Algebraic and Topological
Tools in Linear Optimization

Jestis A. De Loera

The Linear Optimization Problem

This is a story about the significance of diverse viewpoints
in mathematical research. I will discuss how the analy-
sis of the linear optimization problem connects in elegant
ways to algebra and topology. My presentation has two
sections, grouped under the guiding light of these areas.
These mathematical areas, while often considered to be
pure mathematics, in fact connect deeply to many other
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important computational problems besides linear optimi-
zation (see [5] and the many references therein). Clearly,
the famous quest for the “most efficient” algorithm possi-
ble to solve the linear optimization problem shapes my
story, too; this is a challenge that many consider to be
one of the top mathematical challenges of the century (see,
e.g., [14]). My narrative is informal, thus I will not give
all details, but I hope enough intuition will entice others
to learn more about these methods. My target reader is
a non-expert mathematician, say a graduate student curi-
ous about how algebra connects to optimization, but I also
hope to give experts quick pointers to remarkable new ac-
tivity since 2010. For the sake of space I was asked to leave
out the majority of references, but the interested reader can
obtain a longer version, with all missing references, by con-
tacting me.
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Figure 1. Two milk production plants supply three cities.

The hero of my story is the linear optimization problem.
This is the basic, but fundamental, computational prob-
lem of maximizing or minimizing a linear function subject
to the condition that the solution must satisfy a given set
of linear inequalities and equations. One wishes to find
a vector X = (X1,...,X4) € R? such that we maximize
C1X1 + C2X2 + ... C4Xg4 subject to

ajXy +taiXxe +... +aiaXxa < bl,
a X1 +azpXp + ... +d2aXg < b,

dn1X1 +ap2X2 + ... +anaXg < by.

Here a; j, bj, cj are assumed to be integers. The same
problem presented in matrix-vector notation is summa-
rized as

Ax <bh, x e R"}.

As a very concrete example, imagine there are two milk
production plants, P; and P, that supply three cities, M1,
M>, and M3, with fresh milk. Facility P; bottles s; gallons

max{ cTx :
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of milk, and city M; consumes r; gallons. There is a cost
Ci;j for transporting one gallon of milk from plant P; to city
M;. See Figure 1 for an illustration of the transportation
problem. The problem is to meet the market requirements,
i.e., satisfy demand with the available supply, doing so at a
minimum transportation cost. If the amount of milk to be
shipped from P; to M; is given by x;;, then we can write
a linear program modeling the optimization challenge of

L 2 3 -
minimizing >'i_; > j-; CijX;; subject to

2
2im1Xij =1
23:1 Xij < s; for each milk plant,
Xij = 0.

for each city,

Research on linear optimization can be traced back at
least to Fourier, but the subject really starts developing at
full speed around the time of World War II. In fact, it is
around 1939-1941 that Kantorovich and Koopmans inves-
tigated the simple type of transportation problem we saw
earlier. They later received the Nobel Prize in Economics
for it. Dantzig (see Figure 2), von Neumann, Gale, Kuhn,
and Tucker were crucial in the first developments of the
subject in the late forties. The name linear program is old,
and the word programming was not about computer pro-
gramming, but was used as a synonym for planning. Fol-
lowing that old tradition I will call linear programs, or LPs
for short, the instances of the linear optimization problem.

If distributing milk efficiently is not your favorite way
to engage with mathematics, consider the following way
to think about linear programs: With a simple reformula-
tion adding auxiliary variables, the inequality system can
always be rewritten as the solutions of a system of linear
equations over the non-negative real numbers, max{ cTx:
Ax =b, x > 0, x € R"}. Thus linear optimization can
be thought of as linear algebra with non-negative variables.
In fact, Fourier’s initial algorithm was a process of variable
elimination quite similar to Gaussian elimination. Today
we know it as the Fourier-Motzkin elimination algorithm
(it was rediscovered by T. S. Motzkin).

