Hyperspectral Super-Resolution via Coupled Tensor
Factorization: Identifiability and Algorithms

Charilaos I. Kanatsoulis, Student Member, IEEE, Xiao Fu, Member, IEEE,
Nicholas D. Sidiropoulos, Fellow, IEEE, and Wing-Kin Ma, Fellow, IEEE

Abstract—Hyperspectral super-resolution refers to the prob-
lem of fusing a hyperspectral image (HSI) and a multispectral
image (MSI) to produce a super-resolution image (SRI) that ad-
mits fine spatial and spectral resolutions. State-of-the-art methods
approach the problem via low-rank matrix approximations to
the matricized HSI and MSI. These methods are effective to
some extent, but a number of challenges remain. First, HSIs
and MSIs are naturally third-order tensors (data ‘‘cubes”) and
thus matricization is prone to loss of structural information—
which could degrade performance. Second, it is unclear whether
these low-rank matrix-based fusion strategies can guarantee
identifiability of the SRI under realistic assumptions. However,
identifiability plays a pivotal role in estimation problems and
usually has a significant impact on performance in practice.
Third, the majority of the existing methods assume known
(or easily estimated) degradation operators from the SRI to
the corresponding HSI and MSI—which is hardly the case in
practice. In this work, we propose to tackle the super-resolution
problem from a tensor perspective. Specifically, we utilize the
multidimensional structure of the HSI and MSI to propose
a coupled tensor factorization framework that can effectively
overcome the aforementioned issues. The proposed approach
guarantees the identifiability of the SRI under mild and realistic
conditions. Furthermore, it works with little knowledge about
the degradation operators, which is clearly a favorable feature
in practice. Semi-real scenarios are simulated to showcase the
effectiveness of the proposed approach.

Index Terms—Hyperspectral imaging, multispectral imaging,
super-resolution, image fusion, tensor decomposition, identifia-
bility

I. INTRODUCTION

MAGE fusion from multiple sensors has attracted much

attention from several communities (e.g., signal and image
processing, remote sensing, and computer vision), since it
proves very useful in a lot of applications [1]-[3]. Recently,
the remote sensing community has invested significant effort
in fusing hyperspectral and multispectral images. This tech-
nique is known as hyperspectral super-resolution (HSR) or
hyperspectral-multispectral fusion [4]. The ultimate goal of
HSR is to integrate information from a hyperspectral image
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(HSI), which admits high spectral resolution but coarse spatial
resolution, and a (co-registered) multispectral image (MSI),
which has fine spatial resolution but low spectral resolution,
to produce a super-resolution image (SRI) that admits both
high spatial and spectral resolutions. This task is very well-
motivated, since an SRI is of great interest to multiple an-
alytical tasks (e.g., small object tracking and identification).
However, it is considered very costly to simultaneously im-
prove both the spectral and spatial resolutions of the multiband
sensors due to hardware limitations [4]. Nevertheless, HSR
techniques allow the construction of an SRI via fusing images
that are captured by existing sensors [5], [6].

HSR is a long-existing problem in remote sensing. For
example, a lot of early works in the 1990s and 2000s studied
the problem of hyperspectral pansharpening, which fuses an
HSI and a panchromatic image to produce an SRI. This
problem has a similar flavor as HSR; see a comprehensive
review in [6], [7]. Existing pansharpening methods include
component substitution (CS) [8], [9] and multiresolution anal-
ysis (MRA) [10]-[12], which stem from similar ideas that
work by injecting details from the panchromatic image into
the HSI. Attempts have been made to use pansharpening
type methods for HSR. They are mainly based on wavelet
techniques [13], [14] or try to generalize CS and MRA
pansharpening algorithms for HSR purposes [15]. However,
such methods were found to have difficulties with enhancing
the spatial resolution of every hyperspectral band in practice
[4].

Over the past few years, there has been a renewed interest
for HSR, which is largely triggered by the advances in modern
optimization and matrix factorization techniques. Numerous
recent methods for HSR utilize low-rank matrix factorization
models [16]-[23]. The idea is to take advantage of the low-
rank matrix structure of the matricized HSI and MSI. One
such low-rank model is the so-called linear mixure model
(LMM) which is widely employed for modeling hyperspec-
tral/multispectral pixels. Under LMM, every spectral pixel
of the HSI or MSI is modeled as a convex combination of
the spectral signatures of several materials (or endmembers).
This representation is physically intuitive and has enabled
a large amount of hyperspectral unmixing algorithms [24]-
[28]. More importantly, under LMM, all the pixels reside
in a low-dimensional subspace spanned by a number of
endmembers—which makes the matricized HSI/MSI of low
rank. Several HSR approaches work under this model. For
example, the works in [17], [20], [22] perform (coupled) low-
rank factorization of the matricized HSI and MSI to estimate



the spectral signatures of the endmembers (from HSI) and the
corresponding high-resolution spatial distribution of the pixels
(from MSI). Then the SRI is constructed by combining these
two estimated matrices. A number of variants exist [16], [19],
[19], [21], using different data representations and algorithms.
Nevertheless, utilizing low-rank modeling and matricized HSI
and MSI is the common feature of this line of work.

The matrix factorization approaches are effective to some
extent, but some serious challenges remain. First, multiband
images are naturally third-order tensors (i.e., data cubes whose
elements are indexed by three indices). However, the low-rank
matrix factorization-based approaches ignore such structure
since these methods all reshape the 3D images to 2D matrices
as the first step. Consequently, critical dependence information
across the three dimensions is ignored. Second, it is unclear
whether the matrix based HSI-MSI fusion criteria proposed in
[16]-[20] can guarantee the identifiability of the ground-truth
SRI; i.e., there is no theoretical support for the identifiability
of these methods. However, identifiability is known to be
essential in such estimation problems in signal processing,
since it asserts the soundness of the criteria and affects per-
formance in practice in a significant way [29]-[33]. Third, the
majority of existing approaches assume that the degradation
operators from the virtual SRI to the HSI and MSI are known
[17]-[20] or that such operators can be easily estimated [16],
[34]. This assumption is considered rather restrictive since
modeling the degradation, especially the spatial degradation,
can be hard—e.g., the spatial degradation relates to a blurring
and downsampling process which may involve a series of
unknown factors. Moreover, the LMM is considered a coarse
approximation of reality since factors such as endmember
variability [35] and the existence of nonlinear mixtures [36]
bring into question the validity of the LMM.

Contributions: In this work, we propose a novel hyper-
spectral super-resolution approach. Our approach starts with
the fact that both HSI and MSI images are space-space-
spectrum “cubes”, and thus can be naturally represented as
third-order tensors [29]. Tensors admit a number of favorable
properties that matrices do not have. For example, tensor admit
a canonical polyadic decomposition (CPD), which captures
dependencies across the different dimensions (or modes)—and
this decomposition is essentially unique under mild conditions.
The proposed method employs a coupled CPD model to tackle
the HSI-MSI fusion task. We show that the model guarantees
the identifiability of the SRI under realistic conditions and the
idea is to leverage the uniqueness of the CPD model. Our
proposed method is the first identifiability-guaranteed HSR
approach. Note that identifiability-guaranteed models and al-
gorithms are not only of theoretical interest—they usually offer
more favorable empirical results, e.g., exhibiting enhanced-
performance and being less sensitive to initializations, as we
will see. Furthermore, the proposed approach can work under
scenarios where the spatial degradation operator is unknown.
Unlike some existing methods which attempt to estimate the
spatial degradation operator [16], [34], our method works
under the case where the spatial degradation operator is
not known at all—without losing identifiability of the SRI.
Numerical experiments using synthetic and semi-real data

show that the proposed approach is very promising for the
hyperspectral super-resolution task.

