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Abstract—In this paper, we present a set of geometric princi-
ples for understanding and optimizing the gaits of drag-dominated
kinematic locomoting systems. For systems with two shape vari-
ables, the dynamics of gait optimization are analogous to the pro-
cess by which internal pressure and surface tension combine to
produce the shape and size of a soap bubble. The internal pres-
sure on the gait curve is provided by the flux of the curvature of
the system constraints passing through the surface bounded by the
gait, and surface tension is provided by the cost associated with ex-
ecuting the gait, which when executed at optimal (constant-power)
pacing is proportional to its pathlength measured under a Rie-
mannian metric. We extend these principles to work on systems
with three and then more than three shape variables. We demon-
strate these principles on a variety of system geometries (including
Purcell’s swimmer) and for optimization criteria that include max-
imizing displacement and efficiency of motion for both translation
and turning motions. We also demonstrate how these principles
can be used to simultaneously optimize a system’s gait kinematics
and physical design.

Index Terms—Drag, gradient methods, low Reynolds number
swimming, optimal control, optimization, robot kinematics.

1. INTRODUCTION

ANY mobile robots move by coupling cyclical internal
deformations (gaits) to a continuous interaction between
the robot and its environment. Because mobility is an important
aspect of such robots, a key metric when evaluating design and
performance of mobile robots is the efficiency of their optimal
gaits. In this paper, we present a framework for understanding
the geometry of optimal gaits for drag-dominated kinematic
systems. This framework enables both high-level qualitative
discussion of efficient gait geometries and provides a gradient
for variationally solving for these efficient gaits.
In previous work, we and others in the geometric mechan-
ics community have explored how concepts from differential
geometry and geometric mechanics can be used to generate an
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intuitive understanding of how systems locomote, the main fac-
tors that determine the efficiency of gaits, and what optimal gaits
look like for these systems. In particular, the curvature of the
system dynamics (encoded in their Lie brackets) provides useful
information about classes of shape oscillations that resulted in
desirable net displacements [1], [2], and we have shown that the
scale of motions for which the curvature methods provide accu-
rate information can be significantly extended by preoptimizing
the choice of system coordinates [3], [4].

In this paper, we consolidate and extend these insights into
a set of geometric principles that govern the geometry of op-
timally efficient gaits for drag-dominated systems with an ar-
bitrary number of shape variables. We formally encode these
principles in a set of geometric expressions that together make
up the gradient of the gait efficiency with respect to variations
in the gait trajectory. This gradient can be used directly in a
gradient-descent solver to find optimal gaits (as in the examples
provided in the text), but more fundamentally, the gradient ge-
ometrically describes the dynamics underlying any other gait
optimization algorithm applied to the system.

The core elements of the gait gradient are as follows.

1) A gradientascent/descent component that pushes the cycle
to enclose a large sign-definite region of the constraint
curvature, maximizing the net displacement generated by
the gait.

2) A cost component based on a Riemannian metric that
limits the growth of the gait cycle.

3) A perimeter-balancing component that evenly spaces the
points along the trajectory, stabilizing the solution and
providing an efficiency-optimal parameterization of the
resulting motion.

As illustrated in Fig. 1, the dynamics of this optimizer are
similar to the dynamics of a soap bubble, with the Lie bracket
providing an internal pressure, which causes the gait cycle to
expand, the metric-weighted pathlength providing a surface ten-
sion that constrains the growth of the gait, and the perimeter-
balancing term providing a concentration gradient that evenly
distributes waypoints along the gait.

With this basic soap-bubble framework in place for systems
with two shape variables, we next extend our formulation to
three dimensions by recasting some of the geometric terms, as
we initially described in [6]. In particular we have the following.

1) We show how the constraint-curvature “area enclosure”
generalizes to a flux integral through an oriented surface
(more formally, an integral over a differential two-form),
as illustrated in Fig. 1.
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Gaits that maximize efficiency enclose the most curvature of the system dynamics (measured via the curl and Lie bracket of their locomotion dynamics)

while minimizing their cost-to-execute (measured as the metric-weighted lengths of their perimeters). In [5], we showed that for kinematic systems with two shape
variables this process is analogous to the process by which internal pressure and surface tension combine to produce the shape and size of a soap bubble, as shown
at left. More generally, the internal pressure can be thought of as being provided by the flux of the curvature passing through a surface bounded by the gait, as in
the middle plot. This flux interpretation allows us to boost our geometric framework to three (right plot) or more shape variables.

2) We investigate how optimal gaits “bend” to exploit this
orientation and maximize the flux passing through the
surface.

Finally, we consider the structure of the “flux integral” term
for systems with n shape variables. Beyond three dimensions,
the convenient vector-flux analogy from two and three dimen-
sions no longer holds, but fully adopting the formalism of
differential-geometric two-forms allows us to extend our method
to these spaces.

As a demonstration of this approach, we use it to identify
optimal gaits for a set of example systems moving in viscosity-
dominated (low Reynolds number) environments. These
systems include Purcell’s three-link swimmer [7] (a standard
benchmark for locomotion analysis), four- and five-link swim-
mers, and several continuous-curvature extensions of Purcell’s
swimmer with different classes and numbers of shape modes [8].
We identify optimal gaits for these systems in both the forward
and turning directions, which match those found previously via
raw parameter optimization in works such as [9] and [10]. The
optimal gaits we find for these systems highlight the benefits
of a continuous backbone. We then present how this framework
can also be used for design optimization by optimizing a link
length ratio and joint kinematics simultaneously.

This paper is organized as follows. In Section II, we review
how the dynamics of our example systems are obtained and
some of the geometric insights from our previous work. In
Section III, we present our variational optimizer formulation
for systems with two shape variables. In Section IV, we ex-
tend this formulation to systems with three shape variables. In
Section V, we extend this formulation to systems with more
than three shape variables. In Section VI, we examine how our
variational formulation can be used to concurrently optimize a
system’s physical structure and the gaits it executes. Section VII
concludes this paper. Appendix A relates the work in this paper
to prior work on these systems that made use of sub-Riemannian
geometry, Appendix B provides more details on computing the
system dynamics we use in our examples, and Appendix C
comments on the accuracy of an approximation that enables our
geometric treatment of the system dynamics.

The soap-bubble approach to gait optimization and its ex-
tensions are novel to this paper, modulo portions that appeared
in conference papers [S] and [6]. We first suggested the soap-
bubble framework in [5], using it to investigate optimal gaits
for systems with two shape variables. We then considered the
vector flux analogy for systems with three shape variables in
[6]. In this paper, we consolidate, expand upon, and improve the
treatments in these initial presentations. In particular, we use
the theory of differential two-forms to extend our framework
to systems with n shape variables and demonstrate them on
several systems with four shape variables. We also expand the
application of our optimizer tools, generating gaits for broader
classes of systems and comparing the performance across these
systems at different levels of articulation. Finally, we show how
our framework can be used for simultaneous design and gait
optimization.

In the context of other literature on this topic, the relation-
ship between net displacement and area enclosed by a gait has
been long recognized and commented on [1] and [11]-[16].
The results in those works, however, were either limited to
small motions, or to systems that experienced pure rotation
or pure translation. For systems that can have both rotational
and translational velocity, the noncommutativity between these
actions long prevented the use of area rules for analyzing large-
amplitude gaits (even in cases where the net rotation was zero).
Our work leading up to the current paper introduced a change
of coordinates that mitigates the effects of noncommutativity,
enabling the application of area rules to large-amplitude gaits
on systems with translation/rotation freedom [3], [4], [17].

With regard to treating the gait costs as an integral over the
boundary of the enclosed region, this idea appears in works
such as [16] and [18]. These works were, however, limited as
described in the previous paragraph; the latter work also did not
include the decomposition of the perimeter cost into the length-
and pacing-based contributions, which we use to gain a more
completely geometric insight into the nature of optimal gaits.

Beyond combining our large-amplitude area rule with
perimeter-cost formulations, in this paper, we encapsulate, ab-
stract, and illustrate the key geometric terms involved in this
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Fig.2. Geometry and configuration variables of some of the example systems.
The systems in the top row are articulated swimmers, while the bottom row
consists of continuous curvature swimmers. The shape of the systems in the
first columns are described by two shape variables whereas the shape of the
systems in the second column are described by three shape variables.

analysis. We also explicitly extend the area rule to systems
with more than two shape degrees of freedom (DoF) (which
requires a novel-to-this-domain treatment of flux through two-
surfaces in high-dimensional spaces) and extend our geometric
approach from gait-only optimization to gait-and-morphology
simultaneous optimization.

II. BACKGROUND

The geometric framework we use in this paper has its roots
in works including [1] and [11]-[13], with further development
in [15] and [16]. Our treatment below is condensed from a series
of papers we have written for the robotics community [3], [8],
[17], and at a deeper mathematical level, in [4].

For the purposes of this paper, our focus is on the geometric
structure of the system dynamics. Accordingly, we work with
the components of these dynamics at a relatively high level of
abstraction in the equations, and present their instantiation for
specific systems graphically rather than as algebraic expressions
(which would run to several pages of trigonometric terms if ex-
panded, even for the three-link swimmer). For worked examples
of the construction of the dynamics of the three-link swimmer,
see [3], [8], and Appendix B.

