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ABSTRACT

Estimating the joint distribution of data sampled from
an unknown distribution is the holy grail for modeling
the structure of a dataset and deriving any desired op-
timal estimator. Leveraging the mere definition of con-
ditional probability, we address the complexity of ac-
curately estimating high-dimensional joint distributions
without any assumptions on the underlying structural
model by proposing a novel hierarchical learning algo-
rithm for probability mass function (PMF) estimation
through parallel local views of a probability tensor. This
way the overall problem of estimating a joint distribu-
tion is divided into multiple subproblems, all of which are
conquered independently by applying regional low-rank
non-negative tensor models using the Canonical Polyadic
Decomposition (CPD). Using conditioning, such paral-
lelization is possible without losing sight of the full model
– which can be reconstructed from the local models and
the conditional probabilities. We illustrate the effective-
ness and potential of our approach through judicious
experiments on real datasets.

Index Terms: tensors, probability, polyadic decomposition,
non-parametric estimation, distributed and parallel methods.

1. INTRODUCTION

Data analytics has become the center of modern technology
as massive amounts of data are generated in a number of com-
plex data-intensive fields such as medicine, social networks,
finance, sales, marketing and many more, increasing the de-
mand for tools that can store, detect and summarize the mul-
tivariate structure of high-dimensional data. Accurate model-
ing of statistical information lies at the core of data modeling,
and estimating an unknown probability distribution function
based on observed data is considered the holy grail of un-
supervised learning. Joint probability distribution estimation
of a set of random variables X1, . . . , XN is the construction
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of a distribution estimate P̂X1,...,XN
(i1, . . . , iN ) using real-

izations sampled from the true unknown probability distribu-
tion PX1,...,XN

(i1, . . . , iN ). Once we know the joint proba-
bility mass function (PMF) of a set of discrete random vari-
ables, then we can calculate the conditional and joint proba-
bility distributions of arbitrary subsets of these variables (e.g.,
Pr(Xn = in | X1 = i1, . . . , Xn−1 = in−1 ) and manipu-
late them for a large variety of applications including classifi-
cation, regression, discriminant and incomplete data analysis
as well as assessment of the multimodality, skewness, mean,
variance, kurtosis, or any other structure in the distribution of
the data [1].

Estimating a joint PMF suffers from the problem that
the number of unknown parameters grows exponentially as
the number of variables increases (the em curse of dimen-
sionality). Considering 10 binary variables, the number of
parameters to be estimated in this case is 210 − 1, (−1 since
they should sum up to 1). Tensors (i.e., multi-way arrays)
provide a natural representation for such massive multidi-
mensional data [2]. A joint PMF of a set of random variables
X1, . . . , XN can be modeled as a probability tensor X where
the size of each dimension is equal to the alphabet size
I1, . . . , IN of the corresponding variable and the indexed el-
ements represent the probability of the particular realization
i.e., X(i1, . . . , iN ) = PX1,...,XN

(i1, . . . , iN ). A simple ap-
proach for joint PMF estimation is counting the occurrences
of the joint variable realizations. However, the corresponding
empirical probability tensor will be sparse and highly inac-
curate since the probability of almost every realization must
decay exponentially in the number of variables.

In this work, we address the complexity of accurately
estimating high-dimensional joint distributions by proposing
a hierarchical learning algorithm for joint PMF estimation
through parallel local views of the probability tensor. In
case of continuous random variables, the method requires
that we fix a set of non-overlapping intervals that cover the
support of each variable. By leveraging the mere definition
of conditional probability, we decompose the global problem
to many local problems – each modeling a conditional dis-
tribution over a local hypercube – and we ‘stich’ the local
conditional models together using a coarse tensor contain-
ing the aggregate probabilities of the local hypercubes. This



way we handle the global problem in a completely paral-

lel, divide-and-conquer fashion, with each thread processing

only a piece of the data. Our method combines the Canon-

ical Polyadic Decomposition (CPD), also known as Parallel

Factor Analysis (PARAFAC) [3], [4], and Bayes conditioning

to come up with a new hierarchical model of a probability

tensor, which is not equivalent to a global CPD. Our goal is

to build a flexible and intuitive non-parametric distribution

estimator over both continuous (which we finely-quantize)

and discrete (with large alphabet size) domains. We provide

convincing results that corroborate the effectiveness of the

proposed method using real data.