Related work: In the literature, different tensor models have
been considered for hyperspectral imaging. For example, in
[37], the Tucker model was employed to construct an SRI from
a pair of HSI and MSI. However, identifiability of the SRI was
not established in [37]. The reason is that, without a unique
parametrization (and the Tucker parametrization is not unique)
it is not obvious at all if the SRI can be identified. Moreover
the CPD, which is characterized by parsimony, better fits an
MSI or HSI in our experience. The block term decomposition
(BTD) model was introduced to model hyperspectral images
in [38]. BTD’s latent factors have nice physical interpretation
under the LMM. However, the LMM holds under very restric-
tive assumptions as we have discussed. Furthermore, for BTD
to be identifiable, the spatial maps must be low-rank matrices,
which is often violated when there are sparse patches of pure
materials. Even if valid, the identification conditions for the
BTD model are far more restrictive than those for CPD. In
addition, reliably fitting the BTD model to an MSI or HSI is
more difficult than fitting the CPD. In this work, we propose to
employ the CPD model for approximating the spectral images,
which is the key for establishing identifiability of the SRI.

II. PROBLEM STATEMENT AND BACKGROUND

Consider an HSI cube Y, € RIzZ*JuxEu  where Iy
and Jp denote the spatial dimensions and Ky denotes the
number of spectral bands. Similarly, let Y, € Rf» > Jax K
denote an MSI cube, where Ip;, Jp; and Kj; are the
dimensions of the spatial and spectral domains, respectively.
An HSI captures information over a broad range of the elec-
tromagnetic spectrum, usually involving hundreds of spectral
bands/wavelengths. An MSI usually consists of pixels which
are measured at less than 20 wavelengths; i.e., Ky < Kp in
general. On the other hand, MSIs have a much finer resolution
in the spatial domain relative to HSIs—i.e., IgJg < InrJas
typically holds.

Hyperspectral super-resolution aims at integrating a pair of
co-registered HSI and MSI, which describe the same target
(e.g., a region on the ground), in order to form an SRI
Y o € RImxJaxKi that has the spatial resolution of the MSI
and the spectral resolution of the HSI. The hyperspectral super-
resolution task, illustrated in Fig. 1, is very well-motivated
since both spectral and spatial information are rich and valu-
able to analytics and can benefit a number of applications such
as image processing, remote sensing, geoscience, and food and
medicine security, just to name a few.

A. Matrix Factorization-based Approaches

The arguably most popular and effective existing HSR
approaches are based on low-rank matrix factorization. Specif-
ically, in [16]-[22], the matricized multiband images (i.e., SRI,
HSI, MSI) are all modeled as low rank matrices, resulting from
the linear mixure model (LMM) of the multiband pixels. To
be specific, consider the matricized SRI as:

Ys = [Ys(1,1,:),....Y s(I, Ju, )]’ € RIvTmxEu (1)
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Fig. 1: Illustration of the hyperspectral super-resolution task.

where Y ¢(i, j,:) € RE# is a vector that is formed by taking
the (i,7)th spectral pixel of the SRI. Under the LMM, a
spectral pixel Ys(:,#) is modeled as a weighted sum of the
spectral signatures of several materials (or endmembers) that
are present in the image:

Ys ~ Sy E}, (2)

where Ep € RE#*E j5 the endmember matrix containing the
spectral signatures of R < min{/y;Jyr, K} materials in its
R columns and S;; € RI#JrxE ig the abundance matrix.

In order to tackle the HSR problem, existing work usu-
ally assumes that there exist two linear operators Py €
RInJuxIvim gnd Py € REMXK# guch that Yy = PyYs
and Yy = YSPJZQ. As a result, the matricized HSI is
modeled as Yy = (PySy)EY and the matricized MSI as
Yy = Sy (PyEy)T. Then, if Ef and Sy, (or the range
spaces of F and S) can be estimated via jointly factoring Yy
and Y}, following the described model, the SRI is recovered
following equation (2). This is the basic idea behind the low-
rank factorization based HSR approaches.

B. Challenges.

The low rank matrix factorization approaches are effective
to a certain extent and considered state of the art. However,
three key theoretical and practical challenges remain.

First, as previously mentioned, multiband images are natu-
rally data cubes that exhibit dependence across all the three
dimensions. Using the matricized version of the 3D images is
prone to loss of structural information. Some existing works
tried to compensate this loss of information via promoting
spatial smoothness (e.g., by adding total variation constraints
on Sy or Sy [16]). This is a viable solution but several
issues remain—e.g., this type of methods have to introduce
a few more tuning parameters that are in general hard to
determine. In addition, merely using spatial smoothness still
can not fully exploit the data structure that naturally represents
the dependence across two spatial dimensions and one spectral
dimension.

The second challenge is that recovering Yg from the matri-
cized HSI and MSI, i.e., Yy and Y),, is an ill-posed inverse
problem—an infinite number of solutions could exist. Making
use of the low-rank modeling could help reduce the difficulty

since it reduces the number of unknowns substantially—
but there is still a lack of theoretical evidence that this
approach could really recover Yg. One possible route for
arguing identifiability is to connect the matrix factorization-
based approaches to low-rank matrix sensing. However, this
would require the degradation operators to be random [39],
[40]. In our context, the degradation operators are highly
structured, which means that known theory of matrix sens-
ing cannot answer our question. The coupled factorization
approaches with a variety of regularizations [16], [17], [19],
[20] may help in practice—but currently lack theoretical
guarantees. Note that identifiability is also important from
a practical viewpoint, apart from theoretical. In particular,
identifiability often serves as guidance for practitioners to
select and design the appropriate solvers and algorithms—
which have been proven very useful and powerful in pertinent
problems, such as spectral unmixing [26]. Furthermore, it has
been observed that, in a variety of problems (such as matrix
and tensor decomposition), identifiability-guaranteed criteria
usually entail much more stable numerical performance, e.g.,
being less sensitive to initialization compared to approaches
that are lack of identifiability support [29], [32].

Another major concern is that the matrix-based methods
commonly assume that the degradation operators Py and Py,
are accurately known or can be easily estimated, which is
hardly the case in practice. The spectral response Pp; can
be relatively easy to model and estimate by comparing the
spectral specifications of the hyperspectral and multispectral
sensors. However, modeling the spatial operator can be rather
difficult. One commonly used model assumes that the trans-
formation from SRI to HSI is a combination of blurring by
a Gaussian kernel and a downsampling process. This is of
course a rough approximation and may be far from being
accurate. Even if this assumption is approximately true, there
is still a number of uncertainties such as the blurring function,
the kernel size and the sampling offset. There are approaches
in the literature, e.g., [16], [34], that attempt to estimate the
degradation operators from data, but, again, these methods
have to make a number of model assumptions regarding the
degradation process, which can only approximately hold to
some extent.

III. TENSOR ALGEBRA PRELIMINARIES

In this work, we propose a new approach that leverages
powerful analytical tools from tensor algebra. Consequently,
the proposed fusion method is able to circumvent the afore-
mentioned issues raised in the matrix factorization based
approaches effectively. To facilitate our later discussion, let
us briefly introduce some pertinent key concepts of tensor
algebra in this section. A third-order tensor X € RI*/*K
can be considered as a three-way array indexed by i,7j,k
with elements X (4, j, k). It consists of three modes: columns
X(i,:,k), rows X (3,7, k) and fibers X (4, 7,:); see Fig. 2. A
rank-one tensor Z € R/*/*K i the outer product of three
vectors, i.e., Z(i,j,k) = a(i)b(j)c(k) for all i,j, k, where
a € R’ b c R’ and ¢ € R¥. The shorthand notation for the
above is Z = aoboc, where o denotes the outer product. The



Fig. 2: The columns (X (:,7,:)), rows (X (4,:,:)), and fibers
(X (:,:,k)) of a third-order tensor, respectively.

tensor rank is the smallest number of outer products (rank-one
tensors) needed to synthesize X . Any tensor can be expressed
as a sum of outer products, i.e.,

F
X:ZafObfocf. 3)
f=1
If F' denotes the minimum number of outer products needed
to express X, then the tensor rank is F, i.e., rank(X) = F,
and the decomposition is known as canonical polyadic de-
composition (CPD) [29]. In the element level, the CPD model
can be written as X (i, 7, k) = Zle A, f)B(j, f)C(k, f),
where A = [ay,...,ap| € RIJ;F, = [by,...,bp] €
R*F C = [ey,...,cp] € REXE are called the low-rank
latent factors of the third-order tensor. Since a third-order
tensor can be fully characterized by its latent factors, we
sometimes use the notation X = [A, B, C] to represent the
tensor.