A. Geometric Locomotion Model

When analyzing a locomoting system, it is convenient to sep-
arate its configuration space () (i.e., the space of its generalized
coordinates ) into a position space G and a shape space R, such
that the position g € G locates the system in the world, and the
shape r € R gives the relative arrangement of the particles that
compose it.! For example, the positions of both the articulated
and continuous-curvature swimmers in Fig. 2 are the locations
and orientations of their centroids and mean orientation lines,
g = (x,y,0) € SE(2). The shape of the articulated swimmers

'In the parlance of geometric mechanics, this assigns @ the structure of a
(trivial, principal) fiber bundle, with G the fiber space and R the base space.

are parameterized by their joint angles, » = («v, ) for the
three-link swimmer and r = (ay, a2, a3) for the four-link
swimmer. The shape of the continuous curvature swimmers can
be described by a set of modal amplitudes multiplied by the
curvature modes. In the serpenoid and piecewise-continuous
systems, the shape parameters o are weighting functions on
curvature modes ~ defined along the body, as discussed in [8].

A useful model for locomotion in kinematic regimes where
no gliding can occur,? and which we employ in this paper, is that
at each shape, there exists a linear relationship between changes
in the system’s shape and changes in its position,

9=—A(r)r (1)
in which 5: g~ '¢ is the body velocity of the system (i.e.,
g expressed in the system’s local coordinates), and the local
connection A acts like the Jacobian of a robotic manipulator,
mapping from joint velocities to the body velocity they produce
by pushing the system against its environment. Each row of
A can be regarded as a body-coordinates local gradient of one
position component with respect to the system shape. If we plot
the rows of A as arrow fields, as in Fig. 3, this means that moving
in the direction of the arrows moves the system positively in the
corresponding body direction, and moving perpendicular to the
arrows results in no motion in that direction [4], [17].

In a drag-dominated environment, the effort required to
change shape can be modeled as the pathlength s of the tra-
jectory through the shape space, weighted by a Riemannian
metric M as

ds* = dr’ M dr. 2)

In line with our previous work in [23], we take the metric tensor
M as the mapping from shape velocity to power dissipated into
the surrounding medium,

P ="My 3)

which is encoded by the same matrix as the mapping from joint
velocities to torques on the joints,

T =Mr “4)

and so can be readily calculated from the first-principles physics
of the system.

As discussed in [8], [24], and [25], the length of a path under
this metric describes the time it takes for a system dominated by
viscous drag to follow the path at unit power (or, equivalently,
the square root of the power required to execute it in unit time).
Because moving with constant power is the least-costly pacing
with which to execute a motion under viscous drag [24], this
pathlength, thus, provides a geometric cost for the best-case
execution of the kinematics in a gait cycle.

Any pacing other than constant power will make the trajectory
take longer for a given average power (or increase the average

2This kinematic condition has been demonstrated for a wide variety of phys-
ical systems, including those whose behavior is dictated by conservation of
momentum [12], [19], nonholonomic constraints such as passive wheels [1],
[19]-[21], and fluid interactions at the extremes of low [3], [16] and high [3],
[15], [22] Reynolds numbers.
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Fig. 3.  Connection vector fields (a) for the three-link swimmer and (b) for

the serpenoid swimmer. Scale in the vector fields has been chosen to emphasize
structure, so scales in different components or systems are not comparable. Note
that there is a qualitative similarity (modulo rotation) between the vector fields
of the linked and serpenoid systems [3].

power required to complete the motion in a fixed time). The
additional cost for a nonoptimal pacing can be represented by
squaring the difference between the average and instantaneous
rates at which the gait is being followed (measured as s per
time), and then integrating over the time during which the gait
is being executed as
2
) a
T=t

y o /Ttotal <3tolal 3 i

0 Ttotal dT

where Ty 1S the time period of the gait, Sy 1S the length of

the gait under the metric M, and s is distance traveled along

the gait as a function of time corresponding to the given pacing.

If the gait is proceeding at constant power, % is equal to the

rate at which s changes with time, so 0 measures the extent to
which the pacing lags and leads the optimal pacing.

(s()) )

B. Example System Dynamics Models

In this paper, as in [3] and [8], we generate the dynamics
for our example systems from a resistive force model, in which
each element of the body is subject to normal and tangential drag

IEEE TRANSACTIONS ON ROBOTICS

forces proportional to their velocities in those (local) directions.’
The normal drag coefficient is larger than the tangential com-
ponent (here, by a factor of 2 : 1), corresponding to the general
principle that it is harder to move a slender object in a fluid
or on a surface crosswise than it is to move it along its length.
We then impose a quasi-static equilibrium condition that the
net drag force and moment on the system is zero at all times
(treating the system as heavily overdamped, with acceleration
forces much smaller than drag forces); because the drag forces
are not isotropic, the system can use the angle-of-attack of its
body surfaces to generate net motion.

Together, these conditions impose a Pfaffian constraint* on
the system’s generalized velocity,

b 0 o
F; =|0| =w(r) g (6)
EY 0 "

in which the matrix w that maps the velocities to the net forces on
the body frame is a function of the system’s internal kinematics
and depends only on the shape 7.

By separating w into two subblocks w = [w3**, w? "], it is
straightforward to rearrange (6) into
o 1 )
9=—(w, w)rf (7
revealing the local connection as A = wg’lw,.ﬁ Once A has

been found, it can be used to calculate a Riemannian metric M
over the shape space as

M(r) = / JT(r,0) ¢ J(r,0) de 8)

body

where J(r, () is the Jacobian from shape velocity to the local
velocity of each section of the body (which incorporates both
A and the system’s internal kinematics), and ¢ is the matrix of
drag coefficients.

We apply this physics model to several example geome-
tries, which are illustrated in Fig. 2: Purcell’s three-link swim-
mer [7], a four-link swimmer, a serpenoid swimmer [28], and
piecewise-constant curvature swimmers with two, three, and
four segments. The three-link swimmer is a useful and widely
adopted [3], [9], [15], [16], [18], [29], [30] minimal example
for locomotion, because its 2 DoF can be easily visualized. The
serpenoid swimmer, whose shape is defined by the amplitude of
sine and cosine curvature modes [23], provides an example of a
2-DoF system that has been shown to closely model how snakes
and other animals use undulatory locomotion to move through

3This model is most widely associated with swimmers at low Reynolds
numbers (e.g., [9]), but can also be regarded as an informative general model
for systems that experience more lateral drag than longitudinal drag (e.g., [26]).
Our choice of resistive force here also does not preclude the use of more detailed
physical models (e.g., [27]) to construct the local connection A.

4A constraint that the allowable velocities are orthogonal to a set of locally
linear constraints, i.e., that they are in the nullspace of a constraint matrix w.

SThe expressions for the dynamics are unwieldy (running to several pages of
trigonometric terms in even the simplest cases) so we do not write them out in
full here. See [3] and Appendix B for a more detailed treatment of (6) and (7) in
the case of the three-link swimmer, and [8] for how we build the metric tensor
for that system.

Details of the calculations to generate the local connection A and the
Riemannian metric M for our example systems are provided in Appendix B.
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the world [28]. The piecewise-constant curvature geometries
are intermediaries between the discrete joints of the linked sys-
tems and the smooth traveling waves of the serpenoid systems,
and correspond to system morphologies that are achievable via
simple soft robotic actuators [31].

C. Gaits

Because the shape space of locomoting systems is typically
bounded (e.g., because of joint limits or other restrictions on
bending the body), these systems often move via gaits: cyclic
changes in shape that produce characteristic net displacements.
Several efforts in the geometric mechanics community [1], [2],
[12], [15], [16], [19], [20] (including our own [3] and [23])
have aimed to use curvature of the system constraints (a mea-
sure of how “noncanceling” the system dynamics are over pe-
riodic shape changes) to understand which gaits produce useful
displacements.

The core principle in these works is that because the net
displacement g4 over a gait cycle ¢ is the line integral of (1)
along ¢, the displacement can be approximated’ by a surface
integral of the curvature D(—A) of the local connection (its
total Lie bracket [4]) over a surface ¢, bounded by the cycle,

05 = f—gAm ©)

(10)

®
%// _dA+Z[A27AJ>z]
Pa
D(—A)(total Lie bracket)

where dA, the exterior derivative of the local connection (its
generalized row-wise curl), measures how changes in A across
the shape space prevent the net-induced motions from cancel-
ing out over a cycle, and the local Lie bracket > [A;, A;-;]
measures how translations and rotations in the induced motions
couple into “parallel parking” effects that contribute to the net
displacement.
For systems with two shape variables, the exterior derivative
term evaluates as
0Ay, 0A,
da = < 87‘1 87“2 (11)
and the local Lie bracket term for planar translation and rotation
evaluates as

) dOél AN dOZQ

AVAS — AJAY
AZAD — ATAY | day A dos.
0

(A1, A = 12)

In both cases, the wedge product da; A das indicates the
oriented differential area basis in the shape space.

"This approximation (a generalized form of Stokes’ theorem) is a truncation
of the Baker—-Campbell-Hausdorf series for path-ordered exponentiation on
a noncommutative group and closely related to the Magnus expansion [32],
[33]. The accuracy of this approximation depends on the body frame chosen
for the system, whose selection we discuss in [3] and [4]. In presenting this
approximation, we also elide some details of exponential coordinates on Lie
groups, which are also discussed in [4]. Retrospective checks on the accuracy of
this approximation for some of the systems analyzed in this paper are discussed
in Appendix C.
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Fig. 4. Constraint curvature functions [rows of D(—A)] for (a) the three-
link swimmer and (b) the serpenoid swimmer. As with the vector fields, the
CCFs exhibit a qualitative similarity (modulo a rotation) between the two sets
of functions.

