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ABSTRACT

This work focuses on the problem of fusing a hyperspectral image
(HSI) and a multispectral image (MSI) to produce a super-resolution
image that admits high spatial and spectral resolutions. Existing al-
gorithms are mostly based on joint low-rank factorization of the ma-
tricized HSI and MSI. This framework is effective to some extent,
but several challenges remain. First, it is unclear whether or not
the super-resolution image is identifiable in theory under this frame-
work, while identifiability usually plays an essential role in such esti-
mation problems. Moreover, most algorithms assume that the degra-
dation operators from the super-resolution image to the HSI and MSI
are known or easily estimated — which is hardly true in practice. In
this work, we propose a novel coupled tensor decomposition method
that can effectively circumvent these issues. The proposed approach
guarantees the identifiability of the super-resolution image under re-
alistic conditions. The method can work even without knowing the
spatial degradation operator, which could be hard to accurately es-
timate in practice. Simulations using AVIRIS Cuprite data are em-
ployed to demonstrate the effectiveness of the proposed approach.

Index Terms— Hyperspectral imaging, multispectral imaging,
super-resolution, image fusion, tensor decomposition, identifiability,
blind deconvolution

1. INTRODUCTION

Fusing images sensed by multiple sensors is of great interest to many
applications [1, 2]. In remote sensing, an important fusion problem
is to integrate the information from a hyperspectral image (HSI) and
a multispectral image (MSI), both of which cover the same object
or area. HSIs have very high spectral resolution but relative coarse
spatial resolution, while MSIs have fine spatial resolution but low
spatial resolution. By fusing an HSI and an MSI, a super-resolution
image can be obtained, which can greatly help many analytical tasks
such as spectral unmixing and object detection.

Many HSI-MSI fusion methods in the literature treat the prob-
lem from a low-rank matrix factorization viewpoint [3, 4, 5, 6, 7,
8, 9]. Intuitively, every pixel of the HSI or MSI can be modeled as
a convex combination of spectral signatures of several materials (or
endmembers). By (jointly) unmixing HSI and MSI to such represen-
tation, high-resolution endmembers (from HSI) and the correspond-
ing high-resolution spatial distribution (from MSI) can be estimated.
Combining the two, a super-resolution image can be obtained. There
are several variations of this basic idea, such as using sparse rep-
resentations, other factorization models (e.g., SVD), and Bayesian

Supported in part by U.S. NSF grants ECCS-1608961, I11S-1447788, and
11S-1704074.

approaches [3, 6, 8]. The matrix factorization approach has proven
effective, but there are two major shortcomings. First, it is unclear if
the joint HSI and MSI factorization criteria proposed in [3, 4, 5, 6, 7]
can guarantee the recovery of the super-resolution image; i.e., there
is no assured identifiability. Second, the approaches usually assume
that the degradation operators from the super-resolution image to the
HSI and MSI are known [4, 5, 6, 7] or can be estimated from data
[3]. Assuming precise knowledge of the degradation operators, espe-
cially the spatial degradation operator (which involves kernel func-
tion and hyper-parameter selection), is often impractical. Without
calibration/training data, it is unclear if the kernel is blindly identifi-
able.

In this work, we offer an alternative solution to the HSI-MSI
fusion problem. Our method starts from the fact that both HSI and
MSI images are space-space-spectrum “cubes”, and thus are natu-
rally three-way tensors [10]. One nice property of tensors is that
any tensor admits a canonical polyadic decomposition (CPD), and
the decomposition is essentially unique under quite mild conditions.
Hence, we propose a coupled tensor factorization approach for the
HSI-MSI fusion problem. Leveraging the uniqueness of three-way
tensor factorization, we show that this method can provably identify
the super-resolution image. We further show that even when the spa-
tial degradation operator, which is in general hard to estimate, is un-
known, the proposed approach can still guarantee the identification
of the super-resolution image, with slight modifications. Numeri-
cal simulations using HSI and MSI images that are degraded from
Cuprite data show that the proposed approach is very promising for
the HSI-MSI fusion task.

