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Abstract

We present a new algorithm for identifying the
transition and emission probabilities of a hid-
den Markov model (HMM) from the emitted
data. Expectation-maximization becomes compu-
tationally prohibitive for long observation records,
which are often required for identification. The
new algorithm is particularly suitable for cases
where the available sample size is large enough to
accurately estimate second-order output probabil-
ities, but not higher-order ones. We show that if
one is only able to obtain a reliable estimate of the
pairwise co-occurrence probabilities of the emis-
sions, it is still possible to uniquely identify the
HMM if the emission probability is sufficiently
scattered. We apply our method to hidden topic
Markov modeling, and demonstrate that we can
learn topics with higher quality if documents are
modeled as observations of HMMs sharing the
same emission (topic) probability, compared to
the simple but widely used bag-of-words model.

1. Introduction
Hidden Markov models (HMMs) are widely used in ma-
chine learning when the data samples are time dependent,
for example in speech recognition, language processing, and
video analysis. The graphical model of a HMM is shown
in Figure 1. HMM models a (time-dependent) sequence
of data {Yt}Tt=0 as indirect observations of an underlying
Markov chain {Xt}Tt=0 which is not available to us. Ho-
mogeneous HMMs are parsimonious models, in the sense
that they are fully characterized by the transition probability
Pr[Xt+1|Xt] and the emission probability Pr[Yt|Xt] even
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Figure 1: The graphical model of a HMM.

though the size of the given data {Yt}Tt=0 can be very large.

Consider a homogeneous HMM such that:
• a latent variable Xt can take K possible outcomes
x1, ..., xK ;

• an ambient variable Yt can take N possible outcomes
y1, ..., yN .

Recall that (Rabiner & Juang, 1986; Ghahramani, 2001):
• Given both {Xt}Tt=0 and {Yt}Tt=0, the complete joint

probability factors, and we can easily estimate the tran-
sition probability Pr[Xt+1|Xt] and the emission prob-
ability Pr[Yt|Xt].

• Given only {Yt}Tt=0, but assuming we know the un-
derlying transition and emission probabilities, we can
calculate the observation likelihood using the forward
algorithm, estimate the most likely hidden sequence
using the Viterbi algorithm, and compute the poste-
rior probability of the hidden states using the forward-
backward algorithm.

The most natural problem setting, however, is when neither
the hidden state sequence nor the underlying probabilities
are known to us—we only have access to a sequence of
observations, and our job is to reveal the HMM structure,
characterized by the transition matrix Pr[Xt+1|Xt] and the
emission probability Pr[Yt|Xt] from the set of observations
{Yt}Tt=0.

1.1. Related work

The traditional way of learning a HMM from {Yt}Tt=0 is via
expectation-maximization (EM) (Rabiner & Juang, 1986),
in which the expectation step is performed by calling the
forward-backward algorithm. This specific instance of EM
is also called the Baum-Welch algorithm (Baum et al., 1970;
Ghahramani, 2001). However, the complexity of Baum-



Learning Hidden Markov Models from Pairwise Co-ocurrences

Welch is prohibitive when T is relatively large—the com-
plexity of the forward-backward algorithm is O(K2T ), but
EM converges slowly, so the forward-backward algorithm
must be called many times. This is a critical issue, because
a HMM can only be learned with high accuracy when the
number of observation samples T is large enough.

One way of designing scalable algorithms for learning
HMMs is to work with sufficient statistics—a summary of
the given observation sequence, whose size does not grow
with T . Throughout this paper we assume that the HMM
process is stationary (time-invariant), which is true almost
surely if the underlying Markov process is ergodic and the
process has been going on for a reasonable amount of time.
With T large enough, we can accurately estimate the co-
occurrence probability between two consecutive emissions
Pr[Yt, Yt+1]. According to the graphical model shown in
Figure 1, it is easy to see that given the value of Xt, Yt is
conditionally independent of all the other variables, leading
to the factorization

Pr[Yt, Yt+1] =
K∑

k,j=1

Pr[Yt|Xt = xk] Pr[Yt+1|Xt+1 = xj ]

× Pr[Xt = xk, Xt+1 = xj ] (1)

LetΩ ∈ RN×N ,M ∈ RN×K , andΘ ∈ RK×K , with their
elements defined as

Ωn` = Pr[Yt = yn, Yt+1 = y`],

Mnk = Pr[Yt = yn|Xt = xk],

Θkj = Pr[Xt = xk, Xt+1 = xj ].