One nice property of tensors is that the CPD model is essen-
tially unique even when F' is much larger than max{I, J, K'}.
This is a striking difference between tensors and matrices—the
low-rank decomposition of a matrix is in general non unique.
The following theorem provides a basic result on uniqueness
of the CPD model:

Theorem 1 [41] Let X =[A,B,C| with A: IxF, B : Jx
F,and C : K x F. Assume that A, B and C are drawn from
some joint absolutely continuous distribution. Also assume I >
J > K without loss of generality. If ' < 21082 J1+log; K] -2
then the decomposition of X in terms of A, B, and C is
essentially unique, almost surely.

In cases where the tensor rank F' is less than or equal to one
of the dimensions, the above conditions can be relaxed to the
following:

Theorem 2 [4]] Let X = [A,B,C] with A : I x F,
B :JxF, and C : K x F. Assume that A, B and C
are drawn from some joint absolutely continuous distribution.
Also assume I > J > K without loss of generality and F < I.
If F <min(I,(J —1)(K —1)), then the decomposition of X
in terms of A, B, and C' is essentially unique, almost surely.

Here, essential uniqueness means that if A, B, C also satisfy
X = [[A,B,C”]], we can only have A = ATIA,, B =
BHAZ, and C = éHAg, where IT is a permutation matrix
and A; is a full rank diagonal matrix such that A;AsAs = T.
The CPD uniqueness condition is rather mild: Consider, for
example, a 80 x 80 x 80 tensor. Following Theorem 1, it admits
an essentially unique CPD representation if F' < 1024. This
is far more relaxed compared to uniqueness conditions for

matrix factorization, where the rank has to be lower than the
matrix dimensions and nonnegativity, sparsity, and geometric
conditions are required [30]-[33].

One useful operation in tensor algebra is matricization.
There are different ways to matricize a third-order tensor with
a size of I x J x K. For example, the mode-3 matricization
(unfolding) is as follows:

X® = [vec(X(:,:, 1)), vee(X (5,5, 2)),. .., vee(X(:, :, K))]
“4)

where ‘vec(-)’ is the vectorization operator. One can see that
X3 ¢ RIVXE [n this case, the matricized tensor X ) takes
the following form:

X® =(BoACT eRK

where ® denotes the Kronecker product. The operation in (4)
is in fact one of the three commonly used ways to matricize (or
unfold) a third-order tensor, and is exactly the same operation
as in (1)—where we matricized the images cubes to matrices
by re-arranging the pixels. The superscript ‘(3)’ is used to
denote that the matricization is operated over the third mode;
i.e. the fibers of tensor X are the columns of matrix X ).
Matricization over the first and the second modes of are
similar, which are shown in the following:

XM = [vec(X(1,:,:)), vee(X(2,:,2)), ..., vee(X (1, :,:))]

X(I)Z(CQB)ATERKJXI, (5)
and

X@ .= [vec(X (:,1,:)), vee(X (:,2,:)), ..., vec(X (s, J,:))]
X® = (CoA)BT e REIX/, (6)

Another important operation in tensor analytics is the mode
product. The mode product operator multiplies a matrix
to a tensor in one mode. Recall that a third-order tensor
X € RI*XI*K hag three modes (i.e., rows, columns, fibers—
cf. Fig. 2) and therefore is associated three different mode
products. Applying mode-1, mode-2, and mode-3 products
to a third-order tensor sequentially is represented using the
following notation:

X =X x1 P, x3 Py x3 Ps @)

where “x” denotes the operation that multiplies each column
of X with P, “x5” denotes multiplying each row of X with
P5, and “x3” denotes multiplying each fiber of X with Ps.
A very important property of mode product is that the result
of (7) is a third-order tensor that can be represented as:

X =[PA,P;B, P,C],
which is polyadic decomposition of X with F rank-one

tensors, and is an essentially unique decomposition under some
conditions—which is a very useful insight, as we will see.



IV. DEGRADATION AS MODE PRODUCT

Beginning from this section, we propose a tensor-based
approach to handle the HSR problem, which admits an array
of good features that the matrix-based methods do not have. In
this section, we first reveal a nice connection between tensor
mode products and the SRI-HSI/MSI degradation models.
Building upon this connection, we will introduce coupled ten-
sor factorization formulations and offer identifiability analyses
in the next section.

Let Y € RIM*/uxKu pe the target SRI we want to
estimate. Y ¢ admits a CPD with rank F), i.e.,

Y;=[A B,C] ®)
A:IMXF,B:JMXF,C:KHXF

Also let Y ; € RIz*JuxKu denote the corresponding HSI
and Y ,,; € RIm*JuxEu the MSI, respectively. Assume that
there exist P; and P» such that the spatial degradation from
the SRI to the HSI can be modeled as

Y0k =PYs(,,k)PL, k=1,....,Kg, (9

where P, € RI#>Im and P, € R/#*/M The degradation
model in Eq. (9) is intuitive: Blurring can be modeled as linear
mixing of neighboring pixels under a certain kernel in both
column and row dimensions. Downsampling can be viewed
as linear compression—and the two procedures can be well
modeled using a ‘fat’ matrix P; and a ‘tall’ matrix Py with
appropriate kernels ‘embedded’ in the matrix elements. In fact,
the model in (9) summarizes some popularly used blurring
and downsampling models of the spatial degradation process.
For example, in Appendix C, we show that the 2-D Gaussian
blurring plus downsampling model that is widely adopted in
the HSR literature [16]-[22] can be re-expressed in a form
that is compatible with (9).

Under (9), it is straightforward to observe that the model
described in (9) can be written as Y ;; = Y ¢ X1 P xo P> (and
thus Py = P, ® P; in the matricized form). Consequently,
Y ;; can be represented in the following form:

Y, - [A B, (10)
A=PA:IyxF, B=P,B:JyxF, C:KyxF
In the matricized form, we have Y}¥) = (B® A) C7.

The spectral degradation from the SRI to the MSI can be
modeled as

Y, (i 5,:) = PuYg(i,j,0) Vi,j Y

where Y 4(i,7,:) € RE represents a fiber of the SRI and
Y ,,(i,7,:) € RE a fiber of the MSI, respectively. Matrix
Py, € REm>xK# g ysually modeled as a band-selection and
averaging matrix. Eq. (11) is nothing but a mode-3 product
operation, i.e., Y j;, = Y ¢ x3 Pys. Hence, Y, can be written
as the following:

XM:HA,B,C']]
A:IyxF, B:JyxF, C=PyC:KyxF

(12)

It is also readily seen that Y]\(j) =(Bo®A)(PyC)T.

o o

Fig. 3: Ilustration of degradation from the super-resolution
image to the HSI and MSI, respectively.

The discussed connection between HSR degradation and
tensor mode products is visualized in Fig. 3. In retrospect,
this connection is not very hard to reveal for someone versed
in tensor algebra. However, the implication is very interesting
and significant: If the “compressed” HSI and MSI tensors
admit unique CPD models, then the SRI can be recovered.
Intuitively, if one can identify the latent factors of Y ,, and
Y ;; via CPD, respectively, then, the SRI can be reconstructed
using Y o = [A, B, C]. This is of course a rough argument
that must be fleshed out in a number of aspects, but it in
fact reveals the major insight that leads to the first provable
identifiability results for the HSR problem—as we will see
in the next section. Another remark is that the connection
between tensor mode product and spatial degradation holds
based on the assumption that the horizontal and vertical blur-
ring and downsampling applied to the SRI can be represented
as separable linear operators, which is reasonable when the
overall blurring kernel is not skewed — and in practice blurring
is usually isotropic, so our separability assumption holds.