Plotting these curvature terms as scalar functions over the
shape space (as in Fig. 4) reveals the effect of gaits’ geometry
on the motion they induce: Gaits that produce large net displace-
ments in a given (x,y, #) direction are located in strongly sign-
definite regions of the corresponding D(—A). For example,
x-translation gaits encircle the center of the shape space for both
the three-link and serpenoid systems, whereas y-translations or
f-rotations are produced by cycles in the corners or edges of the
shape space, respectively [34].

D. Finding Optimal Gaits

Optimal gait design has a long history of research in the
physics, mathematics, and engineering communities, as part
of the broader field of optimal control [35], [36]. For systems
of the classes, we consider here, notable contributions include
those of Purcell, who introduced the three-link swimmer as
a minimal template for understanding locomotion, a series of
works [9], [18], [29], [30], [37] aimed at numerically optimiz-
ing the stroke pattern, the observation in [24] that the opti-
mal pacing for the gait keeps the power dissipation constant
over the cycle, the recognition that the gait optimization prob-
lem can be formulated as a variational optimization problem
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with a perimeter-length cost [16], [25], and work on finding
optimal gaits through two-dimensional (2-D) slices of higher
dimensional shape spaces [38]. Reasonably efficient gaits are
presented in [39] as natural oscillations of a locomoting system,
defined as the free periodic response obtained when the damping
effect is partially reduced so that the system becomes marginally
stable. Optimally swimming between two points can also be con-
sidered as swimming along a sub-Riemannian geodesic [40],
and a shooting-based method to identify these geodesics is pre-
sented in [41]. Numerical schemes to find these geodesics for
swimming mechanisms is presented in [42] and [43].

Our geometric view of the system dynamics allows us to make

two strong statements about the nature of optimal gaits.

1) The maximum-displacement gaits (the “longest strides”
that the systems can take) follow the zero-contours of
the constraint curvature functions, completely enclosing
a sign definite region.

2) The most efficient gaits (where we define efficiency
1 as the ratio of the displacement produced by the
gait to the cost of executing the gait, g?") are contrac-
tions/straightenings of these zero-contours, as shown in
Fig. 6, and correspond to the systems’ ‘“comfortable
strides”: by giving up the low-yield regions at the edges
of the sign-definite regions (or crossing slightly into
opposite-sign regions) the system travels a shorter dis-
tance in each cycle, but the consequently shorter perime-
ter length means the system can repeat the cycles more
quickly at a given level of power consumption.®

Our definition of efficiency is equivalent to the inverse of

the mechanical cost of transport used in [25] (where we prefer
to work in terms of average speed achieved at a given power
level instead of power required to maintain a desired average
speed). Gaits that optimize our criterion also optimize Lighthill’s
efficiency, which compares the power dissipated while execut-
ing the gait to the power dissipated in rigidly translating the
swimmer through the fluid.

III. GRADIENT OF EFFICIENCY

To formalize the notion that efficient gaits balance the curva-
ture they enclose against the perimeter length they require, we
can write out this relationship in a differential form, providing
a gradient of efficiency with respect to variations in a gait.

We start from the basic variational principle that functions
reach their extrema when their derivatives go to zero. Given a
gait parameterization p, maximum-displacement cycles, there-
fore, satisfy the condition that the gradient of net displacement
with respect to the parameters is zero,

V,96 = 0. (13)

8This definition of efficiency is invariant with respect to time reparameteri-
zations of the gait curve, in that it assumes that the gait curve will be reparame-
terized to follow at a best-case (constant-power) pacing at execution time, and
in that the relative efficiency of two gaits remains the same under bulk rescaling
of time. The efficiency is not, however, dimensionless with respect to system
parameters such length-scale or drag coefficients, which both affect the values
in the metric tensor M as discussed in [8].

IEEE TRANSACTIONS ON ROBOTICS

Maximum-efficiency cycles likewise satisfy the condition that
the gradient of the efficiency ratio is zero,
9o _ 1

9o
Vp 5 = gvpg¢ — S—vas =0

(14)

where the efficiency, as described in Section II-D, is taken as the
displacement g, normalized by the pathlength effort required to
execute the cycle [s as calculated in (2)].

For suitable seed values pg, solutions to (13) and (14) can,
therefore, be reached by finding the respective equilibria of the
dynamical systems

p=V,g; and p:vpgf. (15)
The stable equilibria of the right-hand equation in (15) are gaits
in the same “image families” as the system’s optimally efficient
gaits (i.e., they follow the same curve as the optimal gait, but not
necessarily at the same pacing). To construct the optimal gait,
we can either optimize via (15) and then choose a constant-
metric-speed parameterization, such that the pacing penalty o
from (5) goes to zero, or directly include V,, o in our optimizer.’

Combining the gradient of the pacing term with the gradient
of the image-optimizer places the maximum-efficiency gait as
the equilibrium of

p=V,05 — %vps +V,0 (16)
[from which we have factored out a coefficient of 1/s from (14)].

As illustrated in Fig. 1, this differential equation is directly
analogous to the equations governing the shape of a soap bubble:
V, g4 takes the Lie bracket as an “internal pressure” seeking to
expand the gait cycle to fully encircle a sign-definite region, V,, s
is the “surface tension” that constrains the growth of the bubble,
and Vo is the “concentration gradient” that spreads the soap
over the bubble’s surface. In the following sections, we explore
each of the terms in (16), discussing both their fundamental
geometric definitions and how they would appear in a gradient
descent based direct-transcription solver.

In our examples, we parametrize the gait as a sequence of
waypoints p; such that the gait parameters p; explicitly define
the location of the discretization points. As illustrated in Fig. 5,
each waypoint p; forms a triangle with its neighboring points

and we can define a local tangent direction ¢ as

piv1 —pi-1 =Le| (17)

and a local normal direction e, orthogonal to ¢ .

We select this direct-transcription parameterization because
it facilitates visualizing the workings of our optimizer (and,
thus, the dynamics governing any other optimization applied to
this problem). Additionally, it allows us to illustrate simultane-
ous optimization of the gait path and its pacing. We could also

Including V)0 in the optimizer works best for parameterizations in which
V, o is orthogonal to V, gTé, such as waypoint-based direct transcriptions. For
other parameterizations, e.g., Fourier series, the gradients may not be orthog-
onal and a two-step procedure of optimizing the image then the pacing will
produce better results. For waypoint-based parameterizations, the Vo term
has a secondary benefit of helping to stabilize the optimizer by maintaining an
even spacing of points, and thereby preventing the formation singularities in the
curve).
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Gait described by
parameters p.

Pi—1 Pi+1
Change in area produced due to
movement along €_| direction

~€|

Pit+1

Moving in the €H direction produces
no change in area

Fig. 5.

Y, M

Pi—1

Change in metric and segment
length with movement of point p:

€

Pi+1

Movement in the €| direction does not
change position of p; along the 6||axis

e M " AeL

=€

Pi—1 Pi+1

Movement in the €|| direction balances
the side lengths

Changes in area caused by moving in the two coordinate directions in the local frame. Moving in the tangential direction e|| produces no change in area,

as the area of the triangle given by half the product of base length and height remains the same.

parametrize the gait using a Fourier series or Legendre polyno-
mials. In this case, the pacing optimization should be done after
the image of the optimal gait has been found because finding
an optimal pacing can no longer be formulated as a process or-
thogonal to the gradient descent process for finding the image
of the optimal gait.

A. Internal Pressure From the Lie Bracket

The first term in (16) V,gs guides the gait toward
maximum-displacement cycles. By substituting the approxima-
tion from (10) into this expression as

Vpgs = Vp/ D(—~
Da

and noting that variations in the gait parameters p affect the gait
curve ¢ but not the system’s underlying constraint D(—A) (as
D(—A) is a property of the system and not the gait), we can
convert V, g, into gradient of a surface integral with respect
to variations in its boundary. We can then invoke a powerful
geometric principle,'® which states

The gradient of an integral with respect to variations of its
boundary is equal to the integral of the [ gradient of the boundary
with respect to these variations, multiplied by the integrand
evaluated along the boundary].

Formally, this multiplication is the interior product'' of the
boundary gradient with the integrand,

v, // D(~ %(v $).D(—A)

which contracts D(—A) (a differential two-form [45]) along
V, ¢ to produce a differential one-form that can be integrated
over ¢. This formalism will become important in Sections IV

(18)

19)

10The general form of the Leibniz integral rule [44].

"Not the inner product; the interior product contracts a two-form integrated
over areas to a one-form integrated over a path by inserting a vector field as the
“first” vector argument of the two-form. See [44] for more details.

and V when we explore these principles on systems with more
than two shape variables; for the 2-D shape spaces, we consider
in this section, the interior product reduces to a simple multipli-
cation between the outward component of V¢ and the scalar
magnitude of the Lie bracket,

Vi D(— (20)

~ § (V,.0/D(-A))
ba @
Implementation of the internal pressure: As illustrated in Fig. 5,
the gradient of the enclosed area with respect to variations in
the position of p;, i.e., V,, ¢, in the 2l and e directions, is
the change in triangle’s area as p; moves. Because the triangle’s
area is always one half base times height (regardless of its pitch
or the ratio of its sidelengths), this gradient evaluates to

Vptu=[e) eL] { 532] 1)

Note that this term matches the right-hand side of (20), with
only normal motions of the boundary affecting the enclosed
area.

