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ABSTRACT

Quantum-informed ferroelectric phase field models capable of predicting material behavior, are necessary for
facilitating the development and production of many adaptive structures and intelligent systems. Uncertainty
is present in these models, given the quantum scale at which calculations take place. A necessary analysis is
to determine how the uncertainty in the response can be attributed to the uncertainty in the model inputs or
parameters. A second analysis is to identify active subspaces within the original parameter space, which quantify
directions in which the model response varies most dominantly, thus reducing sampling effort and computational
cost. In this investigation, we identify an active subspace for a poly-domain ferroelectric phase-field model. Using
the active variables as our independent variables, we then construct a surrogate model and perform Bayesian
inference. Once we quantify the uncertainties in the active variables, we obtain uncertainties for the original
parameters via an inverse mapping. The analysis provides insight into how active subspace methodologies can
be used to reduce computational power needed to perform Bayesian inference on model parameters informed by
experimental or simulated data.

Keywords: Ferroelectric materials, ferroelectricity, active subspaces, surrogate model, uncertainty quantifica-
tion, Bayesian inference

1. INTRODUCTION

Ferroelectric materials are widely employed in a variety of engineering applications due to their electromechanical
properties. Some of these applications include flow control transducers, energy harvesting circuits, and flying
microrobots.> !> The modest power requirements, nanometer positioning accuracy and solid state nature
make ferroelectric materials ideal for these types of applications. This motivates the need for accurate prediction
of material behavior, ranging in scales from the material’s atomic configuration to a macroscopic continuum
domain.

Quantum-scale density functional theory (DFT) calculations are performed to accurately estimate many
structure-dependent properties in the materials. Nonetheless, DFT calculations are not feasible when solving
problems on a continuum scale. This requires the introduction of phase-field models, characterizing polarization
and strain order parameters to simulate larger scale domain structure evolution.

The uncertainty in data and the introduction of the order parameters, which homogenizes effects from the
atomic structure, leads to uncertainty in the phase-field models, which can be quantified via the use of Bayesian
statistical methods. These methods may be computationally expensive to implement depending on the model
evaluation cost and/or the number of unknown model inputs and associated uncertainties. The uncertainty and
cost are increased when considering effects across the multi-domain structure of ferroelectric materials.
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Subset selection methods such as global sensitivity analysis, isolate parameters that are most influential or
contribute the most to a model’s output as well as those having minimal influence. Ideally, the parameter
dimension is reduced such that model calibration and uncertainty quantification is more feasible.

Subspace selection methods provide an alternative appealing approach in that they identify important direc-
tions in the full parameter space affecting the output the most. We refer to these methods as active subspace
methods since active variables are determined as weighted linear combinations of the parameters indicating direc-
tions of strongest variability. These directions are separated from ones in which the model response is relatively
flat, yielding the inactive variables.

In this investigation we consider a 180° polydomain phase-field energy model for lead titanate. The phase-field
energy model is composed of a stored energy, as a function of elastic, Landau or polarization, electrostrictive,
and polydomain gradient energy relations. We are interested in the uncertainty and influence of all the unknown
parameters except for the elastic coeflicients. The elastic coeflicient properties influencing the mechanical energy
for lead titanate are well-known from other investigations,* and are therefore fixed in our analysis.

We determine an active subspace for the parameters via the use of gradient approximation methods, ranking
the most important directions in the space of all inputs. We then use this active subspace to construct a response
surface as a function of the active variables which approximates the original model output response. Finally, we
implement Bayesian analysis techniques along with our response surface to infer the distributions of the model
parameters.

This paper is divided into the following sections. The next section introduces the model governing equations
including the mondomain and 180° domain wall relations. We present the active subspace and Bayesian inference
methodologies in Section 3, whereas results are presented in Section 4. Lastly, Section 5 provides concluding

remarks.
2. MODEL
Consider the stored energy model
u = UM(Eij) + uP(Pz) + UG(Pi,j) + uC({':ija Pz)a Za] = 17 27 33 (1)
where
c
uy = %1 ( 1+, + 83,3) + c12 (€11622 + €22633 + €11€33) + 244 (5%2 +e35 + 5%3) )
up = o (P} 4+ Pi+4 P2)+ o1 (PP + Pi + P)? + a19(PEP} + PP} 4+ P2P2) + a1 (P + PS + PY)
+an1z [PHPS + P§) + PH(PE + P§) + P3(PE + P3)| + anas PP P3P
uc = —qn (E11P12 + 622P22 +€33P32) — Q12 [811 (P22 + P32) + €22 (P12 + P32) + €33 (P12 + P22)]
—qua (e12P1Po + €13P1 Py 4 €23 P2 P3)
ug = % (P1271 + P22)2 + P3,2,3) +g12(PiaPao+ Pi1Pss+ PyoPss)

+gé£ [(Pm + 132,1)2 + (P13 + P3,1)2 + (Po3 + P3,2)2} .

