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ABSTRACT

Hyperspectral super-resolution refers to the task of fusing a hyper-
spectral image (HSI) and a multispectral image (MSI) in order to
produce a super-resolution image (SRI) that has high spatial and
spectral resolution. Popular methods leverage matrix factorization
that models each pixel spectrum as a convex combination of spectral
signatures belonging to few endmembers. These methods are con-
sidered state of the art, but many challenges remain. First multiband
images are naturally 3-dimensional signals, while matrix methods
ignore 3-d structure. Second, these methods do not provide identi-
fiability guarantees under which the reconstruction task is feasible.
Third, a tacit assumption is that the degradation operators from SRI
to MSI and HSI are known or can be easily estimated – which is
hardly the case in practice. Recently [1] proposed a coupled ten-
sor factorization approach to handle these issues. In this work we
propose a hybrid model that combines the benefits of tensor and ma-
trix factorization approaches. We also develop a new algorithm that
is mathematically simple, enjoys relaxed identifiability and is com-
pletely agnostic of the spatial degradation operator. Experimental
results with real hyperspectral data showcase the effectiveness of the
proposed approach.

Index Terms— Hyperspectral imaging, multispectral imaging,
super-resolution, image fusion, tensor decomposition, identifiability

1. INTRODUCTION

Multi-sensor image fusion has long been of interest in image pro-
cessing and computer vision [2, 3, 4]. In remote sensing for ex-
ample, multi-band image fusion is being used to overcome physical
and technical limitations of hyperspectral and multispectral sensors.
In particular the task of hyperspectral super-resolution integrates in-
formation from a multispectral image (MSI), which has a fine spa-
tial but limited spectral resolution, and a co-registered hyperspectral
image (HSI), which has low spatial but high spectral resolution, to
obtain a super-resolution image (SRI) that features high spatial and
spectral resolution simultaneously [5, 6]. SRI’s can be used to im-
prove the performance of several analytical tasks, such as spectral
unmixing, image segmentation, anomaly detection, etc. [5, 7].

The majority of existing methods approach the hyperspectral
super-resolution problem from a matrix factorization perspective [8,
9, 10, 11, 12, 13, 14, 15]. Specifically the popular linear mixture
model (LMM) is adopted, which asserts that each pixel spectrum of
a multi-band image is a convex combination of spectral signatures
of several endmembers (materials) which present at that pixel. As
a result, a multi-band image can be decomposed in a bilinear form
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of abundances and spectral signatures of several materials. Super-
resolution is achieved by jointly decomposing a MSI and a HSI, in
order to obtain a more accurate map of the materials and their abun-
dances. Many matrix factorization based fusion methods have been
proposed, using variations of the LMM, or employing different al-
gorithmic frameworks to approach the associated non-convex opti-
mization problem.

Although the matrix-factorization based methods are considered
state of the art, several challenges remain. First and foremost is that
multi-band images are inherently three dimensional (3-d) signals (2-
d space × frequency) but 3-d structure is ignored in these matrix-
based methods. Second, the matrix-factorization based fusion mod-
els are usually non-identifiable. Note that identifiability is important
for number of reasons. It provides guarantees under which super-
resolution reconstruction is feasible, as well as practitioner guide-
lines regarding sensing and measurement campaign design. Spectral
unmixing algorithms [16, 17, 18, 19] are typically employed to ini-
tialize the fusion, and methods based on non-identifiable models are
particularly vulnerable to bad initialization. Finally the vast majority
of matrix factorization methods assume that the spatial degradation
operation from SRI to HSI is known or can be accurately estimated,
which is hardly the case in practice. While it is fair to assume that
the spectral response can be obtained by inspecting the hyperspec-
tral and multispectral sensor specifications, estimating the spatial re-
sponse is challenging. The commonly adopted model of the spatial
degradation operator is a blurring kernel followed by downsampling
– which involves many hyperparameters, such as kernel shape and
size. Existing approaches for estimating this operator, e.g., [8] re-
quire knowledge of the hyperparameters.

Recent work [1] proposed a coupled tensor factorization ap-
proach to overcome the above issues. In [1] the multi-band im-
ages are modeled as third order tensors which admit a Canonical
Polyadic Decomposition (CPD). Jointly estimating the CPD factors
of HSI and MSI can guarantee recovery of the SRI under mild condi-
tions. This model takes advantage of the 3-d structure of multi-band
images, is identifiable under mild conditions and can accommodate
scenarios where the spatial degradation operator is completely un-
known.