Why do LPs matter? Well, LPs are simple yet very ex-
pressive models, which include as special cases several im-
portant problems: for instance, the challenges of finding
the shortest paths on a graph, the maximum flow on a net-
work, the minimum weight spanning tree or matching on
a graph, and all two-player zero-sum games can be formu-
lated directly as linear programs. More importantly, all
other parts of optimization rely heavily on linear optimiza-
tion as a pillar for computation and theory. For example,
optimization problems with discrete variables are most of-
ten reduced via branching to the repeated use of linear
programming. Linear programs are also used in various
approximation schemes for combinatorial and non-linear
optimization. But the impact of linear optimization goes
well beyond optimization itself and reaches other areas of
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mathematical research: e.g., in combinatorics and graph
theory and in discrete geometry, for the solution of Ke-
pler’s conjecture. Exciting new applications continue to
appear, and the impact of linear optimization is also pal-
pable in practical ventures (e.g., airlines, oil industry, etc.)
because there are very fast software packages that can solve
concrete problems with millions of variables in reasonable
time. For those wishing to learn more, there are several ex-
cellent books ([10, 13]) and surveys (such as [8, 11, 15])
covering the theory of linear optimization.

Before we start, a word about the geometry behind lin-
ear programs. The feasibility region of a linear program,
i.e., the set of possible solutions, is always a convex polyhe-
dron. Polyhedra are beautiful jewel-like objects that have
attracted mathematicians for centuries. Here a polyhedron
P C R4 is the set of solutions of a system of linear in-
equalities of the form Ax < b, where A is an integer ma-
trix with d-dimensional row vectors ay,...,a,, and b is
an integer vector. In this way, the input size is given by d
variables, n constraints, and the maximum binary size L
of any coefficient of the data. We assume that row vectors
ai,...,a, span RY Thus P = {x € RY : Ax < b}.
When P is bounded, we call it a polytope. Two important
types of polytopes are simple and simplicial polytopes. Sim-
ple polytopes are those where at every vertex, d inequali-
ties meet with equality, for example a cube. Simplices are
d-dimensional polytopes with exactly d+ 1 inequalities. A
simplicial polytope is one whose faces are all simplices, e.g.,
an octahedron or an icosahedron. Not all polytopes fit in
these two types (e.g., the polytope in Figure 3), but most
arguments in linear optimization go through them. For
example, simple polytopes correspond to non-degenerate
linear programs, which are typically run in computation.
The beautiful geometry of polytopes is clearly presented
in [17]. We now begin the story.

A Topological Point of View

Dantzig's simplex method from
1947 [4] is one of the most
common algorithms for solv-
ing linear programs. It can be
viewed as a family of combi-
natorial local search algorithms
on the graph of a convex poly-
hedron. More precisely, the
search is done over a finite
graph, the one-skeleton of the
polyhedron or graph of the poly-
hedron, which is composed of
£e the zero- and one-dimensional
Figure 2. George Dantzig  faces of the feasible region
(1914-2005). (called vertices and edges). The
search moves from a vertex of the one-skeleton to a bet-
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Figure 3. The simplex algorithmic steps trace a path on the
graph of a polyhedron.

ter neighboring vertex according to some pivoting rule that
selects an improving neighbor. The operation of moving
from one vertex to the next is called a pivot step or simply
a pivot. Geometrically the simplex method traces a finite
path on the graph of the polytope. See Figure 3.

Today, after sixty years of use, and despite competition
from other algorithms, the simplex method is still widely
popular and useful. The simplex method was even named
as one of the most influential algorithms in the twentieth
century, but we still do not completely understand its theo-
retical performance sufficiently well to explain its practical
performance. Is there a polynomial-time version of the sim-
plex method? Such an algorithm would allow the solution
of a linear program with a number of pivot steps that is a
polynomial in d, n, and L. This is a very famous problem
that has received a lot of attention. Suggested by this com-
plexity question, there is a related geometric puzzle about
the diameter of the graph of a polytope used to make the
simplex walk. The diameter is the length of the longest
shortest path among all possible pairs of vertices; e.g., for
a three-dimensional cube the diameter is three. It remains
awell-known open problem whether there is always a poly-
nomial bound on the diameter. If a counterexample exists,
then a polynomial simplex method would be impossible.
So what are current bounds for the diameter?