Here, uys, up, uc and ug are the mechanical energy, Landau or polarization energy, electrostrictive energy and
gradient energy respectively, as described by Cao and Cross.! In the relations, the unknown parameters c;1, c12
and cy4 are the elastic coefficients, q11, g12, and qqq are the electrostrictive coefficients, aiq, a1, 12, 111, and aq12
are the Landau phenomenological parameters, and g11, g12 and g44 are the gradient energy exchange parameters.
The conditions for static equilibrium, for polarization P and strain € are

0 ou ou
(9£L'j (81317]) 8PZ 07 (%] ’ ,3>7 ( )
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ox 4 aEij
We employ the equilibrium conditions in the monodomain and polydomain structures.

2.1 Mondomain Energy

In the case of monodomain structures, or regions of uniformly oriented polarization, the stored energy is described
by the mechanical, Landau, and electrostrictive energy relations. This uniformity and the equilibrium conditions
(2)-(3), yield the spontaneous polarization and strain

1/2

P p - (0t (fi —3a10111)"/? (4)
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where

deraqriqiz — iy (i1 + ¢12) — 21143,

/
app = Q11 +

2¢11C22 ’
C11 = c11 + 2¢12,
Co2 = €11 — C12, (6)
qu11 = qu1 + 2q12,
Go2 = q11 — q12,

Otf— = a1 — quie3z — qiz(e11 + €22).

We obtain the monodomain energy density uy by substituting the polarization (4) and strain (5) into the stored
energy equation (1).

2.2 180° Domain Wall Model

The 180° domain walls separate domains in which polarization is oriented in opposite directions. We assume the
polarization vector to be

P:(0,0,Pg(ifl)). (7)

Away from the domain wall, the material exhibits spontaneous polarization such that we obtain the boundary
conditions

lim P =(0,0,+P),

x1—Foo

lim ol (z1) =0, ij=11,22,33, (8)
Tr1—>LT0o0

lim oot (z) =0, ij=23,13,12.
Tr1—>Loo
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Employing the static equilibrium condition (2) yields the differential equation

( ou > _ Ou 0
8P3,1 1 OP3 (9)
— QQ;FP;; + 4&11P§3 + 604111P35 — g44P311 =0,

where

+ _
al = o1 —quess — qr2(en +e22).

The conditions (3) and (8) also yields the differential equation
o11,1 =0 =ci1€111 + c12(€221 +€331) — 2¢12P3P3 1. (10)

We employ the finite-difference method presented the work by Miles et al.” to obtain a solution for polarization
Ps(z1) and strain €11(x1). Substituting solutions for polarization and strain into (1), we obtain the energy
surface u1g9 quantifying domain wall effects. The total energy associated with the 180 degree domain wall is
thus quantified by taking the difference between u31g9 and the monodomain energy ug, and integrating through
the x; density. This yields the relation

Ens00(0180) = / (w180 — uo)dy, (11)
where
O180 = [av1, 11, 111, G115 G125 Gaa)- (12)

Here, 015¢ represents the unknown parameters.

3. ACTIVE SUBSPACE AND BAYESIAN INFERENCE
3.1 Active Subspace

We define the active subspace for a scalar quantity of interest with respect to some parameters following the
derivation presented by Leon et al.5 Given Y = f(©), we compute the matrix

C=E[(Vof)(Vof)]. (13)
The matrix C is symmetric and positive definite by construction. Thus, it has the real eigenvalue decomposition
C=WAWT,

for A = diag(A1, A2y ..., Ap), A1 > -+ > 0. Based on a possible gap in the eigenvalue spectrum, we consider the
partitions W = [W1, W3] and