In this work we propose a hybrid approach that combines the
benefits of the two aforementioned models. Specifically we model
the super-resolution image as a low-rank tensor, while simultane-
ously imposing low rank matrix structure as the LMM suggests. The
proposed hybrid model is identifiable and enjoys the nice properties
of both models. Furthermore, we introduce a brand new hybrid al-
gorithm, which is very appealing due to its simplicity, accuracy, and
ability to work without any knowledge of the spatial degradation op-
erator. Numerical results with real hyperspectral data show that the
proposed approach outperform the state-of-the art even if they as-



sume knowledge of the spatial degradation.

2. PRELIMINERIES AND BACKGROUND

2.1. Tensor Algebra Preliminaries

This work uses tensor algebra, so we briefly introduce some key
concepts here, and refer the reader to [20, 21] for more informa-
tion. A third order tensor X ∈ RI×J×K is a three-way array
indexed by i, j, k with elements X(i, j, k). Any third order ten-
sor can be synthesized as a sum of 3-way outer products (rank-one
tensors) as in X(i, j, k) =

∑F
f=1 A(i, f)B(j, f)C(k, f), where

A ∈ RI×F , B ∈ RJ×F , C ∈ RK×F are the three factors of
the tensor. If F is minimum, F = rank(X) and the decomposi-
tion is known as canonical polyadic decomposition (CPD), or par-
allel factor analysis (PARAFAC). In this work, we use the notation
X = JA,B,CK to represent the CPD of the tensor.

One pivotal difference between low-rank tensor and matrix fac-
torization is that the CPD model is essentially unique even when F
is much larger than max{I, J,K}. In particular:

Theorem 1 [22] Let X = JA,B,CK with A : I ×F , B : J ×F ,
and C : K ×F . Assume that A, B and C are drawn from a jointly
continuous distribution. Let I ≥ J ≥ K without loss of generality.
If F ≤ 2blog2 Jc+blog2Kc−2, then the decomposition of X in terms
of A,B, and C is essentially unique, almost surely.

Here, essential uniqueness means that if Ã, B̃, C̃ also satisfy X =JÃ, B̃, C̃K, we can only have A = ÃΠΛ1, B = B̃ΠΛ2, and
C = C̃ΠΛ3, where Π is a permutation matrix and Λi is a full rank
diagonal matrix such that Λ1Λ2Λ3 = I .

Two useful operations in tensor algebra are matricization and
mode multiplication. There are different ways to matricize an I ×
J × K tensor X . One is X := [X(1, 1, :), . . . ,X(I, J, :)]T ∈
RIJ×K , where X(i, j, :) ∈ RK denotes a column vector containing
X(i, j, 1), · · · ,X(i, j,K), called a third mode fiber of X . The
CPD of a tensor can be expressed in a matrix form as X = (B �
A)CT , where � denotes the Khatri-Rao (column-wise Kronecker)
product. The mode product operator multiplies a tensor by a matrix
in one mode. Mode product operations are represented as X̃ =
X×1P1×2P2×3P3 where×1 multiplies each column of X with
P1, ×2 multiplies each row of X with P2 and ×3 multiplies each
fiber of X with P3. This mode product equation can be unfolded in
the form X̃ = (P2B � P1A)(P3C)T .

2.2. Problem Statement and Background

Consider the spatially co-registered HSI cube Y H ∈ RIH×JH×KH

and MSI cube Y M ∈ RIM×JM×KM . The spatial dimensions
are denoted by IH , JH for the HSI, by IM , JM for the MSI and
IHJH � IMJM . The spectral dimensions are KH , KM for HSI
and MSI, respectively, with KH � KM . Hyperspectral super-
resolution aims at fusing a HSI and a MSI in order to produce a SRI
Y S ∈ RIM×JM×KH at the spatial dimensions of the MSI and the
spectral dimension of the HSI. The remote sensing community mod-
els the degradation from SRI to MSI as a mode three multiplication
with a selection and averaging matrix PM ∈ RKM×KH i.e.,

Y M = Y S ×3 P
T
M . (1)

Matrix PM can be estimated using the spectral specifications of the
hyperspectral and multispectral sensors. As far as the degradation
from SRI to HSI is concerned, the literature follows Wald’s proto-
col [23] which models the spatial degradation of each SRI frontal
slab (Y S(:, :, k)) as a combination of circularly symmetric Gaus-
sian blurring and downsampling. In the journal version of [1] we

show that this operation is separable across rows and columns of the
cube and can be modeled as:

Y H = Y S ×1 P1 ×2 P2, (2)
where P1 ∈ RIH×IM , P2 ∈ RJH×JM and PH = P2 ⊗ P1 is the
overall spatial degradation operator (⊗ denotes the Kronecker prod-
uct). In practice, the blurring kernel is only approximately Gaussian,
its width is only approximately known, and there is unknown sam-
pling offset. In this work we consider P1, P2 to be unknown.
Matrix Factorization Approaches: The majority of existing HSI-
MSI fusion methods, model multi-band images as low-rank matri-
ces following the LMM [8, 9, 10, 11, 12, 13, 14]. The SRI, for
example, can be modeled as YS ≈ SET ∈ RIMJM×KH , where
E ∈ RKH×R is the matrix containing the spectral signatures of
R � min{IHJH ,KH} endmembers, S ∈ RIMJM×R is the abun-
dance matrix, and 1TST = 1T and S ≥ 0 hold. Using the mode
multiplication based forward model described by (1) and (2) we
can express the matricized MSI and HSI as YM ≈ SETP T

M ∈
RIMJM×KM and YH ≈ PHSET ∈ RIHJH×KH respectively.
Super-resolution reconstruction is performed by estimating Ê and
Ŝ via jointly factoring YH and YM , and then setting ŶS ≈ ŜÊT .
This is the basic idea behind [8, 9, 10, 11, 12, 13, 14, 15].
Tensor Approach: Although matrix factorization-based approaches
are considered state of the art, several challenges exist as previously
explained. To overcome these, [1] introduced a novel coupled CPD
approach to handle the hyperspectral super-resolution task. The SRI
is naturally a third order tensor and admits a CPD Y S = JA,B,CK
of a certain rank F . then, following (1), (2) the MSI and HSI can be
expressed as:

YM = JA,B,PMCK (3)
Y H = JP1A,P2B,CK . (4)

The factor matrices A, B,C can be estimated by joint CPD of YM
and YH and the SRI is recovered as Ŷ S =

r
Â, B̂, Ĉ

z
. Spatially

blind reconstruction can be performed by simply replacing P1A
and P2B by auxiliary variables Ã and B̃, respectively. Compared
to matrix-factorization based approaches, the CPD based super-
resolution framework provides strong identifiability guarantees, and
improved resolution in practice.

3. THE HYBRID MODEL

At this point, it is natural to wonder whether is it possible to come
up with an approach that combines the benefits of low rank matrix
factorization, as well as those of low rank tensor factorization. In
this section we propose a hybrid approach that takes advantage of
the multi-linear dependence across a multi-band image in conjunc-
tion with the low rank matrix structure imposed by the LMM. The
SRI is a tensor that admits a CPD Y S = JA,B,CK of rank F .
Moreover, following the LMM, the mode 3 unfolding of the SRI,
YS , exhibits low rank matrix structure of rank R. This is reflected
in the singular value decomposition (SVD) of YS = UΣV T . The
columns of V ∈ RKH×R are the right singular vectors of YS and
give an orthogonal basis for the fiberspace of tensor Y S . Then one
can without loss of generality transform the original superresolu-
tion tensor Ys ∈ RIM×JM×KH to a superresolution core tensor
ZS ∈ RIM×JM×R, as ZS = Y S ×3 V . The CPD model of the
core tensor is:

Zs =
q
A,B, C̄

y
(5)

where C̄ = V TC ∈ RR×F . Note that one can always recover
Y S as Y S = ZS ×3 V T and C from C = V C̄, since Y S , C



live in a low dimensional subspace defined by V ; see [20, 24] for
details. The HSI is related to SRI via (2). Therefore Y S , Y H

share the same fiberspace V , which can be computed by the SVD
of YH . As a result, one may, without loss of generality, transform
the original hyperspectral tensor Y H to a hyperspectral core tensor
ZH ∈ RIH×JH×R as ZH = Y H×3V = Y S×1P1×2P2×3V .
The CPD model of ZH is then:

ZH =
r
Ã, B̃, C̄

z
, (6)

where Ã = P1A ∈ RIH×F , B̃ = P2B ∈ RJH×F .
Regarding the relation between the MSI and the core SRI,

Y M = Y S ×3 P T
M and Y S = ZS ×3 V T . Thus, Y M =

ZS ×3 P̄ T
M , where P̄M = PMV ∈ RKM×R. Consequently the

CPD model of the MSI can be casted as:

Y M = JA,B,PMCK =
q
A,B, P̄M C̄

y
, (7)

Overall, the hybrid model describes the SRI and HSI by a CPD
model that admits a low rank matrix structure in the third mode
(fiberspace). As far as the MSI is concerned, it is also described
by a CPD model and the low rank matrix structure of the third mode
is reflected in the spatial degradation operator which is transformed
to P̄M = PMV . The (hybrid model based) super-resolution task is
performed by identifying A, B, C̄ and C = V C̄.