2. PRELIMINARIES

2.1. Canonical Polyadic Decomposition

An N -way tensor X ∈ R
I1×I2×···×IN is a multidimensional

array whose elements are indexed by N indices. Any tensor

X can be decomposed as a sum of F rank-1 tensors

X =
F∑

f=1

λ(f)A1(:, f) ◦A2(:, f) ◦ · · · ◦AN (:, f),

where λ ∈ R
F , An ∈ R

In×F , n = 1, ..., N , and ◦ denotes

the outer product (Fig.1). The number of terms F is bounded,

and when F is the smallest number for which such decom-

position exists, then F is the rank of X, and the decompo-

sition is called canonical (polyadic decomposition). A par-

ticular element of the tensor is given by X(i1, i2, . . . , iN ) =∑F
f=1 λ(f)

∏N
n=1 An(in, f). Here, we have assumed with-

out loss of generality that the columns of {An}Nn=1 have unit

norm and have absorbed the scaling into λ. We use the short-

hand notation X = [[λ,A1, . . . ,AN ]] to denote the decompo-

sition.

Fig. 1. CPD model.

2.2. Naive Bayes Model and Rank Decomposition

A joint PMF can always be represented by a latent variable

model following the naive Bayes hypothesis [5], [6]. More

specifically, the joint PMF of {Xn}Nn=1 can be expressed as

PX1,...,XN
(i1, . . . , iN ) =

F∑
f=1

PH(f)
N∏

n=1

PXn|H(in|f),

with F ≤ mink

N∏
n=1,n �=k

In, where PX1,...,XN
(i1, . . . , iN ) =

Pr(X1 = i1, . . . , XN = iN ), PH(f) = Pr(H = f) is the

prior distribution of the latent variable H and PXn|H(in|f) =
Pr(Xn = in|H = f) are the conditional distributions [5], [6].

Defining An(in, f) = PXn|H(in|f), λ(f) = PH(f), we

can easily see that the naive Bayes model can be interpreted

as a non-negative polyadic decomposition with the additional

constraint 1Tλ = 1 [7], [8].

3. MULTIRESOLUTION CPD

Non-negative CPD models have already been proposed for

PMF estimation [9], [6]. However, when dealing with large

alphabets (e.g., finely-quantized continuous random vari-

ables), sample complexity and computational complexity

become major issues. In this work, we explore a very inter-

esting alternative that is made possible by conditioning – and

the very definition of conditional probability which preserves

the attractive properties of the aforementioned approaches

while bringing much needed additional benefits.

3.1. Two-layer Approach
For simplicity of exposition, let all random variables take val-
ues in {1, . . . , I}. We define the following two mappings:

�(i) := � i

L
� ∈

{
1, . . . , � I

L
�
}
,

r(i) := i− L(�(i)− 1) ∈ {1, . . . , L} .

Then i = L(�(i)−1)+r(i) and i↔ [�(i), r(i)] is a bijection.

Considering a single random variable X , we can write

Pr(X = i) = Pr(�(X) = �(i), r(X) = r(i))

= Pr(�(X) = �(i))Pr(r(X) = r(i) | �(X) = �(i)).

Defining random variables Y := �(X) and Z := r(X),

PX(i) = PY (�(i))PZ|Y (r(i) | �(i)).
Extending to two random variables X1, X2, we have

Pr(X1 = i1, X2 = i2)

= Pr(�(X1) = �(i1), r(X1) = r(i1), �(X2) = �(i2), r(X2) = r(i2))

= Pr(�(X1) = �(i1), �(X2) = �(i2))

Pr(r(X1) = r(i1), r(X2) = r(i2) | �(X1) = �(i1), �(X2) = �(i2)).

With obvious notation,

PX1,X2
(i1, i2) = PY1,Y2

(�(i1), �(i2))

PZ1,Z2|Y1,Y2
(r(i1), r(i2) | �(i1), �(i2)).

For three random variables X1, X2, X3, we have

PX1,X2,X3
(i1, i2, i3) = PY1,Y2,Y3

(�(i1), �(i2), �(i3))

PZ1,Z2,Z3|Y1,Y2,Y3
(r(i1), r(i2), r(i3) | �(i1), �(i2), �(i3)).