A:{Al A}’ Ay =diag(A1, ..., Am), m<p.
2

Using this significant gap, we define the new rotated coordinate variables
y=Wib, z=Wj9,

where y € R™ and z € RP~™. Based on this transformation, on average the output f varies more dominantly due
to variability and perturbations in the directions dictated by y, than in the directions dictated by z,'* defining
the active and inactive subspaces.
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In practice, construction of the matrix (13) may require computing high dimensional integrals. Therefore,
based on Constantine'* and Bang,'® we approximate the gradient matrix

1
Vi

composed of gradient, or approximate gradient evaluations at values in the original input space. We then use the
singular value decomposition (SVD) to extract an input active subspace basis. The basis for the active subspace
is contained in the matrix of singular vectors U in

G = (Vofi Vafa -+ Voful.

G =UxVvT, (14)

Note that the diagonal matrix ¥ contains the squared roots of the eigenvalues of C. This methodology for
computing the active subspace is equivalent to the methodology employed by the formation of the matrix C as
shown by Russi.!?

3.2 Scaling Maps

Note that for the construction of the active subspace and response surface, we consider two cases for the parameter
distributions.

In the first case, we consider the parameters to be uniformly distributed such that
O ~ U7 — 6|07, 07°™ + 6|0;™]). (15)

Here, 7™, i = 1,...,p, represents nominal values of the parameters §. For this analysis, we choose § = 0.10.
To avoid scaling issues due to the differences in units of magnitudes for different sets of parameters, we scale all
the intervals in the uniform distribution to the interval [0,1]. The scaling normalizes all inputs, while removing
units and ensuring that parameters containing relatively large values do not affect the analysis disproportionally.
To scale back to the natural input values for the model evaluations, we use the mapping

0= Umap(x) = diag(gu - gg)X + 5@7 (16)

where x is a p-vector with values between 0 and 1, and 6, and 6, are the vectors with the lower and upper
bounds of the parameters 6. Note that in our problem, the upper and lower bound vectors are

9_'@ — gnom _ 5|9nom| and é’u — gnom 5|0n0m|7

where 6™°™ is the vector of nominal values for the parameters.

In the second case, we consider the parameters to be normally distributed,

O ~ N(O™™, V), (17)
where V is the covariance matrix defined by
O’% COV(@l, @2) s COV(@l, ®p)
COV(@Q, @1) O’% e
V= )
cov(0,,01) or

Similar to the uniform distribution, we normalize all inputs to avoid discrepancies in the analysis due to
parameters with relatively large values and units of magnitude. We use a Cholesky decomposition of V, where

V = AAT,
such that the mapping to the natural input values for model evaluations is
0 = Npap(x) = 0™ + Ax. (18)

Here, x are generated from the standard normal distribution N (0, I).
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3.3 Gradient Evaluations

Using the maps defined in the previous section, we now introduce transformed gradients which account for
the normalization of the input parameters. Since the simulations of the physical model require the natural
model input values, we present a methodology where we evaluate the gradient in the normalized space to avoid
discrepancies due to different units of magnitude. We again consider the two scenarios of uniformly distributed
and normally distributed parameters. To implement the gradient evaluations in the uniform normalized space,
we let Ty = diag(gu — @), and define the function

9(x) = f(Tux +0;) = £(0). (19)

We then use this function to determine an appropriate gradient defined as

gx+4) —g(x) _ f(Tu(x+A)+6) — f(Tux+6,)

A A
_ f(Tox+ 0 + TuA) = f(Tux + 0y) (20)
A
_ f(@+TyA) - f(0)
= A ,

where the last equality follows from (16). This transformed gradient avoids discrepancies, like cancellation errors
or inaccurate results due to different orders of magnitude in the parameters. We implement the gradient (20)
for the determination of the active subspace when considering the parameters to be uniformly distributed.

Similarly, when the parameters are normally distributed, we define
h(x) = f(Ax +6™™) = f(0), (21)
such that the normalized gradient is

B(x+A) = h(x) _ J(AG+A) +6"™) — f(Ax + ™)

A A
[0+ AA) — f(0)
A :

(22)

This gradient is used when determining the active subspace assuming parameters to be normally distributed.