Then, equations (1) can be written compactly as

Ω = MΘM>. (2)

Noticing that (2) is a nonnegative matrix tri-factorization
with a number of inconsequential constraints forM andΘ
to properly represent probabilities, Vanluyten et al. (2008);
Lakshminarayanan & Raich (2010); Cybenko & Crespi
(2011) proposed using nonnegative matrix factorization
(NMF) to estimate the HMM probabilities. However, NMF-
based methods have a serious shortcoming in this context:
the tri-factorization (2) is in general not unique, because it
is fairly easy to find a nonsingular matrixQ such that both
MQ ≥ 0 and Q−1ΘQ−>≥ 0, and then M̃ = MQ and
Θ̃ = Q−1ΘQ−> are equally good solutions in terms of
reconstructing the co-occurrence matrixΩ. When we use
(M ,Θ) and (M̃ , Θ̃) to perform HMM inference, such as
estimating hidden states or predicting new emissions, the
two models often yield completely different results, unless
Q is a permutation matrix.

A number of works propose to use tensor methods to over-
come the identifiability issue. Instead of working with the

pairwise co-occurrence probabilities, they start by estimat-
ing the joint probabilities of three consecutive observations
Pr[Yt−1, Yt, Yt+1]. Noticing that these three random vari-
ables are conditionally independent given Xt, the triple-
occurrence probability factors into

Pr[Yt−1, Yt, Yt+1] =
K∑
k=1

Pr[Xt = xk] Pr[Yt−1|Xt = xk]

×Pr[Yt|Xt = xk] Pr[Yt+1|Xt = xk],

which admits a tensor canonical polyadic decomposition
(CPD) model (Hsu et al., 2009; Anandkumar et al., 2012;
2014). Assuming K ≤ N , the CPD is essentially unique
if two of the three factor matrices have full column rank,
and the other one is not rank one (Harshman, 1970); in
the context of HMMs, this is equivalent to assuming M
andΘ both have linearly independent columns, which is a
relatively mild condition. The CPD is known to be unique
under much more relaxed conditions (Sidiropoulos et al.),
but in order to uniquely retrieve the transition probability
using the relationship

Pr[Yt+1|Xt] =
K∑
j=1

Pr[Yt+1|Xt+1 =xj ] Pr[Xt+1 =xj |Xt],

K ≤ N is actually the best we can achieve using
triple-occurrences without making further assumptions. 1

A salient feature in this case is that if the triple-occurrence
probability Pr[Yt−1, Yt, Yt+1] is exactly given (meaning the
rank of the triple-occurrence tensor is indeed smaller than
N ), the CPD can be efficiently calculated using generalized
eigendecomposition and related algebraic methods (Sanchez
& Kowalski, 1990; Leurgans et al., 1993; De Lathauwer
et al., 2004). These methods do not work well, however,
when the low-rank tensor is perturbed; e.g., due to insuf-
ficient mixing / sample averaging of the triple occurrence
probabilities.

It is also possible to handle cases where K > N . The key
observation is that, given Xt, Yt is conditionally indepen-
dent of Yt−1, ..., Yt−τ and Yt+1, ..., Yt+τ . Then, grouping
Yt−1, ..., Yt−τ into a single categorical variable taking Nτ

possible outcomes, and Yt+1, ..., Yt+τ into another one, we
can construct a much bigger tensor of size Nτ ×Nτ ×N ,
and then uniquely identify the underlying HMM structure
with K � N as long as certain linear independence re-
quirements are satisfied for the conditional distribution of
the grouped variables (Allman et al., 2009; Bhaskara et al.,
2014; Huang et al., 2016b; Sharan et al., 2017). It is intu-

1In the supplementary material, we prove that if the emission
probability is generic and the transition probability is sparse, the
HMM can be uniquely identified from triple-occurrence proba-
bility for K < N2/16 using the latest tensor identifiability result
(Chiantini & Ottaviani, 2012).
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itively clear that for fixed N , we need a much larger real-

ization length T in order to accurately estimate (2τ + 1)-
occurrence probabilities as τ grows, which is the price we

need to pay for learning a HMM with a larger number of

hidden states.

1.2. This paper

The focus of this paper is on cases where K ≤ N , and T
is large enough to obtain accurate estimate of Pr[Yt, Yt+1],
but not large enough to accurately estimate triple or higher-

order occurrence probabilities. We prove that it is actually

possible to recover the latent structure of an HMM only

from pairwise co-occurrence probabilities Pr[Yt, Yt+1], pro-

vided that the underlying emission probability Pr[Yt|Xt] is

sufficiently scattered. Compared to the existing NMF-based

HMM learning approaches, our formulation employs a dif-

ferent (determinant-based) criterion to ensure identifiability

of the HMM parameters. Our matrix factorization approach

resolves cases that cannot be handled by tensor methods,

namely when T is insufficient to estimate third-order prob-

abilities, under an additional condition that is quite mild:

that the emission probability matrix M must be sufficiently
scattered, rather than simply full column-rank.