The best upper bounds for the diameter of polytopes,
valid for all polytopes, originated in a groundbreaking pa-
per by Kalai and Kleitman. If we denote by n the number
of facets of a polytope, and d its dimension, then their
result asserts a bound of n'°8@*! This was improved by
Todd and then, most recently, Sukegawa with the current
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Figure 4. Some simplicial complexes (from left to right): a
pure strongly connected complex, a non-pure complex, a
non-strongly connected complex.

record of (n—d)'°80(d/108(d)) "1n, 3 different influential ap-

proach Larman proved that the diameter is no more than
29731 This bound was improved by Barnette to d3 ’ (n—
d + 5/2). Remarkably this bound shows that, in fixed di-
mension d, the diameter must be linear in the number of
facets. Could the diameter of all polytopes be in fact linear
in terms of n, d? We will come back to this later!

A key point I would like to stress is that the proofs of
these general upper bounds use only very limited (met-
ric) geometric properties of polytopes; the coordinates and
equations defining an LP do not play a big role. The
bounds hold for more abstract combinatorial objects
called simplicial complexes.

A simplicial complex K is a finite collection of simplices
that are glued to each other in a structured manner. If 0 €
K, then all its faces (which are smaller simplices too!) are
also in K. Thus a simplicial complex must be closed under
containment. The intersection of any two elements of K is
another element of K. The dimension of a simplex is equal
to the number of vertices minus one (e.g., a triangle is two-
dimensional). A simplex of K that is not a face of another
simplex is called maximal. A simplicial complex K is called
pure if all of its maximal faces are of the same dimension.
Maximal faces of a pure simplicial complex are called facets.
For a pure simplicial complex K, one may form its dual
graph, which is a graph whose vertex set is given by the
facets of K and whose edge set is given by pairs of facets
in K that differ in a single element. A simplicial complex
is strongly connected if its dual graph is a connected graph.
See Figure 4.

Pure simplicial complexes are excellent topological ab-
stractions of polytopes because the boundary complex of a
simplicial d + 1-polytope is always a pure simplicial com-
plex of dimension d, and there is a direct way to go from
non-degenerate linear optimization problems (known to
have the largest diameters anyway) to pure simplicial com-
plexes by using the polarity operation. This is illustrated in
Figure 5, where facets turn into vertices and vertices into
facets under polarity to obtain an octahedron that is sim-
plicial (all faces are now triangles). Note that the n facets
of a simple polytope turn into n vertices of a simplicial
complex.

A path on the edge of the cube becomes a path on the
(triangles) simplices of an octahedron. In higher dimen-
sions the distance between two facets of the simplicial com-
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plex, Fy, F, is the length s of the shortest simplicial path
F1 = fo,f1,...,fs = F>. Consecutive d-dimensional sim-
plices in the path must share a common (d — 1)-dimen-
sional face. The diameter of a simplicial complex is the
maximum over all distances between all pairs of facets.
Note that the diameter of K equals the graph theoretic di-
ameter of its dual graph.

The topological approach to finding the diameter of sim-
ple polytopes instead explores the diameter of their cor-
responding (polar) simplicial complexes. We remind the
reader that now n refers both to the number of facets of the
simple polytope and to the number of vertices of its (po-
lar) simplicial complex. This idea has a long history, start-
ing with the introduction of abstract polytopes by Adler and
Dantzig [1]. Mani and Walkup, Kalai, Billera and Provan,
and Klee and Kleinschmidt were some of the pioneers. The
message is that special simplicial complexes have nicely
bounded diameter. Coordinates and coefficients do not
matter; distances and angles do not matter. We present
here a “taste” of topological results about diameter simpli-
cial complexes.

First of all, topological abstraction is justified given our
current bounds. Eisenbrand, Hihnle, Razborov, and Roth-
voss worked with a class of simplicial complexes called nor-
mal complexes which again include all those coming from
linear programs. They proved that both the Larman-style
bounds and the Kalai-Kleitman-style bound hold in fact
for normal simplicial complexes. Their work led to the fol-
lowing tantalizing conjecture:

Conjecture 1 (Hahnle, 2014). The diameter of every nor-
mal (d — 1)-complex with n vertices, including simplicial d-
polytopes with n vertices, is at most (n — 1)d.

