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Abstract: Our current understanding of the Universe is established through the pristine

measurements of structure in the cosmic microwave background (CMB) and the distribution and

shapes of galaxies tracing the large scale structure (LSS) of the Universe. One key ingredient that

underlies cosmological observables is that the field that sources the observed structure is assumed

to be initially Gaussian with high precision. Nevertheless, a minimal deviation from Gaussianity

is perhaps the most robust theoretical prediction of models that explain the observed Universe; it

is necessarily present even in the simplest scenarios. In addition, most inflationary models

produce far higher levels of non-Gaussianity. Since non-Gaussianity directly probes the dynamics

in the early Universe, a detection would present a monumental discovery in cosmology, providing

clues about physics at energy scales as high as the GUT scale.

This white paper aims to motivate a continued search to obtain evidence for deviations from

Gaussianity in the primordial Universe. Since the previous decadal, important advances have been

made, both theoretically and observationally, which have further established the importance of

deviations from Gaussianity in cosmology. Foremost, primordial non-Gaussianities are now very

tightly constrained by the CMB. Second, models motivated by stringy physics suggest detectable

signatures of primordial non-Gaussianities with a unique shape which has not been considered in

previous searches. Third, improving constraints using LSS requires a better understanding how to

disentangle non-Gaussianities sourced at late times from those sourced by the physics in the early

Universe. The development of the Effective Field Theory of Large Scale Structure and a number

of proposed methods to ‘reconstruct’ the initial conditions have contributed significantly to that

effort. Lastly, a new technique that utilizes multiple tracers to cancel sample variance in the

biased power spectrum, promises constraints on local non-Gaussianities beyond those achievable

with higher n-point functions in both the CMB and LSS within the coming decade.
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Introduction: Increasingly precise measurements of the Cosmic Microwave Background (CMB)

and the large-scale structure (LSS) have shown that initial conditions for our Universe can be de-

scribed by only a handful of parameters. Since the last decadal [1], the Planck satellite [2] has

confirmed that the initial seeds of structure must have been close to Gaussian. Truly Gaussian

seeds are characterized only by the power spectrum, which is currently well described by just two

parameters: the overall power and scale dependence of primordial fluctuations. Yet gravity puts a

lower bound on non-Gaussianity, which typically lies a few orders of magnitude below current con-

straints [3, 4]. A plethora of proposed models and mechanisms populate this unexplored window

of non-Gaussian signals. Distinguishing among these possibilities provides a strong motivation to

look for signatures beyond the current two-parameter description. Besides evident theoretical mo-

tivation, which we will elaborate on below, significant advancements in observational cosmology

will allow us to obtain tighter bounds on cosmological parameters.

The scale of inflation is a most uncertain parameter and can range across a dozen orders of mag-

nitude without contradicting current observations. If inflation takes place at the highest energies,

significant efforts in trying to detect primordial gravitational waves will triumphantly determine

this scale. But if inflation takes place at lower energies, Primordial non-Gaussianities will be our

unique source of information as, unlike gravitational waves, their amplitude does not diminish

with energy. Hence, by complementing gravitational wave searches, the study of non-Gaussianity

will provide profound new information about the early Universe by directly probing inflationary

dynamics and field content at energy scales far beyond those accessible through laboratory experi-

ments. This is precisely why early Universe cosmology is considered one of the pillars of modern

physics, connecting the disciplines of fundamental theory with empirical observations. We will

summarize recent theoretical developments that have derived fundamentally new predictions for

primordial non-Gaussianity, highlight physics that leads to interactions between the scalar and ten-

sor sectors and identify the general mechanisms that produce detectable levels of non-Gaussianity.

Although current bounds on non-Gaussianity are impressive, we will stress that there is ample op-

portunity for discovery, and such a discovery would instantly present one of the most important

contributions to our understanding of the early Universe. We will end by identifying new avenues

in observational cosmology that are most promising in improving bounds on non-Gaussianity in

the next decade.