We apply our method to hidden topic Markov modeling

(HTMM) (Gruber et al., 2007), in which case the number

of hidden states (topics) is indeed much smaller than the

number of ambient states (words). HTMM goes beyond

the simple and widely used bag-of-words model by assum-

ing that (ordered) words in a document are emitted from a

hidden topic sequence that evolves according to a Markov

model. We show improved performance on real data when

using this simple and intuitive model to take word ordering

into account when learning topics, which also benefits from

our identifiability guaranteed matrix factorization method.

As an illustrative example, we showcase the inferred topic

of each word in a news article (removing stop words) in

Figure 2, taken from the Reuters21578 data set obtained

at (Mimaroglu, 2007). As we can see, HTMM gets much

more consistent and smooth inferred topics compared to

that obtained from a bag-of-words model (cf. supplemen-

tary material for details). This result agrees with human

understanding.

2. Second-order vs. Third-order Learning
We start by arguing that for the same observation data

{Yt}Tt=0, the estimate of the pairwise co-occurrence proba-

bility Pr[Yt, Yt+1] is always more accurate than that of the

triple co-occurrence probability Pr[Yt−1, Yt, Yt+1].

Let us first explicitly describe the estimator we use for these

probabilities. For each observation Yt, we define a coordi-

nate vector ψt ∈ RK , and ψt = ek if Yt = yk. The natural

china daily vermin eat pct grain stocks survey provinces and cities showed ver-
min consume and pct china grain stocks china daily each year mln tonnes pct
china fruit output left rot and mln tonnes pct vegetables paper blamed waste
inadequate storage and bad preservation methods government had launched
national programme reduce waste calling for improved technology storage
and preservation and greater production additives paper gave details

china daily vermin eat pct grain stocks survey provinces and cities showed ver-
min consume and pct china grain stocks china daily each year mln tonnes pct
china fruit output left rot and mln tonnes pct vegetables paper blamed waste
inadequate storage and bad preservation methods government had launched
national programme reduce waste calling for improved technology storage
and preservation and greater production additives paper gave details

Figure 2: Inferred topics of the words shown in different

colors, obtained by probabilistic latent semantic analysis

(top) and hidden topic Markov model (bottom).

estimator for the pairwise co-occurrence probability matrix

Ω is

Ω̂ =
1

T

T−1∑
t=0

ψtψ
�
t+1, (3)

and similarly for the triple co-occurrence probability Ω3

Ω̂3 =
1

T − 1

T−1∑
t=1

ψt−1 ◦ψt ◦ψt+1, (4)

where ◦ denotes vector outer-product. 2

The first observation is that both Ω̂ and Ω̂3 are unbiased

estimators: Obviously E(ψtψ
�
t+1) = Ω and likewise for

the triple-occurrences, and taking their averages does not

change the expectation. However, the individual terms in

the summation are not independent of each other, making

it hard to determine how fast estimates converge to their

expectation. The state-of-the-art concentration result for

HMMs (Kontorovich, 2006) states that for any 1-Lipschitz

function f

Pr[|f({Yt})− E f({Yt})| > ε] ≤ 2 exp
(−Tε2/c

)
,

where c is a constant that only depends on the specific HMM

structure but not on the function f (cf. (Kontorovich, 2006)

for details). Taking f as any entry in Ω̂ or Ω̂3, we can

check that indeed it is 1-Lipschitz, meaning as T goes to

infinity, both estimators converge to their expectation with

negligible fluctuations.

We now prove that for a given set of observations {Yt}Tt=0,

Ω̂ is always going to be more accurate than Ω̂3. Since both

of them represent probabilities, we use two common metrics

to measure the differences between the estimators and their

expectations, the Kullback-Leibler divergence DKL(·) and

the total-variation difference DTV(·).
2In some literature ◦ is written as the Kronecker product ⊗.

Strictly speaking, the Kronecker product of three vectors is a very
long vector, not a three-way array. For this reason, we chose to use
◦ instead of ⊗.
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Proposition 1. Let Ω̂ and Ω̂3 be obtained from the same
set of observations {Yt}Tt=0, we have that

DKL(Ω̂‖Ω) ≤ DKL(Ω̂3‖Ω3) and

DTV(Ω̂‖Ω) ≤ DTV(Ω̂3‖Ω3).