Overall, nice topological or combinatorial conditions
give rise to good diameter bounds. Consider for exam-
ple the following property: Peeling off a simplicial com-
plex, piece by piece, is an important tool in combinato-
rial topology; e.g., a shelling of a pure simplicial complex
is an ordering of its facets in which, at each step, the ith
facet intersects nicely with the union of the other previous
facets. Shellings do not exist for all pure complexes, but re-
markable results have been shown for shellable complexes.
For our purposes vertex decomposability is very important.

54

Figure 5. An example of the polarity operation: The polar of a
cube is an octahedron and vice versa.
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Figure 6. An example of a weakly 0-decomposable complex
(on top) and a Mobius band, which is not weakly 0-decom-
posable.

not of right dimension!

Billera and Provan conceived a natural way to prove a lin-
ear bound on the diameter that relies on vertex decomposi-
tion properties of complexes. They introduced the notion
of a weakly k-decomposable complex. A d-dimensional sim-
plicial complex A is weakly k-decomposable if it is pure
of the same dimension, and either A is a single d-simplex,
or there exists a face T of A (called a shedding face) such
that dim(T) < k and A\T is d-dimensional and weakly
k-decomposable. So one recursively “peels off” the sim-
plicial complex using a sequence of faces so that finally we
arrive at a (full-dimensional) simplex. In Figure 6 we show
an example of a weakly 0-decomposable complex through
a possible shedding order of vertices (in three steps), but
when the same simplicial complex is made into a Mobius
band identifying one pair of opposite sides, the complex
is not anymore weakly 0-decomposable.

The reason why weak-decomposability is so interesting
for bounding diameters is the following theorem:

Theorem 2 (Billera, Provan, 1980). If A is a weakly
k-decomposable simplicial complex, 0 < k < d, then

diam(A) < 2fx(A),

where fi(A) is the number of K-faces of A. In the case of
weakly O-decomposable, we have the following linear bound
(n = fo(A)):

diam(A) < 2fy(A) = 2n.

Note that if all simplicial polytopes were weakly
0-decomposable, then the diameter would be linear, be-
ing no more than twice the number of facets of the polar
simple polytope. All simplicial d-dimensional polytopes
are weakly d-decomposable because they are shellable (see,
e.g., [17] for an introduction). The question is then, which
simplicial polytopes are weakly 0-decomposable? More
strongly, is there a fixed constant k < d for which all sim-
plicial polytopes are weakly k-decomposable? If this were
true for k = O (weakly O-decomposable), then the desired
linear bound would be achieved! These challenges have
been settled. De Loera and Klee constructed examples of
simplicial polytopes that are not weakly 0-decomposable
disproving this method as an approach for a linear bound
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of the diameter for polytopes. Interestingly, the counterex-
amples are explicit from the transportation problems, like
those in the introduction, with two milk factories and at
least five cities to service.

As a word of warning, we note that going into too much
topological generality will certainly not give a useful
bound for the diameter, at least not one sufficiently good
for linear optimization. This is evident from the pioneer-
ing work by Santos, and more recently Criado and Santos;
they showed

Theorem 3 (Criado, Santos 2017). If Hg(n, d) denotes the
maximum  diameter of a pure strongly connected
(d — 1)-complex with n vertices, then

nd—l 1 n nd—l
@1 oya1 o =Hnd) =g (d— 1) = Tar

Thus the diameter of many complexes grows as can=" for
a constant Cg depending only on d.

They also showed that similar exponential behavior ap-
pears for simplicial pseudo-manifolds (to be a
pseudo-manifold every (d — 2)-dimensional simplex of
the complex is contained in exactly two maximal
d-dimensional ones). On the other hand, linear programs
are associated to simplicial polytopes, which are simplicial
spheres, a much more restricted type of simplicial com-
plex.