Using these derivative terms, we then implement the Morris finite-difference® approach to approximate the
gradient matrix G of Section 3.1. The main idea is to first select normalized initial vectors x’ € R?, j = 1,..., M,
sampled from a probability density p(x). In our case, we take p(x) to be the uniform distribution from (15),
and the normal distribution from (17). We then construct a set of coarse derivative approximations termed
elementary effects,

s 9@l el H Al a)) —gd)  g(xd + A ) — g(x)
di(x ) = A == A 5

given a step size A, for the ith parameter and jth sample point drawn from p(x). We use this method, as

presented in Algorithm 3.1, to construct the columns of the gradient matrix for the active subspace construction.

3.4 Response Surface

Response surfaces are constructed to approximate the original function output. We use Algorithm 3.2 to construct
the response surface via the function r(y). Next, we show how the response surface is used in conjunction with
the active subspace to reduce the computational cost, otherwise required by Bayesian inference in the original
input space.
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Algorithm 3.1: Morris finite-difference method gradient approximation.®

(0) Identify the number of desired columns M, appropriate step size A, and probability density p(x). Use
the model function g(x) or h(x) depending on the probability density p(x).

forj=1,....M
(1) Construct the row vector Diy,, with randomly chosen entries £A, where A is the step size.

(2) Select x7 from the probability density p(x). In our case this is the uniform or normal distribution.
Evaluate the model function at the sampled value along with the elementary effect as follows.
fori=1,...,p

gl D) e —g(x!)
di = DG

, where e; is the it standard basis vector.

end
(3) Let G(:, j) =d, where G is the gradient matrix approximation.

end

Algorithm 3.2: Algorithm for constructing response surface based on active subspace.

(0) Sample the training input values x; with respect to its probability density function and construct
corresponding responses ¢; = g(x;).

(1) Project the sampled values x; onto the active subspace by using the transformation y = W7 x;.
(2) Using regression analysis construct a response surface r(y), using ¢;, such that ¢; ~ r(y;).

(3) Verify the response surface by approximating the original function g(x) ~ r(W7x).

3.5 Bayesian Inference

We use the response surface to perform Bayesian inference on the active subspace. In this investigation we
employ Gaussian prior distributions, which avoid the issues associated with rotating hypercubes in uniform
distributions, resulting in marginal and conditional distributions which are not uniform.' Extending active
subspace Bayesian inference to general prior distributions constitutes future work. To employ Bayesian inference
for constructing marginal and multivariate posterior distributions, we use the Delayed Adaptive Metropolis
Algorithm (DRAM) described in detail by Haario® and Smith.'! Algorithm 3.3 presents the framework we
implement in this investigation.

Algorithm 3.3: Algorithm for performing Bayesian inference on active subspace.

(1) Determine an appropriate Gaussian prior distribution for the active variable y based on the projection of
the parameters x onto the active subspace.

(2) Employ DRAM to calibrate the active variables y.

(3) Transform the resulting chain of accepted active variable samples into the full normalized space via the
relation
xF =UG1:n)y* +U(,n+1:p)z-,

where k = 1,... K, K = the number of samples in the chain obtained from DRAM. Here, z* denotes the
inactive variables, which are sampled from an appropriate prior distribution determined based on the
projection from the original input space.
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4. RESULTS

4.1 Active Subspace Bayesian Inference

The gradient matrix for the active subspace is constructed following the methodology in Section 3.1. Note that
the values for 015y are sampled based on a uniform distribution such that

©; ~ U(OTO™ — 0.10/67°™], 07°™ + 0.10/6;]),

where the absolute values [07°™|, i = 1,...,6, for nominal values of g0 are obtained from Miles et. al.” We
compare the results of this sampling distribution with one where the parameters are normally distributed such
that

O180 ~ N (™™, V), (23)

where 0™°™ is the vector of nominal values for #159. To accommodate the possible correlation structure between
the parameters we first select a prior original space covariance matrix

V,, = diag[(o.10|9?°m|)2, (0.10(62°™ )2, ... (o.1o|9g‘W|)2}

to use the scaling map defined in Section 3.2. We then employ DRAM to calibrate the model (11) with respect
to 500 synthetic data points generated from perturbed evaluations of #™°™. This analysis yields the sampling
normalized covariance matrix

0.9448 —0.0036 0.0880  0.1385  0.0155 —0.0463
—0.0036 0.7872  0.0320  0.3901 0.0449 —0.0175
0.0880  0.0320  0.9414  0.0743 —0.0464 0.0622
0.1385  0.3901 0.0743  0.2245  0.0817 —0.0667
0.0155  0.0449 —-0.0464 0.0817  0.9539 0.0824
—0.0463 —-0.0175 0.0622 —0.0667 0.0824  0.8805