The proof of Proposition 1 is relegated to the supplementary

material.

3. Identifiability of HMMs from Pairwise
Co-occurrence Probabilities

The arguments made in the previous section motivate going

back to matrix factorization methods for learning a HMM

when the realization length T is not large enough to ob-

tain accurate estimates of triple co-occurrence probabilities.

As we have explained in §1.1, the co-occurrence probabil-

ity matrix Ω admits a nonnegative matrix tri-factorization

model (2). There are a number of additional equality con-

straints. Columns of M represent conditional distributions,

so 1�M = 1�. Matrix Θ represents the joint distribution

between two consecutive Markovian variables, therefore

1�Θ1 = 1. Furthermore, we have that Θ1 and Θ�1 rep-

resent Pr[Xt] and Pr[Xt+1] respectively, and since we as-

sume that the Markov chain is stationary, they are the same,

i.e., Θ1 = Θ�1 . Notice that this does not imply that Θ is

symmetric, and in fact it is often not symmetric.

Huang et al. (2016a) considered a factorization model sim-

ilar to (2) in a different context, and showed that identifia-

bility can be achieved under a reasonable assumption called

sufficiently scattered, defined as follows.

Definition 1 (sufficiently scattered). Let cone(M�)∗ de-

note the polyhedral cone {x : Mx ≥ 0}, and C denote the

elliptical cone {x : ‖x‖ ≤ 1�x}. Matrix M is called suf-
ficiently scattered if it satisfies that: (i) cone(M�)∗ ⊆ C,

and (ii) cone(M�)∗ ∩ bdC = {λek : λ ≥ 0, k = 1, ...,K},

where bdC denotes the boundary of C, {x : ‖x‖ = 1�x}.

The sufficiently scattered condition was first proposed in

(Huang et al., 2014) to establish uniqueness conditions for

the widely used nonnegative matrix factorization (NMF).

For the NMF model Ω = WH�, if both W and H are

sufficiently scattered, then the nonnegative decomposition

is unique up to column permutation and scaling. Follow

up work strengthened and extended the identifiability re-

sults based on this geometry inspired condition (Fu et al.,

2015; Huang et al., 2016a; Fu et al., 2018). A similar tri-

factorization model was considered in (Huang et al., 2016a)

in the context of bag-of-words topic modeling, and it was

shown that among all feasible solutions of (2), if we find one

that minimizes | detΘ|, then it recovers the ground-truth

latent factors M and Θ, assuming the ground-truth M is

sufficiently scattered. In our present context, we therefore

(a) Separable (b) Sufficiently scattered (c) Not identifiable

Figure 3: A geometric illustration of the sufficiently scat-

tered condition (middle), a special case that is separable

(left), and a case that is not identifiable (right).

propose the following problem formulation:

minimize
Θ,M

| detΘ| (5a)

subject to Ω = MΘM�, (5b)

Θ ≥ 0,Θ1 = Θ�1 ,1�Θ1 = 1, (5c)

M ≥ 0,1�M = 1�. (5d)

Regarding Problem (5), we have the following identifiability

result.

Theorem 1. (Huang et al., 2016a) Suppose Ω is con-
structed as Ω = M�Θ�M

�
� , where M� and Θ� satisfy

the constraints in (5), and in addition (i) rank(Θ�) = K
and (ii) M� is sufficiently scattered. Let (M�,Θ�) be an
optimal solution for (5), then there must exist a permutation
matrix Π ∈ RK×K such that

M� = M�Π, Θ� = Π�Θ�Π.

One may notice that in (Huang et al., 2016a), there are no

constraints on the core matrix Θ as we do in (5c). In terms

of identifiability, it is easy to see that if the ground-truth

Θ� satisfies (5c), solving (5) even without (5c) will produce

a solution Θ� that satisfies (5c), thanks to uniqueness. In

practice when we are given a less accurate Ω, such “redun-

dant” information will help us improve the estimation error,

but that goes beyond identifiability consederations.

The proof of Theorem 1 is referred to (Huang et al., 2016a).

