Logan, M. Wolf, S. Klasky,
T. Kurc, and X. He, “Storerush: An application-level approach
to harvesting idle storage in a best effort environment,” Procedia
Computer Science, vol. 108, pp. 475 — 484, 2017, the International
Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland.

[2] Q.Liu, N. Podhorszki, J. Logan, and S. Klasky, “Runtime I/O Re-
Routing + Throttling on HPC Storage,” in Proceedings of the 5th
USENIX workshop on Hot Topics in Storage and File Systems, ser.
HotStorage’13, 2013, pp. 4-4.

[3] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim, “Cal-
ciom: Mitigating i/o0 interference in hpc systems through cross-
application coordination,” in Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International, May 2014, pp. 155-164.

[4] . Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Korden-
brock, K. Schwan, and M. Wolf, “Managing variability in the io
performance of petascale storage systems,” in SC "10: Proceedings
of the Conference on High Performance Computing Networking, Storage
and Analysis.

IEEE TRANSACTIONS ON COMPUTERS

(5]

6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

(15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

A. Gulati, A. Merchant, and P.]J. Varman, “pclock: an
arrival curve based approach for qos guarantees in shared
storage systems,” in Proceedings of the 2007 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems, ser. SIGMETRICS ‘07, pp. 13-24. [Online]. Available:
http://doi.acm.org/10.1145/1254882.1254885

A. Gulati, G. Shanmuganathan, X. Zhang, and P. Varman,
“Demand based hierarchical qos using storage resource pools,”
in Proceedings of the 2012 USENIX Conference on Annual Technical
Conference, ser. USENIX ATC’12, pp. 1-1. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2342821.2342822

A. Gainaru, G. Aupy, A. Benoit, E. Cappello, Y. Robert, and M. Snir,
“Scheduling the i/o of hpc applications under congestion,” in
IEEE International Parallel and Distributed Processing Symposium,
IPDPS’15, 2015.

H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang, “Server-side
i/o coordination for parallel file systems,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2011, p. 17.

Y. Li, X. Lu, E. L. Miller, and D. D. Long, “Ascar: Automating con-
tention management for high-performance storage systems,” in
Mass Storage Systems and Technologies (MSST), 2015 31st Symposium
on. IEEE, 2015, pp. 1-16.

M. Rosenblum and J. K. Ousterhout, “The design and
implementation of a log-structured file system,” ACM Trans.
Comput. Syst., vol. 10, no. 1, pp. 26-52, Feb. [Online]. Available:
http:/ /doi.acm.org/10.1145/146941.146943

J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
J. Nunez, M. Polte, and M. Wingate, “Plfs: A checkpoint filesystem
for parallel applications,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, ser. SC
‘09. New York, NY, USA: ACM, 2009, pp. 21:1-21:12. [Online].
Available: http://doi.acm.org/10.1145/1654059.1654081

Y. Wang and A. Merchant, “Proportional-share scheduling for
distributed storage systems.” in FAST, vol. 7, 2007, pp. 4+4.

Y. Xu and M. Zhao, “Ibis: interposed big-data i/o scheduler,”
in Proceedings of the 25th ACM International Symposium on High-
Performance Parallel and Distributed Computing. ACM, 2016, pp.
111-122.

A. Gulati, A. Merchant, and P. J. Varman, “mclock: handling
throughput variability for hypervisor io scheduling,” in Proceed-
ings of the 9th USENIX conference on Operating systems design and
implementation. USENIX Association, 2010, pp. 437-450.

H. Lu, B. Saltaformaggio, R. Kompella, and D. Xu, “vfair: Latency-
aware fair storage scheduling via per-io cost-based differentia-
tion,” in Proceedings of the Sixth ACM Symposium on Cloud Com-
puting. ACM, 2015, pp. 125-138.

A. Gulati, I. Ahmad, C. A. Waldspurger ef al., “Parda: Proportional
allocation of resources for distributed storage access.” in FAST,
vol. 9, 2009, pp. 85-98.

H. Wang and P.]. Varman, “Balancing fairness and efficiency in
tiered storage systems with bottleneck-aware allocation.” in FAST,
vol. 14, 2014, pp. 229-242.