Some constructions of spheres and balls with “large”
diameter were presented by Mani and Walkup with excit-
ing new improvements by Criado and Santos. Neverthe-
less, today all known simplicial spheres and balls have di-
ameter bounded by only 1.25n. Regarding construction
of polytopes with “large” diameter, Warren Hirsch conjec-
tured in 1957 that the diameter of the graph of a polyhe-
dron defined by n inequalities in d dimensions is at most
n — d. Dantzig popularized the conjecture in his classic
book, and it became known as the Hirsch conjecture. Coun-
terexamples in the unbounded case were found quickly by
Klee and Walkup, but it took fifty-three years of hard work
to build a counterexample to the Hirsch conjecture for poly-
topes. In his historic paper [12] Francisco Santos showed

Theorem 4 (Santos, 2010).

® There is a 43-dimensional polytope with 86 facets and
of diameter at least 44 (this result has now been im-
proved).

® There is an infinite family of non-Hirsch polytopes with
n facets and diameter ~ (1 + €)n for some € > 0.
This holds true even in fixed dimension.

A key observation of Santos’s construction was an ex-
tension of a well-known result of Klee and Walkup. They
showed that the Hirsch conjecture could be proved true
from just the case when n = 2d. In that case the problem
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is to prove that given two vertices U and Vv that have no
facet in common, one can pivot from one to the other in
d steps so that at each pivot we abandon a facet contain-
ing u and enter a facet containing v. This was named the
d-step conjecture (see [8]).

The construction of Santos’s counterexample uses a
variation of this result for a family of polytopes called spin-
dles. Spindles are polytopes with two distinguished ver-
tices U,V such that every facet contains either u or v but
not both. Examples of a spindle include the cross poly-
topes, the cube, and the polytope in Figure 7. Spindles
can be seen as the overlap of two pointed cones (as shown
in Figure 7). The length of a spindle is the distance between
this special pair of vertices.

Santos'’s strong d-step theorem for spindles says that
from a spindle P of dimension d with n > 2d facets and
length A one can construct another spindle P’ of dimen-
sion d+1 with n+1 facets and length A+ 1. Since one can
repeat this construction again and again, each time increas-
ing the dimension, length, and number of facets of the new
spindle by one unit, we can repeat this process until we
have n = 2d (number of facets is twice the dimension).
In particular, if a spindle P of dimension d with n facets
has length greater than d, then there is another spindle P’
of dimension n — d with 2n — 2d facets and length greater
than n — d that violates the Hirsch conjecture. Santos con-
structed such a five-dimensional spindle. As of today the
work on constructing lower bounds still leaves open the
possibility of a linear diameter for polyhedra.

An Algebraic Point of View

In 1984 Narendra Karmarkar presented an algorithm to
solve LPs that used a different principle from the simplex
method. At each iteration of the algorithm a point in the
interior of the polytope will be generated. His paper [7]
started the revolution of interior-point methods and gave an
alternative proof of polynomiality of linear programming.
Originally Karmarkar presented his work in terms of pro-
jective transformations, but later it was shown his algo-
rithm was equivalent to an earlier idea. One replaces the
linear objective function with something more complica-
ted. A barrier function is added to the original linear ob-
jective function. A barrier function has a singularity at the
boundary of the polyhedron and thus prevents the points
at each iteration from leaving the feasible region. Barrier
functions originated in non-linear programming during
the 1960s when Fiacco and McCormick showed they de-
fined a smooth curve, the barrier trajectory or the central
path, that converges to the solution of the constrained prob-
lem from the strict interior of the feasible region, com-
pletely avoiding the boundary. Interior-point methods
have had a profound impact in modern optimization.
Interior-point methods are used not just for linear
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Figure 7. Francisco Santos and a younger geometer (top) and
a three-dimensional spindle (bottom).

programming, but for non-linear optimization and other
forms of convex optimization, e.g., semidefinite program-
ming (see, e.g., [16] and the references therein).

A logarithm function is a classical choice to use as the
barrier function. For a concrete example, consider the
problem to maximize c¢’x subject to the conditions
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Figure 8. The level sets of a logarithmic barrier function fj at four different values of A. Top left: A is close to zero, thus the
optimum of fy is near the LP optimum. Bottom right: A is a large positive number, thus the optimum of fy is near the analytic

center of the polyhedron.