Here we provide some insights on this geometry-inspired

sufficiently scattered condition, and discuss why it is a

reasonable (and thus practical) assumption. The notation

cone(M�)∗ = {x : Mx ≥ 0} comes from the convention

in convex analysis that it is the dual cone of the conical

hull of the row vectors of M , i.e., cone(M�) = {M�α :
α ≥ 0}. Similarly, we can derive that the dual cone of C
is C∗ = {x : ‖x‖ ≤ 1�x/

√
K − 1}. A useful property of

the dual cone is that for two convex cones A and B, A ⊆ B
iff B∗ ⊆ A∗. Therefore, the first requirement of sufficiently

scattered in Definition 1 equivalently means

C∗ ⊆ cone(M�).
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We give a geometric illustration of the sufficiently scattered
condition in Figure 3b for K = 3, and we focus on the 2-
dimensional plane 1>x = 1. The intersection between this
plane and the nonnegative orthant is the probability simplex,
which is the triangle in Figure 3b. The outer circle represents
C, and the inner circle represents C∗, again intersecting with
the plane, respectively. The rows ofM are scaled to sum up
to one, and they are represented by black dots in Figure 3b.
Their conical hull is represented by the shaded region. The
polygon with dashed lines represents the dual of cone(M>),
which is indeed a subset of C, and touches the boundary of
C only at the coordinate vectors.

Figure 3a shows a special case of sufficiently scattered called
separability, which first appeared in (Donoho & Stodden,
2004) also to establish uniqueness of NMF. In this case,
all the coordinate vectors appear in rows of M , therefore
cone(M) equals the nonnegative orthant. It makes sense
that this condition makes the identification problem easier,
but it is also a very restrictive assumption. The sufficiently
scattered condition, on the other hand, only requires that
the shaded region contains the inner circle, as shown in Fig-
ure 3b. Intuitively this requires that the rows ofM be “well
scattered” in the probability simplex, but not to the extent
of “separable”. Separability-based HMM identification has
been considered in (Barlier et al., 2015; Glaude et al., 2015).
However, the way they construct second-order statistics is
very different from ours. Figure 3c shows a case whereM
is not sufficiently scattered, and it also happens to be a case
whereM is not identifiable.

As we can see, the elliptical cone C∗ is tangent to all the
facets of the nonnegative orthant. As a result, forM to be
sufficiently scattered, it is necessary that there are enough
rows ofM lie on the boundary of the nonnegative orthant,
i.e.,M is relatively sparse. Specifically, ifM is sufficiently
scattered, then each column ofM contains at least K − 1
zeros (Huang et al., 2014). This is a very important insight,
as exactly checking whether a matrix is sufficiently scat-
tered may be computationally hard. In the present paper we
further show the following result.

Proposition 2. The ratio between the volume of the hy-
perball obtained by intersecting 1>x = 1 and C∗ and the
probability simplex is

1√
πK

(
4π

K(K − 1)

)K−1
2

Γ

(
K

2

)
. (6)

The proof is given in the supplementary material. As K
grows larger, the volume ratio (6) goes to zero at a super-
exponential decay rate. This implies that the volume of
the inner sphere quickly becomes negligible compared to
the volume of the probability simplex, as K becomes mod-
erately large. The take home point is that, for a practical
choice of K, say K ≥ 10, as long asM satisfies that each

column contains at least K zeros, and the positions of the
zeros appear relatively random, it is very likely that it is
sufficiently scattered, and thus can be uniquely recovered
via solving (5).

4. Algorithm
Our identifiability analysis based on the sufficiently scat-
tered condition poses an interesting non-convex optimiza-
tion problem (5). First of all, the given co-occurrence prob-
abilityΩ may not be exact, therefore it may not be a good
idea to put (5b) as a hard constraint. For algorithm design,
we propose the following modification to problem (5).

minimize
Θ,M

N∑
n,`=1

−Ωn` log
K∑

k,j=1

MnkΘkjM`j + λ|detΘ|

subject to M ≥ 0,1>M = 1>, (7)

Θ ≥ 0,Θ1 = Θ>1 ,1>Θ1 = 1.

In the loss function of (7), the first term is the Kullback-
Leibler distance between the empirical probability Ω and
the parameterized version MΘM> (ignoring a constant),
and the second term is our identifiability-driven regular-
ization. We need to tune the parameter λ to yield good
estimation results. However, intuitively we should use a
λ with a relatively small value. Suppose Ω is sufficiently
accurate, then the priority is to minimize the difference be-
tweenΩ andMΘM>; when there exist equally good fits,
then the second term comes into play and helps us pick out
a solution that is sufficiently scattered.