B. Surface Tension From the Distance Metric

The second term in (16) takes Vs as a measure of how
variations in the gait affect the cost of executing it, and scales
this term by a factor of ”’ to compare how the return on this
investment compares to the efficiency of the gait in its present
state. The gradient component of this term can be related to the
system’s Riemannian metric by first incorporating the arclength
calculation from (2) as

ds?

,—H L
V,s =V, ]{ (drf M dr)z (22)
¢
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and then applying standard calculus operations'? to arrive at

V,s = lj{ (2(VpdT)TM dr +dr" (V,M) dr) (23)
2s @

in which the two parts of the integrand, respectively, measure
how changes in the relative positions of the boundary elements
and changes in the metric at the underlying points affect the
pathlength, and, hence, the cost of motion.

The g4 /s factor (which normalizes the scales of V, g, and
V,s) can be calculated directly from (9) and the integral of (2).
Although the calculation of g, could, in theory, make use of
the area approximation in (10), this would be inefficient and
impractical: integration of surfaces with arbitrarily complex
boundaries requires significantly more computational resources
than are needed for line integration around the boundary. Using
the true line integral also improves the accuracy of the solu-
tion; by continuously recalibrating to the true net displacement,
the algorithm avoids compounding any errors introduced by the
approximation in (10).

Implementation of the surface tension: Each waypoint p; is
at the head of a vector extending from p;_1, such that the dr
vector and its gradient in (23) can be taken as

dri =p; —pi1 (24)

vp, dr; = |:}:| (25)
-1

V= | 26)

For computational simplicity, we evaluate the metric M, at the
center of each segment. This point moves at the mean speed of
the segment endpoints, and its gradient with respect to changes
in p is the mean of its gradient at the endpoints

1
VoMi = 5 (Vp s Ml + Vi MYy, 27

These gradient relationships are illustrated in Fig. 5, with the
metric represented by its Tissot indicatrix ellipse [23].

C. Concentration Gradient From Parameterization

Once the gradient descent along (14) has given us the im-
age of the optimal gait, a secondary gradient descent along the
concentration gradient yields the optimal pacing for the gait.
As discussed in Section III, if we use direct transcription to
parametrize the gait, we can simultaneously optimize for the
image of the optimal gait and its pacing. In this case, the third
term in (16) V,, o guides the gait toward pacings (time parame-
terizations) in which the cycle is executed at a constant rate of
power dissipation.

Note that 0 = 0 implies the mapping from 7 to r(7) gives
us a constant power dissipation pacing, which we know is the
optimal pacing for executing any gait from [24]. Thus, o serves
as an additional cost beyond the best pacing cost of the gait. o
compares the average and local relative rates at which the two

12Namely: Differentiation under the integral sign, chain rule, product rule,
and then exploiting the symmetry of M to consolidate terms.

IEEE TRANSACTIONS ON ROBOTICS

length coordinates are changing along the curve. Pushing the gait
parameters along the gradient of this stress V,,o brings the time
parameterization into balance with the metric spacing, similarly
to how the concentration gradient of soap on the surface of a
bubble spreads it into a layer of uniform thickness.

The concentration gradient does not automatically appear
in (13) or (14) because it is orthogonal to those optimization
criteria: tangentially moving points on a curve does not change
its length or the region it encloses, and so this gradient is orthog-
onal to the optimization gradients and acts inside their nullspace
(however, see the note below on implementations of this gradi-
ent in finite gait parameterizations).

Implementation of the concentration gradient: The local
strain energy at a given waypoint corresponds to the square
of the difference in the tangential distance from that waypoint
to each of its neighbors,

o= ((pis1 =)y — (0 = pic1))’ (28)

where (p; 1 — p;)| refers to the distance between p; 1 and p; )|
along the ¢| direction defined at p;. The gradient of this strain
energy with respect to the position of p; is proportional to the
sum of the tangential displacements of the neighboring points
relative to p;,

(pi+1)\| -(i)— (pzfl)u (29)

Vpoo e el
where (pi1 1)) = (pi+1 — pi) and (pi—1)) = (Pi—1 — pi)|-

Note that in the direct-transcription parameterization, each
point under consideration can independently move both tan-
gentially and perpendicularly to the gait curve and that the or-
thogonality between V0 and V,, g?"’ is, thus, preserved in the
parameterization. Additionally, the spacing provided by Vo
helps ensure the stability of the optimization by keeping the gait
curve from folding over on itself and compromising the gradient
calculation.

Other gait parameterizations (e.g., low-dimensional Fourier
series) do not necessarily preserve this orthogonality and may
lead to the two gradients conflicting with each other. In these
cases, the parameterization itself is likely sufficient to prevent
the gait curve from becoming degenerate, and the concentration
gradient can be left out of the optimization (with the constant-
power pacing found by postprocessing the output of the curve
optimization).

D. Analysis of the Purcell and Serpenoid Swimmers

We used the gradient of efficiency calculations described in
the previous section to implement a gradient-descent-based op-
timizer in MATLAB, both directly solving the differential equa-
tion in (16) using ode45, and by providing (16) as the gradient
for the fmincon optimizer using the interior-point algorithm.
As expected, both implementations converged on the same so-
lutions, with the fmincon implementation completing more
quickly (on the order of minutes for a modern desktop com-
puter for a gait with 100 parameters), due to its ability to take
larger steps through the parameter space. Since the periodicity
of the gaits lends itself to a Fourier series parametrization, for
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Fig. 6.
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-1_5.
10 -1.5 0 15

Optimal gaits found by our algorithm, overlaid onto the constraint curvature functions for their corresponding systems. Maximum-displacement gaits,

which follow the zero-contours of the corresponding CCF, are indicated by dashed lines. Maximum-efficiency gaits, which are contractions of the zero-contour,
are indicated by solid lines. Red regions of the CCF are positive and black regions are negative. The direction of the gait curves is matched to the sign of the region
they enclose so that the displacement from each gait is positive. (a) Three-Link Swimmer- Forward Gait. (b) Serpenoid Swimmer- Forward Gait. (c) Three-Link

Swimmer- Turning Gait.

the fmincon optimizer, we generate the direct-transcription
waypoints from a lower order Fourier series parameterization.
The lower order restricts the optimizer to simple gaits, pre-
venting neighboring points from crossing each other under the
discrete steps taken by fmincon and, thus, increasing its numer-
ical stability. Another interesting parametrization that could be
incorporated in the future is the one presented in [46], where
motion of each shape variable is parametrized as the sum of a
set of compactly supported bump functions added to first-order
Fourier series.

We applied the optimizer to the three-link system twice,
first to find the gait that maximizes the displacement in the
z-direction over a single cycle, and then to find the maximum-
efficiency cycle. The dashed line in Fig. 6(a) shows the gait
that optimizes the maximum displacement over the cycle for the
three-link swimmer. As expected, this gait follows the zero-
contour of the height function. The solid line in Fig. 6(a)
shows the maximum efficiency gait for this system. Because
the maximum-efficiency optimizer places a cost on pathlength,
this curve gives up the low-yield regions at the ends of the
cycle and crosses slightly outside the zero contour. The gaits
obtained via this procedure for the three-link swimmer match
those obtained for maximum efficiency in [10] and, along the x
direction, those in [9].

Fig. 6(b) illustrates essentially similar behavior for the ser-
penoid swimmer: the dashed maximum-displacement gait traces
the zero contour, and the solid maximum-efficiency gait captures
a more compact area within the sign-definite region. Fig. 6(c)
shows the gait that produces the most cost-effective rotational
motion of the three-link swimmer (the maximum-efficiency
turning gait).

The low-yield region given up at the edges of the zero con-
tour to increase efficiency depends on the anisotropy of the drag
experienced by the swimmer in the lateral and longitudinal di-
rections. Fig. 7 shows the shape spaces of serpenoid swimmers
with drag ratio of (a) 2:1 and (b) 9:1 as manifolds isometri-
cally embedded in a higher dimensional ambient space such
that the cost of executing the gait is the distance traveled on the
manifold while executing the gait. Such an embedding lets us
accurately visualize and compare the cost of executing different

gaits. Similar visualization tools were also used in [47] to study
kinematic cartography and in [48] to study 2-DoF mechanisms.
The greater anisotropy would cause the embedding to have a
larger curvature as seen in Fig. 7. The reduction in cost associ-
ated with the contraction of a gait is smaller on manifolds that
are curved more. Thus, contractions of zero contour at a drag
ratio of two reduces cost (distance traveled on the manifold)
more than at a drag ratio of nine, which explains why the opti-
mal gait is closer to the zero contour at a drag ratio of nine than
at two.

IV. EXTENSION TO THREE DIMENSIONS

For systems with three shape variables, the exterior derivative
and local Lie bracket terms from (10) each have three compo-
nents, corresponding to the available pairs of basis vectors as

da — (28 0A doy A do
8041 80(2

0A; 0A4
— — | doy Ade;
+ (80&1 (9043 ) a s

+ % - % dOéQ /\dOég (30)
80&2 8&3

and
S[ALA L] =[ALAs] + [Ar, As] + [As, As]. B

The surface integral in (9) is taken over an oriented surface
bounded by the gait.'3

Employing the same change of coordinates we used for the
2-D systems, we can express these two-forms with respect to
a local basis in the shape space, in which ¢ is tangent to the
current gait, and e is normal to the gait in its current plane.

13The existence of a set of such surfaces (the Seifert surfaces [49] of the gait)
is guaranteed by knot theory; by Stokes’ theorem the integral of d A is the same
across all of these surfaces; the Z [Ai JA j>i} integral may depend on the
surface but our minimum-perturbation coordinates [17] make this term small;
in any case, we are computing the change in this surface with respect to gait
parameter variations, and so our algorithm does not need to explicitly identify
or integrate over a specific surface.
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Fig. 7.