Ax = b and x > 0; the logarithmic barrier function for
this problem will be fA(x) = c'x + AX"L, logx;. It
is natural to use Newton’s method to find unconstrained
maximizers of the logarithmic barrier function for a se-
quence of positive values of A converging to zero. This
numerical approach yields, for finitely many values of A, a
piece-wise approximation to the central path. See Figure
8.

Let me show you now an amazing mathematical con-
nection to algebra! This discussion will be motivated by
another longstanding open problem. With the existence of
polynomial-time algorithms for linear programming, we
can be more ambitious and ask, is there a strongly polynomial-
time algorithm that decides the feasibility of the linear system
of inequalities AXx < b? Strongly polynomial-time algo-
rithms take a number of steps bounded only by a polyno-
mial function of the number of variables and constraints.
In particular, the size of the coefficients would not matter.
Some instances of linear optimization in which we know
we can do that include network type LPs, LPs with at most
two variables per inequality, and combinatorial LPs (those
with bounded maximum sub-determinant).
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It is natural to ask whether interior-point methods can
be adjusted or adapted to work as strongly polynomial-
time algorithms for all LPs. We will see here a partial neg-
ative answer of this question for interior-point methods.
Some fascinating properties on the differential geometry
of the central paths will become relevant, and to answer
them the methods of tropical algebraic geometry will be
key. While typically interior-point methods are seen as
a family of numerical-approximation algorithms, the pro-
gress came from looking at the intrinsic algebraic and sym-
bolic nature of interior-point methods and new combina-
torial tools, such as tropical geometry, to analyze systems
of polynomial equations.

To set up the story, recall the fundamental fact that all
linear optimization problems come in pairs, the pair of
linear programming problems in primal and dual formula-
tions (with slack variables):

Maximize c¢’x subjectto Ax =b and x > 0; (1)

Minimize b’y subjectto ATy —s =c and s > 0.
(2)

As before, here A is an n X d matrix. The fundamental
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results of duality theory, available in all good books on the
subject (e.g., [13]), allow us to set up the basic algebraic
formulation of the primal-dual interior-point methods:

Ax=b, ATy —s=c, and x;5; = A
fori=1,2,...,d. (3)

Perhaps the key observation for this section is that this
is a system of polynomial equations (quadratic and linear), and
thus its solutions can be studied as an algebraic variety. This al-
gebraicvariety is the central curve. Algebraic thinking about
the central curve goes back to pioneering work by Bayer
and Lagarias in the early days of interior-point methods.
Today we are taking this further.

It is known that for each value of A > 0, the system of
polynomial equations (3) (with interior feasible points)
has a unique real solution (x*(A),y*(A),s™(A)) with
the properties Xx*(A) > 0 and s*(A) > 0. The point
x*(A) is precisely the optimal solution of the logarithmic
barrier function f (X) we saw earlier for problem (1).

The parametrized set of solutions, given by the chang-
ing parameter A, is the central path. These solutions for
A — 0 have a limit point (x*(0),y™(0),s*(0)) which
satisfies equation (3) when A = 0, which defines opti-
mal solutions, and thus in the limit we reach an optimum
point of the linear program. Traditionally the central path
is only followed approximately: discrete incremental steps
that follow the path are generated by applying a Newton
method to the equations. Similarly, tradition dictates the
central path only connects the optimal solution of the lin-
ear programs in question with its analytic center within one
single cell, with s; = 0. Our plan now is to break with
tradition: we look at the algebraic curve with all exact so-
lutions defined by the system of equations (3).

In Figure 9 we see a depiction of one difference between
the numeric point of view and the algebraic point of view
of the central path. The central path is just a small portion
of the entire explicit central curve that in reality extends
beyond a single feasibility region (given by different sign
constraint choices on variables). The central (algebraic)
curve passes through all the vertices of a hyperplane ar-
rangement defined by the LP constraints.