Noticing that the constraints of (7) are all convex, but not the
loss function, we propose to design an iterative algorithm
to solve (7) using successive convex approximation. At
iteration r when the updates areΘr andM r, we define

Πr
n`kj = Mr

nkΘ
r
kjM

r
`j

/ K∑
κ,ι=1

Mr
nκΘ

r
κιM

r
`ι. (8)

Obviously, Πr
n`kj ≥ 0 and

∑K
k,j=1Π

r
n`kj = 1, which de-

fines a probability distribution for fixed n and `. Using
Jensen’s inequality (Jensen, 1906), we have that

−Ωn` log
K∑

k,j=1

MnkΘkjM`j

≤
K∑

k,j=1

−Ωn`Πr
n`kj (logMnk + logΘkj + logM`j

− logΠr
n`kj

)
(9)

which defines a convex and locally tight upperbound for the
first term in the loss function of (7). Regarding the second
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term in the loss of (7), we propose to simply take the linear
approximation

|detΘ| ≈ |detΘr|+ |detΘr|Tr
(
(Θr)−1(Θ−Θr)

)
(10)

Combining (9) and (10), our successive convex approxima-
tion algorithm tries to solve the following convex problem
at iteration r:

minimize
Θ,M

N∑
n,`=1

K∑
k,j=1

−Ωn`Πr
n`kj (logMnk + logM`j

+ logΘkj) + λ
K∑

k,j=1

ΞrkjΘkj (11)

subject to M ≥ 0,1>M = 1>,

Θ ≥ 0,Θ1 = Θ>1 ,1>Θ1 = 1,

where we define Ξr = |detΘr|(Θr)−>. Problem (11)
decouples with respect to M and Θ, so we can work out
their updates individually.

The update of M admits a simple closed form solution,
which can be derived via checking the KKT conditions. We
denote the dual variable corresponding to 1>M = 1> as
µ ∈ RK . Setting the gradient of the Lagrangian with respect
to Mnk equal to zero, we have

Mnk =
N∑
`=1

K∑
j=1

(
Ωn`Π

r
n`kj +Ω`nΠ

r
`njk

)/
µk

and µ should be chosen so that the constraint 1>M = 1>

is satisfied, which amounts to a simple re-scaling.

The update of Θ is not as simple as a closed form expres-
sion, but it can still be obtained very efficiently. Noticing
that the nonnegativity constraint is implicitly implied by the
individual log functions in the loss function, we propose to
solve it using Newton’s method with equality constraints
(Boyd & Vandenberghe, 2004, §10.2). Although Newton’s
method requires solving a linear system of equations with
K2 number of variables in each iteration, there is special
structure we can exploit to reduce the per-iteration com-
plexity down to O(K3): The Hessian of the loss function
of (11) is diagonal, and the linear equality constraints are
highly structured; using block elimination (Boyd & Vanden-
berghe, 2004, §10.4.2), we ultimately only need to solve a
positive definite linear system with K variables. Together
with the quadratic convergence rate of Newton’s method,
the complexity of updatingΘ is O(K3 log log 1

ε ), where ε
is the desired accuracy for theΘ update. Noticing that the
complexity of a naive implementation of Newton’s method
would be O(K6 log log 1

ε ), the difference is big for moder-
ately large K. The in-line implementation of this tailored
Newton’s method THETAUPDATE and the detailed deriva-
tion can be found in the supplementary material.

Algorithm 1 Proposed Algorithm

Require: λ > 0
1: initializeM using (Huang et al., 2016a)
2: initializeΘ ← 1

K(K+1) (I + 11>)
3: repeat
4: Ω̃ ← Ω

/
MΘM> B element-wise division

5: M̃ ←M ∗
(
Ω̃MΘ>+ Ω̃>MΘ

)
6: Θ̃ ←M>Ω̃M
7: M̃ ← M̃ Diag(1>M̃)−1

8: Θ̃ ← THETAUPDATE B cf. supplementary
9: (M ,Θ)← Amijo line search between (M ,Θ)

and (M̃ , Θ̃)
10: until convergence
11: return M andΘ

The entire proposed algorithm to solve Problem (7) is sum-
marized in Algorithm 1. Notice that there is an additional
line-search step to ensure decrease of the loss function. The
constraint set of (7) is convex, so the line-search step will
not incur infeasibility. Computationally, we find that any op-
eration that involves Πr

n`kj can be carried out succinctly by
defining the intermediate matrix Ω̃ = Ω/MΘM>, where
“/” denotes element-wise division between two matrices of
the same size. The per-iteration complexity of Algorithm 1
is completely dominated by the operations that involve com-
puting with Ω̃, notably comparing with that of THETA-
UPDATE. In terms of initialization, which is important since
we are optimizing a non-convex problem, we propose to use
the method by Huang et al. (2016a) to obtain an initializa-
tion forM ; forΘ, it is best if we start with a feasible point
(so that the Newton’s iterates will remain feasible), and a
simple choice is scaling the matrix I + 11> to sum up to
one. Finally, we show that this algorithm converges to a
stationary point of Problem (7), with proof relegated to the
supplementary material based on (Razaviyayn et al., 2013).