M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round-robin,” IEEE/ACM Transactions on networking, vol. 4, no. 3,
pp. 375-385, 1996.

M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-dusseau,
and R. H. Arpaci-dusseau, “Database-aware semantically-smart
storage,” in In Proceedings of the 4th USENIX Conference on File and
Storage Technologies., 2005, pp. 239-252.

G. R. Ganger, “Blurring the line between oses and storage de-
vices,” Technical Report CMU-CS-01-166, 2001.

Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi,
S. Klasky, R. Tchoua,]. Lofstead, R. Oldfield, M. Parashar,
N. Samatova, K. Schwan, A. Shoshani, M. Wolf, K. Wu, and
W. Yu, “Hello adios: The challenges and lessons of developing
leadership class i/o frameworks,” Concurr. Comput. : Pract. Exper.,
vol. 26, no. 7, pp. 1453-1473, May 2014. [Online]. Available:
http://dx.doi.org/10.1002/cpe.3125

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache
hadoop yarn: Yet another resource negotiator,” in Proceedings of
the 4th annual Symposium on Cloud Computing. ACM, 2013, p. 5.
B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-
grained resource sharing in the data center.” in NSDI, vol. 11, no.
2011, 2011, pp. 22-22.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

(39]

(40]

[41]

[42]

14

B. Bland, “Titan-early experience with the titan system at oak ridge
national laboratory,” in High Performance Computing, Networking,
Storage and Analysis (SCC), 2012 SC Companion:. 1EEE, 2012, pp.
2189-2211.

“Titan User Guide,”]https://www.olcf.ornl.gov/for-users/
system-user-guides/titan/running-jobs/.

N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider,
A. Crume, and C. Maltzahn, “On the role of burst buffers in
leadership-class storage systems,” in 012 IEEE 28th Symposium on
Mass Storage Systems and Technologies (MSST), April 2012, pp. 1-11.
C. Docan, M. Parashar, and S. Klasky, “Dataspaces: An interaction
and coordination framework for coupled simulation workflows,”
in Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, ser. HPDC "10. New
York, NY, USA: ACM, 2010, pp. 25-36. [Online]. Available:
http://doi.acm.org/10.1145/1851476.1851481

L. Chacn, “A non-staggered, conservative, , finite-volume scheme
for 3d implicit extended magnetohydrodynamics in curvilinear
geometries,” Computer Physics Communications, vol. 163, no. 3, pp.
143 - 171, 2004.

A. Gulati, C. Kumar, I. Ahmad, and K. Kumar, “Basil:
automated io load balancing across storage devices,” in
Proceedings of the 8th USENIX conference on File and storage
technologies, ser. FAST’10, 2010, pp. 13-13. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855511.1855524

A. Gulati, G. Shanmuganathan, I. Ahmad, C. Waldspurger, and
M. Uysal, “Pesto: online storage performance management in
virtualized datacenters,” in Proceedings of the 2nd ACM Symposium
on Cloud Computing, ser. SOCC "11, 2011, pp. 19:1-19:14. [Online].
Available: http:/ /doi.acm.org/10.1145/2038916.2038935

D. Huang, D. Han, J. Wang, J. Yin, X. Chen, X. Zhang, J. Zhou,
and M. Ye, “Achieving load balance for parallel data access on
distributed file systems,” IEEE Transactions on Computers, vol. 67,
no. 3, pp. 388-402, 2018.

M. Liu, Y. Jin, J. Zhai, Y. Zhai, Q. Shi, X. Ma, and W. Chen,
“Acic: automatic cloud i/o configurator for hpc applications,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. ACM, 2013, p. 38.
S. Groot, K. Goda, D. Yokoyama, M. Nakano, and M. Kitsuregawa,
“Modeling i/o0 interference for data intensive distributed applica-
tions,” in Proceedings of the 28th Annual ACM Symposium on Applied
Computing. ACM, 2013, pp. 343-350.

Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai, “Server-
side log data analytics for i/o workload characterization and
coordination on large shared storage systems,” in High Performance
Computing, Networking, Storage and Analysis, SC16: International
Conference for. 1EEE, 2016, pp. 819-829.

D. Novakovic, N. Vasic, S. Novakovic, D. Kostic, and R. Bianchini,
“Deepdive: Transparently identifying and managing performance
interference in virtualized environments,” in Proceedings of the
2013 USENIX Annual Technical Conference, no. EPFL-CONF-185984,
2013.

P. Goyal, H. M. Vin, and H. Chen, “Start-time fair queueing:
a scheduling algorithm for integrated services packet switching
networks,” in ACM SIGCOMM Computer Communication Review,
vol. 26, no. 4. ACM, 1996, pp. 157-168.

W. Jin, J. S. Chase, and J. Kaur, “Interposed proportional sharing
for a storage service utility,” ACM SIGMETRICS Performance Eval-
uation Review, vol. 32, no. 1, pp. 37-48, 2004.

E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron,
T. Talpey, R. Black, and T. Zhu, “Ioflow: a software-defined storage
architecture,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles. ACM, 2013, pp. 182-196.

0. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On the
root causes of cross-application i/o interference in hpc storage
systems,” in Parallel and Distributed Processing Symposium, 2016
IEEE International. 1EEE, 2016, pp. 750-759.

K. W. Cameron, A. Anwar, Y. Cheng, L. Xu, B. Li, U. Ananth,
T. Lux, Y. Hong, L. T. Watson, and A. R. Butt, “Moana: Modeling
and analyzing i/o variability in parallel system experimental
design,” 2018.

A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes
the neighborhood: performance degradation due to nearby jobs,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. ACM, 2013, p. 41.
C.-S. Kuo, A. Shah, A. Nomura, S. Matsuoka, and F. Wolf, “How
file access patterns influence interference among cluster applica-

http://doi.acm.org/10.1145/1254882.1254885
http://dl.acm.org/citation.cfm?id=2342821.2342822
http://doi.acm.org/10.1145/146941.146943
http://doi.acm.org/10.1145/1654059.1654081
http://dx.doi.org/10.1002/cpe.3125
] https://www.olcf.ornl.gov/for-users/system-user-guides/titan/running-jobs/
] https://www.olcf.ornl.gov/for-users/system-user-guides/titan/running-jobs/
http://doi.acm.org/10.1145/1851476.1851481
http://dl.acm.org/citation.cfm?id=1855511.1855524
http://doi.acm.org/10.1145/2038916.2038935

IEEE TRANSACTIONS ON COMPUTERS

tions,” in 2014 IEEE International Conference on Cluster Computing
(CLUSTER). 1EEE, 2014, pp. 185-193.

[43] Z.Cao, V. Tarasov, H. P. Raman, D. Hildebrand, and E. Zadok, “On
the performance variation in modern storage stacks.” in FAST,
2017, pp. 329-344.

Dan Huang is currently a postdoctoral re-
searcher in the Department of Electrical and
Computer Engineering at New Jersey Institute of
Technology, Newark, NJ. Before this, he received
his Ph.D. in computer engineering program at
University of Central Florida. He received master
and bachelor degrees in Southeast University
and Jilin University respectively. His research
interests are distributed storage systems, virtu-
alization technology and the 1/O of distributed
system.

Qing Liu is an Assistant Professor in the Depart-
ment of Electrical and Computer Engineering
at New Jersey Institute of Technology, Newark,
NJ, and holds a joint faculty appointment at
Oak Ridge National Laboratory. Prior to that,
he was a Research Scientist at Scientific Data
Group, Oak Ridge National Laboratory till 2016.
He received his Ph.D. in Computer Engineering
from the University of New Mexico in 2008, M.S.
and B.S., from Nanjing University of Posts and
Telecom, China, in 2004 and 2001, respectively.
His research interests include high-performance computing, large-scale
data management, and high-speed networking.