Dropping subscripts on the left hand side, and letting

Q(�(i1), �(i2), �(i3)) := PY1,Y2,Y3 (�(i1), �(i2), �(i3)),

S�(i1),�(i2),�(i3)(r(i1), r(i2), r(i3)) :=

PZ1,Z2,Z3|Y1,Y2,Y3
(r(i1), r(i2), r(i3) | �(i1), �(i2), �(i3)),

we have:

P (i1, i2, i3) = Q(�(i1), �(i2), �(i3))S�(i1),�(i2),�(i3)(r(i1), r(i2), r(i3)).



The above PMF can be interpreted as a decomposition of

a coarse, a low-resolution “prior” and a fine PMF from a col-

lection of conditional distributions that resolve a finer level of

detail (Fig. 2). The idea now is to build non-negative CPD

models for the low-resolution tensor Q(·, ·, ·) of size � I
L�3

and the refinement tensors S�(i1),�(i2),�(i3)(·, ·, ·), each of size

L3. That is, we shall decompose

Q(�(i1), �(i2), �(i3)) =

F∑
f=1

λ(f)A1(�(i1), f)A2(�(i2), f)A3(�(i3), f), and

S�(i1),�(i2),�(i3)(r(i1), r(i2), r(i3)) =

F (g)∑
f=1

λ(g)(f)A
(g)
1 (r(i1), f)A

(g)
2 (r(i2), f)A

(g)
3 (r(i3), f),

where g = g(�(i1), �(i2), �(i3)), and express the joint PMF

PX1,X2,X3(i1, i2, i3), as a product of CPDs of two tensors.

coarse

fine

Fig. 2. Multiresolution CPD.

The idea naturally generalizes to multiple random vari-

ables. Expressing a probability tensor as a product of two (or

more) CPDs, as opposed to a single CPD gives us two great

advantages: All � I
L�3+1 CPDs (i.e., the � I

L�3 high-resolution

conditionals and the one low-resolution prior) can be com-

puted completely in parallel. There is no need for data sharing

or communication between different processors. Each tensor

is much smaller, which further speeds up computations. This

enables massive parallelism. In addition, if one estimates the

decompositions directly from data, the data can be split in

blocks, and each processor only needs access to points falling

in its own block. The low-resolution layer only needs to know

the point count in each block. Another advantage of local es-

timation is the following: considering the distribution to be

of high rank, recursive splitting may turn out to be a method

to create sub-tensors of lower rank. Smaller size allows using

smaller tensor ranks, without sacrificing accuracy.

3.2. The Hierarchical Approach

One can consider more than two such decomposition layers.

The hierarchical approach extends the above idea by recursive

splits of the dimensions of the full probability tensor of the

training data. Deciding on an appropriate number of refine-

ment layers (i.e., depth of recursion) is not obvious, consider-

ing the shrinking block size, one can quickly end up with too

few data samples per block. To address this issue we initially

split each dimension I1, . . . , In in half and assign a binary

label (dense or sparse) to each sub-tensor, depending on the

relative density of current sub-tensors, (i.e., number of data

points of each sub-tensor compared to the average sub-tensor

density). On the next layer, only the dense refinement tensors

are further split and the average density is updated (Fig. 3). In

this way, we avoid overfitting in case of unbalanced data sam-

ples. This procedure is recursively repeated until the desired

level of refinement is achieved, which can either be manually

picked, depending on the number of training samples (more

samples yield more layers), or we can let the algorithm reach

the maximum depth by itself if the leaf sub-tensors’ densi-

ties no longer exceed a predefined threshold. In this way we

acquire a set of labeled refinement tensors and their corre-

sponding low-resolution tensors.

Fig. 3. Recursive split.

Different refinement tensors can have different dimen-

sions and different ranks (different from the low-resolution

tensor). Because of the heterogeneity of the resulting refine-

ment sub-tensors, another issue that has to be addressed is

how to choose the rank of each block efficiently. To build the

refinement tensors with the same overall number of parame-

ters as for the full tensor model (i.e., single CPD) approach

of rank F , for each block we use rank of size Rfine = L2F
I2 .

Naturally, if we have the freedom to assign higher rank to

the blocks that are labeled as dense, the approximation of the

distribution at that layer is expected to improve.

Each refinement tensor and its corresponding low-resolution

tensor is approximated in parallel by a CPD model using

Kullback-Leibler (KL) divergence as the fitting criterion since

we noticed that KL outperforms Frobenius norm in terms of

prediction accuracy in the datasets we experimented with.

