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ABSTRACT: Two-dimensional (2D) organic—inorganic
hybrid perovskites (OIHPs) have showed impressive
stability, compared to their three-dimensional (3D)
counterparts. However, tuning the chemical structure of
the organic cations to simultaneously improve the device
performance and stability of 2D OIHP solar cells is rarely
reported. Here, we demonstrate that by introducing a
classic noncovalent aryl-perfluoroaryl interaction, 2D
OIHP solar cells with 1:1 mixed phenethylammonium
(PEA) and perfluorophenethylammonium (F5-PEA) can
achieve an efficiency of >10% with much enhanced stability
using a simple deposition at low temperature without using
any additives. The competing effects of surface morphology
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and crystal orientation with an increased amount of FS-PEA result in the highest efficiency at a 1:1 ratio, while single-
crystal studies reveal the expected aryl-perfluoroaryl interaction, accounting for the highest device stability of 2D OIHP
solar cell at 1:1 ratio as well. This work provides an example where tuning the interactions of organic cations via
molecular engineering can have a profound effect on device performance and stability of 2D OIHP solar cells.

rganic—inorganic hybrid perovskites (OIHPs)-based
O solar cells have observed tremendous improvement in

power conversion efficiency up to 20%.'~'* However,
typical OIHP materials for high-efficiency devices are not stable
under ambient conditions.''™*° Recently, reducing the
dimension of the materials from three-dimensional (3D)
OIHPs to two-dimensional (2D) (or quasi-2D, layered)
materials has been shown as an effective way to improve the
stability of OTHP solar cells.”’ ™ These 2D OIHPs have a
general formula of (RNH;),MA,_Pb,l;,,;, in which n
represents the number of lead iodide octahedra between
adjacent insulating organic cation layers (RNH;"). 2627 Different
from their 3D counterpart, which would have reactlve dangling
bonds or amorphous species in grain boundaries,'” these layered
2D OIHPs can be viewed as “3D” OIHPs slabs being passivated
with organic cations. This passivation could be one of the main
reasons for the enhanced stability of such OIHPs.>'~>*®
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Recently, 2D OIHPs solar cells have been demonstrated to have
significant high efficiency via a couple of methods, such as hot-
casting”” and additives;**~** the stability of 2D OIHPs has also
been shown to be greatly improved (when compared with 3D
counterparts).””~>° For example, by applying methylammonium
chloride as the additive, 2D OIHP based on 3-bromobenzy-
lammonium iodide can achieve an efficiency of 18.20% and
maintain 82% of their initial efficiency after 2400 h under a
relative humidity (RH) of ~40%.* By applying the same
additive, 2D OIHP based on 2-thiophenemethylammonium
achieved an efficiency of >15% with 90% of its initial efficiency
after a storage time of 1000 h.*
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Most 2D OIHPs for solar cells employ large organic cations
containing one ammonium (—NH;*) group anchored into the
inorganic framework and one organic chain extending out from
it. Typically, two layers of such spacers, via van der Waals
interactions, form the organic insulating layer that separates the
inorganic layers. These van der Waals interactions are
nonspecific, nondirectional, and highly distance dependent,
which are not ideal to stabilize the enclosed OIHPs. Applying
spacer cations with diammoniums (NH;*-R-NH;*) can
eliminate the van der Waals interactions and apply covalent
bonding instead to link inorganic layers, which, in principle,
should offer much improved stability. Indeed, diammoniums
have recently been adopted into 2D OIHPs (i.e., Dion-Jacobsen
phase 2D OIHPs) to achieve a higher device stability.**”*’
However, most of the works with diammoniums require
relatively harsh processing conditions, such as hydroiodic acid
as the additive’’ or long-time and/or high-temperature
annealing®® ™" to achieve typical diffraction and absorption
behavior of 2D OIHPs. It appears that the 2D OIHP films with
diammonium cations are much harder to form, likely because of
the poor defect tolerance (e.g., requiring the positioning of the
two ammoniums of one spacer cation onto two adjacent
inorganic layers simultaneously).

To overcome these issues with conventional monoammo-
nium and diammonium cations, we envisioned a strong
noncovalent interaction between the organic chains of mono-
ammonium cations (R-NH;"). This would still allow a facile
formation of 2D OIHPs because of monoammonium cations,
yet with much improved stability via the strong noncovalent
interaction between these organic chains. Here, we show that
the well-known quadrupole—quadrupole interaction between
perfluorobenzene and benzene can be used to achieve much
improved device stability (maintaining 92% of the original
efficiency after 30 days without encapsulation) of 2D OIHPs
solar cells with appreciable efficiency values (~11%). In
addition, our film deposition was very simple, only requiring a
quick annealing at low temperature (40 °C for 30 s) after casting
the precursor solution.

