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Abstract—Estimating the joint probability mass function
(PMF) of a set of random variables lies at the heart of
statistical learning and signal processing. Without structural
assumptions, such as modeling the variables as a Markov chain,
tree, or other graphical model, joint PMF estimation is often
considered mission impossible — the number of unknowns grows
exponentially with the number of variables. But who gives us
the structural model? Is there a generic, ‘non-parametric’ way
to control joint PMF complexity without relying on a priori
structural assumptions regarding the underlying probability
model? Is it possible to discover the operational structure without
biasing the analysis up front? What if we only observe random
subsets of the variables, can we still reliably estimate the joint
PMF of all? This paper shows, perhaps surprisingly, that if
the joint PMF of any three variables can be estimated, then
the joint PMF of all the variables can be provably recovered
under relatively mild conditions. The result is reminiscent of
Kolmogorov’s extension theorem - consistent specification of
lower-dimensional distributions induces a unique probability
measure for the entire process. The difference is that for processes
of limited complexity (rank of the high-dimensional PMF) it is
possible to obtain complete characterization from only three-
dimensional distributions. In fact not all three-dimensional PMFs
are needed; and under more stringent conditions even two-
dimensional will do. Exploiting multilinear (tensor) algebra,
this paper proves that such higher-dimensional PMF completion
can be guaranteed — several pertinent identifiability results are
derived. It also provides a practical and efficient algorithm to
carry out the recovery task. Judiciously designed simulations
and real-data experiments on movie recommendation and data
classification are presented to showcase the effectiveness of the
approach.

Index Terms—Statistical learning, joint PMF estimation, tensor
decomposition, rank, elementary probability, Kolmogorov exten-
sion, recommender systems, classification

I. INTRODUCTION

Estimating a joint Probability Mass Function (PMF) of
a set of random variables is of great interest in numerous
applications in the fields of machine learning, data mining
and signal processing. In many cases, we are given partial
observations and/or statistics of the data, i.e., incomplete
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data, marginalized lower-dimensional distributions, or lower-
order moments of the data, and our goal is to estimate the
missing data. If the full joint PMF of all variables of interest
were known, this would have been a straightforward task. A
classical example is in recommender systems, where users rate
only a small fraction of the total items (e.g., movies) and the
objective is to make item recommendations to users according
to predicted ratings. If the joint PMF of the item ratings is
known, such recommendation is readily implementable based
on the conditional expectation or mode of the unobserved
ratings given the observed ratings. A closely related problem
is top-K recommendation, where the goal is to predict the
K items that a user is most likely to buy next. When the
joint PMF of the items is known, it is easy to identify the K
items with the highest individual or joint (‘bundle’) conditional
probability given the observed user ratings. Another example
is data classification. If the joint PMF of the features and the
label is known, then given a test sample it is easy to infer the
label according to the Maximum a Posteriori (MAP) principle.
In fact, the joint PMF can be used to infer any of the features
(or subsets of them), which is useful in imputing incomplete
information in surveys or databases.

Despite its importance in signal and data analytics, esti-
mating the joint PMF is often considered mission impossible
in general, if no structure or relationship between the vari-
ables (e.g., a tree structure or a Markovian structure) can
be assumed. This is true even when the problem size is
merely moderate. The reason is that the number of unknown
parameters is exponential in the number of variables. Consider
a simple scenario of 10 variables taking 10 distinct values
each. The number of parameters we need to estimate in this
case is 101°. The ‘naive’ approach for joint PMF estimation is
counting the occurences of the joint variable realizations. In
practice, however, when dealing with even moderately large
sets of random variables, the probability of encountering any
particular realization is very low. Therefore, only a small
portion of the empirical distribution will be non-zero given a
reasonable amount of data samples — this makes the approach
very inaccurate.

In many applications, different workarounds have been
proposed to circumvent this sample complexity problem. For
example, in recommender systems, instead of trying to es-
timate the joint PMF of the ratings (which would be the
estimation-theoretic gold standard), the most popular approach
is based on low-rank matrix completion [2], [3], [4]. The idea
is that the users can be roughly clustered into several types, and
users of the same type would rate different movies similarly.
Consequently, the user-rating matrix is approximately low rank
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Fig. 1: Applications of joint PMF estimation. Top: recom-
mender systems: given partially observed ratings of a user on
movies, we would like to infer the unobserved ratings. Bottom:
classification problems: given medical features of people, we
would like to infer if a person has heart disease.

and this is used as prior information to infer the missing rat-
ings. In classification, parsimonious function approximations
are employed to model the relationship (or the conditional
probability function) between the features and the label. Suc-
cessful methods that fall into this category are support vector
machines (linear function approximation), logistic regression
(log-linear function approximation) and more recently kernels
and neural networks (nonlinear function approximation) [5].

The above mentioned methods are nice and elegant, have
triggered a tremendous amount of theoretical research and
practical applications, and have been successful in many
ways. However, these workarounds have not yet answered our
question of interest: Can we ever reliably estimate the joint
PMF of variables given limited data? This question is very
well-motivated in practice, since knowledge of the joint PMF
is indeed the gold standard: it enables optimal estimation under
a variety of well-established criteria, such as mean-square error
and minimum probability of error or Bayes risk. Knowing
the joint PMF can facilitate a large variety of applications
including recommender systems and classification in a unified
and statistically optimal way, instead of resorting to often ad-
hoc modeling tools.

This paper shows, perhaps surprisingly, that if the joint
PMF of any three variables can be estimated, then the joint
PMF of all the variables can be provably recovered under
relatively mild conditions. The result is reminiscent of Kol-
mogorov’s extension theorem — consistent specification of
lower-dimensional distributions induces a unique probability
measure for the entire process. The difference is that for
processes of limited complexity (rank of the high-dimensional
PMF) it is possible to obtain complete characterization from
only three-dimensional distributions. In fact not all three-
dimensional PMFs are needed; and under more stringent

conditions even two-dimensional will do. The rank condi-
tion on the high-dimensional joint PMF has an interesting
interpretation: loosely speaking, it means that the random
variables are ‘reasonably (in)dependent’. This makes sense,
because estimation problems involving fully independent or
fully dependent regressors and unknowns are contrived — it
is the middle ground that is interesting. It is also important
to note that the marginal PMFs of triples can be reliably
estimated at far smaller sample complexity than the joint
PMF of all variables. For example, for user-movie ratings,
the marginal PMF of three given variables (movies) can be
estimated by counting the co-occurrences of the given ratings
(values of the variables) of the three given movies; but no user
can rate all movies.

Contributions Our specific contributions are as follows:

e We propose a novel framework for joint PMF estimation
given limited and possibly very incomplete data samples. Our
method is based on a nice and delicate connection between
the Canonical Polyadic Decomposition (CPD) [6], [7] and
the naive Bayes model. The CPD model, sometimes referred
to as the Parallel Factor Analysis (PARAFAC) model, is a
popular analytical tool from multiway linear algebra. The CPD
model has been used to model and analyze tensor data (data
with more than two indices) in signal processing and machine
learning, and it has found many successful applications, such
as speech separation [8], blind CDMA detection [9], array
processing [10], spectrum sensing and unmixing in cognitive
radio [11], topic modeling [12], and community detection [13]
— see the recent overview paper in [14]. Nevertheless, CPD
has never been considered as a statistical learning tool for
recovering a general joint PMF and our work is the first to
establish the exciting connection .

e We present detailed identifiability analysis of the proposed
approach. We first show that, any joint PMF can be represented
by a naive Bayes model with a finite-alphabet latent variable
— and the size of the latent alphabet (which happens to
be the rank of the joint PMF tensor, as we will see) is
bounded by a function of the alphabet sizes of the (possibly
intermittently) observed variables. We further show that, if
the latent alphabet size is under a certain threshold, then the
joint PMF of an arbitrary number of random variables can
be identified from three-dimensional marginal distributions.
We prove this identifiability result by relating the joint PMF
and marginal PMFs to the CPD model, which is known for
its uniqueness even when the tensor rank is much larger than
its outer dimensions.

e In addition to the novel formulation and identifiability
results, we also propose an easily implementable joint PMF
recovery algorithm. Our identification criterion can be con-
sidered as a coupled simplex-constrained tensor factoriza-
tion problem, and we propose a very efficient alternating
optimization-based algorithm to handle it. To deal with the
probability simplex constraints that arise for PMF estimation,

There are works that considered using CPD to model a joint PMF for
some specific problems [12]. However, these works rely on specific physical
interpretation of the associated model, which is sharply different to our setup
— in which we employ the CPD model to explain a general joint PMF without
assuming any physical model.
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Fig. 2: It is impossible to recover the joint PMF from one-
dimensional marginals without making strong assumptions.

the celebrated Alternating Direction Method of Multipliers
(ADMM) algorithm is employed, resulting in lightweight iter-
ations. Judiciously designed simulations and real experiments
on movie recommendation and classification tasks are used to
showcase the effectiveness of the approach.