Proposition 3. Assume THETAUPDATE solves Prob-
lem (11) with respect to Θ exactly, then Algorithm 1 con-
verges to a stationary point of Problem (7).

5. Validation on Synthetic Data
In this section we validate the identifiability performance
on synthetic data. In this case, the underlying transition and
emission probabilities are generated synthetically, and we
compare them with the estimated ones to evaluate perfor-
mance. The simulations are conducted in MATLAB using
the HMM toolbox, which includes functions to generate
observation sequences given transition and emission proba-
bilities, as well as an implementation of the Baum-Welch
algorithm (Baum et al., 1970), i.e., the EM algorithm, to es-
timate the transition and emission probabilities using the ob-
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Figure 4: The total variation difference between the ground
truth and estimated transition probability (top) and emission
probability (bottom). The total variation difference of the
emission probabilities is calculated as 1

2K ‖M\ −M?‖1,
since each column of the matrices indicates a (conditional)
probability, and the total variation difference is equal to one
half of the L1-norm; and similarly for that of the transition
probabilities after rescaling the rows ofΩ\ andΩ? to sum
up to one. The result is averaged over 10 random problem
instances.

servations. Unfortunately, even for some moderate problem
sizes we considered, the streamlined MATLAB implemen-
tation of the Baum-Welch algorithm was not able to execute
within reasonable amount of time, so its performance is not
included here. For the baselines, we compare with the plain
NMF approach using multiplicative update (Vanluyten et al.,
2008) and the tensor CPD approach (Sharan et al., 2017)
using simultaneous diagonalization with Tensorlab (Vervliet
et al., 2016). Since we work with empirical distributions
instead of exact probabilities, the result of the simultaneous
diagonalization is not going to be optimal. We therefore use
it to initialize the EM algorithm for fitting a nonnegative
tensor factorization with KL divergence loss (Shashanka
et al., 2008) for refinement.

We focus on the cases when the number of hidden states
K is smaller than the number observed states N . As we
explained in the introduction, even for this seemingly easier
case, it is not known that we can guarantee unique recov-
ery of the HMM parameters just from the pair-wise co-
occurrence probability. What is known is that the tensor
CPD approach is able to guarantee identifiability given ex-
act triple-occurrence probability. We will demonstrate in
this section that it is much harder to obtain accurate triple-

occurrence probability comparing with the co-occurrence
probability. As a result, if the sufficiently scattered assump-
tion holds for the emission probability, the estimated param-
eters obtained from our method are always more accurate
than those obtained from tensor CPD.

Fixing N = 100 and K = 20, the transition probabili-
ties are synthetically generated from a random exponential
matrix of size K ×K followed by row-normalization; for
the emission probabilities, approximately 50% of the en-
tries in the N × K random exponential matrices are set
to zero before normalizing the columns, which is shown
to satisfy the sufficiently scattered condition with very
high probability (Huang et al., 2015). We let the num-
ber of HMM realizations go from 106 to 108, and com-
pare the estimation error for the transition matrix and emis-
sion matrix by the aforementioned methods. We show the
total variation distance between the ground truth proba-
bilities Pr[Xt+1|Xt] and Pr[Yt|Xt] and their estimations
P̂r[Xt+1|Xt] and P̂r[Yt|Xt] using various methods. The
result is shown in Figure 4. As we can see, the proposed
method indeed works best, obtaining almost perfect recov-
ery when sample size is above 108. The CPD based method
does not work as well since it cannot obtain accurate esti-
mates of the third-order statistics that it needs. Initialized by
CPD, EM improves from CPD but the performance is still
far away from the proposed method. NMF is not working
well since it does not have identifiability in this case.

6. Application: Hidden Topic Markov Model
Analyzing text data is one of the core application domains
of machine learning. There are two prevailing approaches
to model text data. The classical bag-of-words model as-
sumes that each word is independently drawn from certain
multinomial distributions. These distributions are different
across documents, but can be efficiently summarized by a
small number of topics, again mathematically modeled as
distributions over words; this task is widely known as topic
modeling (Hofmann, 2001; Blei et al., 2003). However, it
is obvious that the bag-of-words representation is oversim-
plified. The n-gram model, on the other hand, assumes that
words are conditionally dependent up to a window-length of
n. This seems to be a much more realistic model, although
the choice of n is totally unclear, and is often dictated by
memory and computational limitations in practice—since
the size of the joint distribution grows exponentially with
n. What is more, it is somewhat difficult to extract “top-
ics” from this model, despite some preliminary attempts
(Wallach, 2006; Wang et al., 2007).