The aryl-perfluoroaryl interaction is a widely studied
noncovalent interaction, which, for example, can solidify an
equimolar of benzene and hexafluorobenzene in an alternating
manner at 23.7 °C.*" This strong interaction has been widely
used in supramolecular and polymer chemistries.”' ~*° In our
study, we chose phenethylammonium (C¢H;—CH,CH,—NH;*,
PEA) and 2,3,4,5,6-pentafluorophenethylammonium (CgFs—
CH,CH,—NH;*, FS-PEA) as the spacer cations to introduce the
aryl-perfluoroaryl interaction into 2D OIHPs.

Experimentally, 2D OIHP with stoichiometric n = 4 (see
Figures 1a and 1b) was chosen as the active layer in a p-i-n planar
structured solar cell.*” As shown in Figure Ic, as well as Table S1
and Figure S2 in the Supporting Information, we achieved an
efficiency of 7.64% with a small hysteresis for device with PEA
only, which is comparable to the reported efficiency (for a small
n value) without additives or hot-casting.””*****” Interestingly,
substituting 25 mol % of the PEA with an equivalent amount of
FS-PEA led to an increase in both open-circuit voltage (V) and
short-circuit current (J.) of the solar cell. Raising the amount of
F5-PEA to 50 mol % further improved the device characteristics
and reached an efliciency value of 10.24%. However, further
increases in the amount of FS-PEA (i.e., 75% and 100%) resulted
in lower device performance and more serious hysteresis (see
Figure S2a in the Supporting Information). Furthermore, the
50% FS-PEA (i.e, PEA:FS-PEA = 1:1)-based solar cells
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Figure 1. 2D OIHPs and characterization of their photovoltaic
devices: (a) crystal sketch of PEA/F5-PEA 2D OIHP (n = 4); (b)
molecular structures of PEA and F5-PEA; (c) current-density—
voltage (J—V) curves (forward scan) under 1 sun condition (AM
1.5G); (d) stability of unencapsulated 2D OIHP solar cells for 30
days under 45% relative humidity. The last data point represents the
same device after 30 days but with a newly evaporated electrode.

demonstrated the best stability among this series of solar cells
tested (including the well-studied butylammonium (BA)-based
2D OIHPs), maintaining more than 80% of its original efficiency
after 30 days under ambient condition (RH = 45%; see Figure
1d). In addition, depositing fresh electrodes on the same devices
after 30 days could recover 92% of the initial efficiency. This
observation indicates that the damage of the metal electrode
such as mechanical scratching or oxidation during testing could
be the main reason for the performance degradation of the 50%
FS-PEA-based devices. In contrast, we did not observe similar
efficiency recovery for other 2D OIHPs-based solar cells. We
further tested the stability under continuous illumination at
working condition (unencapsulated, RH = 55%; see Figure S3 in
the Supporting Information) and a similar trend was observed.
These results clearly demonstrate that 50% FS-PEA 2D OIHP-
based solar cells are intrinsically much more stable than all other
solar cells in our study.

To understand the performance and stability difference of 2D
OIHP solar cells with various amounts of F5-PEA, we first
applied ultraviolet—visible light (UV-Vis) and photolumines-
cence (PL) measurements to probe the composition of these 2D
OIHP films. Both UV-Vis spectra (Figure 2a) and PL spectra
with excitation from the glass substrate side (Figure 2b) clearly
indicate the presence of multiple 2D OIHP phases (e.g, n=1,2,
3, etc.) in all films. The UV-Vis spectra (Figure 2a) also suggest a
similar amount of each phase in different films. Therefore, the
light-absorbing capability is not the main reason for the observed
different device efficiency. In addition, the absorption and
emission peaks of each 2D phase are narrow and do not show
peak splitting, indicating that the mixed F5-PEA- and PEA-based
2D OIHP films are not a mixture of spatially separated FS-PEA-
based and PEA-based 2D OIHP domains. Further study of 2D
OIHP films with the n = 1 phase only (Figures S7 and S8 in the
Supporting Information) also supported our observation that
these FS-PEA and PEA cations in the OIHP structure form a
solid solution in the interlayer gallery, which will be further
discussed by the single-crystal structure (vide infra). In addition,
the PL spectra with excitation from the air side exhibit much
weaker intensities of 2D OIHP peaks, compared to that of 3D
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Figure 2. Optical properties of 2D OIHP films: (a) UV-Vis
absorption; (b) PL from the substrate side (normalized to the n =
1 peak), and (c) PL from the air side (normalized to the n = inf.
peak). Numbers and arrows indicate signals from different phases.