Preliminary version of part of this work appeared at ITA
2017 [1]. This journal version includes new and stronger
identifiability theorems and interpretations, detailed analysis
of the theorems, and insightful experiments on a number of
real datasets.

A. Notation

Bold, lowercase and uppercase letters denote vectors and
matrices respectively. Bold, underlined, uppercase letters de-
note N-way (N > 3) tensors. Uppercase (lowercase) let-
ters denote scalar random variables (realizations thereof, re-
spectively). The outer product of N vectors is a N-way
tensor with elements (a; o ag--- o ay)(i1,i2,...,in) =
ai(i1)as(is) - - -an(in). The Kronecker product of matrices
A and B is denoted as A ® B. The Khatri-Rao (column-
wise Kronecker) product of matrices A and B is denoted as
A © B. The Hadamard (element-wise) product of matrices
A and B is denoted as A ® B. We define vec(X) the vector
obtained by vertically stacking the elements of a tensor X into
a vector. Additionally, diag(x) € R’*! denotes the diagonal
matrix with the elements of vector x € R’ on its diagonal.
The set of integers S = {1,..., N} is denoted as [N] and |S]
denotes the cardinality of the set S.

II. PROBLEM STATEMENT

Consider a set of N random variables, i.e., {X,})_;.
Assume that each X,, can take I, discrete values and only
the joint PMFs of variable triples, i.e., Pr(Xj = i, Xy =
ik, Xe = i¢)’s, are available. Can we identify the joint PMF of
{ XV, e, Pr(Xy =iy,...,XN = iy), from the three-
dimensional marginals? This question lies at the heart of sta-
tistical learning. To see this, consider a classification problem
and let X; ..., Xy_1 represent the set of observed features,
and X the sought label. If Pr(X; = i1,..., XNy = in) is
known, then given a specific realization of the features, one
can easily compute the posterior probability

L . Pr(i1,...,1
Prinlii... in-1) = =7 ( : v)
Zm:l Pr(iy, ..
and predict the label according the MAP principle (here
Pr(i1,...,in) is shorthand for Pr(X; = 41,..., Xy = in)

'7111\7—1,111\/)7

Fig. 3: Bayesian network of three variables.

and likewise Pr(inl|i1...,in—1) for Pr(Xy = iny|X1 =
i1...,XN-1 = in-1). In recommender systems, given a
set of observed item ratings X; ..., Xy_1 one can compute
the conditional expectation of an unobserved rating given the
observed ones

In
E(XN|Z'1,...7iN,1) = Z iNPr(iN|i17...,z'N,1).

in=1

At this point the reader may wonder why we consider
recovery from three-dimensional joint PMFs and not from
one- or two-dimensional PMFs. It is well-known that re-
covery from one-dimensional marginal PMFs is possible
when all random variables are known to be independent.
In this case, the joint PMF is equal to the product of the
individual one-dimensional marginals. Interestingly, recovery
from one-dimensional marginals is also possible when the
random variables are known to be fully dependent i.e., one
is completely determined by the other. In this case, the joint
PMF can be recovered if each one-dimensional marginal is a
unique permutation of the other.

However, complete (in)dependence is unrealistic in sta-
tistical estimation and learning practice. In general it is
not possible to recover a joint PMF from one-dimensional
marginals. An illustration for two variables is shown in Fig-
ure 2: Pr(iy,i2) can be represented as a matrix, and Pr(iq),
Pr(ia) are ‘projections’ of the matrix along the row and
column directions using the projector 17 and 1, respectively:
Pr(i1) = S2i2_, Pr(i1,i2) and Pr(iz) = 327'_ Pr(iy, iz). In
this case, if we denote P the matrix such that P(iq,is) =
Pr(X; = i1, X2 = i2), then rank(P) = r > 1 if X; and
X, are not independent. From basic linear algebra, one can
see that knowing 17P and P1 is not enough for recovering
P in general — since this is equivalent to solving a very
underdetermined system of linear equations with (I; + I2) x r
variables but only I; + I equations.

What if we know two-dimensional marginals? When the
given random variables obey a probabilistic graphical model,
and a genie reveals that model to us, then estimating a high-
dimensional joint PMF from two-dimensional marginals may
be possible. An example is shown in Figure 3. If we know
a priori that random variables X; and X5 are conditionally
independent given X3, one can verify that knowledge of
PI’(Xl = il,Xg = ’Lg) and PI’(XQ = iQ,Xg = 23) is sufficient
to recover Pr(X; = i1, X5 = i, X3 = i3). However, this
kind of approach hinges on knowing the probabilistic graph
structure. Unfortunately, genies are hard to come by in real



Fig. 4: Tllustration of the rank decomposition of a three-way
tensor.

life, and learning the graph structure from data is itself a very
challenging problem in statistical learning [15].

In our problem setup, we do not assume any a priori
knowledge of the graph structure, and in this sense we have
a ‘blind’ joint PMF recovery problem. Interestingly, under
certain conditions, this is no hindrance.

III. PRELIMINARIES

Our framework is heavily based on low-rank tensor fac-
torization and its nice identifiability properties. To facilitate
our later discussion, we briefly introduce pertinent aspects of
tensors in this section.

A. Rank Decomposition

An N-way tensor X € RI1x[2XXIN ig a data array whose
elements are indexed by N indices. A two-way tensor is a
matrix, whose elements have two indices; i.e., X (%, j) denotes
the (4, j)-th element of the matrix X. If a matrix X has rank
F, it admits a rank decomposition X = Zle A (:, floAs(:
,f) = A1AL where we have A, = [A,(5,1),...,A,(:
,F)] and o denotes the outer product of two vectors, i.e.,
[x o y]|(4,5) = x(i)y(j). Similarly, if an N-way tensor X
has rank F', it admits the following rank decomposition:

F
X=> Ai(,f)oAs(;, f)o--0ANn(,f), (D)
f=1

where A,, € RI»*F and F is the smallest number for which
such a decomposition exists. For convenience, we use the
notation X = [Aq,...,An] to denote the decomposition.
The above rank decomposition is also called the Canonical
Polyadic Decomposition (CPD) or Parallel Factor Analysis
(PARAFAC) model of a tensor. It is critical to note that
every tensor admits a CPD, and that the rank F' is not
necessarily smaller than Iy,...,Ix — the latter is in sharp
contrast to the matrix case [14]. In the matrix case, it is
easy to see that X(iy,i2) = Z?Zl A (i1, f)Az(ig, f). Sim-
ilarly, for an N-way tensor we have X(iy,ia,...,ixy) =
Zle Hfj:l A, (in, f). Sometimes one wishes to restrict the
columns of A,’s to have unit norm (e.g., as in SVD).
Therefore, the tensors can be represented as

F
X =Y AHAIG f)oAs(, flo-oAn(,f), (@)
f=1
or, equivalently

X(ir i, yin) = Y AL [ Anlin, £), 3

where ||A,(:, f)|l, = 1 for a certain p > 1, V n, f, and
A = AQ),...,X(F)]" with |A]lo = F is employed to
‘absorb’ the norms of columns. An illustration of a three-
way tensor and its CPD is shown in Figure 4. Under such
cases, we denote the N-way tensor as X = [A, Aq,..., AN]
— again, in this expression, we have automatically assumed that
lALG, )l =1,V n, f and a certain p > 1. We will refer
to the decomposition of X into nonnegative factors A € Rﬁ: s
A, e Rfr"XF as nonnegative decomposition.