V. COUPLED TENSOR FACTORIZATION FOR
SUPER-RESOLUTION

Following the insights revealed in the previous section, we
develop algorithms to handle the HSR problem in this section.
We consider two cases: First, when the degradation operators
are known, which follows the standard setups as the majority
of matrix-based HSR works e.g. [17]-[20], [23]. Second, when
the spatial degradation operator is completely unknown, which
is more realistic yet much more challenging. For both cases,
we propose tensor-based algorithms and discuss the respective
theoretical guarantees.

A. When Py and Pyy are known

Let us first consider the case where Py and P,; are
known. Recall that Y, = [PiA,P,B,C] and Y,, =
[A, B, PyC], where A = PA, B = P,B, and C =
Py, C. We wish to identify A, B and C' from the HST and MSI
so that we can reconstruct the SRI. To this end, we propose

to employ the following formulation:

L 2
minimize 1Yy — [P A, B, C]||% 2 (13)
+ MY, —[A, B, PyC]|5 -

In other words, we employ the above formulation to jointly
decompose the HSI and MSI tensors to estimate A, B and
C, where A > 0 is a pre-selected parameter that weights the
importance of each image in estimating A, B and C. After



obtaining the estimates of A, B and C, the super-resolution
tensor reconstruction is performed by

-3 A8

The problem in (13) is a non-convex problem that is NP-
hard in general. To tackle it, the alternating optimization (AO)
framework is employed. Specifically one factor is updated at a
time while keeping the rest fixed. Making use of the matricized
forms of the HSI and MSI tensors, every step boils down
to solving a Sylvester’s equation—which is a classic convex
quadratic problem and easy to handle (see details in Appendix
E). The proposed Super-resolution TEnsor-REcOnstruction
(STEREO for short) is summarized in Algorithm 1.

(i,7,k (k. f).-

Algorithm 1: STEREO
Initialization: \, F, A, B, C
repeat
A« argming |V — (C © P,B)ATPT||2 +
Y7 — (PuC © B)A” |3
B + argming||YY — (C © PLA)BTPY |2 +
AV — (PyC © A)BT|2;
C « arg minCHY}(f) — (PRBGo P,
N|Y, — (B © A)CT P2
until Some stopping criterion is met
Reconstruct Y ¢ usmg

ZS(L]? ) Zf 1 ( )

A)CT||% +

(4 HC (K, ).

B. When Py is unknown

We also consider the case where the spatial degradation
operator Py = P,® P is completely unknown. As previously
explained, considering this scenario is very well-motivated:
Although Pj; is relatively easy to model since it is well recog-
nized as a uniform spectral response function![42], the spatial
degradation operator is quite hard to accurately model and
estimate. Even when the operation is known as a combination
of blurring and downsampling, the hyperparameters such as
the blurring kernel type, the kernel size and the downsampling
offset are hardly known in practice. To circumvent this, we
propose to employ the following estimator for A, B, C"

minimize

s (¥ [4.B.¢]],

(14)
2
+/\||XM - [[A’BaPMC]]HF'

Problem (14) is harder than Problem (13) since it has more
unknowns to estimate (as will be reflected in the theoretical
analysis in the next subsection). Nevertheless, this problem
can still be tackled using AO as we applied for handling
Problem (13). The B1ind STEREO algorithm that handles
problem (14) is described in Algorithm 2. We use ‘Blind’ in
the algorithm’s name to distinguish it with STEREO, since
Algorithm 2 is spatially blind—i.e., it does not need any prior
knowledge on the spatial degradation operator.

I'A reasonable estimate of Py can usually be obtained after comparing the
hyperspectral and multispectral specifications, i.e the employed wavelengths
of the HSI and MSI cameras.

Algorithm 2: B1ind STEREO

Initialization: \, ', A, B, A, B
repeat
C — arg miHCHY}(IS) —

(B® A)CT|3+
A[Yy — (B A)CTPE |}
A + argmin 4]| Yy v —(C®B)AT|%;
B ¢+ argming||Yy (2 —(Co®A)BT|%;
v — (PsC ® B)AT||?
B < argming||Y,, ()

a8
— (PsC © A)BT|[3;
until Some stopping cnterion is met
Reconstruct Y ¢ usmg

XS(Z’.]’ ) Zf 1 ( )

A+ argming||Y;

(45, ))C(k, £).

Remark 1 Algorithms 1 and 2 are both instances of the
block coordinate descent (BCD) optimization strategy. The
algorithms decrease the objective in every iteration, and thus
the produced cost value sequence converges. One subtle point
here is that the solution sequence may not converge, since
the subproblems may have multiple solutions [43]. According
to our extensive simulations, this barely affects performance.
Nevertheless, if one wishes to fix this theoretical issue, one
simple method as suggested in [44] is adding a proximal
term such as p¥||A — A*71||2 in the kth iteration to the
cost function of the subproblems—which does not increase
the difficulty of the subproblems but makes the cost function
strongly convex. Consequently, one can show that every limit
point of the solution sequence is a stationary point follow-
ing the block successive upperbound minimization (BSUM)
framework [44].

C. Identifiability Analysis

In this section, we present the identifiability analysis of the
proposed approaches. Unlike the matrix factorization-based
approaches that mostly have no identifiability characterization
of the methods, we show that the proposed estimators can
guarantee identifiability of the super-resolution tensor under
realistic conditions.

To proceed, let us first consider the following important
lemma:

Lemma 1 Let Z = QZ, where the elements of Z are drawn
from an absolutely continuous joint distribution with respect to
the Lebesgue measure in R and Q € RY "I s deterministic
with full row rank. Then the joint distribution of the elements

in Z is absolutely continuous with respect to the Lebesgue
. !
measure in RT'F

Proof: Define % := vec(Z) and z := vec(Z). Then, we
have
z=vec(QZ)=vec(QZI) = (I ®Q)z.

Now, define P =1 Q € RI/FXIF, which is a ‘fat” matrix
since I'F" < I'F. By properties of the Kronecker product, we
have

rank(P) = rank(Q)rank(I) = I'F.



Furthermore, let P = UXV7T denote the full-size singular
value decomposition (SVD) of P, where U € RI'FxXI'F v/ ¢
RIFXIF are orthonormal matrices and X € R F*IF consists
of a diagonal submatrix as its first I’ F’ columns (which holds
the singular values as the diagonal elements) and an all-zero
submatrix, i.e.,

3 = [Diag(oy, . .. ] € RIVFXIE,

,0rF),0
Consider zyy = V7 z and let f7(z) denote the joint probability
density function (PDF) of z with respect to the Lebesgue
measure in R/”. The random vector zy is absolutely contin-
uous with respect to the Lebesgue measure in R’¥', since the
Lebesgue measure is invariant under unitary transformations
[45] and the PDF of zy takes the following form [46]:

fzv(zv) = f2(Vz).

Now, consider zy, = 3 zy . This matrix-vector product selects
and positively weights the first I’ F random variables in zy,
i.e.,

zy, = Diag(o)Zy, Zy =2y (1: I'F) e RI'F,

where & = [o1,...,01r]T. The above product does not
hurt the continuity of the joint distribution of the random
variables in 2y (since the joint PDF of zy, can be obtained via
marginalizing the joint PDF of z), and thus zyx is absolutely
continuous with respect to the Lebesgue measure in R7# %
Finally, consider 2 = U zx. Again, z is absolutely continuous
with respect to the Lebesgue measure in R¥, since U is a
unitary transformation and the PDF is

(%) = fz,(UT 2z),

. |
With Lemma 1 in our hands, we can show identifiability of
the formulations in (13)-(14). To see this, let us first consider
the case where the spatial and spectral degradation operators
are known. Regarding the identifiability of the SRI cube, let
us make some model assumptions to simplify the analysis. We
first assume that I, > Jys > Ky since Ky is usually quite
small (i.e., usually being a single digit) and Iy > Jg. The
number of hyperspectral bands, i.e., K, could be larger than
Iy and Jg, depending on how large is the spatial area that we
are interested in. Bearing these in mind, we have the following
theorem:

Theorem 3 Assume that Ygq = [A,B,C], Yy =
[PLA,P,B,C| and Y ,, [A, B, Py C]. In addition,
assume that Iny > Jy > Ky, that A, B and C are drawn
from some absolutely continuous distribution with respect to
the Lebesgue measure in RUMHIM+Ka)F ypar P Py and
Py have full rank, and that (A*, B*,C*) is an optimal
solution to Problem (13) (whose corresponding value of the
cost function is 0) when \ > 0. Then,

Z A’
recovers the ground-truth Y g almost surely if

F < min{2Uos2(Kar/a)]=2 1 71

(i,7,k HB*(4, f)C*(k, f)

The proof is relegated to Appendix A. We should mention
that the above bound is proven by judiciously combining
Theorem 1, Lemma 1, and the problem structure—and the
bound can be improved if I, > F' holds. Specifically, we
have:

Corollary 1 Under the same assumptions as in Theo-
rem 3, if Iny > F, we have that Xs(i,j,k) =
Z?zl A*(i, [YB*(j, f)C*(k, f) recovers the ground-truth
Y ¢ almost surely if F <min{(Jy — 1)(Kp — 1), IgJu}

The proof of Corollary 1 is almost the same as that of
Theorem 3. The only difference is that Theorem 2 (instead
of Theorem 1) is invoked. The proof is omitted due to space
limitation.