(Figure 2c), indicating a vertical phase segregation of different n
numbers as we and other researchers observed previously, which
is beneficial (or even crucial) to achieving efficient 2D OIHP
solar cells.””*%!

We next investigated the surface morphology of our 2D
OIHP. Shown in Figure 3a, 2D OIHP film with PEA as the sole

25% FS5-PEA

¢ 50% F5-PEA

Figure 3. Surface morphology of 2D OIHP films: SEM images of 2D
OIHP films with (a) 0%, (b) 25%, (c) 50%, (d) 75%, and (e) 100%
FS-PEA. Scale bar = § pm.

spacer cation has many visible pinholes from the scanning
electron microscopy (SEM) image. These pinholes became
much smaller in the film having 25% FS-PEA (Figure 3b) and
finally disappeared with 50% FS-PEA or more (see Figures 3c—
e). A similar evolution of the surface morphology was also
observed with atomic force microscopy (AFM) (see Figure S4 in
the Supporting Information). It can also be clearly visualized
that the films containing 50% FS-PEA or more show large
domains up to several micrometers in size (see Figures S4a—S4j)
and the phase image indicates that the domains have uniform
composition (see Figures S4k—S40). The pinholes in the films
containing a low amount of FS-PEA (i.e,, 0% and 25%) cause
nonideal interfacial contact between different layers in the
device, which would account for the relatively low device
performance (especially V). We believe the lower solubility of
F5-PEA could lead to a quicker formation of the 2D OIHPs
under annealing, which could finally give rise to a more compact
film surface morphology. However, even with a pin-hole-free
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surface morphology, the films having a large amount of FS-PEA
(i.e., 75% and 100%) still observed decrease in J,. and fill factor
(FF) in the solar cells. Thus, there must be other factors causing
the poor performance of 2D OIHP solar cells with a large
amount of F5-PEA, such as crystal orientation.

To gain insights on the crystal orientation in our 2D OIHP
films, we employed grazing-incidence wide-angle X-ray
scattering (GIWAXS).>> Shown in Figure 4a, the 2D OIHP
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Figure 4. GIWAXS patterns of 2D OIHP films with different
amounts of F5-PEA: (a) 0% F5-PEA, (b) 25% F5-PEA, (c) 50% F5-
PEA, (d) 75% F5-PEA, and (e) 100% FS-PEA.

film based on PEA shows diffraction spots, indicating a highly
orientated film.”” With more FS-PEA (see Figures 4b—e),
diffraction rings start to appear and eventually dominate the
diffraction patterns in the case of 75% or 100% F5-PEA-based
2D OIHP film. This random crystal orientation can lead to
decreased J. and FF values, because of the poor transport, which
is consistent with the J—V curve. This gradual change in
GIWAXS patterns indicates that, with more FS-PEA, the
crystallites in the 2D OIHP film start to adopt a more random
orientation and texture. As reported by others, the random
orientation of 2D OIHP films can be caused by the quick
formation of the crystallites,””** which again agrees with our
observation of the film surface morphology. However, crystallite
orientation is not the only performance-affecting feature that
changes with addition of FS-PEA. As shown above, SEM shows
better surface coverage as the FS-PEA content increases, which
should help the device performance. Overall, the competing
effects of surface morphology and crystal orientation lead to the
best device performance at a PEA:FS-PEA ratio of 1:1.

While all the preceding results explain why 1:1 PEA:F5-PEA-
based 2D OIHP solar cells offered the highest efficiency, they
only minimally address why 1:1 PEA:FS-PEA-based solar cells
also demonstrated the highest stability. First of all, we do not
believe that the hydrophobic nature of fluorinated PEA or the
improved film quality—shown to be contributing factors to the
moisture stability of 2D OTHP in other reported studies'”>*—is
the major reason for the improved stability in our study. This is
because we did not observe significantly improved stability of
2D OIHP solar cells as the amount of FS-PEA increases (Figure
1d); instead, the significantly improved stability only appears at a
PEA:F5-PEA ratio of 1:1.