2. PROBLEM STATEMENT AND BACKGROUND

Let us consider a hyperspectral image Y ;; € RIaxTu>xKu where
Iy and Jg denote dimensions that span the spatial domain and K g
denotes the number of spectral bands. Similarly, we denote a multi-
spectral image cube as Y ,, € RIM*IM*En where Iy, Jar and
K denote the dimensions of two spatial and one spectral coordi-
nates, respectively. We assume that the two images are aligned so
that they describe the same region in the spatial domain. HSIs typ-
ically have hundreds of spectral bands while MSIs have less than
20; i.e., Kpy < Ky in general. On the other hand, MSIs have
much finer resolution in the spatial domain relative to HSIs - i.e.,
IgJg < InJy typically holds.

Our goal is to integrate HSI and MSI so that a super-resultion
image cube is obtained. That is, we aim at obtaining a Y o €
RIM*TmXKu that has the spatial resolution of the MSI and the
spectral resolution of the HSI. As mentioned, this task is of great
interest to image processing and analytics in geoscience, food in-



spection, anomaly detection and target recognition.

Matrix Factorization-Based Approach. Many recent methods for
HSI-MSI fusion make use of the fact that the matricized HSI and
MSI data are low-rank matrices and come up with low-rank decom-
position based methods to handle the fusion problem [3, 4, 5, 6, 7, 8,
9]. Specifically, consider

Yu =Y, (1,1,9),....Y (I, Ju,:)] € REw*Iulum (1)

where Y ;;(4,7,:) € R¥# is a vector that is formed by taking the
(2, 7)th pixel of the HSI. By the linear mixture model (LMM) that is
commonly adopted in hyperspectral imaging, Y ~ G S, where
Gy € RFuxR g1 c RFEXIu/n R « min{IyJy,Knu}, and
17S% =17 and Sy > 0 holds. This low-rank factorization model
is based on physical modeling of the pixels of HSIs: A pixel (point
spectrum) Y7 (:, £) is modeled as a weighted sum of the spectral sig-
natures of several materials (or endmembers) that are present in that
pixel. This is a widely accepted model. By similar arguments, we
have Yas ~ G S, with rank R, where the Y, is the matricized
MSI. Hence, the matricized super-resolution image can be sythe-
sized by Ys ~ GuS7;. Here, again, Ys is obtained by applying
the operation in (1) to Y 4.

The common assumption that is adopted in matrix factoriza-
tion approaches is that there exist two linear operators Py €
RIMIMxIuJu and Py, € REM*EH guch that Yy = YsPF
and Y = PuYs can be obtained from the super-resolution
image Ys via linear transformations. Consequently, we have
YH = GH(PHSIV[)T and Y]u = (P]\{GH)S}CI. Then, GH
and S/ can be estimated via jointly factoring Y and Y3, follow-
ing the desribed model. The above is the common basic idea behind
the approaches in [3, 4, 5, 6, 7, 8, 9], where various low-rank models
and factorization criteria are employed to enhance performance.
Challenges. The matrix factorization-based approaches for HSI-
MSI fusion are fairly effective and considered state of the art. Nev-
ertheless, two key theoretical and practical challenges remain.

First, existing methods rarely consider the identifiability of Y.
Note that recovering G g Sy from compressed measurements Yz
and Y, can be quite ill-possed, since there are many solutions that
satisty Yo = G S}; and Y, = G Sﬁ. One could argue iden-
tifiability from a matrix sensing viewpoint [11], but identifiability
for matrix sensing is guaranteed when the degradation operators are
random. In our context, these operators are highly structured — thus
known theory cannot answer the question. The coupled factorization
approaches with a variety of regularizations [7, 4, 6, 3] may help in
practice — but currently lack theoretical guarantees. Note that identi-
fiability is of great interest not only from a theoretical viewpoint, but
also often serves as guidance for practitioners to select and design
the ‘correct’ solvers and algorithms — which have been proven very
useful and powerful in pertinent problems, such as spectral unmixing
[12].

Second, most matrix factorization-based fusion algorithms as-
sume that Py and Py are accurately known or can be easily esti-
mated, which is hardly true in practice. The matrix Py is relatively
easier to obtain. However, modeling Py is much more difficult.
The commonly used model is to represent Py as an operator that
blurs g-by-q overlapping grids in the 2D spatial domain of the super-
resolution image and then downsamples one pixel from the blurred
grids to form a low spatial resolution image. This process involves
several factors that are unknown in practice — e.g., the blurring func-
tion and the grid size. There are approaches in the literature, e.g.,
[3], that propose to estimate the degradation operators from data.
But these approaches involve a series of structural assumptions (e.g.,

smoothness and sparsity) on the operators and hyperparameter tun-
ing.