Jong Choi is a Research Scientist working in
Scientific Data Group, Computer Science and
Mathematics Division, Oak Ridge National Labo-
ratory (ORNL), Oak Ridge, Tennessee, USA. He
earned his Ph.D. degree in Computer Science
at Indiana University Bloomington in 2012 and
his MS degree in Computer Science from New
York University in 2004. His areas of research
interest span data mining and machine learn-
ing algorithms, high-performance data-intensive
computing, parallel and distributed systems for
Cloud and Grid computing. More specifically, he is focusing on develop-
ing high-performance data mining algorithms and researching efficient
run-time environments in Cloud and Grid systems.

Norbert Podhorszki is a Senior Scientist work-
ing in Scientific Data Group, Computer Science
and Mathematics Division, Oak Ridge National
Laboratory (ORNL), Oak Ridge, Tennessee,
USA. He earned his Ph.D. degree and Master in
Computer Science at Eotvos Lorand University
in 2005 and 1995, respectively. His research in-
terests include scientific data management, stor-
age systems, and scientific workflows.

Scott Klasky is a Distinguished Scientist and
the group leader for Scientific Data in the Com-
puter Science and Mathematics Division at the
Oak Ridge National Laboratory. He holds an
appointment at the University of Tennessee, and
Georgia Tech University. He obtained his Ph.D.
in Physics from the University of Texas at Austin
(1994). Dr. Klasky is a world expert in scien-
tific computing and scientific data management,
coauthoring over 200 papers, and leading sev-
eral key projects in the department of energy.

15

Jeremy Logan is a Research Scientist at the
University of Tennessee working closely with the
ORNL Scientific Data Group. Jeremy earned a
Ph.D. from the University of Maine in 2010 while
studying parallel I/O performance. His current re-
search interests include scientific computing ap-
plications, large-scale 1/0O systems, deep learn-
ing, and generative software techniques.

George Ostrouchov (Fellow ASA, Fellow
AAAS) is a Senior Research Scientist at the
Oak Ridge National Laboratory and Joint Faculty
Professor at the University of Tennessee. He
obtained his Ph.D. in Statistics from lowa State
University after a B.Math from the University of
Waterloo. His interest is in scalable statistical
computing for parallel and distributed systems.

Xubin He received the BS and MS degrees in
computer science from Huazhong University of
Science and Technology, China, in 1995 and
1997, respectively, and the PhD degree in elec-
trical engineering from University of Rhode Is-
land, Kingston, RI, in 2002. He is currently a
professor in the Department of Computer and In-
formation Sciences, Temple University, Philadel-
phia, PA. His research interests include com-
puter architecture, data storage systems, virtu-
alization, and high availability computing. Dr. He
received the Ralph E. Powe Junior Faculty Enhancement Award in 2004
and the Sigma Xi Research Award (TTU Chapter) in 2005 and 2010.
He is a senior member of the IEEE, a member of the IEEE Computer
Society and USENIX.

Mathew Wolf is a Senior Scientist working in
Scientific Data Group, Computer Science and
Mathematics Division, Oak Ridge National Lab-
oratory (ORNL), Oak Ridge, Tennessee, USA.
He earned his Ph.D. degree at Georgia Institute
of Technology, Atlanta, GA. His research targets
high performance, scalable applications, partic-
ularly focused on 1/O and adaptive event middle-
wares. Specific research topics include adaptive
- I/O interfaces, metadata-rich data services, cre-

ation of dynamic, semantic indexes for scientific
data, and handling and fusion of heterogeneous data types.

	Introduction
	Observation and Motivation
	I/O Re-Routing
	Virtual Messaging Layer (VML)
	Re-Routing
	Re-Routing with Throttling
	Analytical Modeling of Throttling Factor
	Understanding the Message Overhead

	In-transit Buffering
	Evaluation
	Write Performance
	Impact of TF to Write and Read
	Analytical vs. Experimental Results of TF
	Messaging Overhead
	The Effectiveness of In-Transit Buffering

	Related Work
	Conclusion
	Acknowledgements
	References
	Biographies
	Dan Huang
	Qing Liu
	Jong Choi
	Norbert Podhorszki
	Scott Klasky
	Jeremy Logan
	George Ostrouchov
	Xubin He
	Mathew Wolf