The following definitions will prove useful in the rest of
the paper. We define the mode-n matrix unfolding of X
as the matrix X of size ngl I, x I,,. We have that

X(i1,i9,...,in) = X™(4,4,), where
N k—1
j=1+ (ix— 1) Jx with Jy = [ I
k=1 m=1
k#n m#n

In terms of the CPD factors, the mode-n matrix unfolding can
be expressed as

) 3 i T
XM =1 © A; | diag(A\)ATL, (4)
j=1
J#n
N
where QlAj =ANO - OA L1 OA, 1O OA;.
j=
i#n
We can also express a tensor in a vectorized form

X(i1,d2,y...,in) = x(j), where
N k—1
j=1+Y (ix —1)Jp with Jp = [ Im.
k=1 m=1

In terms of the CPD factors, the vectorized form of a tensor
can be expressed as

N
vec(X) = <_®1A]‘) A 5)

j=

B. Uniqueness of Rank Decomposition

A distinctive feature of tensors is that they have essentially
unique CPD under mild conditions — even when F' is much
larger than Iy, ..., Iy. To continue our discussion, let us first
formally define what we mean by essential uniqueness of rank
decomposition of tensors.

Definition 1. (Essential uniqueness) For a tensor X of (non-
negative) rank F, we say that a nonnegative decomposition
X =[NA1,...,Ax], X € ]Rf, A, € Rfr”XF is essentially
unique if the factors are unique up to a common permutation.
This means that if there exists another nonnegative decompo-
sition X = [A, A1, ..., AN], then, there exists a permutation
matrix T such that A,, = A,IL,¥n € [N] and A = TIT .

In other words, if a tensor has an essentially unique non-
negative CPD, then the only ambiguity is column permutation
of the column-normalized factors {A,})_;, which simply
amounts to a permutation of the rank-one °‘chicken feet’
outer products (rank-one tensors) in Fig. 4, that is clearly



unavoidable?. Regarding the essential uniqueness of tensors,
let us consider the three-way case first. The following is
arguably the most well-known uniqueness condition that was
revealed by Kruskal in 1977.

Lemma 1. [16] Let X = [A Ay, As, As], where Ay €
RILXE A, € RLXF, Aj € RIsxF, If ka, + ka, +ka, >
2F + 2 then rank(X) = F and the decomposition of X is
essentially unique.

Here, ka denotes the Kruskal rank of the matrix A
which is equal to the largest integer such that every sub-
set of ka columns are linearly independent. Lemma 1 im-
plies the following generic result: The decomposition X =
[\, A1, Ay, A3] is essentially unique, almost surely, if

min([y, F') + min(1z, F') + min(I3, F) > 2F +2. (6)

This is because ka, = min([,, F') with probability one if the
elements of A,, are generated following a certain absolutely
continuous distribution. More relaxed and powerful uniqueness
conditions have been proven in recent years.

Lemma 2. [17], [I8] Let X = [A Ay, Az, As] , where
A, € RIlXF, A, € RIZXF, Aj e RIBXF, L<LL<I3 I >
3 and F < I3. Then, rank(X) = F and the decomposition of
X is essentially unique, almost surely, if and only if F' <

(I = 1)1z = 1).

Lemma 3. [17] Let X = [A Ay, Aq, As], where Ay €
RIlXF, A, € RI2XF, A; ¢ RI3XF, L < I, < Is.
Let o, 8 be the largest integers such that 2% < I, and
28 < I, If F < 2°tP=2 then the decomposition of X is
essentially unique almost surely. The condition also implies
that if F' < %, then X has a unique decomposition
almost surely.

There are many more different uniqueness conditions for
CPD. The take-home point here is that the CPD model is
essentially generically unique even if F' is much larger than
I, I, Is — so long it is less than maximal possible rank. For
example, in Lemma 3, F' can be as large as O([; 1) (but not
equal to I115), and the CPD model is still unique.

Remark 1. We should mention that the above identifiability
results are derived for tensors under a noiseless setup’. In
addition, although the results are stated for real factor matrices,
they are very general and also cover nonnegative A,,’s due to
the fact that the nonnegative orthant has positive measure. It
follows that if a tensor is generated using random nonnegative
factor matrices then under the noiseless setup, a plain CPD
can recover the true nonnegative factors. On the other hand,
in practice, instead of considering exact tensor decomposition,
often low-rank tensor approximation is of interest, because of
limited sample size and other factors. The best low-rank tensor

2Generally, there is also column scaling / counter-scaling ambiguity [14]:
a red column can be multiplied by « and the corresponding yellow col-
umn divided by « without any change in the outer product. There is no
scaling ambiguity for nonnegative column-normalized representation X =
[A,Aq,..., An], where there is obviously no sign ambiguity and all scaling
is ‘absorbed’ in A.

3In this context, noise will typically come from insufficient sample aver-
aging in empirical frequency estimation.

approximation might not even exist in this case; fortunately,
adding structural constraints on the latent factors can mitigate
this, see [19]. In this work, our interest lies in revealing the
fundamental limits of joint PMF estimation. Therefore, our
analysis will be leveraging exact decomposition results, e.g.,
Lemmas 2-3. However, since the formulated problem natu-
rally involves nonnegative latent factors, our computational
framework utilizes this structural prior knowledge to enhance
performance in practice.

IV. NAIVE BAYES MODEL: A RANK-DECOMPOSITION
PERSPECTIVE

We will show that any joint PMF admits a naive Bayes
model representation, i.e., it can be generated from a latent
variable model with just one hidden variable. The naive
Bayes model postulates that there is a hidden discrete random
variable H taking F possible values, such that given H = h
the discrete random variables {X,})_, are conditionally
independent. It follows that the joint PMF of {X,,}_; can
be decomposed as

F N
Priiv, i, ....in) = Y _Pr(f) [[ Pr(inlf),
f=1

n=1

where Pr(f) := Pr(H = f) is the prior distribution of the
latent variable H and Pr(i,|f) := Pr(X,, = i,|H = f) are
the conditional distributions (Fig. 5). The naive Bayes model
in (7) is also referred to as the latent class model [20] and
is the simplest form of a Bayesian network [15]. It has been
employed in diverse applications such as classification [21],
density estimation [22] and crowdsourcing [23], just to name
a few.

An interesting observation is that the naive Bayes model
can be interpreted as a special nonnegative polyadic decom-
position. This was alluded to in [24], [25] but not exploited for
identifying the joint PMF from lower-dimensional marginals,
as we do. Consider the element-wise representation in (3) and
compare it with (7): each column of the factor matrices can
represent a conditional PMF and the vector A contains the
prior probabilities of the latent variable H, i.e.,

Anlin, f) = Pr(ialf). () = Pr(f). (8)
This is a special nonnegative polyadic decomposition model
because it restricts 17X = 1. There is a subtle point however:
the maximal rank F' in a CPD (canonical polyadic decomposi-
tion) model is bounded, but the number of latent states (latent
alphabet size) for the naive Bayes model may exceed this
bound. Even if the number of latent states is under the maximal
rank bound, a naive Bayes model may be reducible, in the
sense that there exists a naive Bayes model with fewer latent
states that generates the same joint PMF. The net result is that
every joint PMF admits a naive Bayes model interpretation
with bounded F', and every naive Bayes model is or can be
reduced to a special CPD model. We have the following result.



Fig. 5: Naive Bayes model.