V =

We present the results of the singular value decomposition from the gradient matrix approximation G for
(11), considering both sampling distributions for 6,59, in Figure 1(a). Based on the gap between the first and
second singular values, we take the dimension of the active subspace to be equal to 1. In Figure 1(b) we present
the activity scores for a one-dimensional active subspace. These results indicate that the parameters ay; and
q11 are most sensitive. Therefore, in anticipation of the Bayesian inference on the active subspace, results should
indicate that these parameters are most informed as a result of the analysis.

0 N
10 + T T T T 1 T T T
s 6,4, U. distributed £ Activity scores (uniform)
+ 0,5, N. distributed I Activity scores (normal)
1 0.8r 3
10
[ A ]
2 \. S06|
> L n20 (]
5 10 2 >
kS i £
5 i =
S £
%] <
1078 A
0.2} =
-4
10 0 A L A L A A
1 2 3 4 5 6 4 Ay Q14 944 RSP 944
Parameter

(a) (b)

Figure 1. Comparison of the (a) singular values and (b) activity scores obtained from the gradient matrix G for (11),
constructed using uniformly and uncorrelated normally distributed parameters.
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y

Figure 2. Response surface obtained from the active subspace for (11).

Dimension‘ 1 2 3 4 5
MRE ‘0.0194 0.0036 0.0028 0.0014 7.8669e¢-4

Table 1. Mean relative errors (MRE) computed for response surfaces constructed based on different possible dimensions
of the active subspace.

Next, we construct the response surface for (11). We implement Algorithm 3.2 to obtain the response surface.
Note that we use multivariate polynomial regression in the implementation of the algorithm. We present the
response surface fit to the original function in Figure 2. To validate the fit of our response surface, we present
the mean relative errors (MRE) obtained for different possible dimensions for the active subspace, in Table 1

We now employ the response surface in the active subspace Bayesian inference. Note that the prior distri-
butions were built as Gaussian distributions about the nominal values from Miles.” The priors were taken to
be

O180 ~ N (6™, V)

where V,,. = diag |(0.2067°™()2, (0.20|63°™ )2, . .., (0.20|9g0m|)2]

We implement Algorithm 3.3 for the active subspace of (11). In the analysis, we used the numerical imple-
mentation of Miles et. al,” to generate synthetic data with perturbed evaluations of the nominal values ™.
We used 500 synthetic data points to inform our response surface. The results with the prior and posterior
distributions are presented in Figure 3. Additionally, we present the pairwise density plots in Figure 4.

The distributions for parameters o, ai11, 12 and g44 change minimally with respect to the prior distributions.
The results imply that the parameters being informed by the Bayesian inference are those whose directions are
more dominant with respect to the active subspace, as indicated by Figure 1. This is explained due to the
coupling of the parameters in the solution of the differential equation (9). Note also that the results for the
pairwise correlation plots are in agreement with both the derived covariance matrix (24) and the active subspace
results.

5. CONCLUDING REMARKS

We performed an active subspace analysis on a phase-field energy model for polydomain lead titanate crystals.
Next, we constructed a response surface which approximated the original model response, only as a function
of the active variables. The determination of the response surface reduced the cost in the model evaluation,
which otherwise requires a numerical finite difference implementation.” Finally, we employed the active subspace
response surface to obtain posterior distributions for the model parameters via the use of the DRAM algorithm.
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Figure 3. Comparison of prior and posterior densities for 6159 after the implementation of Algorithm 3.3.

Figure 4. Pairwise density plots for 6150 after the implementation of Algorithm 3.3.

In addition to mechanical energy, electrostrictive energy, and Landau energy relations, the polydomain energy
model entails the consideration of the gradient energy which governs interactions across 180° domain walls. It is
observed that contributions from the coupling of the model parameters in the differential equation (9) have an
effect on the total energy associated with the domain wall. In future work, we will consider combined effects on
the total energy due to the interactions across both 180° and 90° domain walls. This will involve a rotation of
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the order parameters P and e along the 90° domain wall, in order to facilitate the analysis. We will also compare
our active subspace Bayesian inference results with results obtained by employing our inference methods on the
full parameter space.
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