For the case where P; and P, are unknown, we have the
following theorem:

Theorem 4 Assume the same generative model as in Theo-
rem 3, that Ipy > Jyr > Ky and Iy > Jy, that 1y Jy >
IgJy and Ky < Ky, and that (A*, B*, A* B* C*)
is an optimal solution to Problem (14) (whose correspond-
ing value of the cost function is 0), when X\ > 0. Then,

Y (i, j, k) = Zf L A*(i, /)B*(j, f)C*(k, f) recovers the
ground-truth Y ¢ almost surely,

) if F < min{201=2221=2Y" ywhere ~ =
IOgQ(J]\/jKZM) and Y2 = IOgQ(JHKH), when IH Z KH,'
and

2) if F < min{2”lJ_2,2L72J_2}, where 7y, =

logs (Jar Kar) and vo = logs(IyJy), when Jy < Kpg.
Note that if Ip; > F, 21711=2 can be replaced by (Jy —
1)(Kp — 1). Similarly, if Iz > F, 21721=2 can be replaced
by (Jg — 1)(min{Ig, Ky} — 1). The proof of Theorem 4 is
relegated to Appendix B. Note that Theorem 3 only requires
that the CPD of the MSI tensor is unique, and has more relaxed
conditions compared to those in Theorem 4, which needs the
CPDs of both the HSI and MSI to be unique. This echoes our
comment that Problem (14) is harder than Problem (13), since
the former works under the case where one knows less about
the model.

To have some concrete sense about the theorems, consider
the case where we intend to reconstruct an SRI of size 600 x
520 x 180 from an HSI of size 150 x 130 x 180 and an MSI of
size 600 x 520 x 8. By Theorems 3 - 4, the identifiability of the
SRI is guaranteed if the CPD rank of the SRI tensor satisfies
F < 1024. This is in general easy to satisfy (approximately) in
practice. To verify this, in Tables I - IV, we use a CPD model
to reconstruct real-world hyperspectral images captured by the
AVIRIS [47] and the ROSIS [48] hyperspectral sensors. One
can see that the fitting error, defined as ||[Y — Y| #/||Y |
(where Y and Y are the CPD model approximated HSI and
the original HSI, respectively), is rather small (in the order of
1072) for all tested ranks (under all these ranks the CPD is
unique). Tables I - IV show that using an identifiable CPD
model to approximate real-world hyperspectral/multispectral
images is very reasonable.



TABLE I: The NMSE of using a CPD model to approximate
a subimage of the AVIRIS Cuprite data that is of size 512 x
614 x 187.

300
0.0166

400
0.014

500
0.0125

600
0.0115

700
0.0108

800
0.0102

rank
fitting error

TABLE II: The NMSE of using a CPD model to approximate
a subimage of the Pavia University data that is of size 608 x
336 x 103.

300
0.0635

400
0.0491

500
0.0403

600
0.0349

700 800
0.0311 | 0.0283

rank
fitting error

TABLE III: The NMSE of using a CPD model to approximate
a subimage of the Salinas data that is of size 80 x 84 x 204.

100 200 300
0.0065 | 0.0047 | 0.0038

rank 20 50
fitting error | 0.0385 | 0.0145

TABLE IV: The NMSE of using a CPD model to approximate
a subimage of the Indian Pines data that is of size 144 x 144 x
200.

rank 50 100
fitting error | 0.0435 | 0.0334

200
0.0276

300
0.0247

400
0.0225

500
0.0205

Remark 2 Both of our algorithms can be understood as
coupled tensor factorization (CTF). CTF was studied in the
literature in various forms, e.g., [49], [50]. Nevertheless, [50]
is not concerned with identifiability issues but a computational
framework under specific noise types. Reference [49] consid-
ers identifiability of coupled tensor decomposition with no
linear operators (e.g., P;, P» and Ps) involved, which hence
does not cover the results in Theorems 3-4.

VI. SIMULATIONS

In this section, we showcase the effectiveness of the pro-
posed HSR framework using numerical experiments. We gen-
erate simulated HSIs and MSIs following the Wald’s protocol
[51]. In Wald’s protocol, the SRI-HSI degradation consists of
spatial blurring by a convolutional kernel and a downsampling
procedure. In order to obtain an MSI from an SRI, the spectral
specifications of the multispectral sensor are used, which in
our experiments are taken from the LANDSAT [52] or the
QuickBird sensor [53]. The LANDSAT sensor produces a 6-
band MSI by capturing information in the following spectral
bands: Blue (450 - 520 nm), Green (520 - 600 nm), Red (630 -
690 nm), Near-IR (760 - 900 nm), Shortwave-IR1 (1550 - 1750
nm), Shortwave-IR2 (2080 - 2350 nm), whereas the QuickBird
sensor produces a 4-band MSI in Blue (430 - 545 nm), Green
(466 - 620 nm), Red (590 - 710 nm) and Near-IR (715 - 918
nm). Then, the specifications of the available SRI, which span
the spectrum from 400nm to 2500nm in our experiments, are
compared with the multispectral sensor bands to form spectral
response matrix Pp; and thus the tested MSI images. To be
more precise, Py is a selection-averaging matrix which acts
on the common wavelengths of the SRI and MSI.

1) Baselines: A set of baseline algorithms are employed for
comparison, namely, FUSE [18], FUSE-Sparse [19], [54],

FUMI [20], HySure [16] and CNMF [17]—which have all
demonstrated competitive performance in the literature. All
simulations are performed in MATLAB on a Linux server
with 3.6GHz cores and 32GB RAM. We propose two CPD
based algorithms, namely, TenRec and Blind TenRec, to
cleverly initialize STEREO and Blind STEREO. The idea
is to compute the CPD of Y ;, in order to retrieve A, B
and then solve a least squares problem to obtain C. This
way, an initial guess of the latent factors can be obtained.
Consequently, the operational time of the algorithms can
be substantially reduced, and an enhanced super-resolution
accuracy is empirically observed. Detailed description of the
initialization techniques are relegated to Appendix D. The
CPD part performed in TenRec and Blind TenRec is
computed using Tensorlab [55] with 25 iterations at max-
imum. In all the simulations, we fix A = 1 and run STEREO

for 10 iterations.

2) Evaluation: We largely follow the established conven-
tions in the HSR literature for evaluating the results. Specifi-
cally, we adopt several intuitive metrics introduced in [6]. The
first metric is cross correlation (CC) that is defined as

cC = Zp(ﬁ(:v :vk)’&(:v :7k))

where p is the pearson correlation coefficient between the

estimated and the reference slabs (i.e., Ys(:,:, k) and Ys(:
,1, k), respectively). CC is a score between O and 1, and 1
corresponds to the best estimation result. The second metric
is called spectral angle mapper (SAM), whose definition is as
follows:

1J
SAM = Z arccos <

n=1

YS(?’)(n, :)Yés)(n, :)T )
Y () |21V (1, ) 12

where Ys(g)(n, :) and Ys(g)(n, :) represent the corresponding

fibers of the ground-truth and the estimated super-resolution
tensors, respectively. SAM measures the angles between the
estimated and the ground-truth fibers of the SRI, and small
SAMs correspond to good performance. Relative dimensional
global error (ERGAS) [3] is also employed, which is defined
as

1 i ||&(:7:7k) _ﬁ(:’:’k)”%

IJK ¢ 12 :

ERGAS = IOOdJ

=1

where d = % = J,—f;’ and py is the mean of the elements in

Ys(:,:, k)—and small ERGAS values are desired. In addition
to the above quality measures, we also employ the reconstruc-
tion Signal-to-Noise ratio (R-SNR) criterion, i.e.,

Sl Ys (s )% >
S Y5 (o k) = Yo )
and high R-SNR values indicate good reconstruction perfor-
mance.