(b)

Isometric embedding of the serpenoid swimmer’s shape manifold in three dimensions for a drag ratio of (a) 2:1 and (b) 9:1. The surfaces in the center

and right plots are constructed such that pathlengths over the surface are equal to the metric-weighted pathlengths that capture the cost of executing a gait. The
red line indicates the optimal gait when the cost is calculated using the power metric M, and the blue line indicates the optimal gait when the power metric is
replaced by an identity metric in the cost calculations (treating the cost as the simple pathlength in the parameter space). Comparing the surfaces in (a) and (b)
reveals that the cost manifold for the system with a drag ratio of 9 is more sharply curved than that of the system with a drag ratio of 2. This increased curvature
means that the embedding of the manifold is “steeper,” and that pathlength, thus, grows more slowly with increased parameter-radius for the nine-swimmer than
the two-swimmer, leading to a greater difference between the simple pathlength-optimum-stroke and the power-dissipation-optimum stroke for the nine-swimmer.

We extend this basis into three dimensions with a new vector
e that is binormal to the gait trajectory, such that displacing a
gait point in this direction would rotate the local surface patch
around e

As illustrated in Fig. 8, extending into the third dimension
means that in addition to enclosing extra gait area in the ¢ A e
plane by displacing gait points in the e, direction, a gait can
also enclose new area in the e A ey plane by displacing gait
points in the ey direction. The interior product from (19) now
preloads the constraint curvature D(—A) with the gradients of
gait points in both the normal and binormal directions, such that
the gradient of the net displacement with respect to changes in
the gait parameters becomes the integral around the gait of the
sum of these gradients multiplied by their respective constraint
curvature components, such that

v, | [ Dia)- ¢ (%,0) 2 D(-4) (32)
- 75 (V,.6)D(~A).
+ (Vo @) D(—A))5 (33)

Note that the L. () component of D(—A) does not contribute to
the gradient of net displacement: no motion of a single point on
the gait perimeter can cause its enclosed area to project onto this
plane, and so the influence of this term on the gait performance
is at most second order.

Intuitively, this process of finding the optimal gait can be vi-
sualized as positioning the gait curve such that it maximizes the
flux of a vector field corresponding to D(—A) through a sur-

D —

face bounded by the curve. This vector field D(—A) is formed
by associating each plane in the R? shape space with its right-
hand normal vector (noting that the e, basis vector is right-hand
normal to the eg A ey plane rather than the e; A e plane, and
adjusting signs accordingly). Motions of the gait points that in-
corporate more sign-matched area on the ey A ey and e A e
planes in the two-form interpretation serve to increase the area
of the surface enclosed by the gait and to better align it with
the direction of the flux field, as illustrated in Fig. 1(c).'* For
systems with three shape variables, our optimizer is a general-
ization of [38] from optimal gaits through 2-D slices of high-
dimensional spaces to arbitrary paths through these spaces.

14This vector-flux interpretation highlights the point that the orientation of
the gait in the shape space (determined by the phase offsets between the joint
oscillations) is as important as its location in the shape space (the mean and
range of the joint motions) when determining the net displacement induced by
the cycle.

Simply placing a gait in a region where the signs of all components of
D(—A) are the same, as suggested in [19], is neither sufficient nor necessary
for generating net motion: A gait in an “all positive” region will produce no net

- T

displacement if it is orthogonal to D(—A.) (i.e., if D(—A.) is in the plane of the

gait), and a gait in a “mixed-sign” region can produce displacement proportional

to the magnitude of the constraint curvature if it is aligned with D(—A) (i.e.,
_

if D(—A) is normal to the surface).
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Gait described by
parameters p.

No change in area produced due to
movement in ¢ direction

€l

Change in area produced due to
movement ine | direction

Three planes along which area of triangle
can increase due to movement of point P,.
The other 3 figures show that area of triangle
projected along the striped plane always
remains zero.

€l

i+1
Projection onto the orthogonal plane of area produced due to
movement in €+ direction

Fig. 8. Changes in the area enclosed and the direction of change produced by movement along the coordinate directions in the local frame for a 3-D shape
space. Moving in the tangential direction e produces no change in the area enclosed, as the area of the triangle given by half the product of base length and height
remains the same. Moving in the e, direction increases the area along the e A e| plane, and moving in the ey direction increases the area along the ey A e
plane. Top: The forward progress of the system as it executes the optimal gait cycle.
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Fig. 9.

initialized with, and the outer red rectangle is the optimal gait found by our process. The black arrows show the vector-dual to the constraint curvature D(—A)
at various points. This vector-dual has an approximately constant heading over the region of the shape space explored by the optimizer and the optimal gait thus
approximately evolves along a plane. (b) Three-segment piecewise-constant curvature swimmer. Top: The forward progress of the systems as they execute their
optimal gait cycles. Both systems move about a tenth of a body length per cycle during these gaits, with the piecewise-constant system requiring less effort for
each cycle. Insets: The time-history of the three deformation modes, illustrating a 90° phase shift between the joints on the linked system, and a smaller phase shift
(more tightly grouped peaks) between the segments of the piecewise-constant system.

Optimal forward gaits for systems with three shape variables. (a) Four-link swimmer. The black ellipse at the center is the gait the optimizer was

A. Selecting a Seed Gait along the zero contour of the CCF projected onto the plane most
aligned with the CCF at the extremum of its absolute value.

For systems with two shape variables, we know the maximum . . . .
As discussed above, in systems with three shape variables,

displacement gait follows the zero contour of the constraint cur-

vature function (CCF). The zero contour of the CCF, therefore,
provides a natural starting point for the optimizer when trying
to find the maximum efficiency gait. Analogous to this, in sys-
tems with three or more shape variables, we start our optimizer

. PE— .
we can associate a vector field D(—A) with the CCF D(—A).
The plane most aligned with D(—A) at the origin is uniquely
_

given by the plane perpendicular to this vector field D(—A)
at the origin. The zero contour of D(—A) projected onto this
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Fig. 10.  Projection of the CCF for the four-link swimmer onto the plane most
aligned with it at its center. The blue line indicates the optimal forward gait for
the four-link swimmer. (a) Projection of the optimal gait onto this plane is a
contraction of the zero contour in that plane. (b) Optimal gait for the five-link

swimmer only deviates slightly from this plane; hence, the zero contour of the
CCF projected onto this plane provides a good seed gait for the optimizer.

plane forms the seed gait for our optimizer in systems with three
shape variables.

B. Analysis of the Four-Link Swimmer

We used the optimizer to find the most efficient forward gait
for a four-link (three-joint) swimmer. The optimal gait is shown
in Fig. 9(a). The optimal gait for the four-link swimmer is 50%
more efficient than a three-link swimmer with same total length
and same drag coefficients. Three-link swimmer efficiency is
0.11, and that of the four-link swimmer is 0.16, but it is still
less than the efficiency of a serpenoid swimmer with two-mode
shapes (0.24).

From Fig. 10, we can see that the optimal gait for the four-link
swimmer lies very close to the a3 = —«; plane, such that these
joints oscillate almost 180° out of phase with each other and
cross each other at a zero angle. The a» oscillation is at approx-
imately 90° phase difference to the other two joint motions and
is slightly higher amplitude, tilting the gait within this plane.

C. Analysis of Three Segment Piecewise Continuous
Curvature Swimmer

We used the optimizer to find the most efficient forward gait
for a system with three piecewise-continuous curvature seg-
ments. The optimal gait is shown in Fig. 9(b). This gait is similar
to the one we found for the linked system, but it has a smaller
phase shift between adjacent actuators, and so is rotated around
the a3 axis by approximately 45°. The efficiency of this gait is
0.18, which is better than the four-link swimmer but still falls
short of the efficiency of the serpenoid swimmer with two shape
modes.

V. EXTENSION TO n DIMENSIONS

The gradient of gait displacement for systems with n-
dimensional shape spaces has a similar form to the 3-D for-
mulation in (33). The key difference is that there are now n — 2

IEEE TRANSACTIONS ON ROBOTICS

Y

i

Fig. 11.  Number of components of the constraint curvature in n-dimensional
space is equal to the number of nonparallel 2-D faces on an n-cube: one for
the 2-cube, or square; three for the standard 3-cube; and six for the 4-cube (or
“tesseract”). (Faces on the tesseract are considered parallel if they are formed
from the same pair of basis vectors, e.g., all zw faces are parallel to each other.)
For higher dimensional spaces, the number of independent 2-D faces continues
to scale asn(n —1)/2.

“binormal” directions!® in which gait points can be displaced,

making the displacement gradient

v, [[ p-a)=§ (90D

n—2
+) (Vo $)D(—A)w, |. G

Note that because the interior-product formulation excludes
the influence any components of D(—A) that do not include ¢,
the number of components in (34) goes up linearly with n, even
though the number of independent planes [and, thus, compo-
nents of D(—A)] scales quadratically as M, as illustrated
in Fig. 11.

The vector-flux analogy that we made in three dimensions
becomes a “patch-flux” analogy as we move into higher di-
mensions: The basis areas for two-forms no longer have unique
normal vectors, so we cannot directly map D(—A) to a vector
field. We can, however, still take the integral of D(—A) over a
surface with the gait as the surface boundary, and each change
of the gait boundary adds an infinitesimal patch to the edge of
this surface, each of which contributes to the net integral based
on its alignment with the basis areas of the space and the values
of D(—A) in those basis-area directions.