Proposition 1. The maximum F needed to represent an
arbitrary PMF as a naive Bayes model is bounded by the
following inequality

N
F < mi I, |. 9
< min Ul ©)
ntk
Proof: Let X € R}**"2*%s denote a joint PMF of three
random variables i.e., X(i1,42,i3) = Pr(X; = 41,Xs =
12, X3 = i3). We define the following matrices
Al = [X(:7 5 1)a e 7X(:7 5 13)]7
Ay =[xty Inxn] = 1£ QI x1,,

Az =1, ®17,

where A, € Rfﬁxbh,Ag c Rfthh,Ag c Rffxbh and
have used MATLAB notation X(:,:,43) to denote the frontal
slabs of the tensor X. Additionally, I, ., denotes the identity
matrix of size I, X I,, and 17, is a vector of all 1’s of size I,.
Then every frontal slab of the tensor X can be synthesized
as X(:,:,43) = Ajdiag(As(is,:))AZ. Upon normalizing
the columns of matrix A such that the}y sum to one and
absorbing the scaling in A, ie., A; = Ajdiag(A) we can
decompose the tensor as X = [\, A1, Az, As]. The number
of columns of each factor is Io/5. Due to role symmetry, by
permuting the modes of the tensor it follows that we need at
most min(/y 1z, I513,I1I3) columns for each factor for exact
decomposition.

The result is easily generalized to a four-way tensor
X € RI*PRxIsxls by noticing that each slab X(:,:,:
,i4) is a three-way tensor and thus can be decomposed as
[Ni,s A1y, Aoy, Asi,] as before. We define

A=[AL AT

Ay =[A11,- A1), Ar=[Ag1,, Ay,

As=[Az1, Az, Ay=1,®1],.
The four-way tensor can
as  [A,A1,A2,A3,Ay]. Due to symmetry, the
number of columns of each factor is at most
min(11]2I37 1213_[47 11]3]4, .[1.[2]4). By the same argument it
follows that for a N-way tensor the bound on the nonnegative
rank is mkln(]_[fy;i I,). [ |

therefore be decomposed

The proof of Proposition 1 employs the same type
of argument used to prove the upper bound on tensor
rank. The main difference is in the normalization — latent

6

rank = 1 rank = 2 rank = 4 (full rank)

1 1 1

16 8 1

Pr(XlaXQ) Pr(XlaXQ) Pr(XlaXQ)
Fig. 6: Rank and independence.

nonnegativity follows from data nonnegativity “for free”
since the latent factors used for constructing the CPD are
either fibers drawn from the joint PMF itself, or from
identity matrices or Kronecker products thereof. While
the proof is fairly straightforward for someone versed
in tensor analysis, the implication of this proposition
to probability theory is significant: it asserts that every
joint PMF can be represented by a naive Bayes model
with a bounded number of latent states |7|. In fact, the
connection between a naive Bayes model and CPD was
utilized to approach some machine learning problems such
as community detection and Gaussian Mixture Model
(GMM) estimation in [13]. However, in those cases, the
hidden variable has a specific physical meaning (e.g.,
H = f represents the fth community in community
detection) and thus connection was established using
a specific data generative model. Here, we emphasize
that even when there is no physically meaningful A or
presumed generative model, one can always represent an
arbitrary joint PMF, possibly corresponding to a very
complicated probabilistic graphical model, as a “simple”
naive Bayes model with a bounded number of latent
states F'. This result is very significant, also because
it spells out that the latent structure of a probabilistic
graphical model cannot be identified by simply assuming
few hidden nodes; one has to limit the number of hidden
node states as well.

We should remark that although any joint PMF admits a
naive Bayes representation, this does not mean that such repre-
sentation is unique. Clearly, F' needs to be strictly smaller than
the upper bound in (9) to guarantee uniqueness (cf. Lemmas 1-
3). Fortunately, many joint PMFs that we encounter in practice
are relatively low-rank tensors, since random variables in the
real world are only moderately dependent. This leads to an in-
teresting connection between linear dependence/independence
and statistical dependence/independence. To explain, let us
consider the simplest case where N = 2. In this case, we
have

F
Pr(iv,ia) = Pr(f)Pr(ia| f)Pr(ial /). (10)
f=1

The two-way model corresponds to Nonnegative Matrix Fac-
torization (NMF) and is related to Probabilistic Latent Se-
mantic Indexing (PLSI) [26], [27]. For the two-way model,
independence of the variables implies that the probability
matrix is rank-1. On the other hand, when the variables



TABLE I: Rel. error for different joint PMFs of 3 variables.

Rank (F)
5 10 15
INCOME 21x1072 55x1073 5.1x103
MUSHROOM 4.3 x 1072 24x1072 1.9x 102
MOVIELENS 1.8 x10~2 75x10"3 4.1x10~3

are fully dependent i.e., the value of one variable exactly
determines the value of the other, the probability matrix is full-
rank. However, low-rank does not necessarily mean that the
variables are close to being independent as shown in Figure 6.
There, a low rank probability matrix (rank = 2) can also model
highly dependent random variables. In practice, we expect
that random variables will be neither independent nor fully
dependent and we are interested in cases where the rank of
the joint PMF is lower (and ideally much lower) than the upper
bound given in Proposition 1.

As a sanity check, we conducted preliminary experiments on
some real-life data. As anticipated, we verified that many joint
PMFs are indeed low-rank tensors in practice. Table I shows
interesting results: The joint PMF of three movies over 5 rating
values was first estimated, using data from the MovieLens
project. The joint PMF is then factored using a nonnegative
CPD model with different rank values. One can see that with
rank as low as 5, the modeling error in terms of the relative
error || X — X||/||X|| is quite small, meaning that the low-
rank modeling is fairly accurate. The same applies to two more
datasets drawn from the UCI repository.

V. JOINT PMF RECOVERY
A. General Procedures

The key observation that enables our approach is that the
marginal distribution of any subset of random variables is also
a nonnegative CPD model. This is a direct consequence of the
law of total probability. Marginalizing with respect to the k-th
random variable we have that

I FoI N
> Pr(in,.in) =Y > Pr(f) [ Priialf)
i1 st
F
:Z HPr inlf) ZPI’Zk\f
f=1 n;k =1
F
=Y Pr(f) H Pr(in|f (11)
SR
since Z L Priin]f) =1.

Cons1der the model in (7) and assume that the marginal
distributions Pr(X; = i;,Xy = iy, X; = 1), denoted
Pr(i;,ix, %) for brevity, Vj k,l € [N], | > k > j are
available and perfectly known. Then, there exists an exact
decomposition of the form

ZPr )Pr(ij| f)Pr(ixl f)Pr(adl f).  (12)

Zj7lk7ll

The marginal distributions of triples of random variables
satisfy Xz, = [A, Aj, Ay, A], where {A,})_; and X are
defined as in (8) and they satisfy A; > 0, A, >0, A; > 0,
17A;, =17, 1TA, =17, 1TA; =17, X >0, 17X = 1.
Based on the connection between the naive Bayes model of
lower-dimensional marginals and the joint PMF, we propose
the following steps to recover the complete joint PMF from
three-dimensional marginals.

Procedure: Joint PMF Recovery From Triples

[S1] Estimate Xjkf from data;

[S2] Jointly factor X, = [A, Aj, Ay, Aj] to estimate
XA AL ALY § k1 using a CPD model with rank F;
[S3] Synthesize the joint PMF X via Pr(iy,i9,...,iy) =
Z 1 Pr(f) Hg:1 Pr(in|f), W/ Pr(inlf) = An(in, f),
Pr(f) A(S).

One can see from step [S2], that if the individual factor-
ization of at least one X, is unique, then the joint PMF is
readily identifiable via [S3]. This is already very interesting.
However, as we will show in Sec. VI, we may identify the joint
PMF even when the marginal tensors do not have unique CPD.
The reason is that many marginal tensors share factors and we
can exploit this to come up with much stronger identifiability
results.

B. Algorithm: Coupled Matrix/Tensor Factorization

Before we discuss theoretical results such as identifiability
of the joint PMF using three or higher-dimensional marginals,
we first propose an implementation of [S2] in the proposed
procedure. For brevity, we assume we have estimates of three-
dimensional marginal distributions, i.e., we are given empirical
estimates Pr(X; = i;, Xy = iy, X; = 4;), V4, k,l € [N], | >
k > j, which we put in a tensor X, i.e., X5, (ij, ik, 41) =
PF(X = ZJ7X;€ = Zk, Xl = Zl).

The method can be easily generalized to any type of low-
dimensional marginal distributions. Under the assumption of
a low-rank CPD model, every empirical marginal distribution
of three random variables can be approximated as follows

ZPr

Therefore, in order to compute an estimate of the full joint
PMF, we propose solving the following optimization problem

PIDIP LIS
J k>jl>k

A>0, 1Tx=1,

A,>0,n=1,...,N,

1TA, =1, n=1,...,N.