3. PROPOSED APPROACH

In this section, to circumvent the above challenges, we propose a
tensor-based approach to handle the MSI-HSI fusion problem.

3.1. Tensor Algebra Preliminaries
Our method heavily uses tensor algebra. To facilitate our dis-
cussion, we briefly review some key concepts that will be used
in our approach. A three-way tensor X € RI*7*K can be
considered as a three-way array whose elements are indexed by
1,7, k. A tensor can always be ‘explained’ by the so-called canon-
ical polyadic decomposition (CPD) model, ie., X(i,7,k) =
Z}ll A(i, f)B(3, f)C(k, f), with a proper F' which we refer to
as the tensor rank or CPD rank [10], where A € RI*F B € R7*F|
and C € R¥*¥ are called the low-rank factors of the three-way
tensor. Since a three-way tensor can be fully characterized by its
low-rank factors, we sometimes use the notation X = [A, B, C]
to represent the tensor.

One nice property of tensors is that the CPD model is essen-
tially unique even when F' is much larger than max{I, J, K'}. For
example, we have the following theorem:

Theorem 1 [/3]Let X = [A,B,C]withA:IxF,B:JxF,
and C : K x F. Assume that A, B and C are drawn from some
continuous distributions. Also assume I > J > K without loss of
generality. If F < 2llos2J1+log2 KI=2 tpop the decomposition of
X interms of A, B, and C is essentially unique, almost surely. In
the case K > 2Ulos2 JItllos2 KI=2 0,4 71 K> 3 the above bound
can be relaxed to F < min(I, (J — 1)(K — 1)).

Here, essential uniqueness means that if A B,C also _satisfy
X = [A, B,C], we can only have A = AIIA;, B = BIIA;,
and C = CTIAg3, where IT is a permutation matrix and A; is a
full rank diagonal matrix such that A1 A2 A3 = I. One can see that
the uniqueness condition is rather mild: For example, if one has a
80 x 80 x 80 tensor, then it admits an essentially unique CPD repre-
sentation if /' < 1024. Note that this is far more relaxed compared
to uniqueness conditions for matrix factorization, where nonnegativ-
ity, sparsity, and geometric conditions are needed and the rank has
to be lower than the outer dimensions of the matrix [14, 15].

Two useful operations for tensor are matricization and taaking
a mode product. The operation in (1) is in fact one way to matri-
cize a three-way tensor. In this work, the transpose of operation
in (1) is used and the matricized X has the following form: X =
(BOA)CT c RIu7/uxKu ywhere ® denotes the Kronecker prod-
uct. The mode product operator is essentially mutiplying a matrix to
all the slabs of a tensor in one mode (note that a three-way tensor
has three different types of slabs, i.e., front, horizontal, and vertical
slabs, and thus three modes). Therefore X = X x1 Py X2 P> X3 P3
leads to a matricized form X = (P,B® P1 A)(P3C)T; see details
in [10, 16].

3.2. Degradation as Mode Products

We start with the case where Py and Py are both known and show
how to formulate the fusion problem as a coupled tensor factoriza-
tion problem. Then, we will discuss identifiability issues including
the case where Py is unknown.

Note that the HSI, MSI, and the super-resolution image are all
naturally modeled as three-way space-frequency tensors. The super-
resolution tensor Y ¢ admits a CPD model, i.e., Y ¢ = [A, B,C]
for appropriate F'. Let us assume that the spatial degradation to
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Fig. 1: Illustration of degradation from the super-resolution image
to the HSI and MSI, respectively.