A. Selecting a Seed Gait

In systems with more than three shape variables, the problem
of finding a plane most aligned with the D(—A) can be more
generally restated as finding two unit vectors v, w € To R (Ip R
is the tangent space of I? evaluated at » = 0) that maximize the
value of D(—A)|,—o (v, w). We shall refer to the CCF at the
extremum of its absolute value D(—A)|,—¢ as D(—A)g. We
can associate a real skew-symmetric matrix B to D(—A)q such

150utside of three dimensions, “rotation around a line segment” is not a
well-defined operation, so we no longer call these directions “rotational.”
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Fig. 12.  Optimal forward gait for the five-link swimmer. The three axes rep-
resent the first three joint angle. The value of the fourth joint angle is given
by the color and thickness of the line. Thin black lines indicate sections of the
gait with low values of ay and thick red lines indicate sections of the gait with
high ay.

that

D(—A)o(v,w) =v" Bw Yv,w € TyR. (35)

We know that the eigenvalues of real skew-symmetric matrices
are purely imaginary. Let ¢A be the largest eigenvalue and z be
the unit eigenvector associated with it. Let z = x + iy, where x
and y are real column vectors. Therefore, we have

Bz =i,z (36)

B(x + iy) = —Ay + ira. (37)

Therefore, 27 By = A||z|3 and y* Bz = —||y||3. Since B is
skew symmetric, 27 By = —y’ Bu; therefore, ||z]|2 = ||y|l2 =

% as z is a unit eigenvector.' Therefore, if v = /2x and

w = \/2y, then D(—A)o(v,w) = A. Since A is the magnitude
of the largest eigenvalue of B, this is the largest value D(—A )
can attain by acting on two unit vectors.

Thus, the plane most aligned with the CCF at the origin is the
plane spanned by vectors v and w such that z = v + tw is an
eigenvector corresponding to the largest eigenvalue of the skew-
symmetric matrix B associated with D(—A) at the origin. We
project D(—A) onto this plane and use the zero contour, thus,
obtained as the seed gait for our optimizer.

B. Analysis of the Five-Link Swimmer

We used the optimizer to find the most efficient forward gait
for a five-link (four-joint) swimmer. The optimal gait is shown
in Fig. 12. The three axes represent the first three joint angle.
The value of the fourth joint angle is given by the color and

16Note that outside of the case when D(—A) = 0 on the whole region, x
cannot be equal to y as that would imply 27 Bz = —a” Ba, hence z = y = 0,
which would mean the largest eigenvalue of B is zero which would mean
D(—A) is zero at the extrema of its absolute value.

Cost

Fig. 13.  Comparison of the efficiencies of different swimmers. Red squares
represent discrete link swimmers, black circles represent piecewise continuous
swimmers, and blue plus signs represent serpenoid swimmers. The number
next to each symbol indicates the shape variables of the system. Displacement
produced by the most efficient gait for each swimmer is given by the ordinate
value, and the cost of executing the gait is given by the abscissa value of
the symbol representing the swimmer, and their efficiencies are the slopes
of the lines connecting them to the origin. The serpenoid swimmers are the
most efficient, followed by the piecewise swimmers and then the discrete link
swimmers. A movie presenting a side-by-side comparison of these gaits is
included in the Supplementary Material.

thickness of the line. Thin black lines indicate sections of the
gait with low values of ay and thick red lines indicate sections of
the gait with high a4. The optimal gait for the five-link swimmer
has an efficiency of 0.21.

C. Comparison of Different Swimmers

In Fig. 13, we present a comparison of the efficiency of op-
timal gaits found for various systems of up to four shape di-
mensions. Fig. 13 shows a comparison of the cost and displace-
ment produced by executing these gaits. For two shape modes,
the serpenoid system outperforms the jointed and piecewise-
constant systems, but its efficiency improves only slightly if we
add a second pair of (double-spatial frequency) shape modes.
The jointed and piecewise-constant systems both exhibit a pat-
tern where moving from two to three shape DoF allows them to
lower their cost of motion while increasing the net displacement,
and then moving from three to four shape modes significantly
increases the net displacement while increasing the cost of the
motion only slightly. At any level of articulation, the piecewise-
constant system outperforms the jointed system and at 4-DoF
approaches the serpenoid efficiency.

VI. SIMULTANEOUS DESIGN AND GAIT OPTIMIZATION

A common approach to finding the optimal value of a design
variable for a locomoting system is via a nested optimization
in which the outer loop optimizes the design variable, and the
inner loop finds the optimal gait for each geometry considered in
the outer loop. Our variational framework can be used to unify
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Fig. 14.  This figure shows the process of finding the optimal link length ratio
and the maximum efficiency gait for the Purcell swimmer simultaneously. We
seed our optimizer at the black gait (1), and the red gait (6) is the optimal
gait. The inset figures provide a top view of the gaits at each iteration, and the
numbers show the steps through which the gait and design variables evolve.

the design and gait optimization process for drag dominated
systems.

By introducing the design variables as extra shape variables
with the constraint that these variables are constant within the
gait cycle (i.e., that the gaits trace out level sets in the design
parameters), we can use our optimizer to simultaneously find
the optimal value for the design variables and the optimal gait
for that design. For example, if we wanted to design a three-link
swimmer of a specified total length, the optimal ratio between
the length of the middle link to the length of the outer links
would be the one at which the optimal gait at that ratio is more
efficient than the optimal gaits for other ratios.

To include design variables in our optimization, we treat
them as pseudoshape variables. Suppose 5 = (01 - - 3,,,) are
our design variables. We redefine our shape variables to be
r=(ar,...,n,B1,...,0n). We then restrict our optimizer
to only move points in ways that would keep the value of the
design variables constant around the gait by imposing the con-
straint 3;[,, = f3;|, , for each design parameter 3;, across all
points p; and py.

By simultaneously optimizing the design and control vari-
ables, our procedure avoids having to compute the optimal gait
at each intermediate set of design values, and thus requires
many fewer iterations than a nested optimization scheme. If this
simultaneous optimization were incorporated into a numerical
optimizer without the benefit of our geometric construction of
the gradient, then the design variables would compound the di-
mensionality of the control space, and the ensuing complexity
would not be mitigated by the locality of the geometric process.

A. Identifying an Optimal Link-Length Ratio for the
Purcell Swimmer

We used our optimizer to find that the optimal ratio between
the length of the middle link to the length of the outer links for
the Purcell swimmer is 0.80, which is close to the value of 0.75
obtained by nested optimization in [9]. The efficiency of the
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optimal gait we found at the optimal link ratio is 0.12, which
matches the efficiency found for the optimal gait on the 0.75-
ratio system in [9] (i.e., our results are similar to previous results
up to the precision of our gait-displacement ordinary differential
equation solver).

The steps!” that our optimizer takes from a (deliberately
nonoptimal) seed gait and equal link lengths to the optimal
gait at an optimal ratio are illustrated in Fig. 14. Note that
because we are simultaneously stepping along the gait and de-
sign gradients, the system does not monotonically approach the
optimal link ratio, but instead moves to design variables that
make the best use of the current gait geometry; as the gait
geometry moves from the suboptimal ellipse to the more ef-
ficient round shape, the design variable settles to its optimal
value.

VII. CONCLUSION

In this paper, we consolidated upon and extend prior geomet-
ric insights about locomotion into a set of geometric principles
that govern the shape of optimally efficient gaits for drag domi-
nated systems. We formally encoded these principles in a set of
geometric expressions that together make up the gradient of the
gait efficiency with respect to variations in the gait trajectory.
We used this gradient in a gradient-descent solver to find opti-
mal gaits, but more fundamentally, the gradient geometrically
describes the dynamics underlying any other gait optimization
algorithm applied to the system.

For systems with two shape variables, the dynamics of this
solver are analogous to those of a soap bubble, with the Lie
bracket providing an “inflating pressure” to the trajectory and
the Riemannian metric on the shape space contributing “sur-
face tension” that halts growth of the cycle in the face of
diminishing returns, and a “concentration gradient” that pro-
vides a power-optimal pacing along the gait. Together, these
elements drive the gait cycle to a “comfortable stride” that con-
verts shape change effort into net displacement with optimal
efficiency.

By extending the gradient calculation to systems with three
shape variables, we see that dynamics of our solver generalize to
maximizing flux through an oriented surface. For systems with
three shape variables, the constraint curvature functions can be
visualized as vector flux because each surface element has a
unique normal.

In systems with more than three shape variables, each surface
element no longer has a unique normal direction associated with
it, and we, thus, droped the “vector flux” analogy for these higher
dimensional systems, but can preserve the idea of two-form flux
passing through the surface elements that make up the “interior”
of the gait.

We demonstrated this variational principle in operation on
a number of test systems in viscous-dominated environments,
including Purcell’s three-link swimmer (a standard minimal
template for locomotion modeling) and a serpenoid swimmer (a

7Every third iteration of fmincon, using our provided gradient.
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model widely used in studies of animals and snake robots).
In the lower dimensional cases, the optimal gaits found by
our approach match those previously found by exhaustive opti-
mizations of the gait cycles [9], and in the higher dimensional
cases, the optimizer allowed us to efficiently explore a space of
candidate swimming morphologies.

We also presented how the framework can be used to simul-
taneously optimize design and control variables for locomoting
systems. We demonstrated this by finding the optimal link length
ratio for the Purcell swimmer.