F)Pr(i;| f)Pr(ig| f)Pr(i] f). (13)

7’]7“677'[

min

2
(A, }n A [[AaAjaAkaAl]]HF

subject to

7

(14)
The optimization problem in (14) is an instance of coupled
tensor factorization. Coupled tensor/matrix factorization is
usually used as a way of combining various datasets that
share dimensions and corresponding factor matrices [28],
[29]. Notice that in the case where we have estimates of
two-dimensional marginals, the optimization problem in (14)
corresponds to coupled matrix factorization. The optimization



Algorithm 1 Coupled Tensor Factorization Approach

Input: A discrete valued dataset D € RM*N
Output: Estimates of {A,}2_, and A
1: Bstimate X, Vj,k,l €[N], I > k> j from data.
2: Initialize {An}”=1 and A such that the probability sim-
plex constraints are satisfied.
repeat

for all n € [N] do

Solve optimization problem (16)

end for

Solve optimization problem (17)
until convergence criterion satisfied

S A

problem per se is very challenging and deserves developing
sophisticated algorithms for handling it: first, when the number
of random variables (/V) gets large, there is a large number
of optimization variables (i.e., {A,}N_;) to be determined
in (14) — and each A, is an [, x F' matrix where I, (the
alphabet size of the n-th random variable) can be large.
In addition, the probability simplex constraints impose some
extra computational burden. Nevertheless, we found that, by
carefully re-arranging terms, the formulated problem can be
recast in convenient form and handled in a way that is
reminiscent of the classical alternating least squares algorithm
with constraints.

The idea is that we cyclically update variables {A,}Y
and A while fixing the remaining variables at their last updated
values. Assume that we fix estimates X, A,,, Vn € [N]\ {j}.
Then, the optimization problem with respect to A; becomes

. 1
H}Q?ZZ 3 X0 — XA, A A
T kG 1] (15)
15k
subject to A; >0, 1TAj 17

Note that we have dropped the terms that do not depend on
A ;. By using the mode-1 matrix unfolding of each tensor X ;1.
the problem can be equivalently written as

mlnzz 5 HXS‘)Z

2
(A1 © Ay)diag(A)AT H
Az 14

(16)

subject to A; >0, 17A; =17,

which is a least-squares problem with respect to matrix A
under probability simplex constraints on its columns. The
optimization problem has the same form for each factor A,
due to role symmetry. In order to update A we solve the
following optimization problem

1

minzz Z 3 [vee(X, ) — (A1 © Ap © Aj))\Hz
i k>j >k

subject to A>0 1Ta=1.
(17)
Both Problems (16) and (17) are linearly constrained
quadratic programs, and can be solved to optimality by many
standard solvers. Here, we propose to employ the Alternating
Direction Method of Multipliers (ADMM) to solve these two

sub-problems because of its flexibility and effectiveness in

handling large-scale tensor decomposition [30], [31]. Details
of the ADMM algorithm for solving Problems (16)-(17) can
be found in the Appendix B. The whole procedure is listed in
Algorithm 1. As mentioned, the algorithm is easily modified
to cover the cases where higher-dimensional marginals or
pairwise marginals are given, and thus these cases are omitted.

VI. JOINT PMF IDENTIFIABILITY ANALYSIS

In this section, we study the conditions under which we can
identify Pr(i1,...,ix) from marginalized lower-dimensional
distributions. For brevity, we focus on three-dimensional as
lower-dimensional distributions, and even though many more
results are possible, we concentrate here on the case I,, =
I Vn € [N] for ease of exposition and manuscript length con-
siderations. Similar type of analysis applies when I;,..., Iy
are different, however the analysis should be customized to
properly address particular cases. Our aim here is to convey
the spirit of what is possible in terms of identifiability results,
as we cannot provide an exhaustive treatment (there are
combinatorially many cases, clearly).

Obviously, if X, is individually identifiable for each
combination of j, k, I, then, Pr(i;|f), Pr(ix|f), Pr(]f), and
Pr(f) are identifiable. This means that given three-dimensional
marginal distributions, Pr(i1,...,7y) is generically identifi-
able if I < 3.2 assuming that I, = I Vn € [N]. This can
be readily shown by invoking Lemma 1, equation (6), and the
link between the naive Bayes model and tensor factorization
discussed in Sec. IV. Note that ' < % is already not a
bad condition, since in many cases we have approximately
low-rank tensors in practice. However, since we have many
factor-coupled X ;,’s, this identifiability condition can be
significantly improved. We have the following theorems.

Theorem 1. Assume that Pr(i,|f), Yn € [N] are drawn from
an absolutely continuous distribution, that Iy = ... = Iy =1,
and that the joint PMF Pr(iy,...,iny) can be represented
using a naive Bayes model of rank F. If N < I then,
Pr(i1,...,in) is almost surely (a.s) identifiable from the
Pr(ij, ik, il) 'S lf
F<I(N-2)

If N > I then, Pr(iy,...
Pr(ij, ik, il) s lf

Pe (AT )

,in) is a.s. identifiable from the

2

Proof: The proof is relegated to Appendix A. [ ]

Theorem 2. Assume that Pr(i,|f), Vn € [N] are drawn from
an absolutely continuous distribution, that Iy = ... = Iy =
I, and that the joint PMF Pr(iy,...,iN) can be represented
using a naive Bayes model of rank F. Let o be the largest
integer such that 2* < |5 |I. Then, Pr(iy,...,ix) is a.s.
identifiable from the Pr(i;, iy, 4;)’s if

F S 40471
which is implied by

oo (B4
- 16



TABLE II: Rank bounds for generic identifiability (I = 3).

Number of Variables (V)
6 10 20 40 80
Triples 4 7 27 105 410
Quadruples 10 36 179 729 2916

TABLE III: Rank bounds for generic identifiability (N = 6).

Alphabet size (1)
6 10 20 40 80

Triples 24 40 105 410 1620
Quadruples 45 131 544 2220 8966
Proof: The proof is relegated to Appendix A. [ |

The rank bounds in Theorems 1-2 are nontrivial, albeit far
from the maximal attainable rank for the cases considered.
Recalling that higher-order tensors are identifiable for higher
ranks, a natural question is whether knowledge of four- or
higher-dimensional marginals can further enhance identifiabil-
ity of the complete joint PMF. The next theorem shows that
the answer is affirmative.

Theorem 3. Assume that Pr(iy|f), Yn € [N] are drawn from
an absolutely continuous distribution, that Iy = ... = Iy =1,
and that the joint PMF Pr(iy,...,in) can be represented
using a naive Bayes model of rank F. Further assume that
S = [N] can be partitioned into 4 disjoint subsets de-
noted by Sy, ...,84 such that the four-dimensional marginals
Pr(ij,ik,il,im), V] € §,Vk € &,V € S3,YVm € S,
are available. Then, the joint PMF Pr(iy,...,iN) is a.s.
identifiable if

F < I?|85]|S4],
2F(F = 1) < I[81]|S|(1|S1] = 1)(I]S2| = 1).

Proof: The proof is relegated to Appendix A. ]
The conditions of Theorem 3 are satisfied for much higher
rank than those of Theorems 1-2 as shown in Tables II-III. The
results related to the four-dimensional marginals are obtained
following Theorem 3 via checking all possible partitions. The
caveat is that one may need many more samples to reliably
estimate the four-dimensional marginals. Nevertheless, the
theorems that we present in this section offer insights regarding
the choice of lower-dimensional marginals to work with — such
choice depends on the size of the alphabet of each variable
(I) and the number of variables (V) as well as the amount of
available data samples.

Remark 2. The above results rely on Lemmas 2, 3 and
concern the identifiability of a generic choice of parame-
ters; i.e., the parameters are assumed to be drawn randomly
from a jointly continuous distribution. At this point one may
wonder whether this is a realistic assumption in practice.
For example, in some latent model identification problems a
hidden variable has specific physical meaning and an observed
variable may not depend on the state of the hidden variable
for one or more of its values. Consider a Hidden Markov
Model (HMM) where we denote the observed variable at
time ¢t as X; and the hidden state is S;. The conditional

TABLE IV: Mean relative factor and tensor error when lower-
dimensional marginals are perfectly known.