the HSI can be modeled by Y ;; (:, 1, k) = PiY o(;, ., k)PY, k =
1,..., Ku, where P; is a blurring and dimensionality-reducing ma-
trix that operates on the row dimension of each slab, and P» does the
same on the column dimension. Such separability is commonly as-
sumed in the matrix factorization approaches, and it makes sense
in practice. For example, the commonly used 2D Gaussian blur-
ring and downsampling procedure, modeled by Py Y5 in the ma-
tricized form [4, 5, 6, 7], is a separable operation and can be ‘de-
composed’ to an one-dimensional Gaussian convolution plus down-
sampling across rows and another one-dimensional Gaussian con-
volution plus downsampling across columns of Ys(:,:, k)’s. This
is equivalent to a 2-D blurring and downsampling procedure using
two operators PP, and P that are applied to the rows and columns,
ie., XH = XS X1 P Xo Py, and Py = P> ® Py, where ®
denotes the Kronecker product. In the matricized form, we have
Yy = (P:B) ® (PyA)) C”. Similarly, it is also readily seen that
Yu = (B A) (PyC)T.

3.3. Coupled Tensor Factorization for Super-resolution

Let us first consider the case where Pys and Py are known. In this
case, we propose to employ the following formulation for HSI-MSI
super-resolution:

. 2
minimize Y — [PiA, P:B,C]||% @
+ MY, — [A, B, PuCll%

where A > 0 is a pre-selected parameter that balances the two
terms. Specifically, we jointly decompose the HSI tensor and the
MSI tensor to estimate A, B and C' using the above. Then, we
can reconstruct the super-resolution tensor using the latent factors,
ie. Y(i,j, k) = Y7_, A(i, /)B(, f)C(k, f). The algorithm
for solving Problem (2) is presented in Algorithm 1. We refer to
this algorithm as tensor-based super-resolution (SuperTensor for
short). In the algorithm, H; and M; denote the 7th mode matriciza-
tion of the HSI and MSI, respectivley. The idea is to optimize Prob-
lem (2) with respect to (w.r.t.) A, B and C one at a time while fixing
the other two, and repeating the process cyclically — which is remi-
niscent of the classic alternating least squares (ALS) algorithm in the
tensor literature. Note that each subproblem in SuperTensor is an
unconstrained least squares problem and thus can be solved rather
efficiently. Also note that various other optimization approaches can
be employed, but we have to postpone this discussion for the journal
version.

We also consider the case where the spatial degradation opera-
tors P; and P> are completely unknown. In that case, we propose to
employ the following estimator:

- 2
minimize HXH — [[A,B, C]] H
A.B,A.B.C F

3)
+ MY, — [A, B, PuC]|%.

In the above formulation, we replaced P; A and P> B with A and
B, respectively. A similar alternating optimization approach can be
employed to handle the criterion. The motivation of the formulation

Algorithm 1: SuperTensor
Initialization: \, I, A, B, C
repeat
A < argming ||H1 — (C ® P.B)ATPT |2 + )| M, —
(PsC @ B)A™||%;
B « argming||Hz — (C © PLA)BTP] |2 + \| M2 —
(PsC © A)BT||%;

C « argming|Hs — (P2 BOP1A)CT |2 + A\|M3s — (B®

A)CTP{ %
until Some stopping criterion is met
Reconstruct Y g using ¥ (i, j, k) = > f_, A(i, f)B(j, f)C(k, f).

is as we stated in the last subsection: The blurring and downsampling
kernel for the spatial degradation is hard to know. Note that if one
could identify A, B and C from (3), one can still reconstruct ¥ g.
We should mention that we assume knowledge of Py for a couple
of reasons: First, it is relatively easy to get a reasonable estimate
of Pys by simply inspecting the employed wavelengths of the HSI
and MSI cameras, respectively — which means there is no hyper-
parameter such as the size of the blurring grid as in Py that is hard to
determine in practice. Second, the common factor C' in both terms
of (3) is essential for coupling the two factorizations together and
fixing the permutation and scaling ambiguities that are inherent in
tensor decomposition, which we need for reconstruction.

3.4. Identifiability Issues
Regarding the identifiability of the super-resolution image cube, we
have the following theorems:

Theorem 2 LetY ,;, = [PLA, P,B,C]andY ,, = [A, B, PuC].
Assume without loss of generality that Iny > Jy > K. Also
assume that A, B and C' are drawn from some continuous distri-
bution and (A*, B*,C™) is an optimal solution to Problem (2).
Then, Y 4(i, j,k) = Z}ll A*(i, )B*(4, /)C*(k, f) recovers
the ground-truth Y ¢ almost surely if F' < 2171=2 \here ¥ =
logy (Jam Kar). In the case Ing > 272 and Jur + K > 3 the
above bound can be relaxed to F < min(Iar, (Jym — 1) (K — 1)).