Exploring the early Universe through non-Gaussian statistics: Deviations from Gaussianity

directly translate into signatures of the dynamics and the field content driving inflation [3,5,6]. Al-

though non-Gaussian correlations are small in the simplest models of single-field slow-roll (SFSR)

inflation, a much larger fraction of inflationary models is expected to produce non-Gaussianities

that could be detectable. Currently, WMAP [7] and Planck [2] provide the most stringent limits

on a wide range of non-Gaussian shapes that could be produced during inflation; however, today’s

measurements are not sufficiently sensitive to suggest a particular mechanism is favored by the

data. At the same time, our understanding of inflation is continually refined, and there is an asso-

ciated need to improve our understanding of the underlying dynamics directly through constraints

on higher-order correlations [1, 8, 9].

Deviations from Gaussianity in the initial fluctuations are most easily measured through their

effect on the bispectrum, the Fourier transform of the three-point correlation function (similar to

skewness in 1D). By homogeneity and isotropy, the bispectrum is a function of the norm of three

momenta (here k
a
= |~k1|, for a = 1, 2, 3), which combine to form a triangle; its shape describes
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triangular configurations where the bispectrum is largest. Together with the amplitude fNL this

defines a unique bispectruma. Different physical scenarios generate distinguishable shapes and we

can identify associated thresholds for the amplitude that allow us to classify the physics of inflation

(and alternatives).

Generally, bispectra are most easily visualized according to the contributions in three distinct

shapes; local, equilateral and folded triangles. Physically they correspond to a shape where k1 ≪
k2 ∼ k3 (squeezed or local), with amplitude f local

NL , k1 ∼ k2 ∼ k3 (equilateral) with amplitude f equil
NL

and k1+k2 ∼ k3 (folded) with amplitude f folded
NL . Detectable amounts of non-Gaussianity could be

produced in the following scenarios:

• Inflaton self-interactions Non-gaussanity can arise from non-linear dynamics during single-

field inflation. In the most well-studied case, these interactions also cause the fluctuations to

propagate with a speed slower than the speed of light. Both a detection or an exclusion of such

a signature provides a unique window into the mechanism behind inflation.

• Additional light fields Light degrees of freedom are excited from the vacuum with an ampli-

tude set by the Hubble scale. When this degree of freedom is not the inflaton, these fluctuations

freeze-out and describe isocurvature (entropy) fluctuations. These isocurvature modes may even-

tually convert into isocurvature perturbations, during inflation or reheating. These conversion

processes induce correlations between modes that are necessarily non-Gaussian.

• Additional heavy fields Heavy degrees of freedom (e.g. particles with mass on the order of the

Hubble scale during inflation, or larger) are excited during inflation but are diluted quickly after

horizon crossing. However, when the inflaton couples to these additional degrees of freedom,

their fluctuations can still correlate the adiabatic modes producing non-Gaussianity.

All bispectra that come from fluctuations of the field that drives inflation (“single-clock” sce-

narios) most strongly couple momenta of similar wavelengths. The “squeezed limit” of these

bispectra is very restricted for adiabatic modes, which are necessarily the only fluctuations in

attractor single-clock models. A large fraction of the parameter space for scenarios involving

interactions during inflation that respect the underlying shift symmetry (i.e. are approximately

scale-invariant) is captured by equilateral [12] and orthogonal shapes [13], where the latter is or-

thogonal to equilateral. Examples include scenarios in which inflaton fluctuations have non-trivial

self-interactions [13–18] or couplings between the inflaton and other (potentially massive) degrees

of freedom [19–26]. Vanilla SFSR inflation necessarily produces f equil
NL < 1 [27] and therefore any

detection of f equil

NL ≥ 1 would rule out a large class of models and would imply that inflation is a

strongly coupled phenomenon and/or involved more than one field [28–30].

In single-field inflation, fNL typically is related to a new energy scale, M , such that f equil
NL ∝

(H/M)2 [18, 31], with H the hubble scale during inflation. At this energy scale self-interactions

become strongly coupled and current limits on the bispectrum [2] translate into M > O(10)H . In

the presence of additional fields besides the inflaton, f equil

NL scales with the strength of the coupling

between the inflaton and these additional fields, usually suppressed by an energy scale Λ. Current

limits give Λ > O(10−105)H [32,33]. Fixing the amplitude of scalar perturbations to its observed

value, the tensor-to-scalar ratio r ∝ H2, and for r > 0.01 these constraints require some of the

interactions to be weaker than gravitational.

aSimilar to the power spectrum, the bispectrum could in principle inherit scale dependence which would introduce

more degrees of freedom [10, 11].
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When light degrees of freedom other than the inflaton contribute to the observed scalar fluctua-

tions (i.e. multi-field inflation), coupling between modes of very different wavelengths is allowed.