Rank MRE, MREe,
Pairs 0.277 0.148
F =5 Triples 1.18 x 1077 4.58 x 1078
Quadruples  3.39 x 1078  1.19 x 108
Pairs 0.440 0.187
F =10 Triples 3.58 x 1077 870 x 108
Quadruples  1.26 x 10~7  2.58 x 108
Pairs 0.466 0.184
F =15 Triples 6.77 x 10~7  1.52 x 10~7
Quadruples  1.78 x 10~7  3.57 x 108

distribution A,(i, s) := Pr(X, = i|S; = s) may be the same
for two different values s; and sz of the hidden state S;.
In such a case, the Kruskal rank of matrix A; would be
equal to 1, thereby rendering the deterministic identifiability
condition (Lemma 1) useless. Do note, however, that in our
setting the latent variable I does not necessarily have a
physical interpretation; the CPD is just a convenient ‘universal’
parametrization of the joint PMF. Therefore the conditional
distribution of an observed variable may be the same for two
values of the hidden state, but it may still depend on the value
of the ‘virtual’ global latent variable H, and hence recovery
of the the joint PMF using lower-dimensional marginals could
still be possible.

VII. NUMERICAL RESULTS

In this section, we employ judiciously designed synthetic
data simulations to showcase the effectiveness of the proposed
joint PMF recovery methods. We also apply the approach to
real-data problems such as classification and recommender
systems to demonstrate its usefulness in real machine learning
tasks.

A. Synthetic-Data Simulations

We first evaluate the proposed approach using synthetic
data. We consider a case where N = 5 random variables are
present, and each variable can take I,, = 10 discrete values.
We assume that the joint PMF of the 5 random variables can
be represented by a naive Bayes model whose latent variable
H can take F' values, where F' is set to be {5,10,15}. We
generate matrices A, € Rﬁ'_"XF , that model the conditional
probabilities i.e., Ay (in, f) = Pr(i,|f). A vector X € RE
is also generated for the latent random variable H such that
A(f) = Pr(f). The elements of each A,, and the vector A
are drawn independently from a uniform distribution between
zero and one, and each column is normalized to sum to 1.
The ground-truth joint PMF is then constructed following the
naive Bayes model, i.e., Pr(i1,...,i5) = X(i1,...,i5) =
2]1;1 () Hi:l A, (in, f). We assume that the observable
data are two-, three- and four-dimensional marginals of the
joint PMF. Under such settings, we can verify if the proposed
procedure and algorithm can effectively recover the joint PMF,
if there is no modeling error and the joint PMF does have low
rank. We run 20 Monte Carlo simulations and compute the
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mean relative error of the factors as well as the mean relative
error of the recovered tensor which are defined as follows

A — AII|F — A I p
MREj, = Z Al :
IX - X|r
MRE, =E | ==—=""] |
“ X[~

where II is a permutation matrix to fix the permutation
ambiguity, and X, A,, are the estimated joint PMF and the
corresponding conditional PMFs.

Table IV shows the mean relative errors for estimating the
conditional PMFs and joint PMF using the different types of
input under different choices of rank. Consistent with our
analysis, one can see that using marginal distributions of
triples or quadruples of random variables (i.e., three- and four-
dimensional marginals) we are able to recover the joint PMF
of 5 random variables. Here recovery with high accuracy has
been demonstrated; exact recovery is also possible in certain
cases, see [14]. However, using pairs (i.e., two-dimensional
marginals) is not as promising. Recall that our identifiability
result is built upon the identifiability of third- and higher-order
CPD models. These nice identifiability results in general do
not hold for matrices — which explains the sharp performance
difference between using the pairs and higher-dimensional
marginals. Pairs can work, however, when the conditional
probability matrices are sufficiently sparse, and under more
stringent constraints on the rank F'. We defer detailed discus-
sion to a follow up paper, due to lack of space in this one.

The above simulation serves as sanity check — if the
available data and the model perfectly match with each other

and we have noiseless marginal distributions, the proposed
approach can indeed recover the joint PMF. In practice, we
usually do not have exact estimates of the lower-dimensional
marginal distributions. Next, we provide a set of more realistic
simulations where we estimate the marginal PMFs using
sample averages from the observed data.

1) Fully-observed data: We follow the same way of gener-
ating the ground-truth joint PMF as in the previous simulation.
Then, drawing from the joint PMF, we generate a synthetic
dataset of M five-dimensional data points. The data is gener-
ated as follows: for each data point, we first draw a sample
hp, according to A; i.e., a realization of the hidden variable
H. Then the data point (vector) s,, = [$;n(1),...,8m(N)]"
is generated by drawing its elements independently from
{A G h)N_, e, sp(n) is drawn from {A,}(:, hp).
This is equivalent to synthesizing the five-way joint PMF
tensor and drawing an outcome from it (cf. the naive Bayes
interpretation).

We use the generated 5-dimensional data points to estimate
lower-dimensional marginals and run our ADMM algorithm
to recover the full joint PMF. We repeat for a total of 10
Monte Carlo simulations. Figure 7 shows the tensor mean
relative error of the estimated joint PMF under different dataset
sizes M. We also include the performance of two additional
methods for estimating the joint PMF. Given the full data
together with ‘oracle’ observations of the hidden variable H,
we perform Maximum Likelihood Estimation (MLE) of the
naive Bayes parameters, denoted as oracle MLE, which is done
simply by frequency counting

count(f)

Pr(f)mr = o

_ count(iy, f)

Pr(in|f)me = ~count(f)



TABLE V: Misclassification error on different UCI datasets.

Binary Multiclass

Method INCOME CREDIT HEART MUSHROOM VOTES CAR NURSERY

CP (Pairs) 0.177+0.004 0.134£0.019 0.151+0.023  0.010+£0.007  0.046+0.024 | 0.1284+0.021  0.101£0.009
CP (Triples) 0.175+0.003  0.129+0.018  0.147+0.031  0.006+0.002  0.043+0.024 | 0.089+0.016  0.069+0.011
CP (Quadruples) | 0.171+0.003  0.123+0.018  0.138+0.029  0.002+0.001  0.042+0.020 | 0.074+0.015 0.061+0.007
SVM (Linear) 0.179+£0.004 0.146+0.027 0.170+0.053 0=+0 0.038+0.025 | 0.065+0.006 0.063+0.004
SVM (RBF) 0.174£0.004  0.136+0.018  0.187+0.055 0+0 0.0794£0.024 | 0.026+0.008  0.006=:0.001
Naive Bayes 0.209+0.005 0.140+0.018 0.166+0.026 0.044+0.005 0.096+0.022 | 0.1514+0.016  0.097+0.007

TABLE VI: Dataset information.

Dataset N F

INCOME 8 1,20
CREDIT 9 1,20
HEART 9 1,10
MUSHROOM 22 1,20
VOTES 17 1,10
CAR 7 1,15
NURSERY 9 1,15

where count (i, f) is the number of times that X,, = 7,, and
H = f appear together in the dataset and count(f) the number
of times H takes the value f. We also include the MLE of
a non-parametric approach in which we use the empirical 5-
dimensional distribution as our estimate i.e.,
count(éy,...,iN)
M

One can see that the estimation performance of our method
is similar under different rank values and approaches that of
oracle MLE using three- and four-dimensional marginals. In
addition, as expected, the recovery accuracy steadily improves
as the size of the available dataset increases. On the other
hand, when using two-dimensional marginals the performance
improves until it reaches a plateau at approximately M = 10°.
The ability to recover the joint PMF using pairs of random
variables is obviously limited by identifiability of matrix
factorization.

2) Missing data: We repeat the above experiment when
some of the dataset entries are missing. We randomly hide
20% of the data and compute estimates of two- three- and
four-dimensional marginals using only the available data. We
run the ADMM-based algorithm and repeat for 10 Monte
Carlo simulations. The estimation performance of our method
is again similar under different rank values and approaches that
of oracle MLE. As expected, we observe a slight decrease in
performance which is due to the less accurate estimation of
the lower-dimensional marginals. In this case, the MLE non-
parametric method takes into account only the fully observed
samples.