In the context of related works, our framework can be viewed
as a “macroscopic’ extension of the Lie-bracket control schemes
in [1] and [2]. This extension is significant because it uses
the geometry of the systems’ dynamics to identify the am-
plitudes of their most efficient gait cycles (in addition to the
useful sets of phase-couplings identified in previous work).
For our example systems swimming at low Reynolds num-
ber, the 2-D “soap-bubble” analysis can be seen as an in-
stantiation of the boundary-value problem suggested in [25],
for which we have analytically constructed a gradient from
the curvature of the constraints, and the higher dimensional
portions of a work to be a generalization of this principle.
These extensions and generalizations of previous work in the
literature have both been enabled by our calculation of a
minimum-perturbation body frame [4], which significantly in-
creases the accuracy of Lie-bracket approximations to large
motions.

A key goal of our geometric study of locomotion is to make
this approach feasible for robots whose dynamics are difficult to
model from first principles, as in the granular systems of [26] and
[50]. As they do for the ideal system models used as examples in
this paper, the dimensionality extensions and explicit optimality
criteria discussed here will broaden the classes of systems that
we can consider in the empirical-geometric work. Additionally,
the geometric structure we discuss here forms the foundation
of our geometric-Floquet approach to online data-driven lo-
comotion analysis and optimization on very high dimensional
systems [46].

A line of future work that we are pursuing is to extend this
optimizer to kinematic systems whose dynamics are dominated
by inertial effects, including those subject to conservation of
momentum and whose momentum is directed by nonholonomic
constraints [51]. The cost of a gait for these types of systems
depends on the acceleration through the configuration space
during the gait rather than on the energy dissipated into the
environment. Therefore, we expect that a cost associated with
the gait’s curvature through the shape space (as well as its length)
will play an important role in finding the optimal gait for these
systems.

In this paper, we used our variational framework to identify
optimal gaits that maximize displacement and efficiency of mo-
tion in a given direction. In future work, we plan to explore
ways of handling multiobjective functions and explore ways to
use the topology of constraint curvature functions to decide if
gaits other than simple loops (e.g., figure-eights) would be better
for some systems or objectives.

APPENDIX A
RELATION TO SUB-RIEMANNIAN GEOMETRY

In the geometric mechanics community, optimal paths be-
tween two points in the configuration spaces of swimmers in
drag-dominated environments have been identified as being the
sub-Riemannian geodesics joining these two points [40]. In this
section, we review what sub-Riemannian geodesics are, dis-
cuss previous research aimed at finding these sub-Riemannian
geodesics and present why the variational framework presented
in this paper simplifies the process of finding a sub-Riemannian
geodesic.

For swimmers in a drag-dominated environment, the con-
straints (which are completely encoded in the local connection
A) determine a vector subbundle of the tangent bundle of @,
‘H C T'Q called the horizontal distribution. This horizontal dis-
tribution represents the set of all velocities ¢ the swimmer can
achieve. Any path that is tangent to H is called a horizontal path.
Any absolutely continuous horizontal path that minimizes the
distance (according to the power metric M) between any points
on it is called a sub-Riemannian geodesic [40].

Many methods to find these geodesics are based on the the-
orem proved in [52] and [53], which states that every sub-
Riemannian geodesic is the cotangent projection to () of a so-
lution on 7*( to the Hamiltonian differential equations for the
Hamiltonian H, which is uniquely determined by the power
metric M and the horizontal distribution H. In general, the
Hamiltonian differential equations are a set of 2n coupled first-
order differential equations, where n is the dimension of Q).
This makes calculating the sub-Riemannian geodesic a numeri-
cally expensive problem. A shooting-based method to find sub-
Riemannian geodesics is presented in [41].

Gaits are closed loops in the shape space R, which can be
identified as the quotient space of () under the group action G,
Q/G. With each gait ¢ : [0,1] — R and a base point ¢(0), we
can associate a measure of the movement along the fiber pro-
duced by executing the gait, called the representative holonomy
of ¢ with respect to ¢(0). The problem of finding the shortest
loop with a given holonomy is called the isoholonomic prob-
lem and has been studied in detail in [40], [54], and[55]. The
version of this problem most relevant to us is finding a shortest
loop with a given holonomy class independent of the base point
in R as studied in [56]. This shortest loop is a sub-Riemannian
geodesic, and [41] presents a shooting-based method to find
such a geodesic. This method was also used in [42] to identify
optimal gaits for low-Re swimmers. That paper also presented
analytical solutions for small shape changes that optimize effi-
ciency. Similar schemes were used in [43] to identify optimal
gaits for copepod swimmer and the Purcell swimmer. The prob-
lem addressed in this paper can be considered as an extended
isoholonomic problem where amongst all the sub-Riemannian
geodesics that are horizontal lifts of closed loops in the shape
space and have representative holonomy in a certain desired
direction, we want to find the geodesic that maximizes the ef-
ficiency 7 as defined in Section II-D. The numerical advan-
tages of our method stem from the facts that the following
hold.
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1) In the minimum-perturbation coordinates, all gaits within
the same image family have approximately the same
holonomy. So we only have to identify the image of the
gait, whose horizontal lift yields the most efficient sub-
Riemannian geodesic with holonomy in a certain desired
direction.

2) Switching to the minimum-perturbation coordinates
makes the approximation in (10) valid for large angle
gaits. This approximation enables quicker computation of
the change in holonomy with respect to small perturba-
tions of the gait ¢, because the approximation makes the
mapping from the image of the gait to holonomy of the
gait history independent. (In the optimal coordinates, if we
change one part of the gait, the contribution of the other
parts toward the holonomy of the gait does not change.)

APPENDIX B
KINEMATICS OF LOW-RE SWIMMERS OBTAINED USING
RESISTIVE FORCE THEORY (RFT)

For all the example systems in the paper, we obtain the local
connection A and metric M by applying a resistive force model
to the system geometry. This appendix describes how to define
the geometry for a n-link swimmer and how to apply RFT to
obtain A and M.

A. Position of Links and Joints

Each link A; in the chain has link length /;, and each joint
o; in the chain has an angle «;. Using the standard matrix
representation of rigid planar motions

cosf) —sinf x
(z,y,0) = | sind cosf y (38)
0 0 1

the transformation associated with moving by half a link length
(from the proximal end of a link to its midpoint, or from the
midpoint to the distal end) is

1 0 ¢/2
hi=10 1 0 (39)
0 0 1
and the transformation associated with each joint (from the

distal end of the proximal link to the proximal end of the distal
link) is

cosa; —sina; 0
a; = | sinq; cosaj 0 (40)
0 0 1

Taking the midpoint of the first link as being at the origin (with
an identity transformation), the relative transformation from this
link to each other link is given by the right-propagating product
of the intermediate transformations,

gr,_, =1d 41

i

=H (w0 (@) ()

k=2

Gz (42)
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where the midpoint-to-midpoint transformations are formed by
combining a half-length step along the proximal link, the joint
rotation, and a half-length step along the distal link.

The joint locations are calculated similarly, with the stator
of the first joint at the end of the first link, and the location
of each subsequent joint given by the product of the relative
transformations,

9o, =M1 (43)

9o = h T (@r-0) (i) ()

k=2

(44)

where the stator-to-stator transformations are formed by com-
bining the joint rotation and two half-steps along the link.

Multiplying the inverse of the joint positions by the link po-
sitions gives the positions of the links relative to the joints,
hi = (g, )(gn)-

J

(45)

B. Velocities of Links and Joints

If the joints are held rigid, the body velocity of link i is
related to the body velocity of the base link by the adjoint-
inverse mapping associated with its position relative to the base
link,

9; = Ady} 9, (46)

where the adjoint-inverse mapping encodes the cross-product
and rotation required to transfer velocities between frames on a
rigid body as

rotation cross product
[ cosf sinf 0 1 0 —y
Ad,' = | —sinf cosf 0 01 =z 47)
| 0 0 1 0 0 1
cosf)  sinf xsinf — ycosh
= | —sinf cosf xzcosl+ ysinh (48)
0 0 1

Similarly, if the base link is held fixed and a single joint
is rotated, the body velocity of each link distal to that joint
is related to the joint velocity by the adjoint-inverse mapping
associated with the position of the link relative to the joint (and
links proximal to the joint do not move),

0
9isj = Ady" | 0 < links distal to joint  (49)
7 dj
., 0
9i<; = |0 <« links proximal to joint. ~ (50)
0

If both the base link and the joints are moving, then the body
velocity of the links is the sum of the contributions from the
base link and joint motion. This means that we can combine the
adjoint-inverse mappings from (46), (49), and (50) into a set of
augmented matrices .J; that serve as Jacobians from the system’s
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generalized velocity (body velocity of the base link and the joint
angular velocities) to the body velocities of the links,

o o r
AR di Gy am] (51)
where
0 0 ‘
Ji = | Ady) Ad,;}r (1) Ad,jli_l (1) 0¥x(n= L (52)

C. Low Reynolds Number Resistive Force Model

With the kinematics of the system described in (42) and (51),
we can calculate the forces on the system. At low Reynolds
number, swimming bodies experience linear resistive drag,
with geometry-dependent coefficients. In a full model for these
forces, the drag coefficients depend on the relative proximity
and orientation of the bodies, but a useful approximation to the
dynamics for slender bodies is to take the drag forces on a link
as being linearly related to the link’s body velocity as

D

—_—
L o
Ff’ E— kL 9; (53)
kL3
12

where k is the ratio between longitudinal and lateral drag coeffi-
cients, and the k L? /12 term is the result of integrating the lateral
drag on a spinning object over its length f_LL//Z2 (ks)sds. (In a
more general model, the structure of (53) would be preserved,
but D would become a function of o and would potentially gain
off-diagonal terms.)