Given the strong quadrupole—quadrupole interaction in the
aryl-perfluoroaryl system,*'~*® we hypothesized that PEA and
F5-PEA would form a 1:1 pair via the strong quadrupole—
quadrupole interaction to “lock in” the interface of 2D/3D
OIHP phases and stabilize the OIHP-film-based devices. To
experimentally verify this hypothesis, we grew single crystals of
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the mixed cations based 2D OIHP with n =1 (i.e., ((PEA), s(F5-
PEA)ys),Pbl,), since the n = 1 phase is the simplest
representation of the interface between different 2D/3D
OIHP phases. The differences of cation packing are highlighted
in Figure S. The crystal structure of ((PEA)os(FS-PEA),s),Pbl,
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Figure S. Single-crystal structures of 2D OIHPs: (a, b) (PEA),Pbl,,
showing the collinear packing of PEA molecules (this structure was
redrawn based on the work reported by Du et al.?’), and (c, d)
((PEA),5(FS-PEA)5),Pbl,, showing the herringbone packing of
the organic molecules, which are randomly substituted on the same
site. The inset highlights the offset face-to-face packing of a pair of
organic cations. (e, f) (FS-PEA),Pbl,, showing the collinear packing
of SE-PEA, which does not permit face-to-face interactions. The
inset shows the equally occupied and disordered orientations of SF-
PEA; occupancy of either orientation leads to a collinear packing of
the molecules, which does not permit face-to-face interactions.
Arrows denote the vector of the "'NH;CH,CH,—aryl bond.

is disordered, wherein the two different cations lay on top of
each other (see Figures Sc and Sd), which is a feature that has
been reported in 2D OIHPs with similar aryl-perfluoroaryl
interaction.”>” Importantly, the herringbone packing in 2D
OIHP (Figure 5d) permits two cations to interact in an offset
face-to-face or partially eclipsed manner (see the inset in Figure
5d).>>*%% While the crystallography does not permit us to
explicitly observe interactions between the PEA and F5-PEA,
because of their random mixing within the structure, this face-to-
face packing motif was not observed in 2D OIHP based on PEA
alone or F5-PEA alone, as seen in (PEA),PbI,° and (FS-
PEA),Pbl, (see Figures Sa and Sb and Figures Se and 5f, even in
the presence of disorder), highlighting the pivotal role of the
quadrupole—quadrupole interaction to create this co-facial
packing motif.

To further probe the effect of the aryl-perfluoroaryl
interaction on stability, we conducted differential scanning
calorimetry (DSC) measurements on the three single crystals.
Similar to what was reported by Li et al,®" for all three single
crystals, we observed two transition peaks, which could be
assigned to structure transition (lower temperature) and melting
(higher temperature) (see Figure S11 in the Supporting
Information). The structure transition enthalpy of the 1:1
PEA:FS-PEA-based 2D OIHP is significantly higher than those
of single-cation-based ones. This result further supports that the
strong aryl-perfluoroaryl interaction could be the main reason
for the improved stability of 1:1 PEA:FS-PEA-based 2D OIHP
solar cells.
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In summary, we find that introducing a perfluorinated
phenethylammonium, F5-PEA, into the PEA-based 2D OIHP
can improve the efficiency of such 2D OIHP-based solar cells
with significantly improved stability. The incorporation of F5-
PEA appears to have competing effects on surface morphology
and crystal orientation as the amount of FS-PEA increases,
resulting in the highest solar cell efficiency at a 1:1 ratio (50%
FS-PEA) with PCE > 10%. More importantly, the highest
stability of 1:1 PEA:FS-PEA-based 2D OIHP solar cells can be
ascribed to the aryl-perfluoroaryl interaction, which is a strong
noncovalent interaction that not only improves the structure
stability of the 2D OIHP reported in this study but also largely
explains their impressive device stability.

Our study offers a compelling example where a strong
noncovalent interaction can significantly affect the structure of
2D OIHPs and the texture of their films and, as a result, boost
the efficiency and stability of the solar cells. Given the large body
of work in applying various noncovalent interactions in organic,
supramolecular, and polymer chemistry,””~®* we believe that
further exploration of these rich chemistries via creative design
of new functional cations to incorporate within the 2D OIHPs
would achieve desirable device characteristics, as well as
industry-standard stability.
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