Defining KL divergence between two probability tensors X
and Y as

DKL(X‖Y) :=
∑

i1,...,iN

X(i1, . . . , iN ) log
X(i1, . . . , iN )

Y(i1, . . . , iN )
,

we propose solving the following optimization problem for

both high- and low-resolution tensors:



Binary Multiclass
Method Skin Bank notes Activity Shuttle Older people

SVM 92.879 98.909 65.983 90.732 90.282
Naive Bayes 92.434 87.636 70.146 90.767 91.453
Decision tree 99.934 97.818 96.664 98.008 96.152
Full model 99.634 87.818 96.701 97.767 94.725

Hierarchical 99.593 98.916 96.762 97.861 94.799

Table 1. Accuracy on UCI and Kaggle datasets.

min
λλλ,A1,...,AN

DKL

(
X‖[[λλλ,A1, . . . ,AN ]]

)
subject to λλλ ≥ 0,

1Tλλλ = 1,

An ≥ 0, n = 1 . . . N,

1TAn = 1T , n = 1, . . . , N,

employing the EM algorithm as described in [10], [11].

4. NUMERICAL TESTS

In this subsection, we evaluate the method of joint distribution
estimation on five different machine learning datasets from
the UCI machine learning repository [12] and Kaggle [13] to
showcase the effectiveness of the proposed joint PMF estima-
tion method and test the PMF estimate for data classification.
Three of the selected datasets correspond to binary classifi-
cation and two to multi-class classification. Since our hier-
archical distribution estimation is a PMF-based approach, we
finely discretize any continuous features. In view of the fact
that the rank F of the joint PMF tensor is not known a priori,
an appropriate rank for our model is found by splitting each
dataset such that 70% of the data samples is used for training,
10% for validation and 20% for testing. Hierarchical CPD
uses rank of Rfine to model the sparser blocks and a rank of
αRfine, where α ∈ [3, 8] to model the dense ones. For each
dataset, we run 10 Monte Carlo simulations with randomly
partitioned training, validation and test sets, fit models of dif-
ferent ranks and choose the one which maximizes the accu-
racy over the validation set. After applying the hierarchical
CPD approach for estimating the joint PMF, we predict for
each data point of the test set the corresponding label using
the Maximum a Posteriori (MAP) rule.

Datasets N M
Skin 4 245057

Bank notes 5 1372
Activity 9 75128
Shuttle 9 58000

Older people 6 100000

Table 2. Dataset information.

We use 3 different classical classifiers as baselines; linear
SVM, a naive Bayes classifier and decision tree using the raw
data and additionally we employ PMF estimation using the
full CPD model. Table 1 shows the classification accuracy ob-
tained on the datasets and table 2 shows the dataset informa-
tion. It is noteworthy that in some cases local view captures
the essence of the joint distribution even better than the full
CPD view. One can see that the performance of our method
is always either comparable or superior to the baselines. Nev-
ertheless, we have to consider that our method constitutes a
general tool for joint distribution estimation that can model
any desired optimal estimator using MAP rule without any ad-
ditional modeling, given that the distribution is well approx-
imated. For example, our method can be used to predict any
other variable from the remaining variables, without training
a new model. It can also be used to handle randomly missing
variables – the MAP or MMSE estimator is still easy to com-
pute using our model, but none of the other trained methods
work in these cases. To illustrate how reliable the joint dis-
tribution is, table 3 showcases the KL divergence of training
and test set of the full CPD model and the proposed hierar-
chical model. As expected, PMF learning is refined both in
hierarchical and full CPD with growing training data size.

Method Skin Bank notes Activity Shuttle Older people
H-CPD Train 1.566 4.965 1.668 0.207 0.673
F-CPD Train 1.642 5.628 1.834 0.291 0.777
H-CPD Test 2.560 10.716 3.356 0.612 1.171
F-CPD Test 2.427 12.126 3.442 0.676 1.341

Table 3. KL divergence on UCI and Kaggle datasets.

5. CONCLUSIONS

We proposed a novel method for the fundamental problem
of joint PMF estimation. Our method features two main
competitive advantages: it enables more accurate distribu-
tion estimates faster and at lower complexity due to the
parallelism (and lower local rank) it naturally enables. Ex-
perimentation on real data has validated the efficacy of the
proposed method, which approaches or exceeds the most
common custom-designed classification techniques, while
affording great flexibility in effortlessly dealing with missing
variables or predicting another variable without any model
retraining or reconfiguration.
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