R-SNR = 10log;, (

A. Semi-Real Data Experiments

In this subsection, we test the proposed methods under the
assumption that both Py, and Py are known. A real hyper-
spectral image is used to act as the SRI in our simulations. This
way, the ‘ground-truth’ SRI is known so that the performance
can be easily measured. The corresponding HSI and MSI are



degraded from this SRI following Wald’s protocol [51] as
described before. The degradation process from the SRI to
the HSI is modeled as a combination of spatial blurring by a
9 x 9 Gaussian kernel and downsampling the blurred image
by a factor of d = 4 along the two spatial directions.

The first experiment is performed using the dataset that is a
subscene of SALINAS HSI from the AVIRIS platform. This
scene describes a field that consists of 6 different agricultural
products. The image is measured at 224 spectral bands. After
removing 20 bands corrupted by water absorption we obtain an
‘SRI" of 80 x 84 pixels with 204 bands, i.e. Y g € R30x84x204,
Then, Y ;; € R29%21x204 g produced through the aforemen-
tioned spatial degradation, and Y ,, € R80>*84x6 ig produced
through LANDSAT spectral degradation. The rank used in the
tensor decomposition is F' = 100. For the matrix factorization
methods, the number of endmembers (model rank) is set to
be R = 6—which is equal to the ground-truth number of
materials. For the FUMI algorithm, in order to satisfy the unit-
box constraint that the algorithm makes use of (see details in
[20]), the HST and MSI pixels are normalized by the maximum
entry of the MSI.

Table V shows the performance of the algorithms. It is
clear that STEREO significantly outperforms the benchmarks.
Particularly, in terms of R-SNR, STEREO outperforms FUMI,
which admits the best R—~SNR among the baselines, by 10 dB.
Furthermore, the execution time of the proposed algorithms
is very low (~ 1.3 sec.—similar as most of the matrix
based methods), which makes the tensor based approach rather
appealing. We also visualize one band of the estimated SRI in
Fig. 4. One can see that the image produced by STEREO is
indeed much more visually closer to the ground-truth SRI.

TABLE V: SALINAS scene

Algorithm R-SNR CcC SAM ERGAS | runtime (sec)
STEREO 38.62 0.9829 | 0.5495 1.3844 1.3
FUSE 28.71 09174 | 0.4234 5.7135 0.07
FUSE-Sparse 28.71 0.9173 | 0.4234 5.7135 69.7
FUMI 29.40 0.9126 | 0.7975 6.3527 1.56
HySure 26.86 0.8981 | 1.5209 6.4187 1.6
CNMF 25.48 0.9013 | 1.3225 6.3787 1.7

The second experiment tests the super-resolution methods
under scenarios where the degradation models are noisy. The
Cuprite HSI downloaded from the AVIRIS platform is used
to act as the SRI. The employed subimage has 187 bands
(after removing bands corrupted by water absorption) and
describes a spatial area containing 512 x 614 pixels, i.e.,
Y € ROI12x614x187 The HSI and MSI are generated as
follows:

Y =Y x1 Pixo P+ Ny
Y, =Y x5 Py + Ny,

where IN ;; and IN,, are additive white Gaussian noise. The
degradation operators Py = P» ® P, and Py, are created
as before, leading to Y, € RIZZXI2X18T apd v €
R512x614x6 " respectively. The signal-to-noise ratio (SNR) is
defined as:

K 2
E Y(:: 7
SNR = 10log;, ( kZIH G ) )

Zf:l ||ﬂ(7 :7 k)”%‘
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Fig. 4: SALINAS Reconstruction, 1442nm band

where (Y, IN) stands either for the pair (Y 5, IN) or
(Y ur, INy). The algorithms are examined under different
SNRs. In all cases, the SNRs of the HSI and MSI are assumed
to be the same. The rank used for tensor decomposition is
chosen following Theorems 2-3 and adjusted according to the
SNR of each scenario. Precisely, as the SNR varies from 50dB
to 20dB the tensor rank changes from F' = 750 to F' = 100.
The intuition is to use fewer canonical dimensions when the
noise level is higher, so that the noise corruption can be better
discounted. To be more precise, higher noise levels result in
higher signal degradation. Choosing higher rank models will
then result in noise fitting rather than signal fitting, which is the
desirable in our case. The rank of the low-rank matrix models
is set to be R = 12, which is determined by the number of
materials in the images. Results are averaged over 10 Monte-
Carlo simulations.

Fig. 5 shows the R-SNR performance of the methods
under different noise levels. One can see that under high
SNR scenarios the proposed STEREO algorithm exhibits the
best performance. The matrix-based methods also work very
well for the Cuprite data when the noise is almost absent.
However, when the SNR drops under 30dB, STEREO vastly
outperforms the baselines—which shows the robustness of the
proposed method to modeling mismatches. FUSE-Sparse
fails to operate due to memory overflow. FUSE seems to be
the most vulnerable under noise, and HySure works best
among the baselines. The rest of the evaluation metrics are



shown in Fig. 6, from which a similar conclusion can be
drawn. In terms of the runtime performance, FUSE is the
most efficient algorithm, since it only involves very simple
procedures. Nevertheless, its accuracy performance is heavily
affected by model mismatches in the degradation process,
which is undesired in practice. Among the rest, the proposed
approach admits the lowest execution time. Note that when the
noise level increases, there is a decreasing trend in the runtime
of the tensor methods. This happens because the rank reduced
when the noise level increased, and lower ranks demand less
computational time for the tensor approach.

rank
750 600 450 300 200 100
40 T T T T

—e— STEREO
FUSE
FuMI

R-SNR (dB)

15 L
10° 104 107 10

Fig. 5: R-SNR of the algorithms on Cuprite under different
noise levels.

Table VI shows the performance of the algorithms when
SNR=25HdB. The tensor rank is set to be F' = 200 in
this case. STEREO produces the best results under all the
evaluation metrics. Under this setup, HySure shows the best
performance over all the evaluation metrics among the baseline
algorithms, but it needs 3 times more runtime compared to that
of STEREO. FUSE has the lowest runtime, but the R—SNR is
9dB worse relative to STEREO.

TABLE VI: Performance of the algorithms on the Cuprite data.

P P,

(c) ERGAS

(d) CPU time
Fig. 6: Reconstruction metrics for Cuprite

TABLE VII: Performance of the algorithms for Indian Pines
data. SNR=25dB.

Algorithm R-SNR CC SAM ERGAS | runtime (sec)
STEREO 25.80 0.8077 | 2.5217 1.3013 1.8
FUSE 24.67 0.7469 | 2.8563 1.6665 0.2
FUSE-Sparse 24.67 0.7469 | 2.8563 1.6665 116.7
FUMI 23.54 0.7593 | 3.3931 1.8151 28.8
HySure 24.56 0.7710 | 2.8371 1.5938 12.1
CNMF 23.84 0.7321 | 3.0184 1.8227 4.2

The other scene is taken from Pavia University in Italy
and was captured by the ROSIS sensor. The SRI, HSI,
and MSI are with sizes of 608 x 336 x 103, 152 x 84 x 103
and 608 x 336 x 4, respectively, in which we simulate a
QuickBird-generated MSI. Table VIII shows the performance
under SNR=25dB. The tensor rank is F' = 400, and R = 9
is the ground-truth number of materials. One can see that
STEREO shows superior performance in this simulation as
before.