For the case where P; and P, are unknown, we also have

Theorem3 Let Y, = [A,B,C] and Y,, = [A, B, PuC].
Assume without loss of generality that Iy > Ju > Kpg and
Ine > Ju > Kwu. Also assume that A, B and C are drawn
from some continuous distribution and (A*, B*, A*, B*,C")
is an optimal solution to Problem (3). Then, Xs(i,j7 k) =
Z?Zl A*(i, f)B*(j, f)C™ (k, f) recovers the ground-truth Y g

almost surely if F < min{2L"1J*2, 2L'm72}, where y1 = logy (Jn Kar)

and 2 = logy(JuKp). In the case Iny > 21172 and Jur +
K > 3, 21172 can be replaced by min(Inr, (Jar—1) (K —1)).
Equivalently when Iy > 2l20=2 gna Jy + Ky > 3, 2172172 can
be replaced by min(Ig, (Jg — 1)(Kg — 1)).

The proofs of the theorems are relegated to a journal version
due to space limitations; the idea is to make use of Theorem 1 to
characterize the optimal solutions of Problems (2) and (3). To have
some concrete sense of the theorems, let consider an example where
we are interested in reconstructing a super-resolution image of size
600 x 512 x 130 from an HSI of size 150 x 128 x 130 and an
MST of size 600 x 512 x 8. Then reconstruction is guaranteed under



the assumptions of Theorem 2 or 3 if the CPD rank of the super-
resolution image tensor (as well as those of the HSI and MSI) sat-
isfies F' < 1024. This is in general easy to satisfy (approximately)
in practice. In table 1, we show the normalized mean squared er-
ror (NMSE) of using a CPD model to reconstruct a subimage of the
AVIRIS Cuprite image [17]. One can see that for all the tested ranks,
the reconstruction error is rather small. Note that under the tested
ranks, the CPD model is unique. This means that using a unique
CPD model to approximate HSI and MSI cubes is very reasonable.

Table 1: The NMSE of using a CPD model to approximate a subim-

One can see that both SuperTensor, SuperTensor w/ p.p. and
FUMI produce comparably good super-resolution images, and that
SuperTensor w/ p.p. works best from an accuracy point of view,
while the runtime of the SuperTensor algorithms is much less
than that of FUMI. Specifically, both SuperTensor versions use
1/3 the runtime of FUMI. Also note that SuperTensor offers iden-
tifiability guarantees, while FUMI in general does not.

Table 2: Performance of the algorithms assuming the degradation
operators are known.

age of the AVIRIS Cuprite data that is of size 512 x 614 x 187. . A'g";i“““ lgl(‘)’[lii . 9C9§23 05812237 ]31:6(;7133 r““‘i“l‘; (min)
uperlensor . . I . X
SuperTensor (w/p.p.) | 0.0149 | 0.99349 | 0.81903 | 0.4359 10
rank 300 400 500 600 700 800 Bayes-Naive 0.0309 | 0.97336 | 1.0663 | 0.8807 XX
NMSE | 0.019 | 0.016 | 0.0142 | 0.0131 | 0.0123 | 0.0116 FUMI 00149 | 09933 | 0.80617 | 0.4441 30
Naive 0.0646 | 0.88234 | 1228 1.7136 XX

4. SIMULATIONS

In this section, we use a real available HSI as a reference (i.e., to act
as the super-resolution image) and synthesize a HSI and MSI fol-
lowing the so-called Wald’s protocol [18] that is widely adopted in
the HSI-MSI fusion literature. Specifically, we model the degrada-
tion process from super-resolution to the HSI as a combination of
image blurring by a 9 x 9 Gaussian kernel and down-sampling the
result by a factor of d = 16 as described previously. To obtain the
MSI, the spectral response Py is modeled as a matrix that picks
and averages certain bands of the super-resolution spectrum. The
dataset used in the experiments is the Cuprite HSI downloaded by
the AVIRIS platform. It represents geological features in 187 bands
of spatial resolution 512 x 614, ie. Yo € RO12X614X187 - Thep,
Y, € RIZSXISZXIST gngy e RII2X614%6 4o the produced.