Note that when empirical estimates of the lower-
dimensional distributions are used and the number of samples
is limited, three-dimensional distributions may give lower
relative error compared to the four-dimensional ones. This
shows that in some cases using lower-dimensional distributions
can be more beneficial than higher-order ones in terms of
parameter estimation accuracy. Actually, this is not very sur-
prising since it can be shown that empirical lower-dimensional

JIN)ML =

Pr(il, .

marginals are always more accurate than higher-dimensional
ones when estimated given the same data [32].

B. Real-Data Experiments

In real applications, the ground-truth joint PMF and the
conditional PMFs are not known. Nevertheless, we can eval-
uate the method on a variety of standard machine learning
tasks to observe its effectiveness. In this subsection, we test
the proposed approach on two different tasks, namely, data
classification and recommender systems. Note that both tasks
can be easily accomplished if the joint PMF of pertinent
variables (e.g., features and labels in classification) is known
and thus are suitable for evaluating our method. Note that the
rank of the joint PMF tensor, or, F' = |H|, cannot be known as
in the simulations. Fortunately, this is a single discrete variable
that can be easily tuned, e.g., via observing validation errors
as in machine learning.

1) Classification Task: We evaluate the performance of our
approach on 7 different datasets from the UCI machine learn-
ing repository [33]. Five of the selected datasets correspond
to binary classification and two to multi-class classification.
For each dataset, we represent the training samples using
its discrete features so that the PMF-based approach can be
applied. We split each dataset such that 70% of the data
samples is used for training, 10% used for validation and 20%
for testing.

For each dataset, we let Xy be the label and X1,..., Xn_1
be the selected features. We estimate lower-dimensional
marginal distributions of pairs, triples and quadruples of
variables using the samples in the training set. Then, we use
the marginals to estimate Pr(i,,|f), and Pr(f). After applying
the proposed approach for estimating the joint PMF, we predict
for each data point of the test set the corresponding label using
the MAP rule. The MAP estimator of the label I(s,,) of the
m-th observation s, = [$,,(1),...,8, (N — 1)]7 in the test
set can be written as

~

lmap(Sm) = argmax  Pr(in[sm(1),...

ine{l,....In}

,Sm(N — 1)),

where [y is the number of classes. Equivalently, using the
Bayes rule the above can be found by
F

N-1
Imap(sm) = argmax > Pr(f)Pr(in|f) [ Prism(n)|f).
n=1

’iNG{l,...,IN} F=1

For each dataset, we run 10 Monte Carlo simulations with
randomly partitioned training/validation/test sets and observe
the average result. As mentioned, we do not know a priori



TABLE VII: RMSE and MAE of different algorithms on MovieLens (Ratings are in the range [1-5]).

MovieLens Dataset 1 MovieLens Dataset 2 MovieLens Dataset 3
Method RMSE MAE RMSE MAE RMSE MAE
CP (Pairs) 0.8024+0.003 0.608+0.003 0.795+0.002 0.611+0.002 | 0.897+0.003  0.702+0.002
CP (Triples) 0.783+0.002 0.591+0.002 0.785 +£0.002 0.599 £0.002 | 0.887+0.002 0.691+0.002
CP (Quadruples) | 0.778+0.002 0.588+0.002 | 0.786+0.002 0.600+£0.002 | 0.884 £0.002 0.689 +0.002
Global Average 0.945+0.001 0.693+0.001 0.906+0.002 0.653+0.002 | 0.996+0.002  0.798+0.001
User Average 0.879+0.002 0.679+0.001 0.830+0.003 0.625+0.002 1.010+0.002  0.768+0.002
Movie Average 0.886+0.002 0.705+0.001 0.889+0.002 0.673+0.002 0.942+0.002 0.754+0.001
BMF 0.797+0.002 0.6234+0.002 0.792+0.002 0.604+0.002 | 0.904+0.003  0.701+0.003

what is an appropriate rank for our model. Therefore, for each
dataset, we fit models of different rank values and choose
the one which minimizes the misclassification error of the
validation set as in standard machine learning practice.

We use 3 different classical classifiers from the MATLAB
Statistics and Machine Learning Toolbox as baselines; linear
SVM, kernel SVM with radial basis function and a naive
Bayes classifier. For SVM classifiers, we use both the original
data encoding as well as the one-hot encoding which usually
is more suitable for discrete data and report the best result
among the two. Note that the baseline naive Bayes approach is
very different from ours: the baseline method assumes that the
features are independent given the label, while we assume that
the label and the features are independent given an unknown
latent variable. The former is a very strong assumption that is
rarely satisfied by real data, but our assumption holds for an
arbitrary set of random variables provided F' is large enough,
as we showed in Proposition 1.

Table V shows the classification errors obtained on the
datasets. One can see that our approach outperforms the
naive Bayes classifier which assumes that the features are
independent given the label. Several observations are in or-
der. First, using higher-dimensional marginals, the proposed
approach gives better classification results compared to using
lower-dimensional ones. This is consistent with our analysis
in Sec. VI — higher-dimensional marginals lead to stronger
overall identifiability of the joint PMF. One can see that for
all the datasets under test, using four-dimensional marginal
distributions gives the best classification accuracy compared
to the three- and two-dimensional ones. Second, for the
five binary classification experiments, the proposed method
works better than (on three datasets) or comparable to the
baselines. This is quite surprising since our method does not
directly optimize a classification criterion as SVM does. The
result suggests that the proposed method indeed captures the
essence of the joint distribution and the recovered joint PMF
can be utilized to make inference in practice. Third, for the
multiclass datasets, the proposed method yields accuracy that
is less than the SVM methods. This also makes sense: when
X has a value set whose cardinality grows from 2 to 5, the
joint PMFs of Xy and X;, X; for 4,5 < N require more
samples to estimate accurately. This also shows an interesting
sample complexity-accuracy trade-off of the proposed method.
Nevertheless, the method still works comparably well with the
linear SVM, which supports the usefulness of the joint PMF
estimation method.

2) Recommender Systems: We also evaluate the method
for the task of recommender systems using the MovieLens
dataset [34]. MovieLens is a dataset that contains ratings
on 5-star scale, with half-star increments, by a number of
users. In order to test our algorithm we select three different
subsets of the full dataset and round the ratings to the next
integer. Initially, three different categories (action, animation
and romance) are selected. From each category we extract
a user-by-rating submatrix by keeping the 20 most rated
movies and form the 3 datasets for our experiments. Note
that the constructed three datasets have many missing values,
since not all users watched and rated all movies. The task
of recommender systems is to recommend unwatched movies
to users based on prediction of the user’s rating given the
available data.

We aim at estimating the joint PMF of the movie ratings. In
this case, each random variable X,, represents a movie, and it
takes values from {1,...,5}, i.e., the ratings. Consequently,
the joint PMF is a twenty-way tensor which has 520 elements.
The 3 partially observed datasets are used in order to estimate
lower-dimensional marginal distributions of pairs, triples and
quadruples of the variables (movies). We use the estimated
PMF to compute the expected value of users’ ratings that we
do not observe given the ones we observe. More specifically,
let s, = [Sm(1),...,8m(IN)] be the ratings of the m-th user
and s,,(N) = 0 ie., the user has a missing rating. The
conditional expectation of the movie’s rating is given by

INn
Sv =Y inPr(inlsm(1),...,8;m(N = 1)).
iNil

As a baseline algorithm, we use the Biased Matrix Factoriza-
tion (BMF) method [2], which is a commonly used method in
recommender systems. The BMF method is essentially low-
rank matrix completion with modifications. Additionally, we
present results obtained by global average of the ratings, the
user average, and the item average as baselines for predicting
the missing entries. For each dataset we randomly hide 20%
ratings that we use as a test set, 10% ratings that we use as a
validation set and the remaining dataset is used as a training
set. We run 10 Monte Carlo simulations using our approach
and the BMF algorithm. We select the parameters of both
methods based on the RMSE of the validation set.