4. SUPER-RESOLUTION CUBE ALGORITHM (SCUBA)

Taking a closer look at the hybrid model we observe that we are able
to compress the spectral dimension of the HSI – and SRI since they
share the same fiberspace – fromKH toRwithout loss of generality.
The spectral response has been transformed from PM ∈ RKM×KH

to P̄M = PMV ∈ RKM×R in the hybrid model. In practice,
the number of multispectral bands is usually between KM = 4 or
KM = 8. The number of endmembers, R, on the other hand, de-
pends on the size and type of the image, but is usually less than
20. While this case can be successfully handled using coupled ten-
sor factorization (as we will show in the companion journal paper),
here we would like to point out a different and quite intriguing pos-
sibility. Namely, for R ≤ KM , super-resolution reconstruction
can be accomplished in a simple and appealing way, and under re-
laxed identifiability conditions – even if the spatial degradation oper-
ator is non-separable and completely unknown. Let Y M denote the

MSI with CPD Y M =
r
A,B, C̃

z
, where C̃ = P̄M C̄. Also let

V ∈ RKH×R be the basis of the hyperspectral fiberspace computed
via SVD of YH . If R ≤ KM , C̄ can be computed by solving the
overdetermined system C̃ = P̄M C̄, and consequently C can be ob-
tained as C = V C̄. The procedure is summarized in the following
steps: r

A,B, C̃
z
← CPD(Y M ) (8a)

V ← SVD(YH) (8b)

C = V P̄†M C̃ (8c)

Ŷ S(i, j, k) =

F∑
f=1

A(i, f)B(j, f)C(k, f), (8d)

where † denotes Moore-Penrose pseudoinverse. The caveat is that
R ≤ KM is restrictive in practice. The engineering solution is to
judiciously choose, e.g., 8 × 8 × K blocks of the original image
tensor, similar to what is done in JPEG image compression. Small

spatial patches typically contain few endmembers, hence R ≤ KM

holds over each patch. Also note that smaller-size tensors typically
exhibit smaller tensor rank, allowing us to use a smaller F per sub-
tensor. The proposed super-resolution cube approach (SCUBA for
short) is summarized in Algorithm 1. In the algorithm YM

(l), YH (l)

denote the l-th MSI, HSI cube respectively.

Algorithm 1: SCUBA
Judiciously cut YM , YH into L cubes.
for l=1 to L do

r
A,B, C̃

z
← CPD(Y

(l)
M )

V ← SVD(Y
(l)
H )

C = V P̄†M C̃

Ŷ
(l)

S = JA,B,CK
end for

4.1. SCUBA Identifiability
While blocking may introduce artifacts in highly compressed JPEG
images, this is not a concern in our context when the decomposition
of each sub-tensor is identifiable – since we can then provably recon-
struct each super-resolution sub-tensor independently of its neigh-
bors.

Theorem 2 Let Y M = JA,B,PMCK and YH = UΣV T , where
R ≤ KM . Assume without loss of generality that IM ≥ JM ≥ KM .
Also assume that the entries of A, B and C are drawn from
some absolutely continuous distribution, and that PH and PM
have full rank. Let (A?,B?,C?) denote a solution to (8a)-(8c).
Then, Ŷ S(i, j, k) =

∑F
f=1 A

?(i, f)B?(j, f)C?(k, f) recov-
ers the ground-truth Y S almost surely if F ≤ 2bγc−2, where
γ = log2(JMKM ).
As a concrete example, consider the reconstruction of a SRI of size
128×128×178 from a MSI of size 128×128×8 and a HSI of size
32 × 32 × 178. Theorem 2 states that reconstruction is guaranteed
if the rank of the MSI satisfies F ≤ 256. The proof of Theorem 2
uses Theorem 1 to characterize the solution of (8a). The details are
relegated to the journal version.