Historically, the most well-studied bispectrum is the local bispectrum, which couples short wave-

length modes k2 ∼ k3 to long wavelength modes k1. A detection of this shape with an amplitude

of f local
NL ∼ O(1) would rule out all attractor models of single-clock inflation [34]. Non-attractor

models exist that generate observable f local
NL [35–40] and are under continued investigation [41–45].

Multi-field inflationary models can produce observably large local non-Gaussianity and pro-

vide a well-motivated framework for interpreting upcoming observations. It has long been known

that substantial levels of non-Gaussianity can be generated after the end of inflation [46–50], and

f local
NL ∼ O(1) is a natural outcome when the primordial perturbations are generated by a so-called

‘spectator’ field [51–55]. Generating observational levels of local non-Gaussianity during multi-

field inflation is more challenging, as can be understood from simple toy models [56], general argu-

ments [57–61], and explicit solutions of inflationary models with many interacting fields [62–64].

Consequently, substantial multi-field contributions to the primordial curvature perturbations do not

guarantee large non-Gaussianities, and a detection of f local
NL ∼ O(1) would provide decisive insights

into the origin of the primordial density perturbations. Non-inflationary cosmologies can also pro-

duce large primordial non-Gaussianities of the local shape [65], and would be heavily constrained

by improved limits on f local
NL . Finally, we note that a detection of f local

NL would open the door to

significant cosmic variance on all scales from coupling of fluctuations within our observed volume

to any super-Hubble modes [66–69]. Indeed, there would be room for a significant shift between

the observed amplitude of scalar fluctuations (and so the observed tensor-to-scalar ratio r) and the

mean value of fluctuations on much larger scales [70].

Additional theoretically well-motivated shapes are not captured by local, equilateral, folded

and orthogonal triangles. For example, in models in which the inflaton is an axion with mon-

odromy [71–74], bursts of particle or string production naturally lead to periodic features in the

bispectrum where the frequency of the feature can be linked to the axion decay constant [75–77].

Often these contributions will lead to counterparts in the power spectrum and are expected to be

detected there first [78], but this need not be the case [79]. Various other mechanisms could also in-

troduce non-trivial features in the primordial bispectrum [80–90], providing a rich phenomenology

in bispectrum space.

The Hubble scale during inflation might have been as high as 1014 GeV, providing access to

physics far beyond the reach of conventional particle colliders. At these energies, new massive

particles, if they exist, are created by the rapid expansion of the inflationary space-time. When

these particles decay, they can produce nontrivial correlations in the inflationary perturbations [20,

24, 26, 33, 91–103]. The characteristic signature of these new particles is a non-analytic scaling in

the squeezed limit of the bispectrum or the collapsed limit of the trispectrum (the Fourier transform

of the 4-point function). For masses above the inflationary Hubble scale, the signal will oscillate

and frequencies of these oscillations encode the masses of the new particles.

Thus far, both theoretically and observationally, correlators involve only scalar degrees of free-

dom. However, in light of upcoming B-mode polarization experiments, in principle bispectra

involving multiple tensors (e.g. the scalar-scalar-tensor bispectrum (SST)) can be constrained for

the first time. Massive particles with spin generate a nontrivial angular dependence in the squeezed

limit. Certain types of spinning particles—so-called partially massless (PM) particles—can lead

to an enhanced signal in the SST bispectrum [100]. This would be a characteristic signature of the

inflationary de Sitter spacetime, since PM particles have no analog in flat space. Alternatively, a
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non-trivial signal in the SST bispectrum can arise if the kinetic terms of the spinning fields strongly

break the de Sitter symmetry [96,104–106], if position-dependent background fields break the spa-

tial isometries [107–111] or, more generally, if the tensors are sourced by additional field, e.g. in

gauge-flation [25, 112–115]). Non-Gaussian signals may also arise from particles within the Stan-

dard Model [116–118]. For instance, if the Higgs field has a coupling to curvature, it can acquire a

mass of order the Hubble scale during inflation, and naturally couple to the inflaton in pairs, con-

tributing to non-Gaussianity. Similarly, scalar partners in supersymmetric theories would produce

non-Gaussianity if they exist anywhere up to the inflationary Hubble scale [24].