The baseline algorithms used for comparison are: Naive,
where each pixel of the HSI is replicated as many times as needed to
fit the super spatial resolution, Bayes-Naive [5] and FUMI [7],
among which FUMI is considered state-of-the-art. The algorithm
in [19] was also tested but failed to operate due to memory over-
flow. To evaluate performance, we adopt popularly used metrics
as defined in [20, 1], namely cross correlation (CC), spectral angle
mapper (SAM), and relative dimensional global error (ERGAS),
and the reconstruction normalized mean squared error (NMSE). In
a nutshell, high values of CC and SAM and low values of ERGAS
and NMSE correspond to good fusion performance.

All simulations were performed in Matlab on a Linux server
with 3.6GHz cores and 32GB RAM. We implemented two versions
of SuperTensor: Besides the original one, we also implement
SuperTensor with a commonly employed pre-processing in ten-
sor decompositions. Specifically, we apply mode SVD to the third
mode of the HSI tensor and reduce dimension of that mode to R and
then feed the reduced-dimension tensor to SuperTensor. Note
that factors of the original tensor can be reconstructed from the fac-
tors of the dimension-reduced tensor if the third-mode matricization
has low matrix rank. This way, the computational complexity of ten-
sor factorization can be reduced and empirically better results are of-
ten observed; see [10]. We call this implementation SuperTensor
with pre-processing (p.p.). We initialize SuperTensor by the
CPD of Y ,,, which is computed using Tensorlab [21], run for
maximum 20 iterations. In all the simulations, we fix the A param-
eter to be 1072, The stopping criterion of FUMI is set to be the
relative cost error being less than 10™* as suggested in [7].

Table 2 shows the performance of the algorithms . The rank
used for the full tensor decompositions is ' = 750 and the rank of
the low rank matrix model is R = 10. It is important here to note
that F' = 750 was chosen following Theorems 2-3 and also Table 1.

The second set of experiments examines the case where the
degradation model from super-resolution to HSI is not accurately
known. In particular we consider a scenario where Y ;; is produced
by Y _ after 9 x 9 Gaussian blurring and downsampling, but the
baseline algorithms falsely assume 11 x 11 or 13 x 13 averaging-
based blurring. We implement SuperTensor with the formulation
in (3), which we refer to as SuperTensor-B where ‘B’ stands
for ‘Blind’. Table 3 shows the performance of the algorithms. One
can see that the proposed method outperforms the baselines on three
out of four accuracy metrics, which shows that the method is really
robust to model mismatch. In terms of runtime, the result is simi-
lar with the previous case — the proposed method is 3 times faster
compared to FUMI.

Table 3: Performance of the algorithms when the spatial degradation
model is not accurately known.

Algorithm NMSE CcC SAM | ERGAS | runtime (min)
SuperTensor-B 0.0219 | 0.98776 | 1.1367 | 0.59665 X
Bayes-Naive (11 x 11) | 0.0324 | 0.97006 | 1.0665 | 0.91537 X
Bayes-Naive (13 x 13) | 0.0330 | 0.96897 | 1.0666 | 0.92849 X
FUMI (11 x 11) 0.0307 | 0.9757 | 1.1236 | 0.82304 X
FUMI (13 x 13) 0.0329 | 0.97228 | 1.1558 | 0.87747 X
Naive 0.0646 | 0.88234 | 1.228 1.7136 X

5. CONCLUSION

In this work, we proposed a new coupled tensor factorization based
framework for the HSI-MSI fusion problem. Compared to the
popular approaches that are mostly based on coupled matrix factor-
ization, the proposed framework enjoys several favorable features:
The method can provably identify the super-resolution tensor under
realistic conditions, and is also friendly for algorithm design. In
addition, this framework can easily accomandate scenarios where
the spatial degradation model is unclear or inaccurately estimated,
which is often the case in practice. Simulations using the AVIRIS
Curpite image data show that the proposed method is effective and
efficient in fusing HSI and MSI under different scenarios.
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