One way to estimate the number of Newton steps
needed to reach the optimal solution is to bound the cur-
vature of the central path. The intuition is that curves with
small curvature are easier to approximate with fewer line
segments. This idea has been investigated by various au-
thors, and it has yielded interesting results. For example,
S. Vavasis and Y. Ye found that the central path contains
no more than n® crossover events (turns of a special type).
This finding led to an interior-point algorithm whose run-
ning time depends only on the constraint matrix A. The
notion of curvature we need is the total curvature of the cen-
tral curve. It is defined as the degree of the map to the
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unit sphere assigning to each point of the curve the unit
tangent vector at that point. This assignment is called the
Gauss map. For a curve in the plane this is the sum of arc
lengths on the unit circle. In Figure 10 we illustrate the
tracing of an arc on the unit circle for one curve segment
in the sequence of tangent vectors.

Dedieu, Malajovich, and Shub showed that the average
total curvature of the primal, the dual, and the primal-
dual central paths of the strictly feasible polytopes defined
by (A, b) is at most 211(d — 1) (primal), at most 271d
(dual), and at most 27td (primal-dual). In particular, it is
independent of the number n of constraints. Later De Lo-
era, Sturmfels, and Vinzant obtained bounds for the total
curvature in terms of the degree of the Gauss maps of the
curve. They also computed the degree, arithmetic genus,
and defining prime ideal of the central curve and their pri-
mal dual projections. Their techniques used classical for-
mulas from algebraic geometry. Unfortunately, for practi-
cal applications, the more relevant quantity is not the total
curvature of the entire algebraic curve but rather the total
curvature in and around the usual portion of the central
path within a specific polytope region, going from the an-
alytic center to an optimum. A. Deza, T. Terlaky, and Y.
Zinchenko investigated the total curvature in a series of in-
teresting papers. They conjectured that the largest possible
total curvature of the associated central path with respect
to all cost vectors is no more than 27tn, where n is the
number of facets of the polytope.

In an exciting 2018 paper [2], X. Allamigeon, P. Benchi-
mol, S. Gaubert, and M. Joswig disproved the Deza-Ter-
laky-Zinchenko conjecture, and they also showed that
(certain) logarithmic-barrier interior-point methods can
never be strongly polynomial for linear programming!

Theorem 5 (Allamigeon et al. 2018 [2]).

® There is a parametric family of linear programs in 2d
variables with 3d + 1 constraints, depending on a pa-
rameter t > 1, such that the number of iterations
of any primal-dual path-following interior-point algo-
rithm with a log-barrier function that iterates in the
wide neighborhood of the central path is exponential

<

AN

Figure 9. One difference from the central path (left) to the
central curve (right) is more points of solution exist.
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Figure 10. lllustration of the total curvature as the total traversed arc length of the unit tangent vectors of a curve.

in d for all t sufficiently large.

® There exists an explicit family of linear programs with
3d + 1 inequalities in 2d variables where the central
path has a total curvature that is exponential in d.

This is exciting news, but even more surprising, these re-
markable counterexamples were produced using new
tools from tropical geometry. Tropical methods have been
used before in optimization, game theory, and control the-
ory. Tropical geometry is today a very active field of study,
and I can only scratch its surface here. For more details
see [9].

Tropical geometry is algebraic geometry over the max-
plus semiring (Rmax; @, ©) where the set Rpax = R U
{—o0} is endowed with the operationsa®b = max(a, b)
and a®b = a+b. The max-plus semirings are also called
tropical semirings. In this way we have some funny arith-
metic, e.g., 1 ® 3 = 3 and 5 © 0 = 5. Tropical arithmetic
is associative, distributive, the additive identity is — 00, and
the multiplicative identity is 0. Tropical arithmetic extends
of course to matrices and polynomials, and so one can de-
fine tropical varieties, tropical polyhedra, and much more.
For example, a tropical halfspace is the set of vectors X satisfy-
ing a “linear” inequality in the tropical semiring; this trans-
lates to those vectors that satisfy max (o} + X, ..., oG +
Xn, BY) = max(ay +x1,..., & + Xn, B7). Just like con-
vex polyhedra are the feasible sets of linear optimization,
now tropical polyhedra will play a role for feasible solu-
tion sets. A tropical polyhedron is simply a finite intersection
of tropical halfspaces. Figure 11 shows an example with
five halfspaces (marked by colors); a tropical pentagon is
indicated in gray.