Finally, a more general question is the role of higher n-point functions of scalar fluctuations.

For example, if the inflaton couples directly to other fields, additional particles may be produced

at a mass scale up to of order the square root of the kinetic energy of the inflaton field. Axion

fields in string theory introduce periodic events of this kind. The signal to noise for the resulting

non-Gaussianity peaks at a value of n which can be greater than 3 [119]. This implies a reach of

observations to a higher scale than the inflationary Hubble scale. It is of interest to characterize

the contribution that tails of the distribution might make to phenomenology. Early work covering

aspects of this appeared in [120], and several groups are investigating the problem more generally

[121, 122]. The amplitude of the tails exhibits exponential sensitivity to model parameters, whose

characterization requires a careful theoretical analysis. This direction, as well as additional shapes

of low-point correlation functions, promise to increase the physics that can be learned from the

analysis of primordial non-Gaussianity.

Prospects for the measurement of non-Gaussianities in the next decade: Planck has provided

constraints [2] on the most theoretically compelling shapes discussed in the previous section, im-

proving bounds from WMAP by almost an order of magnitude [7]. The original method to con-

strain the primordial bispectrum in the CMB and in LSS relied on the primordial shape being of

simple factorizable form, forcing the analysis to use specifically designed templates. Leading up to

Planck, new methods [123–126] have been developed that have opened up the space of constrained

shapes dramatically. Now, almost thirty thousand different shapes have been put to the test [2]. De-

spite these improvements, bispectra that contain features have proven hard to constrain, since the

frequency and phase of the features have broad theoretical priors. New methods developed better

equipped to look for such bispectra [85, 127–129] have allowed the Planck collaboration to ex-

plore a significant part of this parameter space, thus far without finding significant evidence for

deviations from non-Gaussianity [2]. In addition, since features in the power spectrum and the bis-

pectrum generally contain correlated parameters [23, 75, 83, 88, 90, 129], statistical methods have

been developed to use constraints from both the power spectrum and the bispectrum to further

constrain model space [130–132] and joint analysis of the power spectrum and bispectrum were

presented in [131, 133].

Because of its computational complexity, the search for non-Gaussianity differs from the mea-

surement of the primordial power spectrum. Unlike the power spectrum, the bispectrum and higher

order n-point functions are pre-calculated spectra and the cosmology is held fixed; only the shape

is varied and the amplitude fNL is determined from the data. This implies that if we have yet to de-

termine the correct shape of the primordial bispectrum, we could very well miss the signal entirely.

On the other hand, the same richness of possible inflationary models increases the possibility of

false detections due to the look-elsewhere effect.

Various ongoing and planned CMB experiments will significantly improve polarization sensi-
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tivity and measurements down to smaller scales further constraining non-Gaussianities [134–136].

It must be noted that improved sensitivity requires a careful treatment of secondary effects that

are imprinted in the CMB from both extra-galactic [137–141] and galactic origin [142, 143],

which could obscure the primordial signal. The latter would benefit from using multi-frequency

data [144]. Non-Gaussian contributions to the covariance can also become important [137, 145].

Alternatively, the CMB can constrain local non-Gaussianities using spectral distortions [146–155].

Beyond the CMB, developments in large-scale structure theory and analysis demonstrate that

LSS could provide us with even better constraints than those obtained with the CMB [29,156,157].

Local non-Gaussianity uniquely produces effects on both power spectrum [158, 159] and bispec-

trum of tracers of large-scale structure. The effect of local non-Gaussianity on LSS is relatively

robust with respect to theoretical modeling because gravitational interactions cannot generate this

signal. While measuring power spectra is a remarkably advanced technique in LSS analysis, from

a systematic point of view, clean measurements of very large scales are particularly difficult due

to imprints of our own galaxy, solar system neighbourhood and survey strategy on the observed

modes. Equilateral and orthogonal shape suffer from the opposite problem; observations are likely

to be cleaner, but theoretical modelling will suffer from our understanding of non-linear gravita-

tional evolution on smaller scales. Improved perturbative understanding [160–163] of small scales

will allow us to utilize more modes and improve projected constraints on the primordial correlation