SNR=25dB; “-” means “out of memory”.
Algorithm R-SNR CC SAM | ERGAS | runtime (sec)
STEREO 29.89 | 0.96216 | 1.2865 | 0.8533 27
FUSE 2338 | 08618 | 3.3793 | 1.9829 1.8
FUSE-Sparse - - - - -
FUMI 2545 | 09010 | 2.6078 | 1.5251 508.4
HySure 2744 | 09379 | 1.8722 | 1.1345 1965
CNMF 2698 | 0.93170 | 2.0027 | 1.2320 755

TABLE VIII: Performance of the algorithms for Pavia Uni-

The algorithms are also tested on two more datasets. The
first scene, namely, the Indian Pines, was again captured by
AVIRIS and contains agriculture, forest and other natural
perennial vegetation. The number of ground-truth materials
is R = 16, and the pixels are measured at 200 bands (after
removing water corrupted ones). We use R = 16 for all the
baseline algorithms (except FUSE for which R = 3 is used,
since it outputs particularly good results using this rank for
this dataset). The SRI in the experiment has 144 x 144 pixels,
ie, Yo € RI44x144x200 The HST and MSI are generated as
before, leading to Y ;; € R36X36x200 gpd y7, € R144x144%6
Table VII shows the performance when the SNR is 25 dB.
The tensor rank is ' = 50. Again, STEREO outperforms the
baselines significantly.

versity data. SNR=25dB; “-” means “out of memory”.
Algorithm R-SNR CC SAM ERGAS | runtime (sec)

STEREO 2250 | 0.9830 | 4551 | 2.6016 26.4
FUSE 21.09 | 09753 | 5536 | 3.4284 05

FUSE-Sparse - - - - -
FUMI 21.56 | 09779 | 5.1151 | 3.0908 644.2
HySure 2118 | 09792 | 4812 | 27934 825
CNMF' 19.93 0.9723 | 5.0183 3.3947 19.2

Finally the proposed STEREO is examined under different
choices of the main tuning parameters, namely, tensor rank F'
and A. Figure 7 shows the R-SNR performance of STEREO
under different choices of F'. One can see that under different
SNRs, there is always a wide range of F’s (spanning several
hundreds of consecutive integers) under which the proposed
algorithm works reasonably well. Similar experiments are
conducted to test the performance of STEREO under different
choices of parameter \. Figure 8 shows the achieved R—SNR
of STEREO when A varies form 0.01 to 100. The result shows
that STEREO is quite insensitive to the choice of .



34 —_—
32 /\
30 b — 20dB

— 25dB
=~ 30dB
=~ 40dB

T~

24

22 . . . . .
100 200 300 400 500 600

rank F

Fig. 7: The obtained R-SNRs (dB) using STEREO under
different SNRs and F’’s.

= 20dB
34 + — 25dB
= 30dB
33 r =———40dB | -
a /\
T 32
£
) 31
14

28 -

27

26 : : :
102 107! 10° 10' 102
A
Fig. 8: The obtained R-SNRs (dB) using STEREO under

different SNRs and \’s.

B. Unknown Spatial Degradation Operator

In this subsection, we test our proposed Blind STEREO
algorithm under the case where the spatial degradation model
is unknown. The SRI used are the Indian Pines and Pavia
University images as in the previous section. The HSI Y ;; is
produced by Y ¢ after 9 x 9 Gaussian blurring and downsam-
pling and the MSI Y ,, is generated according to LANDSAT
and QuickBird specifications, for Indian Pines and Pavia
University image respectively.

We fist consider a case where the baseline algorithms falsely
assume a 5 X 5 Gaussian blurring kernel instead of using the
correct 9 x 9 Kernel. Among the baselines, HySure is able
to estimate the degradation operators by assuming knowledge
of the Kernel size and alignment offset hyperparameters. The
SNR of the degradation processes is 25dB. Table IX shows
the performance of the algorithms under this scenario using
the Indian Pines image. The tensor rank is set to be F' = 50.
One can see that the proposed algorithm yields clearly better
reconstruction performance under all the metrics. This shows
the advantage of B1ind STEREO—since it does not need to
assume any prior knowledge on Py, the considered model
mismatches do not affect its performance. Fig. 9 visualizes
a band of the reconstructed super-resolution images by the
algorithms. One can see that B1ind STEREO gives visually
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Fig. 9: Indian Pines Reconstruction, 1422nm band

more pleasing reconstruction relative to the baselines. The
reconstruction performance in the Pavia University image is
shown in Table X, where the tensor rank is ' = 400. One can
see similar results there.

TABLE IX: Performance of the algorithms on the Indian Pines
data under kernel size mismatch

Algorithm R-SNR CC SAM ERGAS | runtime (sec)
STEREO 25.53 0.7949 | 2.5831 1.3491 1
FUSE 24.66 0.7447 | 2.8570 1.6632 0.18
FUSE-Sparse 24.66 0.7447 | 2.8570 1.6632 118.3
FUMI 23.03 0.7020 | 3.6744 2.1357 66.7
HySure 24.64 0.7853 | 2.7724 1.5255 12.4
CNMF 24.5 0.7254 | 3.1102 1.8903 32

TABLE X: Performance of the algorithms for Pavia University
data under kernel size mismatch

Algorithm | R-SNR CC SAM ERGAS | runtime (sec)

STEREO 22.36 0.9824 | 4.5997 2.6229 26
FUSE 20.83 0.97347 | 5.4552 3.4906 0.5
FUMI 21.16 0.9763 5.045 3.1508 593.3

HySure 20.68 0.9773 4.868 2.902 82.4
CNMF 19.93 0.9727 5.0695 3.2938 19.3

We further consider another scenario where the baseline
algorithms correctly assume a 9 x 9 Gaussian kernel, but
the assumed blurring kernel is applied to an area which is
misaligned with the ground-truth blurring area by 2 pixels
in both of spatial dimensions. Note that such misalignment
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Fig. 10: Pavia University Reconstruction, 858nm band

could easily happen in practice. The results of the second
scenario are presented in Tables XI and XII. Fig. 10 illustrates
the reconstruction performance of Pavia University image at
a selected band. Again, one can see that Blind STEREO
clearly outperforms the benchmarking algorithms.

TABLE XI: Performance of the algorithms on the Indian Pines
data under sampling offset mismatch

Algorithm R-SNR CC SAM | ERGAS | runtime (sec)
STEREO 25.81 0.8198 | 2.5458 | 1.2788 1.5
FUSE 23.90 | 0.7273 | 3.0148 1.7390 0.14
FUSE-Sparse 23.90 | 0.7273 | 3.0148 1.7390 118
FUMI 23.45 0.6782 | 3.8075 | 2.2039 55.1
HySure 23.23 0.7474 | 3.2332 1.7655 12.4
CNMF 24.01 0.7339 | 2.9896 1.8287 5.6

TABLE XII: Performance of the algorithms for Pavia Univer-

sity data under sampling offset mismatch.

Algorithm | R-SNR CC SAM ERGAS | runtime (sec)
STEREO 22.36 0.9824 | 4.5997 2.6229 26
FUSE 15.84 0.9283 | 7.2734 5.2655 0.5
FUMI 16.44 0.9392 | 5.8355 4.6652 287.8
HySure 17.64 0.9571 | 6.4415 3.8048 82.4
CNMF 19.93 0.9723 | 5.0183 3.3947 19.2

VII. CONCLUSION
In this work we proposed a novel coupled tensor factor-
ization framework to tackle the hyperspectral super-resolution
problem. Compared to the existing matrix-based approaches,
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the proposed method shows an array of theoretical advantages
as well as more promising simulation results. To the best of
our knowledge, the developed tensor based HSR framework is
the first provably identifiable approach for the very challenging
HSR task. One notable feature of the proposed framework is
that it can easily accommodate scenarios where the spatial
degradation operator is unknown or inaccurately estimated,
which is usually the case in practice—without losing identifia-
bility of the SRI. Extensive simulations using a variety of real-
world hyperspectral images show that the proposed framework
is very promising.