5. SIMULATIONS

In this section we evaluate the performance of the proposed algo-
rithm and showcase its effectiveness using real hyperspectral data.
We use a publicly available HSI as if it were the SRI, and synthet-
ically generate a HSI and a MSI in a realistic manner, following
Wald’s protocol [23]. In particular the degradation from SRI to HSI
is modeled as the process of blurring by a 7× 7 Gaussian kernel and
downsampling 1 out of every 4 × 4 = 16 pixels of the result. The
spectral response PM is obtained by comparing the spectral speci-
fications of the reference image to those of the LANDSAT [25] and
QuickBird multispectral sensor, for the first and second set of experi-
ments respectively. In order to make the model more realistic we add
zero mean white Gaussian noise to the spatial and spectral degrada-
tion process. The noise variance is controlled so that the HSI has 15
dB signal to noise ratio (SNR) and the MSI 25 dB SNR. All sim-
ulations were performed in Matlab on a Linux server with 3.6GHz
cores and 32GB RAM. The baseline algorithms used for compari-
son are: Blind STEREO [1], FUSE [10], FUMI [12], HySure [8]
and CNMF [9]. Among them Blind STEREO can perform blind
spatial reconstruction, assuming a separable kernel. HySure can
approximately estimating the spatial response when given the kernel



size and downsampling offset. SCUBA is fully blind, even for non-
separable kernels. To assess performance, we use the reconstruction
SNR (R-SNR), which is defined as 10 log

(
‖YS‖2F /‖ŶS − YS‖2F

)
along with cross correlation (CC), spectral angle mapper (SAM),
and relative dimensional global error (ERGAS) defined in [4, 5]. In
a nutshell, high values of R-SNR, CC and SAM and low values of
ERGAS correspond to good super-resolution performance.

The first set of experiments uses the Cuprite HSI downloaded
from the AVIRIS platform as the reference SRI. It has Y S ∈
R512×614×187. Then, Y H ∈ R128×152×187 and Y M ∈ R512×614×6

are produced. Table 1 and figure 1 show the performance of the algo-
rithms averaged over 10 Monte Carlo simulations. The rank used for
STEREO is F = 150 and the rank of the low rank matrix model is
R = 10. SCUBA divides the HSI and MSI into 16 non-overlapping
blocks and for each block F = 45 and R = 3. The CPD is per-
formed by Tensorlab [26], which runs for at most 25 iterations.
The second set of experiments uses a hyperspectral scene taken from
Pavia University in Italy captured by the ROSIS sensor. The SRI is
Y S ∈ R608×336×103→ Y H ∈ R152×84×103, Y M ∈ R608×336×4.
For STEREO we use F = 300 and R = 9; for SCUBA we cut the
images into 16 pieces and use F = 120 and R = 3 for each.

Summarizing the results, SCUBA shows the best super-resolution
performance, whereas the previously proposed STEREO comes sec-
ond. The results are even more remarkable if one notes that SCUBA
and STEREO work without knowing the spatial degradation, while
HySure is given the kernel size and downsampling offset, and
FUSE, FUMI and CNMF assume perfect knowledge of the spatial
degradation. As far as time is concerned, FUSE is the fastest but
gives low quality results. SCUBA and STEREO are the second fastest
and SCUBA can even be fully parallelized across sub-tensor blocks.

Table 1: Performance of the algorithms in Cuprite Data.

Algorithm R-SNR CC SAM ERGAS runtime (sec)
STEREO 27.88 0.9381 1.8004 1.1044 13.5
SCUBA 29.06 0.9521 1.4695 0.9714 15
FUSE 18.14 0.6952 6.4971 3.4517 1.5
FUMI 24.04 0.8707 3.1939 3.1939 259
HySure 24.20 0.8808 3.1095 1.6816 148
CNMF 22.97 0.8590 3.6957 1.9614 71.5

Table 2: Performance of the algorithms in Pavia University data

Algorithm NMSE CC SAM ERGAS runtime (sec)
STEREO 20.39 0.9732 5.8279 3.3333 28
SCUBA 22.84 0.9843 4.31 2.5624 20.5
FUSE 19.43 0.96648 6.9954 3.9471 0.6
FUMI 22.01 0.9811 4.37 2.7328 116

HySure 19.89 0.9723 5.7094 3.1862 85
CNMF 18.43 0.9656 6.3049 3.9316 20

6. CONCLUSIONS

We proposed a novel hybrid super-resolution approach that com-
bines the benefits of low-rank matrix and tensor approaches. We
also developed a simple new algorithm named SCUBA, based on
tensor block partitioning. SCUBA is computationally appealing,
trivial to parallelize across blocks, and fully blind in terms of the
(possibly non-separable) spatial degradation – while retaining strong
identifiability properties. Relative to STEREO, SCUBA further re-
quires knowledge of (a bound on) the number of endmembers in
each block, so the two are complementary to each other, in this
sense.
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