functions [29]. Different LSS tracers have different advantages. Galaxies from spectroscopic and

photometric surveys are the most advanced tracers and will reach exquisite signal-to-noise ratios

in the coming decade. Weak gravitational lensing probes dark matter directly and is theoretically

easier to model. Furthermore, galaxy shapes are uniquely sensitive to anisotropy in primordial

non-Gaussianity [164, 165]. Neutral hydrogen traced by 21-cm allows one to go higher redshift,

where the volume available is large and the universe is more linear and thus easier to model. This

could significantly benefit the search for non-Gaussianities [166], initially at relatively low red-

shifts [167] and eventually throughout the entire observable universe [168], opening up the full

potential of the cosmological collider experiment [169] when combined with low redshift probes

of the LSS [170–172]. Besides neutral hydrogen, intensity mapping with other emission lines

could further improve constraints on primordial non-Gaussianity [173, 174].

Finally, recent theoretical work has shown that impressive improvements can be made when

combining multiple tracers, resulting in so-called cosmic variance cancellation [175]. Forecasts

show [176, 177] local non-Gaussianity could be measured to levels below the theoretically moti-

vated threshold when combining Large Synoptic Survey Telescope data [178] with future CMB

data [135]. Similar cancellation could be achieved when combining multiple measurements of the

shape of galaxies in a search for anisotropic non-Gaussianity [165].

Conclusion: Though non-Gaussianity has been significantly constrained, by necessity the bounds

apply only to a tiny fraction of possible non-Gaussian directions in theoretical parameter space.

There is a rich interplay between the analysis of non-Gaussianity and theoretical developments

which continue to uncover novel dynamical mechanisms for inflation and its perturbations. Once

data is collected, it can bear new fruit with each additional theoretical structure that motivates

novel tests. Even null results can be very informative, illuminating the empirical boundaries in

the space of well-defined theoretical parameters. This motivates a continued effort in constraining

correlation functions beyond the two-point function, which ultimately hold the only key to access

physics at energy scales close to the boundary of our knowledge.
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Seljak, Anže Slosar, and Mark Trodden. Cosmic Visions Dark Energy: Science. 2016.

[158] Neal Dalal, Olivier Dore, Dragan Huterer, and Alexander Shirokov. The imprints of pri-

mordial non-gaussianities on large-scale structure: scale dependent bias and abundance of

virialized objects. Phys. Rev., D77:123514, 2008.

[159] Sabino Matarrese and Licia Verde. The effect of primordial non-Gaussianity on halo bias.

Astrophys. J., 677:L77–L80, 2008.

[160] Raul E. Angulo, Simon Foreman, Marcel Schmittfull, and Leonardo Senatore. The One-

Loop Matter Bispectrum in the Effective Field Theory of Large Scale Structures. JCAP,

1510(10):039, 2015.

[161] Tobias Baldauf, Lorenzo Mercolli, Mehrdad Mirbabayi, and Enrico Pajer. The Bispectrum

in the Effective Field Theory of Large Scale Structure. JCAP, 1505(05):007, 2015.

20



[162] Valentin Assassi, Daniel Baumann, Enrico Pajer, Yvette Welling, and Drian van der Woude.

Effective theory of large-scale structure with primordial non-Gaussianity. JCAP, 1511:024,

2015.

[163] Raul Angulo, Matteo Fasiello, Leonardo Senatore, and Zvonimir Vlah. On the Statistics of

Biased Tracers in the Effective Field Theory of Large Scale Structures. JCAP, 1509(09):029,

2015.

[164] Fabian Schmidt, Nora Elisa Chisari, and Cora Dvorkin. Imprint of inflation on galaxy shape

correlations. JCAP, 1510(10):032, 2015.

[165] Nora Elisa Chisari, Cora Dvorkin, Fabian Schmidt, and David Spergel. Multitracing

Anisotropic Non-Gaussianity with Galaxy Shapes. Phys. Rev., D94(12):123507, 2016.

[166] Dionysios Karagiannis, Andrei Lazanu, Michele Liguori, Alvise Raccanelli, Nicola Bartolo,

and Licia Verde. Constraining primordial non-Gaussianity with bispectrum and power spec-

trum from upcoming optical and radio surveys. Mon. Not. Roy. Astron. Soc., 478(1):1341–

1376, 2018.
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