We propose to model a document as the realization of a
HMM, in which the topics are hidden states emitting words,
and the states are evolving according to a Markov chain,
hence the name hidden topic Markov model (HTMM). For a
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set of documents, this means we are working with a collec-
tion of HMMs. Similar to other topic modeling works, we
assume that the topic matrix is shared among all documents,
meaning all the given HMMs share the same emission prob-
ability. For the bag-of-words model, each document has a
specific topic distribution pd, whereas for our model, each
document has its own topic transition probability Θd; as
per our previous discussion, the row-sum and column-sum
of Θd are the same, which are also the topic probability
for the specific document. The difference is the Markovian
assumption on the topics rather than the over-simplifying
independence assumption.

We can see some immediate advantages for the HTMM.
Since the Markovian assumption is only imposed on the top-
ics, which are not exposed to us, the observations (words)
are not independent from each other, which agrees with
our intuition. On the other hand, we now understand that
although word dependencies exist for a wide neighborhood,
we only need to work with pair-wise co-occurrence proba-
bilities, or 2-grams. This releases us from picking a window
length n in the n-gram model, while maintaining depen-
dencies between words well beyond a neighborhood of n
words. It also includes the bag-of-words assumption as a
special case: If the topics of the words are indeed indepen-
dent, this just means that the transition probability has the
special form 1p>d. The closest work to ours is by Gruber
et al. (2007), which is also termed hidden topic Markov
model. However, they make a simplifying assumption that
the transition probability takes the form (1− ε)I + ε1p>d,
meaning the topic of the word is either the same as the pre-
vious one, or independently drawn from pd. Both models
are special cases of our general HTMM.

In order to learn the shared topic matrixM , we can use the
co-occurrence statistics for the entire corpus: Denote the
co-occurrence statistics for the d-th document asΩd, then
EΩd = MΘdM

>; consequently

Ω =
1∑D

d=1 Ld

D∑
d=1

LdΩd,

which is an unbiased estimator for

MΘM>=
1∑D

d=1 Ld

D∑
d=1

LdMΘdM
>,

whereLd is the length of the d-th document andΘ is concep-
tually a weighted average of all the topic-transition matrices.
Then we may apply Algorithm 1 to learn the topic matrix.

We illustrate the performance of our HTMM by comparing
it to three popular bag-of-words topic modeling approaches:
pLSA (Hofmann, 2001), LDA (Blei et al., 2003), and Fas-
tAnchor (Arora et al., 2013), which guarantees identifiability
if every topic has a characteristic anchor word. Our HTMM
model guarantees identifiability if the topic matrix is suffi-
ciently scattered, which is a more relaxed condition than the
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Figure 5: Coherence of the topics.

anchor word one. On the Reuters21578 data set obtained at
(Mimaroglu, 2007), we use the raw document to construct
the word co-occurrence statistics, as well as bag-of-words
representations for each document for the baseline algo-
rithms. We use the version in which the stop-words have
been removed, which makes the HTMM model more plau-
sible since any syntactic dependencies have been removed,
leaving only semantic dependencies. The vocabulary size
of Reuters21578 is around 200, 000, making any method
relying on triple-occurrences impossible to implement, and
that is why tensor-based methods are not compared here.

Because of page limitations, we only show the quality of
the topics learned by various methods in terms of coherence.
Simply put, a higher coherence means more meaningful
topics, and the concrete definition can be found in (Arora
et al., 2013) and in the supplementary material. In Figure 5,
we can see that for different number of topics we tried on
the entire dataset, HTMM consistently produces topics with
the highest coherence. Additional evaluations can be found
in the supplementary material.

7. Conclusion
We presented an algorithm for learning hidden Markov mod-
els in an unsupervised setting, i.e., using only a sequence
of observations. Our approach is guaranteed to uniquely
recover the ground-truth HMM structure using only pair-
wise co-occurrence probabilities of the observations, under
the assumption that the emission probability is sufficiently
scattered. Unlike EM, the complexity of the proposed al-
gorithm does not grow with the length of the observation
sequence. Compared to tensor-based methods for HMM
learning, our approach only requires reliable estimates of
pairwise co-occurrence probabilities, which are easier to
obtain. We applied our method to topic modeling, assum-
ing each document is a realization of a HMM rather than a
simpler bag-of-words model, and obtained improved topic
coherence results. We refer the reader to the supplemen-
tary material for detailed proofs of the propositions and
additional experimental results.
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