APPENDIX A
PROOF OF THEOREM 3

First, we note that for any given \ > 0, the optimal solution
to (13) should make the two terms zero, when the noise is
absent. In other words, our problem boils down to considering
if the solution to Problem (13) is uniquely determined by
A, B, C up to some trivial ambiguities.

Using Lemma 1, it is easily seen that Py A, P,B and
Py C are drawn from non-singular absolutely continuous
distributions. Therefore, Theorems 1 and 2 can be employed to
characterize the identifiability of the latent factors of the MSI
and HSI tensors. Bearing this in mind, recall that the MSI
tensor is derived as Y, = Y ¢ x3 Pj;. We note that under
Lemma 1 and the conditions in the statement of Theorem 3,
the MSI tensor admits essentially unique latent factors—i.e.,
if we have Y ,; = [An, B, Cas]), then, the expressions

Ay = ATIA,, By = BIIA,, Cy = Py CIIA,,

always hold at the optimality of Problem (13), where II is
a permutation matrix and A; is a full rank diagonal matrix
such that AjAsA3 = I. In other words, by solving (13) to
optimality, A and B can be identified up to column scaling
and permutation ambiguities. To establish identifiablity of C,
let us consider the HSI tensor, i.e.,

Y ;=YX P X3 Py, (16)

Following the above mdoel, Y ;; admits a polyadic decom-
position (possibly non-unique) Y ;; = [P1 A, P,B,C]. By
matricization, the above can be written as the following:

Y\¥) = (P,Bo PLA)CT, (17)
Plugging in Aj; and B);, we have
YY) = (P,By © PLAy)CT
= (PQB ® PlA)AlAQHZCT
= (P,Bo PLA)C, (18)

where Cy = CA3II, which is exactly what we wish
to identify. The remaining question is that if C'y can be
identified from (18)? The answer is affirmative. Indeed, since
P, A, P, B are drawn from absolutely continuous non-singular
distributions (cf. Lemma 1), we have krank(P,B ® P, A) =
min{IyJg, F} almost surely [56]. Then, since Iy Jy > F,
the matrix P, B ® P; A has full column rank almost surely
and Cy can be uniquely identified from (18).



We should remark that in the proof we did not use identifi-
ablity of the HSI tensor. This echoes our comment that even
the HSI tensor is not identifiable, the super-resolution image
can be identified.

APPENDIX B
PROOF OF THEOREM 4

The proof is simply by applying Theorem 1 to the HSI and
MSI individually. The reason that we can apply the theorem
here is that, by Lemma 1, PJA, P,B and PyC are all
following some joint absolutely continuous distribution.

Another remark is that although the identifiability can be
established by looking at the HSI and MSI individually, the
coupled tensor factorization criterion in (14) is critical to the
reconstruction of the SRI, since the shared parameter C' in the
two fitting terms serves as an ‘anchor’ to fix the permutation
and scaling ambiguities [cf. Eq (18)].

APPENDIX C
THE SPATIAL DEGRADATION MODEL

The proposed work assumes that the forward spatial degra-
dation from SRI to HSI follows the model in (9), or equiv-
alently that Py exhibits a Kronecker structure, i.e. Py =
P, ® P,. Here, we prove that the Kronecker structure as-
sumption on Py is a generalization of the heavily used 2D
Gaussian blurring and downsampling procedure, modeled by
PpYs in the matricized form [17]-[20]. To this end, we
show that blurring an image by a Gaussian Kernel and then
downsampling is a separable operation across the rows and
columns.

Let us assume that ® denotes a ¢ X ¢ Gaussian blurring
kernel and Y 4(:,:, k) € RIm> /M be the matrix representation
of the super-resolution image at the kth band. Then the
convolution operation of image Y ¢(:,:, k) with the kernel ®
can be modeled as:

Y k) )

a q
Z Z ®(m,n)Yg(i—m'j—n
(19)

] and n’ = n — [1]. Here, we have
m’2 40’2
®(m,n) = (1/2n0%)e” ]

®(m,n) = ¢(m)¢(n), where ¢(m) =
Then, Eq. (19) takes the form

q q
)= 2 2 om
- (20)

which is a separable 2D convolution operation. Consequently,
the blurring processing can be re-written as

ZH(:v ) k) = 7—1(¢)XS(7 5 k)(TI(¢))T7

where ¢ = [¢(1),...,¢(q)]” and T;(¢) is the Toeplitz matrix
that models the 1-D convolution operation of a vector ¢ with
a vector of size [ as a matrix vector multiplication.

The second step of the popular spatial degradation model
is to downsample the blurred image by a factor of d = dyds.

ZH(Zaj7k> =

where m' =

, which can be written as

(1/V2mnc2)e” "=

H (i j, k n)Y (i—m',j—n',k)

The 2-D downsampling operation of the blurred image Zpg
can be cast as follows:

1 J

2o

m=1n=1

Y, (i,4,k) = m —idy,n — jdo)Zy (m,n, k),

2D
where § is the 2-d Kronecker Delta function. Using the
separability property of the 2-D Kronecker Delta (i.e.,
d(i,7) = 0(4)0(4), where 6(i) is the 1-D Delta function), the
transformation from Y ¢ to Y ;; can be finally modeled as:

XH(:7:7I€) :SlZH(:a:ak)Sg:P1XS(:v:ak)P2T (22)

where S7,Sy are matrices that perform regular sampling of
rows and columns respectively (they systematically choose 1
out of d; rows and 1 out of dy columns of Zy(:,:, k)) and
Py = 51T1(¢), Py = S:T5(9).

We should mention that although we only showed the
Gaussian blurring kernel case here, our tensor mode product
based degradation model is compatible with any blurring
kernels that factors to row and column blurring operators.

APPENDIX D
INITIALIZATION ALGORITHMS

In this section, we describe the algorithms that we propose
to initialize the proposed STEREO and blind STEREO. The
initialization approach computes factors A and B by the rank-
F CPD of Y ;. In the case where the downsampling operator
is known, A and B are obtained as A = P, A and B = P, B.
Finally factor C is derived as solution to the following linear
system of equations:

Yy =(Bo A)CT (23)

The initialization algorithm, named as Tensor Reconstruc-
tion (TenRec) is given in Algorithm 1.

Algorithm 3: TenRec
Initialization: F'
A,B,C + CPD(Y ;)
4 < P1A
B+~ P3;B
C <« solve (23)

In case where Py is unknown, A and B are approximated
by averaging out d = % column entries of A and B,
respectively, to roughly mimic the blurring and downsampling
process. Then matrix C' can then be obtained as before.
Algorithm 4 describes the algorithm.

Algorithm 4: Blind TenRec
Initialization: F'
A B.C « CPD(Y,,)
( ) - Zk ai—1)+1 Ak, )

( D) < Zk d(i—1)+1 B(k,:)
C <+ solve (23)




APPENDIX E
SYLVESTER SOLUTION TO STEREO SUBPROBLEMS

We discuss the STEREO updates to variables A, B, C. To
make this argument concrete, take for example the update for
A in Algorithm 1:

A + arg mf%nHY}(Il) —(CoP,B)A" P/ ||}

AV — (PyC © B)AT||%. 24)

Taking the derivative and setting it equal to O yields the
following Sylvester equation:

M (P C ® B)T(Py,C & B)
+P'P,A(C ® P,B)'(C ® P,B)

2w (PyCcoB) + PTYV (CoPB).  (25)

Vectorizing (25), will give a least square update for A:

Quec(A) = vee (VP (PyyCoB)+PIY " (CoP;B))
M M 1 ¥y 20)),
(26)
where Q@ = A(PyC © BT (PyC © B)® I + (C ®
P,B)T(C ® P,B) @ PI'P, € RImEXImE The complexity
for solving (26) is O(I3,F*), which can be prohibitive for
large Ip; or F. In addition, storing @ in a naive way can
be challenging. Hence, instead of solving (26), we choose to
approach (25) by utilizing efficient numerical algorithms for
solving the Sylvester equation which need O(I3;) flops and
are less memory demanding [57], [58].
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