It turns out that for every algebraic variety, there is a way
to obtain a tropical variety. The tropicalization of an alge-
braic variety V' is a process that yields a polyhedral com-
plex T(V) in R%. The combinatorial complex T(V) has
many of the key properties of the original algebraic variety.
For instance, if V' is a planar algebraic curve over an alge-
braically closed field, then T (V') is a planar graph. Several
key features of the algebraic variety V are easier to see in
its tropicalization T (V). For example, if V is irreducible,
then T(V) is connected. Figure 12 shows one example
of a genus three Riemann surface (it is given by a smooth
degree four homogeneous polynomial equation on three
complex variables). Its tropicalization preserves the homo-
logical information (number of holes).

For our purposes the key idea is that any tropical poly-
hedron is actually the tropicalization of a linear program
with coefficients over a field of absolutely convergent real-
valued Puiseux series K (these are power series that allow
for negative and fractional exponents). As K is an ordered
real-closed field, the basic results of linear programming
(Farkas’ lemma, strong duality, etc.) still hold true, and the
central path of such a linear program is well-defined. The
elements of K are real-valued functions. The key point is:
a linear program over the field K encodes an entire para-
metric family of traditional linear programs over the reals
R, and the central path on K describes all central paths of
this parametric family. The tropicalization of the K-linear
programs allows us to see the behavior of the central path,
now shown as a piece-wise linear path inside a tropical
polyhedron. This piece-wise linear path is the tropical cen-
tral path, defined as the image under the tropicalization.
Consider the following example. The Puiseux polyhedron
P C K? is defined by five inequalities:

B max(x—5,y—3)>0 ;/“\ S i
— 0> max(x — 8,y —7) 6 \ A H B IS
| max(0,y —=5) >x—7 5 N4 X1+X2S2
=] x —2 > max(0,y —6) 4 N
- y22 3 tx; <1+ 1°x;
2 N 3
1 \ tx, <1+1t°x; (4)
0 = >
12 4 7 X
. . 0 3 56 89 X; < t2X2
Figure 11. An example of a tropical polyhedron.
X1,X2 >0.
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Figure 12. The picture on the left shows a smooth plane tropical curve of degree 4 and genus 3. This arises as the tropicalization
of a smooth complex algebraic curve of the same degree and the same genus. As a manifold that curve is a smooth surface of
genus 3, and this is the picture on the right. The pictures illustrate that the graph-theoretic genus corresponds to the topological

genus.
The tropicalization of P is described by five tropical lin-
ear inequalities:
max(xi,Xx2) <0
1+ x; <max(0,2 + x»)
1+ x, <max(0,3 + x1)
X1 <2+x.

(5)

X2 X2

min x; mintx; + Xp
Figure 13. Two tropical central paths corresponding to two
different objective functions.

Figure 13 shows the tropicalization of the Puiseux poly-
hedron from equation (4) (the shaded region), but it also
shows two different tropical central paths for two different
objective functions. One can see that the tropical central
path on the left degenerated to a vertex-edge path, akin to
the simplex method moving through the boundary of the
polyhedron. The tropicalization allows for simpler calcu-
lations. The total curvature of an algebraic curve becomes,
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under the tropicalization, a sum of piece-wise linear angu-
lar turns. The problem of computing total curvature be-
comes a problem of adding polygonal angles.

Conclusions

[ hope the reader has seen the power of algebraic and topo-
logical tools in the analysis and creation of linear optimiza-
tion algorithms. While here I focused on the theory of
linear optimization, algebraic-geometric-topological tech-
niques have had impact in other parts of optimization,
too. For example, real algebraic geometry has been de-
cisive for global optimization problems with polynomial
constraints. Through the theory of sums of squares and
semidefinite programming one can compute convex op-
timization approximations to difficult highly non-convex
problems [3]. Algebraic methods were used in integer pro-
gramming through Graver bases tools [6].

If you can see the benefits of having a diversity of mathe-
matical perspectives, can you imagine the result of having
a larger, more diverse group of mathematicians working
on solving problems and on finding new applications of
mathematics?
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