Table VII shows the performance of the two algorithms in
terms of the RMSE and Mean Absolute Error (MAE). One can
see that, for the three datasets under test, the proposed method
and the BMF method output clearly lower RMSEs and MAEs
relative to the naive methods using averaging. In addition, the



proposed method slightly outperforms BMF on all of the three
datasets. Note that BMF is considered a state-of-art method
for movie recommendation, and it incorporates application-
specific custom features, such as user bias and movie bias
to achieve good performance. The proposed method, on the
other hand, only uses basic probability to handle the same
task — it is completely application-blind. This suggests that
the joint PMF modeling and the proposed algorithm are both
quite effective. Last, we also observe accuracy improvement
when we increase the dimension of the marginal distributions
used in the approach. Again, this performance may come from
the identifiability gain as we analyzed in Theorem 3.

VIII. CONCLUSIONS

In this work, we have taken a fresh look at one of the
most fundamental problems in statistical learning — joint PMF
estimation. Due to the curse of dimensionality, naive count-
based estimation is mission impossible in most cases. One
popular approach has historically been to assume a plausible
structural model, such as a Markov chain, tree, or other prob-
abilistic graphical model, and do inference using this model.
We showed that a very different ‘non-parametric’ tensor-based
approach is possible, and it features several key benefits.
Foremost among them is guaranteed identifiability of the
high-dimensional joint PMF from low-dimensional marginals,
which can be reliably estimated using counting from much
fewer examples, even if there are (many) samples missing
from each example. This ability to infer a unique higher-
dimensional joint PMF by specifying lower-dimensional ones
is reminiscent of Kolmogorov extension, which is intuitively
very pleasing.

We have also proven two more results that appear fun-
damental and close to the heart of probability and learning
theory: i) every joint PMF can be interpreted as a naive
Bayes model; and ii) probabilistic graphical models, which
are very popular in statistical and computer science, are never
identifiable if one simply limits the number of hidden nodes;
one needs to bound the number of hidden states as well. Our
non-parametric approach can reveal the true hidden structure,
instead of assuming it; and this alleviates the risk of up-front
bias in the analysis.

On the practical side, our approach is appealing since lower-
dimensional marginals can be more reliably estimated from
a limited amount of partially observable data. We have also
provided a practical and easily implementable algorithm that
is based on factor-coupled tensor factorization to handle the
recovery problem. Simulations and judicious experiments with
real data have shown that the performance of the proposed
approach is consistent with our analysis, and approaches or
exceeds that of state-of-art application-specific solutions that
have come out after years of intensive research, which is
satisfying.

APPENDIX A
IDENTIFIABILITY RESULTS
A. Proof of Theorem 1

Each three-dimensional marginal satisfies X, =
[[)\,Aj,Ak,Al]], where Al Z 0, Ak > 0, Aj > 0,

174, =17, 17A, =17, 17A; =17, A > 0, 17A = 1.
Consider a partition of the set S = [N] into three disjoint
sets 81,82, S3 and define the following factors

o~

Al:[Aglv"'vAz ]T
[S11
Ar=[A7 Ay TT (18)
A T T T
ASZ[Awlv"' 7Aw‘53‘]

with u; € S1, vy € S, wy € S3. Then, we can construct a
single virtual nonnegative CPD model

(€5)

X = (A3 © Ay)diag(AN)AT, (19)

where A; € ]RﬂsllXF,Kg € RﬂsQlXF,Kg € R{JSS‘XF and
X € Rﬂsl P} 1182[x11S3| e have used a subset of the available
information to synthesize a virtual single nonnegative CPD
model of size Iy X Is X I3, with I}, := I|S|. Therefore, we can
apply identifiability results of three-way tensors. We observe
that the sizes of the different modes of the virtual tensor
depend on the way we partition the variables. We distinguish

between two cases and apply Lemma 2.

1) (N <I): We partition the variables into three sets such
that [; = I,I, = I and I3 = (N — 2)I. Clearly we have
that I3 > I, I; and I3 < (I; — 1)({2 — 1). According
to Lemma 2 tensor X admits unique decomposition for
F <min (I3, (1 —1)(Is — 1)) = (N = 2)I.

2) (N > I): In this case we can partition the variables into
three sets such that Is = (I; — 1)(J2 — 1). We can always
have that Iy = I5. The equality is satisfied when |S;| =

1S, = V(NI=1)

= ~——F——=. According to Lemma 2 tensor X admits
unique decomposition for F' < min (I3, (I; —1)(Iz—1)) <

(YD

B. Proof of Theorem 2

As above, but this time choosing |S1| = |S2| = L%J, |S3| =
N — 2|51] and invoking Lemma 3.

C. Proof of Theorem 3

Consider a partitioning the variables into four disjoint sets
similar to the three-way case. We obtain a single nonnegative
CPD of the following form

XM = (A;® Az ® Ay)diag(A\)AT,

L S 1|81 |xI|S2|x1|S3|x1|S
which is a fourth-order tensor X & R_J 1XT|S2 |3 T|Ss[x 1S4

A fourth-order tensor can be viewed as a third-order tensor
of size I|S1] x I|Sa| x I?|S4||Ss| with a specially structured
factor matrix. We can write the mode-1 unfolding of the tensor
X as
=1
X( )

= (A5 ® Ay)diag(A)AT, (20)

where A3 = A, ® A;. Lemmas 2-3 cannot be applied in this
case because of the Khatri-Rao structure of one factor. We will
use the following result

Lemma 4. [35] Let X = [A1, Ag, A3], where Ay € RI1*E,
Ay, € REXF A3 € REBXE If rank(A3) = F and



rank(Ma(A1) © Ma(Az)) = (g), then rank(X) = F and
the decomposition is essentially unique.

M, (A) denotes the (5) x () compound matrix containing
all 2 x 2 minors of A. The generic version of Lemma 4 states
that if F < Iz and 2F(F —1) < I;(I; —1)I5(Is — 1), then the
decomposition of X is essentially unique, a.s. [36]. We know
that a Khatri-Rao product of two matrices is full rank almost
surely [37, Corollary 1]. For the three-way tensor in (20) we
have Iy = I|S;|, Iy = I|Ss| and I3 = I?|S5||S4|. Applying
the generic version of Lemma 4 we obtain the desired result.

APPENDIX B
ALGORITHM

We reformulate optimization problem (16) by introducing
an auxiliary variable A ;. The problem can be equivalently
written as R

min f(A;) +7(A;)
Ay (21)
subject to A; = K?

where

N 1 1 . ~ 2
FAR) =335 x5 - (Ao Anding VA, ||
e

r(A) is the indicator function for the probability simplex
constraints C = {A | A > 0,1TA =17}

0, AecC

r(A) = oo, A¢C

Optimization problem (21) can be readily solved by applying
the ADMM algorithm. We solve for A; by performing the
following updates

J

~ T
AT = (G 1) (Vj +p (A7 +U) ) :
A§T+1) _ ,PC (AgT) . A§T+1)T + UET)) 7

(t+1) _ y7(7) (t41) X (r+1)T
Ul = Ul 4 AT REOT

where

Gi=\Ne> > QhQu.

k#j 1#£]
1>k

v, =diag\) Y > QEX,

k2 17
15k
Qi =A,0 Ay

‘Pc is the projection operator onto the convex set C and 7 de-
notes the iteration index. Various methods exist for projecting
onto the probability simplex, e.g., see [38]. Note that in order
to efficiently compute matrix G; we use a property of the
Khatri-Rao product; Q}, Qix = (AT A;) ® (AT Ay). Efficient
algorithms also exist for the computation of matrix V; which
is a sum of Matricized Tensor Times Khatri-Rao Product
(MTTKRP) terms [39], [40]. Similarly, we can derive updates

for A. At each ADMM iteration we perform the following
updates

N+ (G 4 o)t (V+p (A(T) +u(7)>) ,

AT — p, ( A NG 4 u(ﬂ) 7

w™tD) — g L A\C+D G+,
where .
G=> > Qh,Qu;
J k>ji>k
V= Z Z Z QﬁjVeC(X;‘kl)y
J k>ji>k

Qi; =AIOAL OA;.
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