Forces are mapped along bodies by the dual adjoint actions
Ady, which are encoded by the transposes of the adjoint actions.
The map from body-frame forces on the ith link F to the
corresponding body-frame forces acting on the base link F} is
specifically given by the dual adjoint-inverse mapping,

F} = Ad, F} (54)
which expands as

cos —sinf 0
sin cosf 0
xsinf —ycosf xcosh+ysinh 1

Ad;" =

(55
and, as before, encodes the rotation and cross-product opera-
tions. Here, because of the transposition, the dual adjoint action
transforms translational forces in the input into rotational mo-
ments in the output (rather than transforming rotational velocity
in the input to translational velocity in the output).

Combining the drag matrix from (53) with the dual adjoint-
inverse matrix in (55) and the Jacobians from (51), then sum-
ming over the links, produces a linear map from the system body
and shape velocity to the force acting on the body, which we
denote w,

w(a)

Pl = (ZAd;;; (=D)J; ) [z] (56)

in which the dependence of w on « is inherited from the .J and
Ad™* terms.

At low Reynolds numbers, swimmers are at quasistatic equi-
librium, with the net external force equal to zero in all directions.
This means that the w term from (56) acts as a Pfaffian constraint

on the feasible velocities for the system: for a set of ¢; and &
velocities to be a solution to the system equations of motion,
they must be in the null space of w, i.e.,

[O]:w(a)l“?‘|.

o

(57)

We can convert this null-space condition on achievable ve-
locities to a mapping from specified & shape velocities to their

complementary body velocities 5071 inside the null space. We
first separate w into two blocks, one of which operates on the
body velocity and the second of which operates on the shape
velocity,

(58)

0=l |

«Q

Taking advantage of the left-hand side of this equation be-
ing zero, we then manipulate the blocks of the constraint
equation as

o

—wy91 = wa & (59)
9 = —w, wedt (60)
9 = —A(a)d 61)

with A in the final expression serving as a linear map from shape
to body velocities of the system, and known in the geometric
mechanics literature as the system’s local connection.

Because A linearly maps ¢ to g, we can use it to construct
a set of Jacobians J;* mapping from ¢ to the body velocities of
the links, with

7% (a)
6, = L(a)[Aéo‘)d] - (ﬁ(a)[mﬁi?f?} )a (62)

where Id is an identity matrix.

In addition to acting as a linear map from body velocity
to body force, the drag matrix D from (53) also serves as a
quadratic map from body velocity of a link to the power required
to maintain that velocity in the presence of viscous drag,

o

(e} (e} OT (e}
P =F'.9;=(D9)'9; =9, DY,. (63)

Premultiplying and postmultiplying the drag matrix by the
Jacobian in (62) pulls it back to an effective drag matrix for that
link on the joint angle space,

(64)
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Summing the Dj' matrices across the links produces a total
drag matrix D on the joint angle space

Do
P=Y P =a" (Y DI )a

As discussed in [8] and the main text, this drag matrix serves as
a Riemannian metric on the joint space, such that pathlengths

s = /\/dozTD” do

(65)

(66)

are equal to the time required to traverse paths in the shape space
at constant unit power dissipation.

D. Sub-Riemannian Geometry

From a sub-Riemannian perspective, the local connection and
metric tensors from (61) and (65) can be calculated by first using
the link Jacobians J; to pull the drag matrices back to a metric
tensor M on the full configuration space as

M o
i wr)(Sama) )

We then generate our connection on the configuration space by
taking the vertical space of motions as the pure body velocities,
and the horizontal space of motions (allowable under the system
constraints) as being orthogonal to the vertical velocities with
respect to M, i.e.,

pP= (67)

Vcrgs “? (68)
0
HcTQ>v Mh=0. (69)
Taking the metric tensor M as having a block structure
My, My,
M= { MT M, } (70)

(with separations corresponding to the separation between !31
and ¢ in the generalized velocity vector), the top section of M
must have same nullspace as the w constraint calculated in (56)
(and here happens to be equal to w), because horizontal veloc-
ities must produce zero metric product with vertical velocities:
the condition

o7 g
0=, O}VM[%] (71)
«
H
implies that
g
0=[M, My, [1] (72)
Y u

from which we can construct the local connection as
A =My My,

Once we have constructed this local connection, we can pull
back the metric M from the full configuration space to the base
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Space as

Mp

. o m —A _
P:aT<[_AT Id ]M[Idmxmba (73)

with the result that My is equal to the D® drag matrix that we
calculated in (65).

E. Changing Frames

For visualizing system motion, it is often helpful to use a
base frame that is not the first link. For example, many system
symmetries are more apparent if we use the middle link of a
chain, or a generalized center-of-mass frame at an averaged
position and orientation of the links. If we designate the new
base frame as link 0, we can take the position of the new body
frame relative to the original link as gu. and the positions of

the other links relative to the new body frame are

9y = (gtli ) (92, )- (74)

Similarly, we can use the position of the new body frame
relative to the original base link to transform the link Jacobians
so that they take the body velocity of the new frame and the
shape velocities as inputs

5i:<]1, g .
e

When calculating J: L,we need to account for the fact that chang-
ing the joint angles moves the new body frame relative to the
original base link. To make the calculation, we first start by
finding the Jacobian from the joint angular velocities to the new
frame’s body velocity, with the original body frame held fixed.
This is the derivative of the gy frame’s position with respect to
the joint angles, rotated into the g, frame as
cosfy sinfy 0

Jo = | —sinfy cosfy O 69{;(04)'
‘ 0 0 1 @

(75)

(76)

Once we have found this Jacobian, we can separate the original
link Jacobians into the blocks that interact with base-link and
joint motion as

Gi=[Jig | Jia ]| 1 (77)
v
and use these blocks to calculate the new link velocities as
Ji
0
g
[(JL g Ad,“ ) ‘ (Ji.a Adq/’ JO)] [ ] (78)
T &

where the Adg}l term in the first block maps g, to g1, on which
0
o
Ji,¢ then acts to produce its contribution to g;. The fAd 1 Jo
transformation on the second block makes its contr1but10n to
the link body velocity relative to the new body frame’s motion,
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rather than relative to the original base link’s motion. Alterna-
tively, the new link Jacobians can also be written directly as

Ji
0
_ [Adg—jl Jia — Ady?! JO} 0 (79)
0 0 «

in which the first block (corresponding to rigid motion of the
system) is recognized as being simply the adjoint mapping as-
sociated with the position of the link relative to the new body
frame.

Once the gi and J: L terms have been calculated, they may

be used wherever the g;\ and J; terms were previously used,
such as in the calculations of low Reynolds numbers described
above.

F. Continuous Backbones

To calculate the kinematics of the continuous-backbone sys-
tems, we use an essentially similar procedure to that for the
discrete-link system, except that the product and summing op-
erations are replaced by integrals. In place of discrete joint an-
gles, the shape of a continuous system is given by its curvature
K, which is the rate at which the tangent direction of the body
changes along the length of the body. Taking ~ as a function
of the shape variables « and the position s along the body, the
displacement of a frame tangent to the body at point s relative
to the tangent frame at s = 0 is the integral along the body of a
vector that flows along the body at unit speed while rotating at
rate K,

h(a, s)
s cosf(a,S) sinf(a,S) 0 1
= / —sinf(a,S) cosf(w,S) 0 0 ds.
0 0 0 1| k(e,S)

(80)

The Jacobian from shape velocity to body velocity of a tangent
frame on the system is the gradient of h(«, s) with respect to c,
rotated into that tangent frame as

cosf(s) sinf(s) 0
Jo(a,8) = | —sinf(s) cosO(s) 0|V,h(a,s) (81)
0 0 1

which can also be calculated [as a continuous analog to (52)] as

s 1
Jo (e, 8) = / Ad,?li 0 ds.
0 > | Var(a, S)

(82)

Once h(a,s) and J,(«, s) have been found, J(c, s) can be
constructed by concatenating it with the adjoint inverse from
the base frame to the tangent frame at s as

J(a,s) = [Ad ooy o (a, s)}

h(a,s)
enabling computation of the Pfaffian, shape-space drag metric,
and full-configuration drag metric by substituting f (f for y, into
their respective equations.

(83)

APPENDIX C
ACCURACY OF DISPLACEMENT APPROXIMATION

The geometric framework in this paper approximates the net
displacement over a gait as the integral of the constraint curva-
ture over a surface bounded by the gait. As we discussed in [3]
and [4], the accuracy of this approximation degrades with gait
amplitude, the rate of this degradation depends on the choice of
body frame for the system, and the error in the approximation
is minimized in the frame for which the norm of the connection
A is smallest. In [3], we presented a convergence study demon-
strating the accuracy of the curvature integrals for the three-link
swimmer up to gait amplitudes well beyond the optimal gait
amplitude.

We are actively pursuing a rigorous set of bounds on the
residual error left in the constraint curvature approximation after
changing into the optimized coordinates. Initial results suggest
that the error introduced by this approximation is of the order
63, where 6 is the maximum rotation accrued while executing
the gait. For the systems consider in this paper, we performed
retrospective checks to ensure the error is not large. As in [3],
we found no significant difference between the net displacement
of the swimmers and those predicted by the surface integral, for
gaits up to and significantly larger than the optimal gaits found
through our approach.
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